人教版八年级数学下第一次月考测试题2017

合集下载

长春XX学校2017-2018学年八年级下第一次月考数学试卷(有答案)

长春XX学校2017-2018学年八年级下第一次月考数学试卷(有答案)

2017-2018学年吉林省长春XX学校八年级(下)第一次月考数学试卷一、选择题(每题三分)1.(3分)下列各式是分式的是()A.B.C.x+1 D.2.(3分)若分式无意义,则x的取值是()A.x=2或x=﹣2 B.x=2 C.x=﹣2 D.x=03.(3分)如果把中的x、y都扩大5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍4.(3分)把分式方程﹣=2化为整式方程正确的是()A.1﹣x﹣2=2 B.1﹣(x﹣2)=2(x﹣1) C.1+(x﹣2)=2(x﹣1)D.1+(x﹣2)=2 5.(3分)已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,则m的值为()A.2 B.﹣4 C.﹣2或﹣4 D.2或﹣46.(3分)已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.7.(3分)如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠AEF=()A.60°B.70°C.75°D.80°8.(3分)某工厂计划每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的方程是()A.B.C.D.二、填空题(每题3分)9.(3分)若分式的值为0,则x=.10.(3分)在显微镜下一个球形细菌的直径是0.0000053米,则用科学记数法可表示为米.11.(3分)若关于x的方程有增根,则a=.12.(3分)平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是.13.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是.14.(3分)已知一次函数y=2x+b的图象与坐标轴围成一个三角形,这个三角形的面积是4,则b的值是.三、解答题15.(12分)计算:(1)(2)(3)(4)+16.(8分)解下列方程:(1)=(2)17.(6分)先化简﹣,且在﹣3,0,1,2中选择一个数代入求值.18.(6分)已知一次函数y=kx+b的图象与y=3x的图象平行,且经过点(﹣1,1),求这个一次函数的关系式,并求当x=5时,对应函数y的值.19.(8分)某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?20.(8分)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作BC的平行线交BE 的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)如果AB=AC,试猜测四边形ADCF的形状,并证明你的结论.21.(8分)已知方程x+=2+的解是x1=2,x2=方程x+=3+的解是x1=3,x2=方程x+=4+的解是x1=4,x2=……观察上述方程及方程的解,回答下列问题:(1)关于x的方程x+=a+的解是什么?并用方程解的概念验证你的猜想是否正确;(2)根据结论求出关于x的方程x+=b+的解.22.(10分)某化妆品公司每月付给销售人员的工资有两种方案:方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.;设x(件)是销售商品的数量,y(元)是销售人员的月工资.如右图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题):(1)方案一每件商品提成是元;方案二每件商品提成是元;(2)求y1和y2的函数关系式;(3)如果该公司销售人员小丽这个月销售了60件的商品,那么她采用哪种方案获得的报酬会更多一些?23.(12分)如图,在平面直角坐标系中,直线BE⊥x轴,交x轴与点D,点D坐标是(﹣4,0)直线y=﹣x﹣1与x轴和直线BE交于点C、E,点A在y轴上,且坐标为(0,m),且(m >0),连接AC,交直线BE于点B.(1)当m=4时,求直线AC的函数表达式及C、B坐标;(2)当m为何值时,△ACO≌△FCO,并说明理由;=S△CDB,则点A坐标是多少?(3)若S四边形DEFO2017-2018学年吉林省长春外国语学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题三分)1.(3分)下列各式是分式的是()A.B.C.x+1 D.【考点】61:分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、分母中不含有字母,因此它是整式,而不是分式.故本选项错误;B、的分母中含有字母,因此它是分式.故本选项正确;C、x+1的分母中均不含有字母,因此它是整式,而不是分式.故本选项错误;D、的分母中均不含有字母,因此它是整式,而不是分式.故本选项错误;故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.2.(3分)若分式无意义,则x的取值是()A.x=2或x=﹣2 B.x=2 C.x=﹣2 D.x=0【考点】62:分式有意义的条件.【分析】当分母为0时分式无意义,令x2﹣4=0即可求出x.【解答】解:分式无意义,则可知x2﹣4=0,解得x=±2;故选:A.【点评】考查了分式有意义的条件.分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零.3.(3分)如果把中的x、y都扩大5倍,那么分式的值()A.扩大5倍B.不变C.缩小5倍D.扩大4倍【考点】65:分式的基本性质.【分析】把x,y分别换为5x,5y,化简后即可作出判断.【解答】解:根据题意得:=,则分式的值不变,故选:B.【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.4.(3分)把分式方程﹣=2化为整式方程正确的是()A.1﹣x﹣2=2 B.1﹣(x﹣2)=2(x﹣1) C.1+(x﹣2)=2(x﹣1)D.1+(x﹣2)=2【考点】B3:解分式方程.【分析】方程两边都乘以x﹣1即可得.【解答】解:方程两边都乘以x﹣1,得:1+(x﹣2)=2(x﹣1),故选:C.【点评】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的基本步骤.5.(3分)已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,则m的值为()A.2 B.﹣4 C.﹣2或﹣4 D.2或﹣4【考点】F5:一次函数的性质;F8:一次函数图象上点的坐标特征.【分析】根据一次函数的性质求解.【解答】解:∵一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x的增大而增大,∴m>0,|m+1|>0,把点(0,3)代入y=mx+|m+1|得:3=|m+1|=m+1,m=2.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6.(3分)已知一次函数y=kx+k,其在直角坐标系中的图象大体是()A.B.C.D.【考点】F3:一次函数的图象.【分析】函数的解析式可化为y=K(x+1),易得其图象与x轴的交点为(﹣1,0),分析选项可得答案.【解答】解:函数的解析式可化为y=K(x+1),即函数图象与x轴的交点为(﹣1,0),分析可得,A符合,故选:A.【点评】本题考查一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.7.(3分)如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠AEF=()A.60°B.70°C.75°D.80°【考点】LB:矩形的性质.【分析】根据矩形的性质,求出∠EAF=15°,从而得出∠AEF的度数即可.【解答】解:∵∠EAF是∠DAE折叠而成,∴∠EAF=∠DAE,∠ADC=∠AFE=90°,∠EAF===15°,在△AEF中∠AFE=90°,∠EAF=15°,∠AEF=180°﹣∠AFE﹣∠EAF=180°﹣90°﹣15°=75°.故选:C.【点评】本题考查了矩形的性质,图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,复合的部分就是对应量.8.(3分)某工厂计划每天生产x吨生产资料,采用新技术后每天多生产3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x的方程是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】根据实际生产180吨与原计划生产120吨的时间相等,可以建立方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出方程.二、填空题(每题3分)9.(3分)若分式的值为0,则x=2.【考点】63:分式的值为零的条件.【分析】分式值为零的条件:分子等于零且分母不等于零,所以,据此求出x的值是多少即可.【解答】解:∵分式的值为0,∴解得x=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零.10.(3分)在显微镜下一个球形细菌的直径是0.0000053米,则用科学记数法可表示为 5.3×10﹣6米.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000053米,则用科学记数法可表示为5.3×10﹣6米.故答案为:5.3×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(3分)若关于x的方程有增根,则a=1.【考点】B5:分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入整式方程算出未知字母的值.【解答】解;方程两边都乘(x﹣2),得a=x﹣1﹣3(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,即x=2,把x=2代入整式方程,得a=1.故答案为1.【点评】本题考查了分式方程的增根问题,对于此问题可按如下步骤进行:①让最简公分母为0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.