数列教案

合集下载

数列的教案

数列的教案

数列的教案【篇一:数列的概念的教学设计】数列的概念教学设计一、教材与教学分析1.数列在教材中的地位根据新课程的标准,“数列”这一章首先通过大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。

教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学三维目标分析知识目标:使学生理解数列概念、分类、表示方法以及数列通项公式能力目标:1)通过对数列概念的教学让学生了解数列和函数间的关系2)会用通项公式写出数列的任意一项3)对于简单的数列会根据其前几项写出它的一个通项公式情感目标:1)培养学生观察抽象的能力2)培养学生从特殊到一般的归纳能力3)创设师生共同研究的教学情境,培养学生乐于求索,勇于创新的精神教学重点:理解数列概念教学难点:根据数列的前几项抽象归纳出数列的通项公式二、教学方法与学习方法启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。

探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。

合作学习——通过组织小组讨论达到探究、归纳的目的。

三、教学过程设计1.创设情景,引入新课有人说,大自然是懂数学的.通过多媒体图片展示花瓣数:2,3,5,8,13,具有一定的规律性,学生发现,教师适时点拨规律.图片展示树的分支也呈现同样的规律性.从而介绍学习数列的意义:数列是反映自然规律的模型——引出课题;设计意图:为了让学生体会数学源于生活并激发学生的学习兴趣,采用生活中学生熟悉的问题引入,关注学生的最近发展区,学生思维产生“结点”;2.实例分析,理解概念内涵数学发展的过程中,类似于上述例子很多,例如:①庄子“一尺之棰,日取其半,万世不竭.” 11214181, 16②我国从84年奥运会到08年奥运会共获得了163枚金牌数:5,15, 16,16, 28, 32, 51.③电影院有30排座位,第一排有20个座位,从第二排起,后一排都比前一排多2个座位,那么各排的座位数依次为:20,22,24,26,?,78④堆放的钢管从上到下每层数目:4,5, 6, 7,8, 9, 10通过以上实例应到学生思考每组数字具有怎样的特征:都有一定的顺序点拨:本问题研究第几个位置上的数字是什么的问题?也就是研究按顺序排列的一列数的问题,这就是数列;设计意图:对教材中的引例进行深化,为帮助学生形成数列概念;一个数学概念的学习与形成需要大量的、有意义的实例才能帮助学生理解透彻;多给学生参与的机会才能将问题理解清楚,从而掌握概念、概括概念的本质;3.抽象概括,形成数列概念由学生通过对上述问题本质的理解,试概括出数列的定义,教师给予指导;按一定次序排列的一列数叫数列,数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项(首项)、第2项、?、第n 项?,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列;数列的一般形式可以写成:a1,a2,?,an,?简记为{an},其中an 是数列的第n项;引导学生对概念进行反思与巩固①说出生活中的一个数列实例.②数列“1,2,3,4,5”与数列“5 ,4, 3,2,1 ”是否为同一个数列?③数列“-5,-3,-1,1,3,5,?”中,a3,a6各是什么数?设计意图:结合数列的定义,让学生举出数列的例子,并让学生判断举出的例子是否是数列,生生互动;检测学生是否理解数列的概念;给出3个问题由学生讨论并回答,教师启发总结,进一步加深对数列概念的理解,师生互动;4.深入探究,理解概念外延①数列的函数观点数列研究的是第几个位置上的数是多少的问题,其中存在几个变量?是否符合函数的变量间的关系?用此观点分析数列上述一数列,对于数列中的每个序号n,都有唯一的一个项an与之对应:序号 1 2 3 4 ??64↓↓↓↓ ↓项1 22223 ??263*引导学生从函数的观点分析数列:数列可以看成以正整数集n或它的有限子集{1,2, ?k}为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,即数列是一个特殊的函数;设计意图:抓住数列蕴含着两变量间关系的本质,以问题形式提出,学生对知识建构形成自然,然后用从特殊到一般的方法帮助学生理解;②数列的通项公式从函数角度看,通项公式就是an与n之间的函数关系式an=f(n);如数列1,2,3 ,n, 通项公式为an=f(n)=n即an=n 1111又如数列1,,, ,, 通项公式为an= n23n教学中,学生体会数列通项公式将数列所有项及性质表达很清楚,故求通项公式对研究数列是非常有帮助的;5.应用概念,解决问题例1.根据下面数列{an}的通项公式,写出它的前5项:(启发学生回答)⑴an=n (2)an=(-1)n?n n+1题后反思:方法,类似于求函数值,在通项公式中依次取n=1、2、3、4、5得到数列的前5项. 例2写出下面数列的一个通项公式.(启发学生回答)(1)1,2,4,8,...(2)3,5,7,9,... (3)9,99,999,9999,... (4)1,-1,1,-1,...题后反思:①题目条件中让写出“一个”通项公式,能否再写出一个符合题意的通项公式?注:给出数列的前几项,可以归纳出不止一个通项公式;②写通项公式的一般方法:由各项的特点,找出各项共同的构成规律.通过观察、归纳研究数列中的项与序号之间的关系,写出一个满足条件的最简捷的公式.6.课堂练习,检测与反馈练习1.写出下列数列的一个通项公式:(1)1,4,9,16,... (2)5,55,555,5555,...(3) 1--, 234练习2.如图是第七届国际数学教育大会的会徽图案,是由一串直角三角形演化而成的,其中 oa1,oa2,oa3, ,oa8的长度组成数列1=a1a2=a2a3= =a7a8=1,记oa111{an}(n∈n,1≤n≤8)若按上述方式,一直下去,你能计算出oa2012的长度吗?aa5a63a21a7a87.课堂小结引导学生思考:通过本节课的学习谈谈你有哪些收获?①本节学习的数学知识:数列的概念和简单表示;四、教学评价与反思1.通过概念课教学,力求使学生明确(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。

