高等数学重点题(最后出炉)
高等数学复习题(附答案)
高等数学复习题一、选择题 1、已知函数)2arctan(2)(-+-=x x x f ,则函数)(x f 的定义域为 ( )①)2,1(-, ②]3,1(-, ③]2,1[, ④]2,(-∞.2、已知函数)(x f 的定义域为[0,1],则函数)2(x f -的定义域为 ( ) ①]2,(-∞, ②(1,2), ③[0,1], ④[1,2].3、已知函数|1|arcsin )(-=x x f ,则函数)(x f 的定义域为 ( ) ①]1,1[-, ②]1,1(-, ③)2,0(, ④]2,0[.4、=∞→xx x πsinlim ( )① 1 ② π ③不存在 ④ 05、下列函数中为奇函数的是 ( )①)1(log 2++x x a , ②2xx e e -+, ③x cos , ④x 2.6、下列函数中是相同函数的是 ( ) ① 1)(,)(==x g xxx f ② 33341)(,)(-=-=x x x g x x x f ③ 2)()(,)(x x g x x f == ④ x x g x x f lg 2)(,lg )(2==7、=→xxx 3sin lim0 ( )①1 ② 2 ③ 3 ④ ∞ 8、()=+→xx x 121lim ( )①2-e , ②2e , ③2, ④+∞.9、=→xx x arcsin 0lim( )①0, ②1, ③2, ④不存在.10、=⎪⎭⎫⎝⎛+∞→xx x 21lim ( )①2-e , ②2e , ③2, ④+∞.11、=++--∞→103422lim 22x x x x x ( ) ①0, ②1, ③2, ④不存在.12、=⎪⎭⎫⎝⎛+∞→xx x x 2lim ( )①2-e , ②2e , ③2, ④+∞.13、=∞→xx x arctan lim( )① 0, ② 1, ③ 2, ④不存在. 14、()=+→xx x 1021lim ( )①2-e , ②2e , ③2, ④+∞.15、当0→x 时,下列函数为无穷小量的是 ( ) ①x x sin ②x x 1sin 2③)1ln(1+x x ④x11+ 16、当x x 2tan 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x .17、下列函数在指定变化趋势下是无穷小量的是 ( ) ①1,ln →x x , ②+→0,ln x x , ③∞→x e x,, ④+∞→x e x,. 18、下列函数在指定变化趋势下不是无穷小量的是 ( )①1,ln →x x , ②0,cos →x x , ③∞→x x ,sin 1, ④+∞→-x ex,. 19、当x x 2sin 0时,与→等价的无穷小量是 ( ) ①x -, ②x , ③2x , ④2x . 20、点0=x 是函数⎩⎨⎧≥-<=0,10,)(x e x x x f x的 ( ) ①连续点 ②可去间断点③第二类间断点 ④第一类间断点,但不是可去间断点 21、函数)(x f y =由参数方程0sin cos ≠⎩⎨⎧==a ta y ta x ,则 =dx y d ( )①t sin - ② t tan ③ t cot - ④t sec22、设==dy e y x则, ( )①dx ex x, ②dx e x, ③xdx e x 2, ④xdx e x23、设==-dy ey x则,1 ( )①dx e x1-, ②dx e x x 121--, ③dx e xx 121-, ④dx e x x 11--24、设,sin 2x y= 则=dy ( )① x x cos sin 2 ② xdx cos 2 ③ xdx sin 2 ④xdx 2sin25、设函数||)(x x f = 则在0=x 点处 ( ) ①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导.26、设函数||cos )(x x f = 则在0=x 点处 ( ) ①不连续, ②连续但左右导数均不存在, ③连续且可导, ④连续但不可导. 27、设函数x x f =)(,则)(x f 在点0=x 处 ( ) ①可导 ②不连续③连续,但不可导 ④可微28、设21,1,()31,1x x f x x x ⎧+<=⎨-≥⎩,则f (x )在x =1处 ………………………………( )①既可导又连续 ②可导但不连续 ③不连续也不可导 ④连续但不可导 29、函数x y sin =,则 =)12(y( )①x cos ② x cos - ③ x sin ④x sin - 30、曲线26322-+=x x y 在点(3,1)处的切线的斜率=k ( )①3 ②1 ③15 ④ 0 31、设'0000(2)()()limh f x h f x f x h→+-=存在,则 ………………………..….. ( )①'0()f x ②'0()f x h - ③'02()f x h - ④'02()f x32.设函数3)(x x f = , 则在0=x 是函数的 ( ) ① 驻点与极值点; ②不是驻点与极值点; ③极值点; ④驻点. 33、设函数()f x 区间[0,1]满足罗尔定理的是 ( )①|5.0|)(-=x x f , ②⎩⎨⎧≥-<=5.0225.02)(x x x xx f , ③)sin()(x x f π=, ④ x x f =)(34、设函数()f x 在0x 的()00f x '=,则()f x 在0x ( ) ① 一定取极大值 ② 一定 取极小值 ③ 一定 不取极值 ④ 极值情况不确定35、设函数)(x f 在0x 处具有二阶导数,且0)(0='x f ,0)(0<''x f ,则)(0x f 为① 最小值 ②极小值 ③最大值 ④极大值36、⎰='])([dx x F d ( ) ①dx x F )(', ②)(x F , ③dx x F )(, ④. )(x F '37、设x sin 是)(x f 的一个原函数,则⎰=dx x f )( ( )①C x +sin ② C x +cos ③C x x ++cos sin ④C x x +sin 38、⎰=-dx xx 212 ( )①C x +arcsin , ②C x +-21, ③C x +--212, ④C x +2arcsin 2139、⎰=+dx x x212 ( )①C x +arctan , ②C x +2arctan 21, ③C x +2, ④C x ++)1ln(240、下列函数中,为)(222x xe e y --=的原函数的是………………………….( )① x xe e22-- ②)(2122x x e e -- ③x x e e 22-+ ④)(2122x x e e -+41、dx x x e⎰+1)ln 1(1= ( )① 12ln + ②C +2ln ③2 ④2ln42、=⎰badaddx x f )( ( )① )()(a f b f - ②)(a f - ③ f(b ) ④ 043、=⎰21sin xdx x dxd( )① x sin x ②0 ③2 ④344、=⎰badbddx x f )( ( )① )()(a f b f -, ② f(b ), ③)(a f -, ④ 0.二、填空题1、 若)(x f 的定义域为)0,(-∞,则)(ln x f 的定义域为 ;2、 已知函数291)(xx f -=,则函数)(x f 的定义域为 。
高等数学试题库及答案doc
高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。
答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。
答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。
解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。
解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。
证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。
由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。
因此,函数 f(x) 是严格单调递增的。
五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。
求物体在前 3 秒内的位移。
解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。
六、论述题1. 论述微积分在物理学中的应用。