(3分)平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是0.5<m<3.【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【解答】解:∵点P(m﹣3,1﹣2m)在第三象限,∴,解得:0.5<m<3,故答案为:0.5<m<3【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是24.【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OA,再根据菱形的对角线互相平分求出AC、BD,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【解答】解:∵四边形ABCD是菱形,∴OB=OD=3,OA=OC,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OA=,∴AC=2OA=8,=×AC×BD=×6×8=24.∴S菱形ABCD故答案为:24【点评】本题考查了菱形的周长公式,菱形的对角线互相垂直平分线的性质,勾股定理的应用,比较简单,熟记性质是解题的关键.14.(3分)已知一次函数y=2x+b的图象与坐标轴围成一个三角形,这个三角形的面积是4,则b的值是±4.【考点】F8:一次函数图象上点的坐标特征.【分析】利用一次函数y=2x+b的图象与x轴交点和与y轴交点的特点求出坐标,以及图象与坐标轴所围成的三角形是直角三角形求解.【解答】解:当y=0时,0=2x+b,∴x=﹣;当x=0时,y=b,∴一次函数y=2x+b的图象与坐标轴所围成的三角形面积:×|﹣|×|b|=4,解得b=±4,故答案为:±4【点评】本题考查了一次函数图象上点的坐标特征,本题利用了直线与x轴的交点的纵坐标为0,直线与y轴的交点的横坐标为0求解.三、解答题15.(12分)计算:(1)(2)(3)(4)+【考点】6C:分式的混合运算.【分析】(1)根据分式的除法可以解答本题;(2)根据幂的乘方和分式乘法可以解答本题;(3)根据分式的除法可以解答本题;(4)根据分式的加法可以解答本题.【解答】解:(1)==;(2)==;(3)==;(4)+=====.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.16.(8分)解下列方程:(1)=(2)【考点】B3:解分式方程.【分析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:(1)方程两边乘以(x+1)(2x﹣1)得:2(2x﹣1)=5(x+1),解得:x=﹣7,检验:当x=﹣7时,(x+1)(2x﹣1)≠0,即x=﹣7是原方程的解,所以原方程的解为x=﹣7;(2)方程两边乘以x﹣2得:1﹣x=﹣1﹣2(x﹣2),解得:x=2,检验:当x=2时,x﹣2=0,即x=2不是原方程的解,所以原方程无解.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.17.(6分)先化简﹣,且在﹣3,0,1,2中选择一个数代入求值.【考点】6D:分式的化简求值.【分析】将分子、分母因式分解后约分,再通分、计算分式的减法,继而约分即可化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:原式=•﹣=﹣==﹣,当x=1时,原式=﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.18.(6分)已知一次函数y=kx+b的图象与y=3x的图象平行,且经过点(﹣1,1),求这个一次函数的关系式,并求当x=5时,对应函数y的值.【考点】FF:两条直线相交或平行问题.【分析】根据两平行直线的解析式的k值相等求出k,然后把经过的点的坐标代入解析式计算求出b值,即可得解.【解答】解:∵一次函数y=kx+b的图象平行于直线y=3x,∴k=3,∴y=3x+b把点(﹣1,1)代入得,3=﹣1×3+b,解得b=6,所以,一次函数的解析式为,y=3x+6,当x=5时,y=3×5+6=21.【点评】本题考查了两直线平行的问题,根据平行直线解析式的k值相等求出k值是解题的关键,也是本题的突破口.19.(8分)某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?【考点】B7:分式方程的应用.【分析】首先设钢笔单价x元/支,则毛笔单价1.5x元/支,根据题意可得:1500元购买的钢笔数量﹣1800元购买的毛笔数量=30支,根据等量关系列出方程,再解即可.【解答】解:设钢笔单价x元/支,由题意得:﹣=30,解得:x=10,经检验:x=10是原分式方程的解,1.5x=1.5×10=15.答:钢笔、毛笔的单价分别为10元,15元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.20.(8分)如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作BC的平行线交BE 的延长线于F,连接CF.(1)求证:四边形ADCF是平行四边形;(2)如果AB=AC,试猜测四边形ADCF的形状,并证明你的结论.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)利用△AEF≌△DEB得到AF=DB,所以AF=DC,根据一组对边平行且相等的四边形是平行四边形可证明四边形ADCF为平行四边形;(2)利用等腰三角形的性质以及矩形的判定得出即可;【解答】(1)证明:∵AF∥BC,∴∠FAE=∠EDB,∠AFE=∠EBD.在△AEF和△DEB中,,∴△AEF≌△DEB(AAS),∴AF=DB,又∵BD=DC,∴AF=DC,∴四边形ADCF为平行四边形;(2)四边形ADCF为矩形;理由:连接AB,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADC=90°∴平行四边形AFCD为矩形【点评】此题主要考查了矩形的判定和全等三角形的判定等知识,利用了全等三角形的判定与性质,平行四边形的判定,矩形的判定是解题关键.21.(8分)已知方程x+=2+的解是x1=2,x2=方程x+=3+的解是x1=3,x2=方程x+=4+的解是x1=4,x2=……观察上述方程及方程的解,回答下列问题:(1)关于x的方程x+=a+的解是什么?并用方程解的概念验证你的猜想是否正确;(2)根据结论求出关于x的方程x+=b+的解.【考点】B3:解分式方程.【分析】(1)本题可根据给出的方程的解的概念,来求出所求的方程的解.(2)本题要求的方程和题目给出的例子中的方程形式不一致,可先将所求的方程进行变形.变成式子中的形式后再根据给出的规律进行求解.【解答】解:(1)根据题意知x=a或x=,当x=a时,左边=a+=右边,所以x=a是分式方程的解;当x=时,左边=+=+a=右边,所以x=是分式方程的解;综上,x=a或x=是分式方程的解;(2)∵x+=b+,∴x﹣3+=b﹣3+,则x﹣3=b﹣3或x﹣3=,解得:x=b或x=.【点评】本题考查了分式方程的解,要注意给出的例子中的方程与解的规律,还要注意套用列子中的规律时,要保证所求方程与例子中的方程的形式一致.22.(10分)某化妆品公司每月付给销售人员的工资有两种方案:方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.;设x(件)是销售商品的数量,y(元)是销售人员的月工资.如右图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题):(1)方案一每件商品提成是14元;方案二每件商品提成是7元;(2)求y1和y2的函数关系式;(3)如果该公司销售人员小丽这个月销售了60件的商品,那么她采用哪种方案获得的报酬会更多一些?【考点】FH:一次函数的应用.【分析】(1)根据题意和函数图象可以求得方案一和方案二的每件商品提成;(2)根据函数图象中的数据可以求得y1和y2的函数关系式;(3)根据(2)中的函数解析式可以分别求得两种方案的报酬,然后比较大小即可解答本题.【解答】解:(1)由图象可得,方案一每件商品提成是:420÷30=14(元),方案二每件商品提成是:(560﹣350)÷30=7(元),故答案为:14,7;(2)设y1与x的函数关系式是y1=kx,30k=420,得k=14,即y1与x的函数关系式是y1=14x,设y2与x的函数关系式是y2=ax+b,,得,即y2与x的函数关系式是y2=7x+350;(3)当x=60时,y1=14×60=840,y2=7×60+350=770,∵840>770,∴她采用方案一获得的报酬会更多一些.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用函数的性质解答.23.(12分)如图,在平面直角坐标系中,直线BE⊥x轴,交x轴与点D,点D坐标是(﹣4,0)直线y=﹣x﹣1与x轴和直线BE交于点C、E,点A在y轴上,且坐标为(0,m),且(m >0),连接AC,交直线BE于点B.(1)当m=4时,求直线AC的函数表达式及C、B坐标;(2)当m为何值时,△ACO≌△FCO,并说明理由;=S△CDB,则点A坐标是多少?(3)若S四边形DEFO【考点】FI:一次函数综合题.【分析】(1)利用待定系数法求出直线AC的解析式,根据坐标轴上点的坐标特征求出C、B 坐标;(2)根据一次函数解析式求出点F的坐标,得到OF的长,根据全等三角形的性质解答;,根据题意列出算式,(3)根据相似三角形的性质求出DE,根据梯形面积公式求出S四边形DEFO计算即可.【解答】解:(1)对于直线y=﹣x﹣1,当y=0时,0=﹣x﹣1,解得,x=﹣8,则点C的坐标为(﹣8,0),当m=4时,点A坐标为(0,4),设直线AC的解析式为:y=kx+b,则,解得,k=,b=4,则直线AC的解析式为:y=x+4,直线AC交直线BE于点B,点D坐标是(﹣4,0),直线BE⊥x轴,当x=﹣4时,y=2,∴点B的坐标为(﹣4,2);(2)当x=0时,y=﹣x﹣1=﹣1,∴点F的坐标为(0,﹣1),即OF=1,当△ACO≌△FCO时,OA=OF=1,∴m=1;(3)∵DE∥OF,CD=DO,∴DE=OF=,=×(+1)×4=3,∴S四边形DEFO由题意得,×BD×4=3,解得,BD=,∵BD∥OA,CD=DO,∴AO=2BD=3,∴m=3,即点A坐标是(0,3).【点评】本题考查的是一次函数的知识、相似三角形的判定和性质,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.。