通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。

1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。

通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。

第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。

通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。

2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。

通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。

第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。

通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。

3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。

通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。

第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。

通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。

4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。

通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。

第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。

通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。

5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。

通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。

第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。

高中数学数列概念优秀教案

高中数学数列概念优秀教案

高中数学数列概念优秀教案教学目标:1. 掌握数列的基本概念,能够区分等差数列和等比数列。

2. 熟练运用数列的通项公式求解各种问题。

3. 培养学生的逻辑思维能力和数学推理能力。

教学重点:1. 掌握数列的定义和分类。

2. 掌握等差数列和等比数列的性质及通项公式。

3. 运用数列的知识解决实际问题。

教学难点:1. 等比数列的通项公式推导。

2. 如何运用数列的知识解决实际问题。

教学过程:一、导入(5分钟)教师引入数列的概念,并举一些实际例子来说明数列在生活中的应用,如等差数列可以表示每天存钱增加的数量,等比数列可以表示细菌繁殖的数量等。

二、概念讲解(15分钟)1. 数列的定义和分类。

2. 等差数列的性质及通项公式。

3. 等比数列的性质及通项公式。

三、例题讲解(20分钟)1. 讲解一些常见的数列题目,如求等差数列和等比数列的前n项和、求某一项的值等。

2. 引导学生运用数列的知识解决实际问题,如经济学中的收入增长问题、物理学中的运动问题等。

四、练习与讨论(15分钟)教师布置一些练习题让学生自行解答,并对学生的答案进行讨论和纠正。

同时,鼓励学生提出自己的解题思路,培养他们的数学思维能力。

五、作业布置(5分钟)布置相关作业,巩固学生的学习成果。

六、总结(5分钟)教师对本节课的重点内容进行总结,激励学生对数列的学习做进一步的思考和总结。

教学反思:通过本节课的教学,学生应该能够掌握数列的基本概念及相关性质,并能够熟练运用数列的通项公式解决各种问题。

同时,教师应该注重引导学生提高数学思维能力,培养他们的逻辑推理能力。

高三数学必修五教案《等差数列》优秀4篇

高三数学必修五教案《等差数列》优秀4篇

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。

数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。

二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。

三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

【教学重点】等差数列前n项和公式的推导和应用。

【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。

二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。

传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。

你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。

举例说明数列的组成,如自然数数列、等差数列等。

1.2 数列的项解释数列中的每一个数称为数列的项。

强调数列项的顺序和重复性质。

1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。

举例讲解如何写出简单数列的通项公式。

第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。

练习写出几个给定数列的列举表示。

2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。

举例说明如何用公式法表示等差数列和等比数列。

2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。

引导学生通过观察图形来理解数列的特点。

第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。

举例说明如何确定一个数列的项数。

3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。

举例说明如何判断一个数列的单调性。