答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。
微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。
高等数学试题及答案解析
高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。
计算f(2) = 2^2 - 4*2 + 3 = -1。
接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。
因此,最大值为f(5) = 9。
2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。
因此,f'(x) = cos(x) - sin(x)。
二、填空题1. 求不定积分∫(2x + 1)dx = __________。
答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。
将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。
2. 若y = ln(x),则dy/dx = __________。
答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。
三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。
答案:极值点为x = 3。
解析:首先求导f'(x) = 3x^2 - 12x + 9。
令f'(x) = 0,解得x = 1 和 x = 3。
计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。
大学高数必考试题及答案
大学高数必考试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处的导数为0D. f(x)在x=a处的导数不存在答案:A2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. 2D. 不存在答案:B3. 以下哪个选项不是微分方程:A. dy/dx = yB. d^2y/dx^2 + y = 0C. ∫y dx = x^2 + CD. dy/dx + y = x答案:C4. 若级数∑(1/n^2)收敛,则下列级数中也收敛的是:A. ∑(1/n)B. ∑(1/n^3)C. ∑(1/n^1.5)D. ∑(1/n^0.5)答案:B二、填空题(每题5分,共20分)1. 若函数f(x)=x^3-3x+2,则f'(x)=______。
答案:3x^2-32. 曲线y=x^2在点(1,1)处的切线斜率为______。
答案:23. 函数y=ln(x)的不定积分为______。
答案:xln(x)-x+C4. 微分方程dy/dx+2y=x的通解为______。
答案:y=(1/3)e^(-2x)(x+Ce^(2x))三、解答题(每题15分,共30分)1. 求函数f(x)=x^2-4x+3在区间[1,3]上的最大值和最小值。
答案:首先求导数f'(x)=2x-4,令f'(x)=0,解得x=2。
在区间[1,3]上,f'(x)在x=2处由负变正,因此x=2是极小值点,f(2)=3-4+3=2。
检查端点值,f(1)=1^2-4+3=0,f(3)=3^2-4*3+3=0。
因此,最小值为0,最大值为2。
2. 求由曲线y=x^2与直线x=1和x轴所围成的面积。
答案:由曲线y=x^2,直线x=1和x轴围成的面积可以通过积分求得。
积分区间为[0,1],被积函数为y=x^2。
高等数学复习题(含答案)
高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,)(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134lim xx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →, 解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xxx .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim 21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得lim0x =.(10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x xx x x x .(也可用洛必达法则)(11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=.(12)30tan sin limx x xx →-.解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ 20sin (1cos )1lim cos x x x x x x→-=⋅⋅ =222sin 2limx xx →=21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limx x x x -→ (2))e e ln()3ln(cos lim33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim ++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)20cos sin cos lim3x x x x xx →--=01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x 3e e lim e 1lim 3cos 333--⋅⋅=++→→x x x x xxx e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nx n xnxx nx (5)此极限为∞∞型,用洛必达法则,得 1sin 1lim cos lim x x x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x .6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→0000lim )1sin (lim )1sin (lim )(lim ,1)1(l i m )(l i m 2=+=++→→x x f x x , 为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→, 因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限.因而有01sin lim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x , 由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim)(0 ∴0=x 为)(x f 的无穷间断点. 综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导.答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导.(2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( ,当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→, 所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f , 因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f .0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得22)()())(1())(1(x y x y y x y y x y x y y y x y x y y x y y y ++-'+'--'+-'=+-+'-+-'=''=2)(22x y yy x +-',将 xy xy y +-='代入上式,得2)(22x y y x y xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y x ln e ln =, 两边关于x 求导数得:xx y y x xe ln e '1+⋅=⋅)e ln e ('xx y y x x+=即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy=)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.xx y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- ,22d d d cos d cos d cos 1()()()d d d d 1sin d 1sin d 1sin d y y t t t t xx x x t t t x t t''===⋅=+++ 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,33)()(d d 12131==''====t t t t t t xy,曲线在点(1,1)处切线的斜率为3 12. 