八年级下学期数学第一次月考试卷(附答案)

八年级下学期数学第一次月考试卷(附答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十七章《勾股定理》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.要使√x+1有意义,则x的取值范围为()2A. x≤0B. x≥−1C. x≥0D. x≤−12.已知△ABC的三边之长分别为a、1、3,则化简|9−2a|−√9−12a+4a2的结果是()A. 12−4aB. 4a−12C. 12D. −123.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是()A. 4πB. 8πC. 12πD. 16π4.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为()A. 2B. √5−1C. √10−1D. √55.下列运算中,能合并成一个根式的是()A. √12−√2B. √18−√8C. √8a2+√2aD. √x2y+√xy26.已知a,b,c为互不相同的有理数,满足(b+√2)2=(a+√2)(c+√2),则符合条件的a,b,c共有()A. 0组B. 1组C. 2组D. 4组7.如下图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm8.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是△ABC的高,则BD的长为()A. 1013√13B. 913√13C. 813√13D. 713√139.如果实数a满足|2019−a|+√a−2020=a,那么a−20192的值是()A. 2017B. 2018C. 2019D. 202010.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m.则旗杆的高度(滑轮上方的部分忽略不计)为()A. 12mB. 13mC. 16mD. 17m二、填空题(本大题共10小题,共30.0分)11.要使代数式√2x−1x−1有意义,则x的取值范围是______.12.已知√7=a,√70=b,用含a、b的代数式表示√490=____________.13.已知△ABC中,∠A=12∠B=13∠C,则∠A、∠B、∠C所对的三条边之比为______.14.如图,一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ=_____________厘米.15.对于任意实数a,b,定义一种运算“∗”如下:a∗b=a(a−b)+b(a+b),如:3∗2=3×(3−2)+2×(3+2)=13,那么√3∗√2=.16.如果一个三角形的面积为√15,一边长为√3,那么这条边上的高为.17.如下图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为.18.如图,长方体的长为15,宽为10,高为20,点B离点C距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为.19.如图所示,正方体的棱长为√2cm,用经过A、B、C三点的平面截这个正方体,所得截面的周长是______ cm.20. a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,⋯⋯,a n =1+1n 2+1(n+1)2,其中n 为正整数,则√a n 的值是__________.三、解答题(本大题共6小题,共80.0分) 21. (12分)计算下列各式(1)(13)−2+6√3−√12+(1−√2)0(2)y x +1x +y ⋅(x −y 2x )22. (12分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国钓鱼岛位于O 点,我国渔政船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向钓鱼岛所在地点O ,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C 处的位置;(2)求我国渔政船行驶的航程BC 的长.23.(12分)阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①2√5=2√5√5⋅√5=2√55;②1√2−1=1×(√2+1)(√2−1)(√2+1)=√2+1(√2)2−12=√2+1等运算都是分母有理化.根据上述材料,(1)化简:1√3−√2(2)计算:1√2+1+1√3+√2+1√4+√3+⋯+1√10+√9.24.(14分)已知四边形ABCD中,BC=DC,对角线AC平分∠BAD.(1)作CE⊥AB,CF⊥AD,E、F分别为垂足.求证:△BCE≌△DCF.(2)如果AB=21,AD=9.BC=DC=10,求对角线AC的长.25.(14分)已知a,b为实数,且a=√5b−35+√7−b+3,求√(a−b)2的值.26.(16分)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100m的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B 处所用的时间为3s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80km/ℎ的限制速度?(√3≈1.732)答案1.B2.A3.B4.C5.B6.A7.A8.D9.D10.D11.x≥12且x≠112.ab13.1:√3:214.2015.516.2√517.218.2519.620.n2+n+1n2+n21.解:(1)原式=9+2√3−2√3+1=10;(2)原式=yx +1x+y·x2−y2x=yx+1x+y·(x+y)(x−y)x=yx+x−yx=1.22.解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45−x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.23.解:(1)原式=√3+√2=√3+√2;(√3−√2)(√3+√2)(2)原式=√2−1+√3−√2+⋯+√10−√9=√10−1.24.(1)证明:∵AC平分∠BAD,且CE⊥AB,CF⊥AD;∴CF=CE;又∵CD=BC;∴Rt△BCE≌Rt△DCF.(2)解:取AG=AD,作CH⊥AB,垂足为H,得△ADC≌△AGC,∴AG=AD=9,CG=CD=10;∴CG=CB;∴△CGB为等腰三角形.∵GB=AB−AG=21−9=12,GH=HB=6;∴CH2=100−36=64,∴CH=8;GB=9+6=15;∴AH=AG+GH=9+12Rt△ACH中,AC2=AH2+CH2=152+82=172∴AC=17.25.由题意得{5b−35⩾07−b⩾0,解得b=7,∴a=√5b−35+√7−b+3=3,∴√(a−b)2=√(3−7)2=4.26.解:此车超过80km/ℎ的限制速度.理由如下:在Rt△APO中,∠APO=60°,则∠PAO=30°,∴AP=2OP=200m,AO=√AP2−OP2=√2002−1002=100√3(m),在Rt△BOP中,∠BPO=45°,则BO=OP=100m,∴AB=AO−BO=(100√3−100)m,∴从A到B小车行驶的速度为(100√3−100)÷3≈24.4(m/s)=87.84km/ℎ>80km/ℎ,∴此车超过80km/ℎ的限制速度.。

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)

2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共30分)1.下列二次根式中是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.4•=4B.5•5=5C.4•2=6D.4•=4 3.若代数式在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥34.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.35.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,在△ABC中,AB=AC,AD是BC边上的高.已知AB=5,BC=8,则AD的长为()A.6B.5C.4D.37.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2B.C.D.8.已知△ABC的三边分别长为a、b、c,且满足(a﹣17)2+|b﹣15|+c2﹣16c+64=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形9.若直角三角形的两条直角边各扩大一倍,则斜边()A.不变B.扩大一倍C.扩大两倍D.扩大四倍10.如图,已知1号,4号两个正方形的面积和为7,2号,3号两个正方形的面积和为4,则a,b,c三个方形的面积和为()A.10B.13C.15D.22二、填空题(共24分)11.在,,中与可以合并的二次根式是.12.已知直角三角形的两边长为3、2,则另一条边长是.13.如果=1﹣2a,则a的取值范围是.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为.16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为.三、解答题(共66分)17.计算:(1);(2).18.分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.19.先化简,后求值:÷(1﹣),其中x=2+1.20.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.21.已知x=2+,y=2﹣,求下列各式的值:(1)x2+xy+y2;(2).22.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S =(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.23.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛)一尺,不合四寸,问门广几何?其大意:如图,推开双门(大小相同),双门间隙CD=4寸,点C、点D与门槛AB的距离CE=DF=1尺(1尺=10寸),求AB的长.24.如图,在Rt△ABC中,∠C=90°,AC=BC,在Rt△ABD中,∠D=90°,AD与BC 交于点E,且∠DBE=∠DAB.求证:(1)∠CAE=∠DBC;(2)AC2+CE2=4BD2.25.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=(400+400)千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据≈1.41,≈1.73,≈2.24)参考答案一、选择题(共30分)1.解:A、被开方数含开得尽的因数或因式,故A不符合题意;B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数不含分母,被开方数不含开得尽的因数或因式,故C符合题意;D、被开方数含开得尽的因数或因式,故D不符合题意;故选:C.2.解:A、4•=4×3=12,错误;B、5•5=5×5×=25,错误;C、4•2=4×2×=8,错误;D、正确.故选:D.3.解:由题意得,3﹣x≥0,解得,x≤3,故选:B.4.解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.5.解:∵∠AEB=90°,AE=6,BE=8,∴AB===10,∵四边形ABCD是正方形,∴S正方形ABCD=AB2=102=100,∵S△AEB=AE•BE=×6×8=24,∴S阴影=S正方形ABCD﹣S△AEB=100﹣24=76,∴阴影部分的面积是76,故选:C.6.解:在△ABC中,AB=AC,AD⊥BC,BC=8,则BD=CD=BC=4.在直角△ABD中,AB=5,BD=4,由勾股定理,得AD===3.故选:D.7.解:AC==,AM=AC=,点M表示的数是﹣1.故选:D.8.解:∵(a﹣17)2+|b﹣15|+c2﹣16c+64=0,∴(a﹣17)2+|b﹣15|+(c﹣8)2=0,∴a﹣17=0,b﹣15=0,c﹣8=0,∴a=17,b=15,c=8,∵82+152=172,∴△ABC是以a为斜边的直角三角形;故选:A.9.解:设一直角三角形直角边为a、b,斜边为c,则a2+b2=c2;扩大2倍后,直角三角形直角边为2a、2b,则根据勾股定理知斜边为:=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选:C.10.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:C.二、填空题(共24分)11.解:=2,=2,=3,则与可以合并的二次根式是,故答案为:12.解:①长为2的边是直角边,长为3的边是斜边时:第三边的长为:=;②长为2、3的边都是直角边时:第三边的长为:=,所以第三边的长为:或,故答案为:或.13.解:∵=|2a﹣1|,∴|2a﹣1|=1﹣2a,∴2a﹣1≤0,∴a≤.故答案为a≤.14.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.AB==2;如图(2)所示:AB==20.由于2>20,所以最短路径为20cm.故答案为:20cm.16.解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故答案为:3.三、解答题(共66分)17.解:(1)原式=10﹣6+4=20﹣9+4=15;(2)原式=+﹣2=4+﹣2=4﹣.(2)如图2所示:19.解:原式====,当时,原式==.20.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.21.解:∵x=2+,y=2﹣,∴x+y=4,xy=1,∴(1)x2+xy+y2=(x+y)2﹣xy=42﹣1=15;(2)===4.22.解:(1)∵p==12,∴由海伦公式得:S===12;(2)由秦九韶公式得:S====.23.解:设AE=BF=x寸,则AC=(x+2)寸,∵AE2+CE2=AC2,∴x2+102=(x+2)2,解得:x=24,则AB=24+24+4=52(寸),答:AB的长为52寸.24.证明:(1)∵∠ACB=∠D=90°,∴∠CEA+∠CAE=∠BED+∠CBD=90°,∴∠CEA=∠BED,∴∠CAE=∠DBC;(2)延长BD交AC延长线于点F,∵∠DBE=∠DAB,∴∠DAB=∠CAE,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA),∴BD=DF,∴BF=2BD,在△ACE和△BCF中,,∴△ACE≌△BCF(ASA),∴AE=BF,∴AE=2BD,在Rt△ACE中,AC2+CE2=AE2,∴AC2+CE2=(2BD)2=4BD2.25.解:(1)海港C受台风影响,理由:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠CAD=45°,∴∠ACD=45°,∴AD=CD,∵∠DBC=30°,∴BD=CD,∵AB=(400+400)千米,∴AB=AD+BD=CD+CD=400+400,∴CD=400千米,∵以台风中心为圆心,周围600千米以内为受影响区域,∴海港C受台风影响;(2)当EC=600km,FC=600km时,正好影响C港口,∵ED==200(km),∴EF=400km,∵台风的速度为20千米/小时,∴400÷20≈45(小时).答:台风影响该海港持续的时间大约为45小时.。