3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。

举例说明如何判断一个数列的周期性。

第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。

推导等差数列的通项公式。

4.2 等比数列的通项公式讲解等比数列的定义和性质。

推导等比数列的通项公式。

4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。

举例讲解如何求解其他类型数列的通项公式。

第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。

推导等差数列的前n项和的公式。

5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。

推导等比数列的前n项和的公式。

5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。

举例讲解如何求解其他类型数列的前n项和。

第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。

数列的概念教案

数列的概念教案

数列的概念教案教学目标:1. 理解数列的概念和基本特征;2. 能够识别数列中的常数项和通项;3. 能够根据规律确定数列的公式;4. 能够应用数列的特性解决问题。

教学准备:1. 幻灯片或白板、马克笔;2. 数列的示例题目。

教学过程:导入:(5分钟)1. 引入数列的概念:数列是指按照一定规律排列的一列数的集合。

数列中的每个数称为项。

2. 引导学生思考数列的例子:例如1,3,5,7,9是一个数列,其中的每个数都按加2的规律依次递增。

3. 提出问题:学生们有没有发现数列中的规律?如何确定数列的下一个数?探究:(15分钟)1. 给出示例数列:2,4,6,8,10,...2. 让学生观察数列,推测规律并列出下一个数。

3. 学生演示推理过程,例如:每个数都比前一个数大2,所以下一个数是12。

4. 引导学生总结:这个数列的规律是每个数比前一个数大2。

这个规律被称为数列的公式或通项公式。

5. 引入数列的常数项:数列中的某个特定项,如数列2,4,6,8,10,...中的10。

6. 引导学生区分常数项和通项。

示范与练习:(15分钟)1. 给出新的数列示例,如2,4,8,16,32,...2. 让学生观察数列,思考常数项和通项的确定。

3. 鼓励学生进行讨论,并给予提示,例如:每个数都是前一个数乘以2,所以通项公式为An = 2^n。

4. 让学生尝试应用通项公式计算数列的其他项。

拓展与应用:(10分钟)1. 给出更复杂的数列示例,让学生运用已学知识确定规律和通项公式。

2. 提供问题情境,让学生应用数列的概念解决实际问题。

归纳与总结:(5分钟)1. 学生回顾本节课学到的数列概念、特征和运用方法。

2. 教师总结并强调数列在数学和实际问题中的重要性。

展示与评价:1. 学生展示他们对数列概念的理解,可以通过口头回答问题或完成练习题的形式进行评价。

2. 教师给予反馈和评价,并鼓励学生进一步探究数列的性质和应用。

求数列的通项公式列(教案+例题+习题)

求数列的通项公式列(教案+例题+习题)

求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。

2. 学会求解数列的通项公式,并能应用于实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。

2. 教学难点:数列通项公式的推导和应用。

四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。

2. 利用例题,演示数列通项公式的应用过程。

3. 布置习题,巩固所学知识。

五、教学过程1. 引入数列的概念,讲解数列的基本性质。

2. 讲解数列通项公式的求法,引导学生掌握求解方法。

3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。

4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。

5. 总结本节课的重点内容,布置课后作业。

教案结束。

例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。

解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。

将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。

该数列的通项公式为an = n/2 + 1/2。

习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。

2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。

3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。

4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。

5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。

六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。

2. 学习利用函数的方法求解数列的通项公式。

3. 提升学生分析问题、解决问题的能力。

小学数学等差数列教案【优秀8篇】

小学数学等差数列教案【优秀8篇】

小学数学等差数列教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!小学数学等差数列教案【优秀8篇】作为一位无私奉献的人·民教师,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。

数列教学设计精选5篇

数列教学设计精选5篇

数列教学设计精选5篇数列教案篇一关键词高中数学;案例式教学问题教学是数学学科知识内涵和要点的有效载体,是教学目标理念展现的重要途径,是能力素养培养的重要平台。

长期以来,问题教学活动方略的实施,一直以来成为广大高中数学教师进行探究和实践的重要课题。

但在传统问题教学活动中,部分教师片面的将问题教学看作是知识内容、解题方法传授的“工具”,在问题内容的设置和问题解答的传授中,不能精心准备,有的放矢,导致问题教学的效能达不到预期目标。