求函数x x y tan ln e =的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx x x y xx x d ]sec tan 1e e [d )e (d 2tan ln tan ln tan ln ⋅+='= x xxx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得 x x xx x x y tan ln tan ln tan ln e d d e )e(d d +==)tan (ln d e d e tan ln tan ln x x x x x +=)tan d(tan 1e d e tan ln tan ln x x x x x x ⋅+= x xx x x x x d cos 1tan 1e d e 2tan ln tan ln ⋅+= x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f x e e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即()(1)0.f x f >=当1>x 时,e e )(-='xx f 0>,可知()f x 为),1[+∞上的严格单调增加函数,即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x x x xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值, ,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分.当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , 曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表由此可知,上凹区间(1,1)-,下凹区间(,1)(1,)-∞-+∞,曲线的拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线 (1)x x y ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim0, 可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim 2,[]b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x ++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f x cos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何? 答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe x d 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x x x d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x , (12)⎰-24d x x .解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2.(5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12.(10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112xx ⎰=C x +2arcsin .4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22xx x x t t t -=-⋅⋅==, 故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,x于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C x x x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x xx +--212arcsin 21. 5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e4,(4)⎰x x xd 4sin e5, (5)⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰-=⎰+-2241)(d 2arctan xx x x =)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. x221x -1x t(4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x xxd 4cose 544sin e5155⎰-=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x xx xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin =C xx x +-100100cos 10000100sin . (6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅-=x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x x xd e )1(2⎰+ , (2) 3s e c d x x ⎰. 解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2x e x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=xe =+--)e e (21C x x x )12(2++x x Cx+e (12C C =),为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xe dx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e . (2)3secd x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec =sec tan x x -⎰x x d sec3+x x tan sec ln +,式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x . 8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t x xx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-2d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1.(2)⎰-122d ||x x x =⎰--023d )(x x +⎰103d x x=1402444x x +--=4+41741=.