精品解析:2017年春季学期八年级数学下册第一次月考试题及参考答案(解析版)

精品解析:2017年春季学期八年级数学下册第一次月考试题及参考答案(解析版)

广西马山县民族中学2017年春季学期八年级数学下册第一次月考试题一、选择题:(共12小题,每小题3分,共36分).选项中只有一个正确,请将正确答案选出来,并将其字母填入下面表格中相应的栏内.)1. 以下式子中,一定是二次根式的是( )A. B. C. D.【答案】A【解析】试题分析:二次根式的被开方数为非负数.B选项中如果x0,则就不符合二次根式的定义;C选项为立方根;D选项中当x,则就不符合二次根式的定义.2. 有意义,那么x的取值范围是( )A. X>B. x>--C. xD. x【答案】C【解析】试题分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,即2x+10,解得:x.3. 平面直角坐标系上点A、B的坐标分别为(4,0)、(0,3),则线段AB长为( )A. 6B. 5C. 4D. 3【答案】B【解析】试题分析:根据两点之间的距离公式可得:AB=.4. 化简的结果为( )A. ―2B. ―4C. 2D. 4【答案】D【解析】试题分析:根据二次根式的化简法则可得:,则原式=.5. 以下运算正确的是( )A. 是最简二次根式B. 三边长分别为4、5、6的三角形是直角三角C. 直角三角形两直角边的和等于斜边的长D. 等腰直角三角形腰长为1,则斜边长为【答案】D【解析】试题分析:A、,则不是最简二次根式;B、,则4、5、6的三角形不是直角三角形;C、直角三角形两直角边的平方和等于斜边的平方;D、等腰直角三角形的腰长为1,则斜边长=,则正确.点睛:本题主要考查的就是最简二次根式和直角三角形的勾股定理.判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.直角三角形的勾股定理是指直角三角形的两条直角边的平方和等于斜边的平方.6. a、b、c是三角形的三边长,且,则这个三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形【答案】B【解析】试题分析:根据题意可得:,则,则这个三角形就是直角三角形.7. 以下句子正确的是()A. B C D【答案】A【解析】试题分析:A、计算正确;B、不是同类二次根式,无法进行加法计算;C、原式=;D、原式=.8. 化简的结果是( )A. 4a B 16 C 2a D 2a【答案】D【解析】根据二次根式的性质,可知==2a.故选:B点睛:此题主要考查了二次根式的化简,利用二次根式的性质和最简二次根式的概念,化简即可.9. 能与合并的二次根式是( )A. B. C. D.【答案】B学,科,网...学,科,网...学,科,网...学,科,网...10. 若,则x的值为( )A. B. C. D. 1【答案】C【解析】根据题意,先移项为,两边同除以系数,可得x=.故选:C11. 估算的值在 ( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】C【解析】试题分析:原式=3,根据6.2579,则,即,那么,所以这个数处在5和6之间.12. 等腰三角形腰长为13cm,底边长为10cm,则其面积为( )A. 30B. 40C. 50D. 60【答案】D【解析】试题分析:根据题意可得:AB=13cm,BD=BC=5cm,根据等腰三角形的性质可知:AD⊥BC,则根据勾股定理可得:AD=12cm,则△ABC的面积=10×12÷2=60.点睛:本题主要考查的就是等腰三角形的性质以及直角三角形的勾股定理的应用.在解答等腰三角形的问题时,我们经常会通过作底边上的高线,利用等腰三角形底边上的三线合一定理转化成直角三角形的问题来进行求解.同学们在解答三角形问题时,如果出现角平分线或者中垂线的时候,一定要特别注意中垂线的性质和角平分线的性质的应用.二填空题(本大题有6小题,毎小题3分,共18分)13. 计算5的结果是___________.【答案】【解析】试题分析:根据化简法则可得:原式=5-2=3.14. 如果,则x的范围是_____________.【答案】【解析】试题分析:根据二次根式的化简法则可得:,根据题意可得:2x-30,解得:x.点睛:本题注意考查的就是二次根式的化简法则.在解答这种问题的时候我们一定要注意区分和,对于而言,a的取值范围为全体实数,运算结果为;对于而言,a的取值范围为:a0,运算结果为a.同学们在解答这种问题的时候,我们一定要区分是哪一种形式,然后根据运算法则进行计算,进行求取值范围.15. 计算=____________________.【答案】【解析】试题分析:根据完全平方公式可得:原式=.16. 如图所示,己知OA=OB,则数轴上点A表示的数是____________.【答案】-【解析】根据图示,由勾股定理可求OB的长为,然后根据OA=OB可知OA=,因此A 点表示的数为-.17. 直角三角形ABC中,∠C=90°,AB=10,BC=6,则AC= _____________.【答案】8【解析】试题分析:根据题意可知AB为斜边,BC为直角边,根据勾股定理求另一直角边AC=8.故答案为:8点睛:此题主要考查了勾股定理的应用,解题的关键是明确直角三角形的各边,然后套用勾股定理的关系式求解即可,比较简单,是常考题.18. 直角三角形中,两直角边的比是2:3,且斜边长为,则其面积为_________.【答案】9【解析】试题分析:首先设直角三角形的两直角边长分别为2x和3x,则根据勾股定理可得:,解得:x=,则两直角边长分别为2和3,则S=2×3÷2=9.点睛:本题主要考查的就是直角三角形的勾股定理、解一元二次方程以及二次根式的计算,属于中等题.在直角三角形中,两条直角边的平方和等于斜边的平方.在解决这个问题,我们首先设成两直角边长,然后根据勾股定理来进行计算.在解答直角三角形问题时,我们需要特别注意一些特殊三角形,比如:等腰直角三角形和含有30°角的直角三角形.三、解答题19. 计算:(1)(2)(3) (4)【答案】(1);(2) ;(3);(4)【解析】试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后再进行加减法计算得出答案;(2)、根据二次根式的乘除法计算法则进行计算得出答案;(3)、根据二次根式的化简法则将各二次根式进行化简,然后进行加减法计算;(4)、将括号里面的二次根式进行化简计算,然后根据二次根式的除法计算法则进行计算得出答案.试题解析:(1) == =(2)===(3) ==(4) = ===20. 在直角三角形ABC中,∠C=90,∠C所对的边为c.(1) 已知c=25,b=15,求a;(2) 已知∠A=,求b、c.【答案】(1)20;(2)【解析】试题分析:(1)、根据直角三角形的勾股定理求出a的值;(2)、根据题意得出c=2b,然后根据勾股定理求出b的值,从而得出c的值.试题解析:(1) 由勾股定理得:==20(2) ∠a=c=2b故由勾股定理得:21. 某小区有一块长为m,宽为m的空地,现要对该空地植上草萍进行绿化,解答下面的问题:(其中, , 结果保留整数)(1) 求该空地的周长;(2) 若种植草坪的造价为12元/ ㎡,求绿化该空地所需的总费用.【答案】(1) 54();(2)2112(元)【解析】试题分析:(1)、首先根据二次根式的化简法则进行化简,然后根据矩形的周长计算公式进行计算,得出答案;(2)、根据矩形的面积计算法则求出面积,然后乘以每平方米的造价得出答案.试题解析:(1)该空地周长为c=54()(2)该空地面积为s==176种草坪造价为M=17612=2112(元)22. 如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD为90米,且点A、D、B在同一直线上,求建筑物A、B间的距离(结果保留根号).【答案】(m)【解析】试题分析:首先根据题意得出∠A和∠B的度数,然后根据Rt△ACD和Rt△BCD的勾股定理分别求出AD和BD的长度,从而根据AB=AD+BD得出答案.试题解析:∠ACE=∠∠A=∠B=在RtΔACD中AC=2CD=180在RtΔBCD中即由此得BD=AB=AD+BD=(m)23. 先化简,再求值:,其中a=.【答案】【解析】试题解析:首先将分式的分子和分母分别进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子进行计算得出答案.试题分析:==当时,原式=。