新实施的高中数学课程标准则指出:“要注重发挥数学问题承载知识内涵的重要载体以及学生能力培养的功能特性”,“设置‘少而精’的数学问题,实现学生知识内涵有效掌握和能力品质的有效提升。

”可见,传统“胡子眉毛一把抓”的“题海式”问题教学模式,已经不能适应新课改的要求。

“少而精”的“典型性”的案例式教学模式,以其在反映教学内涵要义上的精准性,培养学生学习能力上的功能性等特征,成为有效教学的重要组成部分。

近几年来,本人就如何做好案例式教学活动进行了尝试,现就如何选取典型案例,培养学生学习能力方面进行简要阐述。

一、问题案例应凸显“精”字,体现精辟性,使学生在感知问题内涵中领会设计意图案例1 已知A(-2,-3),B(4,1),延长AB至点P,使AP的绝对值等于PB绝对值的三倍,求点P的坐标。

上述问题是教师在教学“平面向量的坐标运算”知识内容,在讲解“向量定比分点的几何运用”考察点时所设置的一道问题案例。

教师在引导学生进行问题分析过程中,使学生了解到该问题是考查学生向量的定比分点坐标公式的应用。

然后,教师再次引导学生进行问题解答方法的探索,通过对问题条件关系的分析,发现该问题可以采用两种不同的解答方法,一种是利用向量定比分点坐标公式求,考虑P为分点,应用定比分点坐标公式求点P的坐标。

第二种是把向量的定比分点坐标公式看做是一个等量关系,通过解方程的思想处理问题。

学生在上述问题解答过程中,对向量定比分点坐标公式的运用有较为准确和深刻的掌握,并对如何运用该知识点内容做到“胸中有数”。

关于高中数学数列的教案

关于高中数学数列的教案

关于高中数学数列的教案
一、教学目标:
1. 了解数列的定义和性质;
2. 掌握常见数列的计算方法;
3. 能够应用数列解决实际问题。

二、教学重点:
1. 掌握数列的概念和性质;
2. 了解常见数列的计算方法;
3. 能够灵活运用数列解决实际问题。

三、教学内容:
1. 数列的基本概念和性质;
2. 常见数列的分类及计算方法;
3. 数列在实际问题中的应用。

四、教学过程:
1. 导入:通过一个实际问题引入数列的概念,引发学生的思考和兴趣。

2. 提出问题:让学生探讨数列的定义和性质,引导他们发现规律。

3. 讲解数列的基本概念和性质,并介绍常见数列的计算方法。

4. 练习:让学生进行数列的计算练习,巩固所学知识。

5. 应用:通过一些实际问题,让学生运用数列解决问题,培养他们的应用能力。

6. 总结:总结本节课的重点知识,梳理数列的学习内容。

7. 作业:布置相关练习,巩固学生所学的知识。

五、教学手段:
1. 课堂讲授;
2. 举例说明;
3. 练习探讨;
4. 讨论交流。

六、教学评价:
1. 课堂表现;
2. 练习成绩;
3. 实际应用能力。

七、教学资源:
1. 教材;
2. 幻灯片;
3. 实例分析。

八、教学反思:
1. 教学内容是否符合学生的实际需求;
2. 学生的学习情况,是否需要调整教学计划;
3. 如何进一步提升学生的数列解决问题能力。

以上教案为高中数学数列的教学范本,希望能对您有所帮助。

数列的概念教案范文

数列的概念教案范文

数列的概念教案范文一、教学目标1.知识目标:了解数列的概念和性质,并能够利用递推关系式或通项公式求解数列中的值。

2.能力目标:培养学生的逻辑思维和数学推理能力,以及解决实际问题的能力。

3.情感目标:培养学生的数学兴趣,增强学生对数学的自信心。

二、教学重点1.数列的概念和性质2.求解数列中的值的方法三、教学难点1.利用递推关系式或通项公式求解数列中的值的方法2.将数列的概念和性质应用于实际问题的解决四、教学过程Step 1 引入新知1.教师出示一些有规律的数字,请学生观察并猜测规律。