(3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-40d 11x x x=⎰+-20d 211t t t t =⎰+--20d ]1424[t tt [].3ln 44021ln 442-=+--=tt t(2)⎰4π4d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x xd e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x x x =5155e 5e 51e 6=--x.(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x xx x xd 1223ln )1e 4ln(e 2e21⎰+--+= --+=3ln )1e 4ln(e 2x x )d 1211(e 21⎰+---+=3ln )1e 4ln(e 2()e21)12ln 21(+-x x()1e 23ln 231e 4ln )21e 2(+--++=.(3) x x xd πcose 10π⎰=ππsin d e 10πx x ⎰x x x x πde ππsin πsin e π11010π⎰-= =0x x x d πsin e 10π⎰-=)ππcos d(e 10πx x--⎰ x x x x πde ππcos πcos e π11010π⎰-==-+-)1e (π1πx x x d πcos e 10π⎰ 移项合并得x x x d πcos e 10π⎰)1e (π21π+-=. (4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰⎰++-++=1034134d )e 313ln 34()e 313ln 34(x x x x xx x x=4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e . 17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2) ⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d xx . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21, 故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1x x =+∞=-=-+∞→→+∞+xx x x x 1lim 1lim )1(00,∴⎰∞+02d 1x x 发散. (3)x xd e1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x =20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x x x x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线 22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ],则面积微元 A d =y y y d )242(2-+,则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ],2)2-y则面积微元 A d 2=[)4(212--x x ]x d , 于是得=A 1+A 2 =⎰20d 22x x +x x x d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积⎰+=122d )1(πx x V⎰++=1024d )12(πx x x=135)325(πx x x ++=π1528. 二、 微分方程1. 验证x x C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: x x C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x yx y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yyd d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 ,x求积分得 3313Cx y +=-,从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解) (2)分离变量得21d d xxy y -=,(0≠y ) 两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=,即 )e (e e e 11arcsin arcsin Cx x CC C y ±==±=,从而通解为 x C y arcsin e =,验证0=y 也是方程的解. (3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12 求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d yx x y +=. 解:(1)因a x P =)(, x b x Q s i n)(=, 故通解为 ⎰⎰⋅+⎰=-]d e sin [e d d x x b C y xa x a⎰⋅+=-)d e sin (e x x b C ax ax)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:⎰⋅⎰⋅+⎰=---]d e [e d )1(2d )1(y y C x yy⎰-⋅+=]d e [e 2y y C y y)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-, 两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为 1d d +=xyx y x y ,令 x yu =,则 1d d +=+u u x u x u ,即 x x u uu d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =,所以原方程的通解为 1ln C y y x=,即yxC ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy x y 2d d =,x x yy d 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d e cos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x, 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx x x +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x x x +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P .根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得 211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为x x C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,。
高等数学重点习题详解