安徽省六安市裕安中学17—18学年下学期八年级月考(一)数学试题(答案)$862877

安徽省六安市裕安中学17—18学年下学期八年级月考(一)数学试题(答案)$862877

裕安中学2017-2018学年春学期月考一八年级数学学科试卷一、选择题(本题共10小题,每小题4分,满分40分)1、如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠82、在下列方程中,一元二次方程的个数是()①3x2+7=0,②ax2+bx+c=0,③(x+2)(x﹣3)=x2﹣1,④x2﹣x+4=0,⑤x2﹣(+1)x+=0,⑥3x2﹣+6=0A.1个B.2个C.3个D.4个3、下列各式属于最简二次根式的是()A.B.C.D.4、用配方法解方程x2﹣5x=4,应把方程的两边同时()A.加上B.加上C.减去D.减去5、方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=06、小明的作业本上有以下四题:②;①;③;④.做错的题是()A.①B.②C.③D.④7、已知(m﹣1)x2+2mx+(m﹣1)=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<且m≠1 C.m>且m≠1 D.<m<18、某县为发展教育事业,加强了对教育经费的投入,2017年投入3000万元,预计2019年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=50009、已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣10、利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=0二、填空题(本题共4小题,每小题5分,满分20分)11、方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=12、已知,则a+b=13.若一元二次方程x2+kx+6=0的一个根是3,那么k=,另一个根是.14、已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.八年级数学学科月考一考试答题卷 时间:120分钟 满分:150分一、选择题(本题有10小题,每小题 4分,共40分)二、填空题(本题有4小题,每小题5分,共20分)11.______________________ 12._________________________ 13. k=_ ___, __________ 14._________________________ 三、解答题(本大题共9小题,共90分)15、计算:(1)818214+-(2)()()20-52-6-π6101⨯+-⎪⎪⎭⎫⎝⎛-16、解方程:(1)2x ²-5x+1=0(用配方法) (2)(x+4)²=2x+817、化简求值:(2x+1)(2x-1)-(x+1)(3x-2),其中x=12-.18、已知a ,b ,c 在数轴上如图所示,化简:.19、已知1x 、2x 是关于x 的一元二次方程x ²-(2k+1)x+k ²+1=0的两个不相等的实数根,且52221=+x x ,求k 的值.20、已知x=13-,y=13+,求下列代数式的值:(1)x ²-xy+y ²;(2)x ²-y ².21、阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯; )321432(3132⨯⨯-⨯⨯=⨯;)432543(3143⨯⨯-⨯⨯=⨯;由以上三个等式相加,可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完以上材料,请你计算下列各题:(1)1×2 + 2×3 + 3×4 + …… + 10×11= ; (2)1×2 + 2×3 + 3×4 + …… + n(n+1)(写出过程);(3)1×2×3 + 2×3×4 + 3×4×5 + …… + 7×8×9(写出过程)。

2017-2018学年第一学期八年级数学第一次月考试卷答案

2017-2018学年第一学期八年级数学第一次月考试卷答案

2017-2018学年第一学期八年级数学第一次月考试卷答案解析
一、单选题(每小题3分,共30分)
1、【答案】B
【考点】三角形三边关系
【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【解答】根据三角形的三边关系,知
A、1+1=2,不能组成三角形;
B、1+2>2,能够组成三角形;
C、3+5=8,不能组成三角形;
D、3+5<9,不能组成三角形.
故选B.
【点评】此题考查了三角形的三边关系.
判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
2、【答案】C
【考点】三角形的稳定性
【解析】【解答】造房子时屋顶常用三角结构,从数学角度来看,是应用了三
角形具有稳定性,故选:C.
【分析】根据三角形的稳定性进行解答.
3、【答案】A
【考点】三角形的角平分线、中线和高
【解析】【解答】解:三角形的三条中线的交点一定在三角形内.故选A.【分析】根据三角形的中线的定义解答.
第 1 页共 1 页。

人教版八年级数学下册第一次月考测试题

人教版八年级数学下册第一次月考测试题

a 、b 、c,若a 、c 的面积为5和11,则b 的面积为A 、24 CftrB 、36C 、48 cw'D 、60 cm6、 下面的三角形中: ②K ABC 中,Z A : ZABC 中,a : b B : Z C=1 : 2:3;c=3 : 4 : 5 ;ABC 中,三边长分别为 8 , 15 , 17 其中是直角三角形的个数有().、计算(共75分)A. y 2x B9.把m J 1根号外的因式移到根号内,得( m人教版八年级下期第一次月考数学试题一、选择题(每小题 1.下列各式成立的是 3分,共30分) A.J (— 2)2 =—(或2 ) 2 B. /(— 5) 2 = — 5 C.。

2 = x D. J ( — 6) 2= 61211A . a v [2B . a <2 C . a > 2 D . a /,~22.如果寸(2aT )勺1 - 2a ,则 ( ) A. <,r m B . J m C . _m D .J ~m10. 如下图,将一根24cm 的筷子,置丁底面直径为15cm 高8cm的圆柱形水杯中,如图所小,设筷子露在杯子外面的长度为 hcm, 则h 的取值范围是().A. h< 17cm B . h>8cmC 15cn^ h< 16cmD . 7cn^ h< 16cm 二、填空(每题3分,共15分)11. 若一直角三角形的两边长为4、5,则第三边的长为 12. 若丁亦 是整数,则满足条件的最小正整数 n3.已知 寸石是正整数,则实数 n 的最大值为A.-4B.0C.11D.12 4.已知Rt △ ABC中,Z C=90 ,若 a+b=14cm , c=10cm ,Rt △ ABC 的面( )且有意义,则 a 的取值范围是(a>— 2且 a 乒015.如图,在平面直角坐标系中,为半径画弧,交x 正半轴于点点A , B 的坐标分别为(-6 , 0 )、( 0,8 C ,则点C 的坐标为..以点A 为圆心,以13.如图,直线l 上有三个正方形 14.若 y <x 3 廿 3 x 4 ,则 x yC.a> — 2 或 a 乒 0 DABC 中,ZC=ZA —Z B;7.小明的作业本上有以下四题:做错的题是( 16.(8 分)(1) (< 3 +J6)(2) 3 8 — 2-6) 士 V 2 + 2 3① J16a 4 4a 2;② <5a V10a 5扁;③ JI J a 2 ?【 aa(3 ) 4 5. 458 4 217.化简求值(10分)(4)18 ( 2 1) 1 ( 2) 28.化简| x y| Jx 2(x y 0)的结果是(1 1 (x — y — x + y) 士2y x 22 其中 x = 一 2 + 1 , y =J 2 - 118.阅读下列材料,然后回答问题(~~12分):......................................................... 5 2 2 ......................... ............................... 在进行二次根式运算时,我们有时会碰上如-5,卜,一一样的式子,其实我们还可以将其进一步化简:,3 ■ 3. 3 1ABC面积为3近+&«,求AB的长.21. (6分)已知:y J1 8x v^8x—1 [,求代数式」2 1x y 2 y x.x y 2的值。

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案) (2)

人教版2021-2022学年八年级数学下册第一次月考测试题(附答案) (2)