2.学生发言,教师引导学生讨论并总结数列的概念。

Step 2 知识讲解1.通过示意图或表格的形式,讲解数列的定义和常见表示方式。

2.介绍等差数列和等比数列的概念,并比较它们的差异。

Step 3 学习练习1.学生以小组形式解答一些简单的数列问题,如求解数列中的一些值。

2.教师对学生的答案进行点评和讲解,并引导学生思考问题解决的方法和思路。

Step 4 拓展延伸1.给学生一些挑战性的问题,要求学生思考并解答,如求解递推数列的通项公式。

2.学生小组合作,利用已掌握的知识解决实际问题,如等差数列的应用等。

Step 5 归纳总结1.教师和学生共同总结数列的概念和性质,并将其应用于实际问题的解决。

2.学生提交书面总结,教师进行评价和点评。

五、课堂延伸1.学生可以在日常生活中找到更多的数列例子,并尝试运用数列的概念解决问题。

2.学生可以进一步研究数列的进一步性质,如等差数列的和公式和等比数列的收敛性等。

六、教学评价1.学生的参与度和表现2.学生的书面总结3.学生在课后练习中的实际表现七、教学反思通过本节课的教学,学生对于数列的概念有了初步的了解,并能够运用递推关系式或通项公式求解数列中的值。

同时,通过实际问题的解决,学生的数学兴趣和自信心也有所提高。

但是,在课堂上学生的参与度还不够高,教师需要更加灵活的教学方法和形式来激发学生的积极性。

教案数列的应用和拓展

教案数列的应用和拓展

教案数列的应用和拓展教案:数列的应用和拓展一、引言数列是数学中一种重要的数学概念,广泛应用于实际生活和科学研究中。

本教案旨在介绍数列的基本概念和应用,并进一步拓展数列的应用领域。

二、数列的概念和基本性质数列是按照一定规律排列的一组数,通常用字母an表示。

数列可以根据规律进行分类,常见的数列包括等差数列和等比数列。

等差数列的每一项与前一项的差相等,而等比数列的每一项与前一项的比值相等。

数列的一般形式可以表示为:an = a1 + (n-1)d(等差数列)或an =a1 * q^(n-1)(等比数列),其中a1为首项,d为公差(等差数列)或q 为公比(等比数列),n为项数。