高等数学重点习题详解第一章1.填空题⑴设,则常数__[解答]由题意可得即⑵__[解答]且又由夹逼原则可得原式⑶已知极限,则[解答]当时,由可得原式同理可得故原式⑷已知则__[解答] 原式⑸已知函数则__[解答] 又所以⑹__[解答] 原式⑺设函数有连续的导函数,,,若在处连续,则常数_[解答]⑻设当时,=为的阶无穷小,则[解答]由此可得,⑼__[解答] 原式⑽已知,则_,_[解答] =若极限存在则得故2.选择题⑴设和在内有定义,为连续函数,且,有间断点,则必有间断点必有间断点必有间断点必有间断点[解答]若连续,则也连续,与题设矛盾,所以应该选.⑵设函数则是偶函数无界函数周期函数单调函数[解答]因为,所以,又为无界函数,当任意给定一正数,都存在时,使得,于是,故为无界函数,所以应该选.⑶当时,函数的极限是等于等于为不存在但不为[解答]所以应该选.⑷若函数在处连续,则的值是[解答] ,则,所以应该选.⑸极限的值是不存在[解答] 原式,所以应该选.⑹设则值是均不对[解答] 原式解得所以应该选.⑺设则的值为,,,均不对[解答] 原式,由可得,所以应该选.⑻设则当时,是的等价无穷小与是同阶但非等价无穷小是比较低阶的无穷小是比较高阶无穷小[解答] 原式,所以应该选.⑼设则的值是[解答] 若原式极限存在,当时,由可得,所以应该选.⑽设其中则必有[解答] 原式可得,所以应该选. 3.计算题⑴求下列极限①[解答] 原式②[解答] 原式③[解答] 原式④[解答] 原式又所以原极限⑵求下列极限①[解答] 原式②[解答] 原式1③[解答] 原式⑶求下列极限①[解答] 原式()②[解答] 原式③[解答] 原式④[解答] 原式且>>又,故由夹逼原则知原式⑤[解答] 当时,原式当时,原式当时,原式⑥其中[解答] 原式()4.设试讨论在处的连续性和可导性.[解答] ⑴由于是在处连续.⑵分别求在处的左、右导数所以在处连续且可导. 5.求下列函数的间断点并判别类型.①[解答] 为函数的间断点又所以为函数第一类跳跃间断点. ②[解答] 当时,当时,当时,即,所以为函数第一类间断点.③[解答] 当时,所以为第一类跳跃间断点.当时,不存在,所以为第二类间断点.当时,所以为第一类可去间断点.当时,所以为第二类无穷间断点.6.试确定常数的值,使极限存在,并求该极限值.[解答] 原式存在由可得,即则原式同理由可得,即所以原式7.设,且是的可去间断点,求的值.[解答] 存在,由可得.原式存在,同理由可得.8.设求的值.[解答] 原式()由可得原式,即9.讨论函数在处的连续性.[解答] 当时,所以若时,在连续.若时,在为第一类跳跃间断点.当时,是的第二类间断点.10.设在的某邻域内二阶可导,且求及[解答]由可得所以第二章一、填空题7.设,则__[解答] 原式所以8.已知,则__[解答] 原式即令,则9.设为可导函数,,则__[解答] 原式10.设函数由方程所确定,则曲线在点处的法线方程为__[解答] 两边求导将代入可得故所求的方程为二.选择题1.设可导,,则是在处可导的充分必要条件充分但非必要条件必要但非充分条件既非充分又非必要条件[解答]若在处可导,即,所以应该选.2.设是连续函数,且,则[解答] ,所以应该选.3.已知函数具有任意阶导数,且,则当为大于2的正整数时,的阶导数是[解答] ,由数学归纳法可得,所以应该选.4.设函数对任意均满足,且,其中为非零常数,则在处不可导在处可导,且在处可导,且在处可导,且[解答] ,故应选.二、选择7.设在处可导,则为任意常数为任意常数[解答] 由在连续可得由在可导得则,所以应该选.8.设,则在处可导的充要条件为存在存在存在存在[解答] 当时,~,则等价于,所以应该选.9.设函数在上可导,则当时,必有当时,必有当时,必有当时,必有[解答] 若设时,均错误,若设时,错误,故选.10.设函数在处可导,则函数在处不可导的充分条件是且且且且[解答] 令,由导数定义可得若 ,由 的连续性及保号性可得 ,此时若 ,同理可得.故若 不存在,则若 ,且 ,设,由于所以当时,,时,则故 不存在,所以应该选.三.计算题1. ,求.[解答]2.已知 可导, ,求.[解答]3.已知,求.[解答] 等式两边对求导可得化简可得4.设的函数是由方程确定的,求. [解答] 等式两边对求导可得化简得5.已知,求.[解答]6.设,求.[解答] 等式两边对求导可得可得又所以7.设函数二阶可导,,且,求.[解答]8.设曲线由方程组确定,求该曲线在处的曲率.[解答] ,则四.已知,其中有二阶连续的导数,且⑴确定的值,使在点连续;⑵求.[解答] ⑴即当时,在处连续. ⑵当时,有当时,由导数的定义有五.已知当时,有定义且二阶可导,问为何值时是二阶可导.[解答] 在处连续则即在处一阶可导,则有此时,在处二阶可导,则有六.已知,求.[解答]又在处的麦克劳林级数展开式为通过比较可得,当时,当时,七.设,求.[解答] ,,,通过递推公式可得当时,八.证明满足方程证明:化简可得得证.第三章1.求下列不定积分.⑴[解答] 原式⑵[解答] 原式⑶[解答] 原式⑷[解答] 原式⑸[解答] 设原式2.求下列不定积分.⑴[解答] 设原式⑵[解答] 设,原式⑶[解答] 设原式⑷[解答] 原式⑸[解答] 设原式⑹[解答] 设,则原式⑺[解答] 设,原式3.求下列不定积分.⑴[解答] 原式⑵[解答] 设,则原式4.求下列不定积分.⑴[解答] 设,原式⑵[解答] 设,原式5.求下列不定积分.⑴[解答] 原式⑵[解答]所以⑶[解答] 原式⑷[解答] 原式移项得⑸[解答] 原式6.求下列不定积分.⑴[解答] 原式再求设,则原式==所以原式⑵[解答] 设原式⑶[解答] 设原式7.设,求[解答] 当时当时因为在处连续,可得,所以,(为不同时为零的常数),求.8.设[解答] 设,,则又所以即9.求下列不定积分.⑴[解答] 原式⑵[解答] 原式⑶[解答] 原式⑷[解答] 原式10.设当时,连续,求[解答] 原式11.设,求.[解答] 设,则所以12.求下列不定积分.⑴[解答] 设原式⑵[解答] 设原式⑶[解答] 设原式⑷[解答] 设原式13.下列不定积分.⑴[解答] 设原式⑵[解答] 设原式⑶[解答] 设,则原式⑷[解答] 设,原式14.求下列不定积分.⑴[解答] 原式⑵[解答] 原式⑶[解答] 原式15.求下列不定积分.⑴[解答] 设原式⑵[解答] 设原式⑶[解答] 设原式习题四(1)1.若在上连续,证明:对于任意选定的连续函数,均有则在上,证明:假设在上存在使得 ,令 ,由于在上连续,故存在在上,使得.又令则结论与题设矛盾,故假设不成立.2. 设为任意实数,证明:证明:设,则所以即 ,得证.3. 已知在 连续,对任意都有证明:证明: 在连续,则,又所以1.设为大于的正整数,证明:.证明:=即若,则于是这与推论矛盾,所以若,则于是这与推论矛盾,所以综上所述,有.1.设在上连续,且单调减少,,证明:对于满足的任何,,有证明:由积分中值定律有又,且单调递减,故当时,所以即2.设在上二阶可导,且证明:证明:由泰勒公式有又,则两边积分可得7.设在上连续,且单调不增,证明:任给,有证明:,所以又,,单调不增,当时,所以8.设在上具有连续的二阶导数,且,证明:在内存在一点,使证明:由泰勒公式有,其中具有二阶导数,设最大值为,最小值为,即则即,由介值定理可得,至少存在一点,使得即,得证.9.设连续,证明:证明:设,则10.设在上连续,在内存在且可积,,证明:证明: 由,可得,其中。
高等数学二重点题目
1求曲面e^x-z+xy=3在点(2,1,0)处的切平面及法线方程。
解:∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1)故所求切平面是(e²+1)(x-2)+2(y-1)-(z-0)=0,即(e²+1)x+2y-z=2(e²+2) 所求法线方程是(x-2)/(e²+1)=(y-1)/2=z/(-1)只要求曲面在那一点的法向量就行f(x,y,z)=e^z-z+xy▽f(x,y,z)=(y,x,e^z-1)▽f(2,1,0)=(1,2,0)则平面方程设为1x+2y=a再把(2,1,0)代入平面2+2=a=4则平面是x+2y=42函数z=ln(1+x^2+y^2) 当x=1,y=2时的全微分为z=ln(1+x^2+y^2)dz/dx=1/(1+x^2+y^2)*2x=1/(1+1^2+2^2)*2*1=1/3dz/dy=1/(1+x^2+y^2)*2y=1/(1+1^2+2^2)*2*2=2/3函数z=ln(1+x^2+y^2) 当x=1,y=2时的全微分为dz=(dx+2dy)/310求球面x²+y²+z²=9在点(1,2,-2)的切平面及法线方程球心(0,0,0),因此切平面法向量为(1,2,-2),又切平面过(1,2,-2),因此切平面方程为1*(x-1)+2*(y-2)-2*(z+2)=0 ,化简得x+2y-2z-9=0 。
由于直线方向向量为(1,2,-2),所以法线方程为x-1=(y-2)/2=(z+2)/(-2) 。
求球面X^2+Y^2+Z^2=21在点(1,2,4)处的法线方程及切平面方程求解题过程法线即圆心和该点的连线∴为(x-0)/1=(y-0)/2=(z-0)/4即x=y/2=z/4其法向量为(1,2,4)切平面上的任意两点的连线都应与法向量垂直设切平面是ax+by+cz=C设面上两点分别为(x1,y1)(x2,y2)则ax1+by1+cz1=Cax2+by2+cz2=C两式相减得:a(x1-x2)+b(y1-y2)+c(z1-z2)=0左边正好是向量(a,b,c)和向量(x1-x2,y1-y2,z1-z2)的形式∴向量(a,b,c)和向量(x1-x2,y1-y2,z1-z2)是垂直的由于(x1-x2,y1-y2,z1-z2)是任取的,所以向量(a,b,c)只能为法向量∴a=1,b=2,c=4∴其切平面则应为x+2y+4z=C解出C=21∴切平面为x+2y+4z=2114交换下列积分次序1 ∫(积分限0到1)dx∫(积分限x的平方到x)f(x,y)dy 解:原式=∫(0,1)dy∫(√y,y)f(x,y)dx。