2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共40分.)1.下列各组数据中,能构成直角三角形的是()A.,,B.6,8,9C.3,5,4D.8,12,15 2.下列二次根式中,最简二次根式是()A.B.C.D.3.若是整数,则a的最小值为()A.3B.4C.5D.64.下列运算正确的是()A.B.C.D.5.下列计算正确的是()A.5﹣4=1B.+=C.3=D.2+2=4 6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为()cm2.A.3cm2B.4cm2C.7cm2D.49cm27.一直角三角形的两边分别是2和3,则第三边是()A.2或3B.C.D.或8.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm9.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.1710.对于任意的正数m,n定义运算※为m※n=计算(3※2)×(8※12)的结果为()A.B.20C.D.2二、填空题(满分24分)11.二次根式在实数范围内有意义,则x的取值范围是.12.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB长度为.13.如果+(b﹣3)2=0,则的算术平方根为.14.若,则y x=.15.已知x+y=﹣5,xy=4,则=.16.若m满足等式+|2019﹣m|=m,则m﹣20192的值为.三、解答题(共56分)17.计算:(+1)(﹣1)+(1﹣)0.18.计算:(+)﹣(﹣).19.已知三角形两边长为3,5,要使这个三角形是直角三角形,求出第三边的长.20.若实数a、b、c在数轴上的对应点如图所示,试化简:﹣+|b+c|+|a﹣c|.21.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:因为,即2<3,所以的整数部分为2,小数部分为﹣2.请解答:(1)如果的小数部分为a,的整数部分为b,求a﹣b﹣的值;(2)已知:10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.22.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为ts.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.23.如图,一根长度为50cm的木棒的两端系着一根长度为70cm的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?24.先阅读下列材料,再解决问题.阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+.解决问题:(1)模仿上例的过程填空:=====;(2)根据上述思路,试将下列各式化简:①;②.25.如图,在△ABC中,∠ACB=90°,AC=BC,过顶点A作射线AP.(1)如图1,当射线AP在∠BAC的外部时,点D在射线AP上,连接CD,BD,若AD =8,BD=6,AC=5.①试判断△ABD的形状,并说明理由;②求线段CD的长;(2)如图2,当射线AP在∠BAC的内部时,过点B作BD⊥AP于点D,连接CD,试判断线段AD,BD,CD之间的数量关系,并说明理由.参考答案一、选择题(共40分.)1.解:A、()2+()2≠()2,故不是直角三角形,不符合题意;B、62+82≠92,故不是直角三角形,不符合题意;C、32+42=52,故是直角三角形,符合题意;D、82+122≠152,故不是直角三角形,不符合题意;故选:C.2.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.3.解:∵=2,是整数,∴3a是一个完全平方数.∴a的最小值是3.故选:A.4.解:A、与不能合并,所以A选项错误;B、原式=6×2=12,所以B选项错误;C、原式==2,所以C选项准确;D、原式=2,所以D选项错误.故选:C.5.解:A、5﹣4=,故A选项错误;B、与不是同类二次根式,不能进行合并,故B选项错误;C、3=3×=,故C选项正确;D、2与2不是同类二次根式,不能进行合并,故D选项错误,故选:C.6.解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故选:D.7.解:第三边为x,当3为斜边时,即32=22+x2,解得:x=,当x为斜边时,即x2=32+22,解得:x=,即x为或,故选:D.8.解:∵△ABC是直角三角形,两直角边AC=6cm、BC=8cm,∴AB===10cm,∵△ADE由△BDE折叠而成,∴AE=BE=AB=×10=5cm.故选:B.9.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.10.解:(3※2)×(8※12)=(﹣)×(+)=(﹣)×(2+2)=(﹣)×2×(+)=2[()2﹣()2]=2(3﹣2)=2×1=2.故选:D.二、填空题(满分24分)11.解:∵二次根式在实数范围内有意义,∴2x+6≥0,解得x≥﹣3.故答案为:x≥﹣3.12.解:如图所示:AB=,故答案为:13.解:∵+(b﹣3)2=0,而≥0,(b﹣3)2≥0,∴a﹣6=0,b﹣3=0,解得a=6,b=3,∴=3,∴的算术平方根为.故答案为:.14.解:∵,∴x=±2,∴y=3,∴y x=32=9或y x=3﹣2=.故答案为:9或.15.解:当x+y=﹣5,xy=4时,======,故答案为:.16.解:∵m﹣2020≥0,∴m≥2020,∴+|2019﹣m|=m,+m﹣2019=m,=2019,∴m﹣2020=20192,m﹣20192=2020,故答案为:2020.三、解答题(共56分)17.解:(+1)(﹣1)+(1﹣)0==5﹣1+1=5.18.解:原式=4+2﹣2+,=2+3.19.解:设第三边为x,可使已知的三角形构成直角三角形,当5为斜边时,有52=32+x2,解得x=4,(负值舍去),当x为斜边时,有x2=32+52,解得x=(负值舍去),则第三边的长为4或者,答:第三边的长为4或者.20.解:根据题意得:a<b<0<c,且|c|<|b|<|a|,∴a+b<0,b+c<0,a﹣c<0,则原式=|a|﹣|a+b|+|b+c|+|a﹣c|=﹣a+a+b﹣b﹣c﹣a+c=﹣a.21.解:(1)∵5<<6,∴b=5,a=﹣5,∴a﹣b﹣=﹣5﹣5﹣=﹣10;(2)∵2<<3,又∵10+=2x+y,x是整数,且0<y<1,∴2x=12,y=10+﹣12=﹣2,x=6,∴3x﹣y=3×6﹣(﹣2)=20﹣.22.解:(1)在Rt△ABC中,由勾股定理得:BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm.(2)由题意得:BP=tcm.①当∠APB为直角时,如图①,点P与点C重合,BP=BC=4cm,∴t=4;②当∠BAP为直角时,如图②,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即52+32+(t﹣4)2=t2,解得t=.答:当△ABP为直角三角形时,t=4或.23.解:已知如图:设AC=x,则BC=(70﹣x)cm,由勾股定理得:502=x2+(70﹣x)2,解得:x=40或30,若AC为斜边,则502+(70﹣x)2=x2,解得:x=,若BC为斜边,则502+x2=(70﹣x)2,解得:x=.故这个点将绳子分成的两段各有30cm或40cm或cm或cm.24.解:(1)原式====|3+|=3+;故答案为:,,|3+|,3+;(2)①原式===|5﹣|=5﹣;②原式===||=.25.解:(1)①结论:△ABD是以AB为斜边的直角三角形.理由:∵在△ABC中,∠ACB=90°,AC=BC,∴△ABC为等腰直角三角形,∵AC=5,∴AB=AC=×5=10,又∵AD2+BD2=62+82=AB2,∴△ABD是以AB为斜边的直角三角形;②如图,作CE⊥AD于E,CF⊥DB交DB的延长线于F,∵∠CED=∠EDF=∠DFC=90°,∴四边形DECF是矩形,∴∠ECF=∠ACB=90°,∴∠ACE=∠BCF,在△CEA和△CFB中,,∴△CEA≌△CFB(AAS),∴CE=CF,AE=BF,∴四边形DECF是正方形,∴DE=DF=CE=CF,∵AD+DB=DE+AE+DF﹣BF=2DE,∴2DE=14,∴DE=7,∴CD=DE=7.(2)如图,结论AD﹣BD=CD.理由:作CE⊥CD交AD于E,∵CA=CB,∠ACB=90°∴∠CAB=∠CBA=45°,∵∠ADB=∠ACB=90°,∴四边形A,B,C,D四点共圆,∴∠BDC=180°﹣∠CAB=135°,∠CDA=∠BDC﹣∠ADB=45°,∵∠ECD=90°,∴∠CED=∠CDE=45°,∴△CDE是等腰直角三角形,∴CE=CD,DE=CD,∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∴AD﹣BD=DE=CD,∴AD﹣BD=CD.。

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷

八年级数学下第一次月考试卷2017八年级数学下第一次月考试卷数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。

正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。

以下是店铺为大家提供的2017八年级数学下第一次月考试卷,欢迎大家学习参考。

一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣53.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<05.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣18.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣19.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=010.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.二、填空题11.一次函数y=4x﹣3的截距是.12.已知一次函数y=kx﹣2的图象经过点(﹣1,2),则k= .13.函数y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.14.直线y=3x+2是由直线y=3x﹣5向平移个单位得到的.15.如果一次函数y=(2m+3)x+1的函数值y随着x值增大而减小,那么m的取值范围是.16.函数y=﹣ x+1的图象经过第象限.17.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a 与b的大小关系是.18.若直线y=kx+b经过第一、三、四象限,则k 0,b 0.19.在关于x的方程2ax﹣1=0(a≠0)中,把a叫做.20.已知关于x的方程2x2+mx﹣1=0是二项方程,那么m= .三、简答题21.在实数范围内解下列方程(1)x2﹣9=0(2)8(x﹣1)3﹣27=0.22.解下列关于x的方程.(1)a2x+x=1;(2)b(x+3)=4.23.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.24.已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.25.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.已知一次函数y=kx+b的图象如图所示:(1)函数值y随x的增大而;(2)当x 时,y>0;(3)当x<0时,y的取值范围是;(4)根据图象写出一次函数的解析式为.27.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2015-2016学年上海市宝山区XX中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个【考点】一次函数的定义.【分析】根据一次函数的定义进行判断.【解答】解:y= x属于正比例函数,是特殊的一次函数,属于一次函数;y=2x﹣1,y=2﹣3x符合一次函数的定义,属于一次函数,y= 属于反比例函数.综上所述,一次函数的个数是3个.故选:B.【点评】本题考查了一次函数的定义.注意:正比例函数是特殊的一次函数.2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣5【考点】一次函数的性质.【分析】根据一次函数的增减性,当k<0时y随x的增大而减小可求得答案.【解答】解:在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,在四个选项中,只有A选项y=﹣3x+1中的k=﹣3<0,∴在y=﹣3x+1中,y随x的增大而减小,故选A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大.3.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系求出一次函数y=x+1经过的象限即可.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限是解答此题的关键.4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又有k>0时,直线必经过一、三象限;故知k>0.再由图象过而、四象限,即直线与y轴正半轴相交,所以b>0.则k、b的符号k<0,b>0.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.【点评】本题考查了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上.6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四【考点】一次函数的性质.【分析】根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.【解答】解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选C.【点评】能够根据k,b的符号正确判断直线所经过的象限.7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣1【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据一次函数的图象与直线y=﹣x+1平行,且过点(8,2),用待定系数法可求出函数关系式.【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.【点评】本题考查了两条直线相交或平行问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣1【考点】一元一次方程的解.【分析】根据方程无解可得出m的值.【解答】解:假设mx+x=2有解,则x= ,∵关于x的方程mx+x=2无解,∴m+1=0,∴m=﹣1时,方程无解.故选:D.【点评】本题考查了一元一次方程的解,掌握一元一次方程的解是解题的关键.9.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=0【考点】高次方程.【分析】根据二项方程的定义对各选项进行判断.【解答】解:x2+2=0为二项方程;x3+2x=0为三次方程;x4+2x3+1=0为四次方程; +5=0为分式方程.故选A.【点评】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.【考点】函数的图象.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.。