数列的基本性质包括子数列、前n项和、通项公式等。

子数列是从原数列中选取某些项按原有顺序组成的数列。

前n项和是指将数列的前n项相加得到的和。

通项公式是描述数列通项与项数n之间的关系。

三、数列的应用1. 经济学中的应用数列在经济学中有广泛的应用。

例如,经济学家可以通过观察一段时间内商品价格的变化,建立一个数列来描述其价格的波动情况。

通过分析数列的规律,经济学家可以预测未来商品价格的趋势,为决策提供依据。

2.自然科学中的应用数列在自然科学中也有着重要的应用。

例如,研究物种数量随时间变化的规律时,可以建立一个数列来记录每个时期的物种数量。

通过分析数列的特点,科学家可以了解物种数量的增长或减少趋势,为生态保护和物种管理提供参考。

3.计算机科学中的应用数列在计算机科学中也有着广泛应用。

例如,在编程中,可以利用数列来设计算法,解决一些复杂的问题。

数列的规律和性质可以帮助算法设计者优化程序,提高计算效率。

四、数列的拓展应用除了以上介绍的领域,数列还有许多拓展应用。

以下是一些数列的拓展应用示例:1. 金融学中的递推数列递推数列是一种特殊的数列,其中每一项都依赖于前一项。

在金融学中,递推数列常用于计算复利、投资收益等问题。

通过建立递推数列模型,可以帮助人们做出更明智的金融决策。

一年级数列规律教案

一年级数列规律教案

一年级数列规律教案教学目标:1. 能够理解数列的概念,知道数列的基本性质。

2. 能够找出数列中的规律,进一步推导出数列的通项公式。

3. 能够应用数列的知识解决实际问题。

教学重点:1. 数列的概念和基本性质。

2. 数列中的规律和通项公式。

教学难点:1. 数列中的规律和通项公式的推导。

2. 应用数列的知识解决实际问题。

教学方法:1. 演示法。

2. 讨论法。

3. 实践法。

教学过程:一、导入新课1. 教师出示一组数字:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39。

2. 让学生观察这组数字,思考它们之间是否有什么规律。

3. 让学生说出规律,教师记录在黑板上。

4. 教师引导学生总结出这组数字的规律,即每个数字都比前一个数字大2。

5. 教师引导学生思考如何表示这组数字的规律,即如何写出这组数字的通项公式。

6. 教师引导学生推导出这组数字的通项公式:an=2n-1。

二、讲解新知1. 数列的概念数列是由一系列按照一定规律排列的数所组成的序列。

数列中的每个数称为数列的项,第一个数称为首项,最后一个数称为末项。

2. 数列的基本性质(1)数列中的项可以是整数、分数、小数等。

(2)数列中的项可以有限个,也可以无限个。

(3)数列中的项之间有一定的关系,可以是加减乘除等运算,也可以是函数关系。

(4)数列中的项可以按照一定的规律排列,也可以是随机排列。

三、练习1. 让学生自己找出以下数列的规律,并写出它们的通项公式。

(1)1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61。

(2)2,4,8,16,32,64,128,256,512,1024。

(3)1,3,6,10,15,21,28,36,45,55。

2. 让学生应用数列的知识解决实际问题。

(1)小明每天早上跑步,第一天跑了1公里,第二天跑了2公里,第三天跑了3公里,以此类推,第30天跑了多少公里?(2)小明每天早上跑步,第一天跑了1公里,第二天跑了2公里,第三天跑了4公里,以此类推,第30天跑了多少公里?四、总结1. 学生总结数列的概念和基本性质。

初中数学数列求值问题教案

初中数学数列求值问题教案

初中数学数列求值问题教案教学目标:1. 理解数列的概念,掌握数列的通项公式。

2. 学会使用数列的求和公式,解决数列求值问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 数列的概念和通项公式2. 数列的求和公式3. 数列求值问题的解决方法教学步骤:一、导入(5分钟)1. 引入数列的概念,让学生回顾已学的数列知识。

2. 提问:什么是数列?数列有什么特点?二、讲解数列的通项公式(15分钟)1. 讲解数列的通项公式的定义和意义。

2. 通过示例,让学生理解并掌握通项公式的应用。

三、讲解数列的求和公式(15分钟)1. 讲解数列的求和公式的定义和意义。

2. 通过示例,让学生理解并掌握求和公式的应用。

四、解决数列求值问题(15分钟)1. 讲解数列求值问题的解决方法。

2. 通过示例,让学生理解并掌握解决数列求值问题的方法。

五、练习和巩固(10分钟)1. 给学生发放练习题,让学生独立完成。

2. 讲解练习题的解题思路和方法。

六、总结和布置作业(5分钟)1. 对本节课的内容进行总结,让学生巩固所学知识。

2. 布置作业,让学生进一步巩固和提高。

教学评价:1. 课后收集学生的练习作业,评估学生对数列求值问题的掌握程度。

2. 在下一节课开始时,进行数列求值问题的课堂测试,评估学生对数列求值问题的掌握情况。

教学反思:本节课通过讲解数列的通项公式和求和公式,让学生掌握了数列求值问题的解决方法。

在教学过程中,要注意引导学生理解和掌握通项公式和求和公式的应用,通过示例和练习题,让学生巩固所学知识。

同时,要培养学生的逻辑思维能力和解决问题的能力,提高他们解决数列求值问题的能力。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与性质1.1 数列的定义引导学生理解数列的概念,理解数列是一种特殊的函数。