《高等数学》试题库(有答案)
《高等数学》试题库(有答案)一、选择题(一)函数1、下列集合中()是空集。
{}{}4,3,02,1,0. a {}{}7,6,53,2,1. b (){}x y x y y x c 2,.==且{}01.≥〈x x x d 且2、下列各组函数中是相同的函数有()。
()()()2,.x x g x x f a == ()()2,.x x g x x f b == ()()x x x g x f c 22cos sin ,1.+== ()()23,.x x g xx x f d == 3、函数()5lg 1-=x x f 的定义域是()。
()()+∞∞-,55,. a ()()+∞∞-,66,. b()()+∞∞-,44,. c ()()()()+∞∞-,66,55,44,. d4、设函数()⎪⎪⎪⎪⎪-+2222x x x 〈+∞≤〈≤〈∞〈-x x x 2200 则下列等式中,不成立的是()。
()()10.f f a = ()()10.-=f f b ()()22.f f c =- ()()31.f f d =- 5、下列函数中,()是奇函数。
x xa . x xb sin .2 11.+-x x a ac 21010.xx d -- 6、下列函数中,有界的是()。
arctgx y a =. tgx y b =. xy c 1.= x y d 2.= 7、若()()11-=-x x x f ,则()=x f ()。
()1.+x x a ()()21.--x x b ()1.-x x c .d 不存在8、函数x y sin =的周期是()。
π4.a π2.b π.c 2.πd9、下列函数不是复合函数的有()。
x y a ⎪⎪⎪⎪⎪=21. ()21.x y b --= x y c sin lg .= x e y d sin 1.+= 3 10、下列函数是初等函数的有()。
11.2--=x x y a ⎪⎪⎪+=21.xx y b 00≤〉x x x y c cos 2.--= ()()2121lg 1sin .⎪⎪⎪⎪⎪⎪+-=x e y d x11、区间[,)a +∞, 表示不等式().(A )a x <<+∞(B )+∞<≤x a (C )a x < (D )a x ≥12、若ϕ3()1t t =+,则ϕ3(1)t +=().(A )31t+ (B )61t + (C )62t + (D )963332t t t +++ 13、函数log (a y x =+ 是().(A )偶函数(B )奇函数(C )非奇非偶函数(D )既是奇函数又是偶函数14、函数()y f x =与其反函数1()y f x -=的图形对称于直线(). (A )0y= (B )0x = (C )y x = (D )y x =- 15、函数1102x y -=-的反函数是().(A )1x lg 22y x =- (B )log 2x y = (C )21log y x= (D )1lg(2)y x =++ 16、函数sin cos y x x =+是周期函数,它的最小正周期是().(A )2π(B )π(C )2π(D )4π17、设1)(+=x x f ,则)1)((+x f f =().A .xB .x + 1C .x + 2D .x + 318、下列函数中,()不是基本初等函数.A .x y )e 1(= B .2ln x y = C .xx y cos sin = D .35x y = 19、若函数f()1,则f(x)=( ) A. +1B. 1C. (1)D. 120、若函数f(1)2,则f(x)=( )2 B.(1) 2 C. (1) 2 D. x 2-121、若函数f(x),g(x)1,则函数f(g(x))的定义域是( ) >0 ≥0C ≥1 D. x>-122、若函数f(x)的定义域为(0,1)则函数f(1)的定义域是( )A.(0,1)B.(-1,0)C.(1,1)D. (1,e)23、函数f(x)1|是( )A.偶函数B.有界函数C.单调函数D.连续函数24、下列函数中为奇函数的是( ) (1) B.⎪⎪⎪⎪⎪++=21ln x x y 2 25、若函数f(x)是定义在(-∞,+∞)内的任意函数,则下列函数中()是偶函数。
高等数学试题题库及答案
高等数学试题题库及答案一、单项选择题(每题2分,共10题)1. 函数f(x)=x^2+2x+1的导数是:A. 2x+2B. 2x+1C. x^2+2xD. 2x^2+2x+1答案:A2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. 不存在答案:B3. 若f(x)在x=a处连续,则下列哪个选项一定成立:A. f(a)存在B. f(a)=lim(x→a)f(x)C. f(a)=lim(x→a)f(x)且f(a)存在D. f(a)不存在答案:C4. 函数y=e^x的不定积分是:A. e^x + CB. e^xC. ln(e^x) + CD. ln(x) + C答案:A5. 曲线y=x^3-3x^2+2在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 2答案:C6. 以下哪个函数是奇函数:A. f(x)=x^2B. f(x)=x^3C. f(x)=x+1D. f(x)=x^2+1答案:B7. 二重积分∬(x^2+y^2)dxdy在区域D上,其中D是由x^2+y^2≤1定义的圆盘,其值是:A. πB. 2πC. π/2D. 4π答案:A8. 微分方程dy/dx=2x的通解是:A. y=x^2+CB. y=2x+CC. y=x^2D. y=2x^2+C答案:A9. 函数f(x)=x^3在x=0处的泰勒展开式是:A. x^3B. x^3+3x^2+3x+1C. x^3+3x^2+3xD. x^3+3x^2答案:C10. 以下哪个级数是收敛的:A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+1/2+1/3+1/4+...D. 1-1/2+1/3-1/4+1/5-...答案:A二、填空题(每题3分,共5题)11. 函数f(x)=x^2+3x+2的二阶导数是________。
答案:212. 极限lim(x→∞) (x^2-3x+2)/(x^3+x)的值是________。
高数考试题库及答案解析
高数考试题库及答案解析一、选择题1. 函数f(x)=x^2-3x+2在区间[1,4]上的最大值是:A. 0B. 3C. 6D. 7答案:D解析:首先求导f'(x)=2x-3,令f'(x)=0,解得x=3/2。
在区间[1,4]上,f'(x)在x<3/2时为负,x>3/2时为正,说明f(x)在x=3/2处取得极小值。
计算f(3/2)=-1/4,再计算区间端点f(1)=0和f(4)=6,可知最大值为f(4)=6。
2. 若f(x)=sin(x)+cos(x),则f'(x)的表达式为:A. cos(x)-sin(x)B. cos(x)+sin(x)C. sin(x)-cos(x)D. sin(x)+cos(x)答案:A解析:根据导数的运算法则,f'(x)=[sin(x)]'+[cos(x)]'=cos(x)-sin(x)。
二、填空题1. 曲线y=x^3-6x^2+9x在点(2,0)处的切线斜率为______。
答案:-12解析:首先求导y'=3x^2-12x+9,将x=2代入y'得到切线斜率为-12。
2. 定积分∫(0,1) x^2 dx的值为______。
答案:1/3解析:根据定积分的计算公式,∫(0,1) x^2 dx = [x^3/3](0,1) = 1/3。
三、解答题1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。
答案:函数f(x)的单调增区间为(1,3),单调减区间为(-∞,1)和(3,+∞)。
解析:首先求导f'(x)=3x^2-12x+11,令f'(x)=0解得x=1,3。
根据导数符号变化,可得单调区间。
2. 求曲线y=x^2-4x+3与直线y=2x平行的切线方程。
答案:切线方程为:x-y-1=0。
解析:曲线y=x^2-4x+3的导数为y'=2x-4,令y'=2得到x=3,此时切点坐标为(3,2)。
高数考试试题及答案