深圳锦华2016-2017年第二学期八年级第一次月考数学试卷及答案

深圳锦华2016-2017年第二学期八年级第一次月考数学试卷及答案

锦华实验学校2021—2021学年第二学期月考考试卷八 年 级 数学一、选择题〔每题3分,共30分〕1.等腰三角形的两边长分别为6㎝、3㎝,那么该等腰三角形的周长是〔 〕 A.9㎝ B .12㎝ C .12㎝或15㎝ D .15㎝2.如果b a >,那么以下各式一定正确的选项是......〔 〕 A. 22b a > B.22ba < C.b a 22-<- D. 11-<-b a 3.以下命题中正确的选项是 ( )A .有两条边分别相等的两个等腰三角形全等B .两腰对应相等的两个等腰三角形全等C .有两条边分别相等的两个直角三角形全等D .斜边和一条直角边对应相等的两个直角三角形全等4.以下图形中只能用其中一局部平移可以得到的是 〔 〕.A B C D5.如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB,假设BE=2,那么AE 的长为〔 〕 A.B.1C.D.2〔第5题图〕 〔第6题图〕6.函数y =kx +b 〔k 、b 为常数,k ≠0〕的图象如下图,那么关于x 的不等式kx+b>0的解集为〔 〕.A .x>0B .x<0C .x<2D .x>27.将不等式组 的解集在数轴上表示出来,应是〔 〕.8.关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,那么a b的值为〔 〕.A .-2B .21-C .-4D .41-9.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB′C′的位置,使CC′∥AB,那么旋转角的度数为〔 〕 A. 35°B. 40°C. 50°D. 65°10.如图,在直角坐标系中,点A 〔-3,0〕、B 〔0,4〕,对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,那么△2021的直角顶点的坐标为 〔 〕A .8065 B.8064 C.8063 D. 8062(第9题图) ( 第10题图)二、填空题.〔每题4分,共24分〕11.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .PE=3, 那么点P 到AB 的距离是 。

八年级(下)数学第一次月考试卷及答案

八年级(下)数学第一次月考试卷及答案

八年级(下)数学第一次月考测试题题号 一 二 三总分 17 18 19 20 21 22 23 24 25 分数2796一、选择题:(每题3分,共36分) 1、在(3)5,,,2a b x x x a b x a b π-+++-,ma 1+中,是分式的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个2、下列约分正确的是 ( )A 、326x xx = B 、0=++yx y x C 、xxyx y x 12=++ D 、214222=yx xy3下列函数是反比例函数的是 ( ) A 、y=3x B 、y=x36 C 、y=x 2+2x D 、y=4x+84分式:①223a a ++,②22a b a b--,③412()a ab -,④12x -中,最简分式有 ( )A.1个B.2个C.3个D.4个5、无论x 取什么数时,总是有意义的分式是 ( ) A .122+x x B.12+x x C.133+x x D.25xx -6、能使分式122--x x x 的值为零的所有x 的值是 ( )A 、0=xB 、1=xC 、0=x 或1=x D.、0=x 或1±=x 7、若分式231xx -的值为正数,则( )A 、0>xB 、0<xC 、1>xD 、1<x8、把分式方程112=+-x x x化为整式方程正确的是 ( )A 、1)1(22=-+x x B 、1)1(22=++x x C 、)1()1(22+=-+x x x x D 、)1()1(22+=+-x x x x9 .若关于x 的方程x a c b xd-=- 有解,则必须满足条件 ( )A 、c ≠dB 、c ≠-dC 、bc ≠-adD 、a ≠b10、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,班级 姓名 考试号密 封 线 内 不 要 答 卷………………………………………………装………………………………订………………………………线………………………………………………则他在这段路上、下坡的平均速度是每小时 ( )。

人教版2022-2023学年八年级数学第一次月考测试题(附答案)

人教版2022-2023学年八年级数学第一次月考测试题(附答案)

2022-2023学年八年级数学第一次月考测试题(附答案)一、选择题(共30分)1.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,112.若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A.4cm B.8cm C.4cm或8cm D.以上都不对3.如图,在△ABC中,∠BAC=80°,∠ABC=60°.若BF是△ABC的高,与角平分线AE相交于点O,则∠EOF的度数为()A.130°B.70°C.110°D.100°4.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°5.如图,已知AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法正确的是()①BD=CD;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AEA.①②B.③⑤C.①③④D.①④⑤6.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°7.如图,一副具有30°和45°角的直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.40°B.45°C.65°D.75°8.如图,已知方格纸中是4个相同的正方形,则∠1+∠2=()A.60°B.90°C.100°D.120°9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AC=15,点E为线段AB上的一个动点,当DE 最短时,△AED的面积是()A.15B.30C.45D.6010.如图,在长方形ABCD的中,已知AB=6cm,BC=10cm,点P以4cm/s的速度由点B 向点C运动,同时点Q以acm/s的速度由点C向点D运动,若以A,B,P为顶点的三角形和以P,C,Q为顶点的三角形全等,则a的值为()A.4B.6C.4或D.4或二、填空题(共15分)11.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件:能判定△ABC≌△DEF.12.如图,在△ABC中,∠1=∠2,∠3=∠4,∠A=80°,则x=.13.如图,△ABC中,AB=6,AC=4,D是BC的中点,AD的取值范围为.14.如图,在△ABC中,∠ACB=90°,AC=BC,点A的坐标为(﹣7,3),点C的坐标为(﹣2,0),则点B的坐标是.15.在△ABC中,∠A=30°,∠B=50°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为.三、解答题(满分75分)16.已知a,b,c是△ABC的三边长.(1)若△ABC为等腰三角形,且周长为13,已知a=3,求b,c的值?(2)若a,b满足|a﹣1|+(b﹣2)2=0,且c是整数,求c的值?17.如图,在△ABC中,AD⊥BC于点D,∠B=46°,∠C=68°.(1)尺规作图:作∠BAC的平分线交BC于点E(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求∠DAE的度数.18.如图,在△ABC中,AD,AF分别是△ABC的中线和高,BE是△ABD的角平分线.(1)若△ABC的面积为40,BD=5,求AF的长;(2)若∠BED=40°,∠BAD=25°,求∠BAF的大小.19.为测量一条两岸平行的小河宽度,某班数学研究小组设计了测量方案:课题测量小河的宽度成员组长:×××组员:×××,×××,×××测量工具皮尺,测角仪测量方案示意图说明点A在点B的正北方,AB⊥BF,在BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使点A,C,E在同一条直线上(如图所示)请分析该数学研究小组是否能测量出小河的宽度,并说明理由.20.我们发现,用不同的方式表示同一图形的面积可以解决很多数学问题,这种方法称为等面积法,这是一种重要的数学方法,请你用等面积法来探究下列两个问题:(1)如图1,在△ABC中,AB=2,BC=4,AD与CE是△ABC的高,求AD:CE的值?(2)如图2,在△ABC中,∠C=90°,D,E分别在BC,AB上,且DE⊥AB,AD平分∠BAC,求证:AB:AC=BD:CD.21.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.22.如图,三角形纸片△ABC,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,折痕为BD(点D在线段AC上且不与A、C重合).(1)如图①,若点C落在AB边上的点E处,求△ADE的周长;(2)如图②,若点C落在AB边下方的点E处,求△ADE的周长的取值范围.23.小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE均是顶角为40°的等腰三角形,BC、DE 分别是底边,求证:BD=CE;(2)拓展探究:如图2,若△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE,则∠AEB的度数为;线段BE与AD之间的数量关系是;(3)解决问题:如图3,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB 的度数及线段CM、AE、BE之间的数量关系并说明理由.参考答案一、选择题(共30分)1.解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.2.解:如图,AB=AC,BD是中点,根据题意得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,则AB﹣BC=2cm或BC﹣AB=2cm,∵BC=6cm,∴AB=8cm或4cm.∴腰长为:4cm或8cm.故选:C.3.解:∵AE平分∠BAC,∴∠EAF==.∵BF是△ABC的高,∴∠BF A=90°.∴∠EOF=∠EAC+∠AFO=40°+90°=130°.故选:A.4.解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.5.解:∵AD是△ABC的中线,∴BD=CD,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,故选:C.6.解:∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴正多边形的一个外角=360÷5=72°.故选:C.7.解:如图.由题意得,∠FED=45°,∠C=60°.∴∠F AC=∠FED+∠C=105°.∴∠α=180°﹣∠F AC=75°.故选:D.8.解:如图所示:由题意可得:△ACB≌△DFE,则∠1=∠FDE,∵∠2+∠FDE=90°,∴∠1+∠2=90°.故选:B.9.解:∵点E为线段AB上的一个动点,DE最短,∴DE⊥AB,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=4,∵∠C=∠AED=90°,AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=15,∴△ADE的面积=AE•DE=×15×4=30,故选:B.10.解:由已知得:PC=BC﹣BP=(10﹣4t)cm;①若△ABP≌△PCQ.则AB=PC=6cm,∴6=10﹣4t,∴t=1.∴a=4;②若△ABP≌△QCP.则AB=CQ=6cm,BP=CP=(10﹣4t)cm,则t=.得:a=6.解得:a=.综上,a的值为4或.故选:D.二、填空题(共15分)11.解:添加∠C=∠F(答案不唯一),理由如下:∵AC∥DF,∴∠A=∠D,∵AC=DF,根据“ASA”判定△ABC≌△DEF.故答案为:∠C=∠F(答案不唯一).12.解:∵∠A=80°,∴∠ABC+∠ACB=100°,∵∠1=∠2,∠3=∠4,∴∠2+∠4=×100°=50°,∴x°=180°﹣(∠2+∠4)=130°.故答案为:130.13.解:延长AD到E,使DE=AD,连接BE,在△ACD与△EBD中,,∴△BDE≌△CDA(SAS),∴BE=AC,∵AB=6,AC=4,∴2<AE<10,∴1<AD<5.故答案为:1<AD<5.14.解:作AD⊥x轴于点D,作BE⊥x轴于点E,如右图所示,则∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB,∵点A的坐标为(﹣7,3),点C的坐标为(﹣2,0),∴OD=7,AD=3,OC=2,∴CE=3,BE=OD﹣OC=7﹣2=5,∴OE=CE﹣OC=3﹣2=1,∴点B的坐标为(1,5),故答案为:(1,5).15.解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=50°,∴∠BCD=90°﹣50°=40°;②如图2,当∠ACD=90°时,∵∠A=30°,∠B=50°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为40°或10°;故答案为:40°或10°.三、解答题(满分75分)16.解(1)分两种情况:当a为底边时,则b,c为腰长,∵等腰三角形的周长为13,∴腰长b=c=×(13﹣3)=5,∴b=c=5;当a为腰长时,b也为腰长,则c为底边长,∵等腰三角形的周长为13,∴c=13﹣a﹣b=13﹣3﹣3=7,∵3+3<7,∴不能组成三角形;综上所述:b的值为5,c的值为5;(2)∵|a﹣1|+(b﹣2)2=0,∴a﹣1=0,b﹣2=0,∴a=1,b=2,∵2﹣1<c<2+1,∴1<c<3,∵c为整数,∴c=2,∴c的值为2.17.解:(1)如图,AE即为所求;(2)∵∠B=46°,AD⊥BC,∴∠BAD=90°﹣46°=44°,∵∠B=46°,∠C=68°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣68°=66°,∵AE是∠BAC的平分线,∴∠BAE=∠BAC=×66°=33°,∴∠EAD=∠BAD﹣∠BAE=44°﹣33°=11°.18.解:(1)∵AD是△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵AF⊥BC,S△ABC=40,∴,∴AF=8;(2)在△ABE中,∠BED为它的一个外角,且∠BED=40°,∠BAD=25°,∴∠ABE=∠BED﹣∠BAD=40°﹣25°=15°,∵BE是△ABD的角平分线,∴∠ABC=2∠ABE=2×15°=30°,∵AF⊥BC,∴∠AFB=90°,在Rt△ABF中,∠BAF=90°﹣∠ABC=90°﹣30°=60°.19.解:能,理由如下:∵DE⊥BD,AB⊥BF,∴∠EDC=∠ABC=90°,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴ED=AB,∴D,E两点之间的距离就是河两岸相对的两点A,B间的距离,求出了小河的宽度.20.(1)解:∵AD与CE是△ABC的高,,∵AB=2,BC=4,∴CE=2AD,∴;(2)证明:∵DE⊥AB,∠C=90°,AD平分∠BAC,∴DE=DC∵,∴AB⋅DC=BD⋅AC,即AB⋅DC=BD⋅AC,∴AB:AC=BD:CD.21.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.22.解:(1)∵折叠这个三角形顶点C落在AB边上的点E处,∴DE=CD,BE=BC=6,∴AE=AB﹣BE=8﹣6=2,∵AD+DE=AD+CD=AC=5,∴△AED的周长=5+2=7;(2)∵折叠这个三角形顶点C落在AB边下方的点E处,∴DE=CD,BE=BC=6,∴在△ADE中,AD+DE=AD+CD=AC=5,AE<AD+DE,即AE<5.在△ABE中,AE>AB﹣BE,即AE>2.所以2<AE<5,∴7<△AED的周长<10.23.解:(1)∵△ABC和△ADE均是顶角为40°的等腰三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)∵△ABC和△CDE均是等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=∠CDE=∠CED=60°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵∠CDE=60°,∴∠BEC=∠ADC=180°﹣∠CDE=120°,∵∠CED=60°,∴∠AEB=∠BEC﹣∠CED=60°,故答案为:60°,BE=AD;(3)∠AEB=90°,AE=BE+2CM,理由:同(1)(2)的方法得,△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,∵△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∴∠ADC=180°﹣∠CDE=135°,∴∠BEC=∠ADC=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∵CD=CE,CM⊥DE,∴DM=ME,∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓 名 :
2.实数 a 在数轴上对应点的位置如下左图,化简 (a-1)2+a=________. 3、已知 x y 1 + x 3 =0,求 xy= 4.下列各式中,最简二次根式有 ⑴ 8 ;⑵ . .
3 1 42 ;⑶ 2.5 ;⑷ x 2 y 2 ;⑸ a 2 b 2 ;⑹ ;⑺ 3 a 2