通过实例让学生了解数列的基本形式,如等差数列、等比数列等。

1.2 数列的性质引导学生学习数列的基本性质,如数列的项数、首项、末项、公差、公比等。

通过实例让学生掌握数列的性质,并能够运用性质解决实际问题。

第二章:数列的求和2.1 等差数列的求和引导学生学习等差数列的求和公式,理解公差、首项、末项与求和的关系。

通过实例让学生掌握等差数列的求和方法,并能够运用求和公式解决实际问题。

2.2 等比数列的求和引导学生学习等比数列的求和公式,理解公比、首项、末项与求和的关系。

通过实例让学生掌握等比数列的求和方法,并能够运用求和公式解决实际问题。

第三章:数列的极限3.1 数列极限的概念引导学生理解数列极限的概念,理解数列极限与数列收敛的关系。

通过实例让学生了解数列极限的性质,如保号性、单调性等。

3.2 数列极限的计算引导学生学习数列极限的计算方法,如夹逼定理、单调有界定理等。

通过实例让学生掌握数列极限的计算方法,并能够运用极限的概念解决实际问题。

第四章:数列的应用4.1 数列在数学分析中的应用引导学生学习数列在数学分析中的应用,如级数、积分等。

通过实例让学生了解数列在数学分析中的重要性,并能够运用数列解决实际问题。

4.2 数列在其他学科中的应用引导学生学习数列在其他学科中的应用,如物理学、经济学等。

通过实例让学生了解数列在不同学科中的作用,并能够运用数列解决实际问题。

第五章:数列的综合应用5.1 数列在经济管理中的应用引导学生学习数列在经济管理中的应用,如库存管理、成本分析等。

通过实例让学生了解数列在经济管理中的重要性,并能够运用数列解决实际问题。

5.2 数列在工程科技中的应用引导学生学习数列在工程科技中的应用,如信号处理、结构分析等。

通过实例让学生了解数列在工程科技中的作用,并能够运用数列解决实际问题。

数列的概念教案

数列的概念教案

数列的概念教案一、教学目标:1. 理解数列的概念和特点;2. 掌握常见数列的表示方法;3. 能够求解数列的通项公式和前n项和;4. 运用数列的概念解决实际问题。

二、教学内容:1. 数列的概念和特点;2. 常见数列的表示方法;3. 求解数列的通项公式和前n项和;4. 数列在实际问题中的应用。

三、教学过程:第一节:数列的概念和特点(15分钟)1. 导入:教师出示一组数字:2,4,6,8,10,12,...让学生观察并思考有什么规律。

2. 学生思考并回答。

3. 教师引导学生形成数列的概念。

4. 教师讲解数列的特点:数列是由一系列按照特定规律排列的数所组成,数与数之间存在着特定的关系。

第二节:常见数列的表示方法(20分钟)1. 教师引导学生回顾刚才观察的数列。

2. 教师讲解等差数列和等比数列的概念。

3. 教师给出等差数列和等比数列的表示方法,分别是通项公式和递推公式。

4. 教师通过具体的例子,让学生理解等差数列和等比数列的表示方法。

第三节:求解数列的通项公式和前n项和(30分钟)1. 教师引导学生回顾前面学习的内容。

2. 教师讲解如何求解等差数列和等比数列的通项公式。

3. 教师通过具体的例子,让学生掌握求解数列的通项公式的方法。

4. 教师讲解如何求解数列的前n项和。

5. 教师通过具体的例子,让学生掌握求解数列的前n项和的方法。

第四节:数列在实际问题中的应用(25分钟)1. 教师给出一些与数列相关的实际问题,如等差数列和等比数列的应用问题。

2. 学生分组讨论,并给出解决问题的步骤和方案。

3. 学生报告解决问题的过程和结果。

4. 教师对学生的解决方案进行总结和点评。

第五节:课堂小结和作业布置(10分钟)1. 教师对今天的教学内容进行小结,强调数列的概念和特点、常见数列的表示方法、求解数列的通项公式和前n项和以及数列在实际问题中的应用。

2. 教师布置相关的练习题作业,要求学生独立完成,并在下节课提交。

四、教学反思:本节课通过引导学生观察数列、讲解数列的概念和特点、讲解常见数列的表示方法以及求解数列的通项公式和前n项和,以及数列在实际问题中的应用,提高了学生对数列的认识和运用能力。

数列教案优秀5篇

数列教案优秀5篇

数列教案优秀5篇高三数学数列教案篇一数列§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。

重点:1数列的概念。

按一定次序排列的一列数叫做数列。

数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。

由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。

2、数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。

从映射、函数的观点看,数列可以看成是定义域为正整数集N-(或宽的有限子集)的函数。

当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。

由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。

难点:根据数列前几项的特点,以现规律后写出数列的通项公式。

给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。

给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。

过程:一、从实例引入(P110)1. 堆放的钢管4,5,6,7,8,9,102. 正整数的倒数3、4. -1的正整数次幂:-1,1,-1,1,…5、无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1、数列的定义:按一定次序排列的一列数(数列的有序性)2、名称:项,序号,一般公式,表示法3、通项公式:与之间的函数关系式如数列1:数列2:数列4:4、分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。

5、实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集N-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。