高数考试试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 \)在区间[-1, 2]上的最大值是:A. 1B. 2C. 4D. 32. 微分方程\( y'' - y' - 6y = 0 \)的特征方程是:A. \( r^2 - r - 6 = 0 \)B. \( r^2 - 6 = 0 \)C.\( r^2 + r - 6 = 0 \) D. \( r^2 + 6 = 0 \)3. 若\( \lim_{x \to 0} \frac{f(x)}{x} = 1 \),则\( f(0) \)的值是:A. 0B. 1C. 无法确定D. 无穷大4. 曲线\( y = x^3 \)在点(1, 1)处的切线斜率是:A. 3B. 1C. 0D. -35. 函数\( f(x) = \ln(x) \)的原函数是:A. \( x^2 \)B. \( x^3 \)C. \( e^x \)D. \( x \ln(x) - x \)6. 定积分\( \int_{0}^{1} x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{4} \)C.\( \frac{1}{2} \) D. 17. 无穷级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是:A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C.\( e \) D. \( \ln(2) \)8. 若\( \lim_{n \to \infty} a_n = 0 \),则级数\( \sum_{n=1}^{\infty} a_n \):A. 一定收敛B. 一定发散C. 可能收敛也可能发散D. 无法判断9. 函数\( f(x) = \sin(x) + \cos(x) \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi/4 \)10. 函数\( f(x) = x^3 - 3x \)的极值点是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = 0 \)D.\( x = \pm 1 \)二、填空题(每题4分,共20分)1. 函数\( g(x) = 3x - 5 \)的反函数是 \( g^{-1}(x) = ______ \)。
大学高数必考试题及答案
大学高数必考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C2. 二阶常系数线性微分方程 y'' - 4y' + 4y = 0 的特征方程是什么?A. r^2 - 4r + 4 = 0B. r^2 - 4r + 3 = 0C. r^2 - 4r + 5 = 0D. r^2 - 4r + 6 = 0答案:A3. 函数 f(x) = x^3 - 6x^2 + 11x - 6 在区间 (2, 5) 上是增函数还是减函数?A. 增函数B. 减函数答案:A4. 以下哪个选项是洛必达法则的应用?A. 求不定式 0/0 的极限B. 求不定式∞/∞ 的极限C. 求定值 1/2 的极限D. 求定值 3 的极限答案:A5. 曲线 y = x^2 与直线 y = 2x 在点 (1, 2) 处的切线斜率分别为k1 和 k2,那么 k1 - k2 的值是多少?A. 0B. 1C. -1D. 2答案:B6. 以下哪个级数是收敛的?A. ∑((-1)^n)/nB. ∑n^2C. ∑1/nD. ∑(1/n^2)答案:D7. 函数F(x) = ∫(1, x) e^t dt 的原函数是什么?A. e^x - 1B. e^xC. e^x + 1D. e^x - e答案:A8. 以下哪个选项是泰勒公式的余项公式?A. R_n(x) = f^(n+1)(ξ)/(n+1)! * (x-a)^(n+1)B. R_n(x) = f^(n+1)(ξ)/(n+1) * (x-a)^(n+1)C. R_n(x) = f^(n)(ξ)/n! * (x-a)^nD. R_n(x) = f^(n)(ξ)/(n-1)! * (x-a)^(n-1)答案:A9. 以下哪个选项是多元函数偏导数的定义?A. ∂f/∂x = lim(h->0) (f(x+h, y) - f(x, y))/hB. ∂f/∂y = lim(h->0) (f(x, y+h) - f(x, y))/hC. ∂f/∂x = lim(h->0) (f(x, y+h) - f(x, y))/hD. ∂f/∂y = lim(h->0) (f(x+h, y) - f(x, y))/h答案:A10. 以下哪个选项是格林公式的应用条件?A. 区域 D 是单连通的B. 区域 D 是多连通的C. 曲线 C 是封闭的D. 曲线 C 是不封闭的答案:C二、填空题(每题4分,共20分)11. 若函数 f(x) = 2x^3 - 3x^2 + x - 5 在 x = 1 处取极值,则其一阶导数 f'(x) 在 x = 1 处的值为 _______。
(完整)高等数学考试题库(附答案)
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
高数难题试题库及答案
高数难题试题库及答案1. 极限计算题目:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,原式等于 \(\lim_{x \to 0} \frac{\cos x}{1} = 1\)。
2. 导数求解题目:求函数 \(f(x) = x^3 - 3x^2 + 2\) 的导数。
答案:\(f'(x) = 3x^2 - 6x\)。
3. 不定积分题目:计算不定积分 \(\int (2x + 3) \, dx\)。
答案:\(\int (2x + 3) \, dx = x^2 + 3x + C\)。
4. 定积分计算题目:计算定积分 \(\int_{0}^{1} x^2 \, dx\)。
答案:\(\int_{0}^{1} x^2 \, dx = \frac{1}{3}x^3 \Big|_0^1= \frac{1}{3}\)。
5. 级数求和题目:求级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) 的和。
答案:通过裂项法,\(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1\)。
6. 微分方程求解题目:解微分方程 \(y'' - 2y' + y = 0\)。
答案:该方程的特征方程为 \(t^2 - 2t + 1 = 0\),解得 \(t =1\),因此通解为 \(y = C_1e^x + C_2xe^x\)。
7. 多元函数偏导数题目:求函数 \(z = x^2y + y^2\) 在点 \((1, 2)\) 处的偏导数。
答案:\(\frac{\partial z}{\partial x} = 2xy\),\(\frac{\partial z}{\partial y} = 2x + y\)。
在点 \((1, 2)\) 处,\(\frac{\partial z}{\partial x} = 4\),\(\frac{\partialz}{\partial y} = 4\)。
【高等数学基础】2020秋复习总和重点试题解析
高等数学基础样题一、单项选择题(每小题3分,本题共15分)1.函数222xx y +=-的图形关于( )对称.(A) 坐标原点 (B) y 轴 (C) x 轴 (D) x y = 2.在下列指定的变化过程中,( )是无穷小量. (A) )0(1sin →x xx (B) )(1sin∞→x xx(C) )0(ln →x x(D) )(e ∞→x x3.下列等式中正确的是( ).(A) x x x d ln )1(d = (B) xx x d )(ln d = (C) x xxd 3)3(d = (D) xx x d )(d =4.若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(1( ).(A) )(x F (B) c x F +)( (C) c x F +)(2 (D) )(2x F 5.下列无穷限积分收敛的是( ). (A)⎰+∞1d 1x x(B) ⎰+∞d e x x(C)⎰+∞1d 1x x(D)⎰+∞12d 1x x二、填空题(每小题3分,共15分) 1.函数)1ln(1-+=x x y 的定义域是 .2.若函数⎪⎩⎪⎨⎧≥+<+=00)1()(1x kx x x x f x ,在0=x 处连续,则=k .3.曲线x x f =)(在)1,1(处的切线斜率是 .4.函数)1ln(2x y +=的单调增加区间是 . 5.='⎰x x d )(cos .三、计算题(每小题9分,共54分) 1.计算极限4)2sin(lim22--→x x x .2.设xxx y e sin 2+=,求y '.3.