9、下列二次根式中,能与 2 合并的是( A、 8 B、 12 C、 24
) D、 40
10.若 a+b+5+|2a-b+1|=0,则(b-a)2 015=(
)
18.(10 分)已知 a
ห้องสมุดไป่ตู้
1 1 10 , 求a 的值. a a
A.-1
B.1
C.52 015
D.-52 015
11.斜边长为 l7 cm,一条直角边长为 l5 cm 的直角三角形的面积是( ) 2 2 2 2 A.60 cm B.30 cm C.90 cm D.120 cm 12、 在下列以线段 a、 b、 c 的长为三边的三角形中, 不能构成直角三角形的是 ( A、a=9,b=41,c=40 B、a=b=5,c= 5 2 C 、a∶b∶c=3∶4∶5 D 、a=11,b=12,c=15
班 级 :
17(10 分).已知 x,y 为实数,且 x-5+ 5-x=(x+y)2,求 x-y 的值. 8.如下右图,在正方形 ABCD 中,AB 边上有一点 E,AE=3,EB=1,在 AC 上有一
考 号 :
点 P,使 EP+BP 最短,则 EP+BP 的最短长度是
二、选择题(每题 2 分,共 14 分)
A D
(3)当△ABP 为等腰三角形时,借助图②求 t 的值.
C
B
20(10 分).已知:如图, ABCD 中,点 E、F 分别在 CD、AB 上,DF∥BE,EF 交 BD 于点 O.求证:EO=OF.
(选做题).如图,在边长为 6 的正方形 ABCD 中,E 是边 CD 的中点, 21. (10 分) 如图,在△ABC 中,已知 AB=6,AC=10,AD 平分∠BAC,BD⊥AD 于点 D, 点 E 为 BC 的中点,求 DE 的长. 将△ADE 沿 AE 对折至△AFE,延长 EF 交 BC 于点 G,连接 AG. (1)求证:△ABG≌△AFG; (2)求 BG 的长.

八年级数学下册第一次月考试卷
19.(10 分)已知:在 Rt△ ABC 中,∠C=90° ,CD⊥AB 于 D,∠A=60° ,CD= 3 , 求线段 AB 的长。
22(10 分).如图,在 Rt△ABC 中,∠ACB=90°,AB=5 cm,AC=3 cm, 动点 P 从点 B 出发沿射线 BC 以 2 cm/s 的速度移动,设运动的时间为 t 秒. (1)求 BC 边的长; (2)当△ABP 为直角三角形时,借助图①求 t 的值;
八年级数学下册第一次月考试卷
八年级下册数学第一次月考试卷(共 100 分) 一、填空题(每题 2 分,共 16 分) 1.若式子 x+1在实数范围内有意义,则 x 的取值范围是________.
13、下列说法正确的是(

A.若 a 、 b 、 c 是△ABC 的三边,则 a 2 b2 c 2 B.若 a 、 b 、 c 是 Rt△ABC 的三边,则 a 2 b2 c 2 C.若 a 、 b 、 c 是 Rt△ABC 的三边, A 90 , 则 a 2 b2 c 2 D.若 a 、 b 、 c 是 Rt△ABC 的三边, C 90 ,则 a 2 b2 c 2 14..在下列选项中,平行四边形不一定具有的是( ) . (A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是 360 15.在下列给出的条件中,能判定四边形ABCD为平行四边形的是( (A)AB∥CD,AD=BC (C)AB=CD,AD=BC (B)∠A=∠B,∠C=∠D (D)AB=AD,CB=CD ).
5.在 Rt△ABC,∠C=90°,b=12,c=13,则 a= 为 .

6.三角形的各边分别为 8cm 、10cm 和 12cm ,则连结各边中点所成三角形的周长 三、解答题(共 70 分)16.计算题(10 分) (1) (5 48 6 27 12 ) 3 (2) (2 5 2 ) 2 7.如下中图,学校有一块长方形花圃,有极少数人从 A 走到 B,为了避免拐角 C 走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设 2 步为 1 m),却踩伤了花草.
相关文档
最新文档