数列教案优秀3篇

数列教案优秀3篇

数列教案优秀3篇数列教案篇一在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。

教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。

这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。

【教学背景】所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。

【教学设计】一、教材分析1.教学内容“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。

2.地位与作用本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。

对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。

二、目标分析1.教学目标(1)掌握等差数列的前n项和公式及推导过程。

(2)会简单运用等差数列的前n项和公式。

(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

2.教学重点、难点(1)重点:等差数列前n项和公式的推导和应用。

(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。

三、教学模式与教法、学法本课采用“探究―发现”教学模式。

教师的教法:突出活动的组织设计与方法的引导。

学生的学法:突出探究、发现与交流。

四、教学活动设计1.新课引入创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。

这个V形架上共放着多少支铅笔?问题就是(板书)“1+2+3+4+…+100=?”设计意图:利用实际,生活引入新课,形象直观。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题Байду номын сангаас
2.2.1 等差数列
课型
新授课
1)知识方法目标:理解等差数列的定义,掌握其通项公式并运用 等差数列概念解决实际问题 2)过程与方法目标:通过分析给定数列,探究等差数列的概念, 教学 目标 培养学生观察探索与发现的能力,利用其通项公式的推导,培养 学生分析概括能力,学会借助实物分析,培养学生建模能力 3)情感态度与价值观:通过学生的参与,师生,生生合作交流, 提高学生学习兴趣,培养发现规律的能力,解决相关实际问题, 感受数学的应用价值
葫芦岛市第九高级中学 刘朝蓬
创 设 情 同点? 景) (5 分 钟) 等差数列的定义 1、为什么强调从第二项起,每一项与前一 2.问题 项的差,等于同一个常数 2、参阅课本 p35 例题 1,回答等差数列通 探究 项公式是怎么得到的?归纳与累加, 学生认真阅读课本,分析探究,得出结 (8 分 论 钟) 例 2、教材 p38;练习 A 的 2 3、难点 注意解题步骤 问题 2、等差中项观点的渗透,首先是定 突破设 义,容易看出,在一个等差数列中,每一 项都是它的前一项与后一项的等差中项, 计 反之,每一项都是它的前一项与后一项的 等差中项,这个数列是等差数列 问题 3、怎么用函数观点分析数列等差数 列通项公式 an a1 (n 1)d ? 3 概 念 例 3 已知等差数列 10,7,4….(1)求此数列 的第 10 项(2)-40 是否在该数列中?-50 深化 呢?如果是,是第几项? (5 分 钟) 分组讨论,并派代表 回答问题 请学生用 自己的观点表达问 题,引导学生参与讨 论,在问题中千锤百 炼,培养数学表达的 严密性。 数列用函数观点来理 解,引向数列的本质 问题
教学 重点 难点 1) 重点:等差数列概念及通项公式的推导 2)难点:对等差数列”等差”特征的理解,把握和应用
教法与 采用自主探究与合作交流的教学方法,借助多媒体辅助教学,增 学法 强问题可操作性以调动学生的积极性
教学过程
备注
(1)问 题:何为数列的通项公式?递推 学生自由讨论,归纳 1. 课题 公 式 ? 观 察 以 下 数 列 ① 22 , 总结,给出答案,激 引入 22.5,23,23.5,24,24.5... ② 2,9,16,23,30 ;③ 发学生探究问题能力 ( 89,83,77,65,59,53,47 这些数列有什么共
分析要详尽,由学生独立完成,点拨 目的是让学生掌握知 4. 探 究 要适时适度,必须开发学生能力. 识, 培养严谨的风格, (10 分 此处,不怕出错,鼓 钟) 励学生的热情和信 心. P38 例题 5,将函数观点用于解数列问题, 教材中的思考与讨论 体现数列是特殊的函数 5、应用 请同学们小组讨论, 举例(8 分钟) 老师适时点拨, 同学 独立完成,注意解题 步骤 学生练习,练习 A,3、4 题 注重解题步骤,独立 完成 6.归纳 1.等差数列定义,通项公式 学生自己总结
总结(1 2.等差中项及求法和引申 分钟) 优学优练 P45 A1 ,2 ,3 7.布置 作业 B 3 ,4 弹性布置作业,强调 解题的通式通法
8. 板 书 设计
标题
通项公式 学生的板块
9 课后 我教给学生什么知识了?哪些是我教的? 反思 我怎么教的?是我的风格影响他们吗?我 提出了那些解决学习方法的问题?
相关文档
最新文档