设2e sin x y =,求'y .4.设y y x =()是由方程3e ln y x y=+确定的函数,求d y .5.计算不定积分⎰x xx d 1cos2. 6.计算定积分⎰e1d ln x x x .四、应用题(本题12分)圆柱体上底的中心到下底的边沿的距离为l ,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)当0>x 时,证明不等式)1ln(x x +>.高等数学基础样题答案一、单项选择题1.B2.A3. B4. C5. D 二、填空题1. ),2()2,1(∞+2. e3. 214. ),0(∞+5. c x +cos 三、计算题1. 41 2. x x x x x e sin cos 22+++ 3. 22e cos e 2x x x 4. x y x yd )e 3(12- 5. c x +-1sin6. 94e 923+ 四、应用题 当底半径l r 36=,高l h 33=时,圆柱体的体积最大. 高等数学基础典型例题解析例1 计算极限32)1sin(lim 21-+-→x x x x .解 利用重要极限1sin lim 0=→xxx ,及极限的运算法则得)1)(3()1sin(lim 32)1sin(lim121-+-=-+-→→x x x x x x x x )1()1sin()3(1lim 1--⋅+=→x x x x)1()1sin(lim )3(lim 111--⋅+=→→x x x x x 41141=⋅=例2 计算极限1276lim 223+---→x x x x x .解 利用极限的运算法则得5)4(lim )2(lim )4)(3()2)(3(lim 1276lim 333223-=-+=--+-=+---→→→→x x x x x x x x x x x x x x 例3 设x y xln e sin -=,求y '.解 利用导数的运算法则和复合函数求导法则得)(ln )e (sin )ln e (sin '-'='-='x x y x xxx x 1e cos e -= 例4 设2cos x x y =,求y '.解 利用导数的运算法则和复合函数求导法则得)(cos cos )cos (222'+='='x x x x x y)(sin sin 222'-=x x x x 222sin 2sin x x x -=例5 计算⎰x x xd e21.解 利用换元积分法得⎰⎰⎰-=--=)1d(e d e 1d e 11221x x x x x xx xc u u u u x+-===⎰=e d e 1c x+-=1e练习:⎰x xxd e,⎰x xxd eln ,⎰x x x d 1sin 2,⎰x x x d sin ,⎰x x x d ln sin .例6 计算⎰x x x d ln α.解 利用分部积分法得⎰⎰⎰+α-+α=+α=+α+α+αα)(ln d 1ln 1)1(d ln d ln 111x x x x x x x x x⎰+++-+=x x x x x d 111ln 111αααα ⎰+-+=+x x x x d 11ln 11αααα c x x x ++-+=++)1(ln 111αααα 练习:⎰x x d ln ,⎰x x x d ln ,⎰x x x d ln 2,⎰x x x d ln ,⎰x x xd ln 2. 例7 求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.解 曲线x y 22=上的点到点)0,2(A 的距离公式为22)2(y x d +-=。
高等数学复习题(含答案)
高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x 即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,∴ )(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134limxx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →,解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xx x .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得l i 0x =. (10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x x x x x x .(也可用洛必达法则) (11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=. (12)30tan sin limx x xx→-. 解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ =2202sin 2limx x x → =21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limxx x x -→ (2))e e ln()3ln(cos lim 33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x x x e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nxn xnx x nx (5)此极限为 ∞∞型,用洛必达法则,得 1sin 1limcos lim xx x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x . 6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→000lim )1sin (lim )1sin(lim )(lim ,1)1(lim )(lim 2=+=++→→x x f x x ,为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→,因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限. 因而有01sinlim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x ,由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim )(0 ∴0=x 为)(x f 的无穷间断点.综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导. 答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导. (2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( , 当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→,所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f ,因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f.0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy 解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得=2)(22x y yy x +-', 将 xy xy y +-='代入上式,得 2)(22x y yxy xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y xln e ln =, 两边关于x 求导数得:即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy =)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.x x y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- , 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,∴33)()(d d 12131==''====t t t t t t xy ,∴曲线在点(1,1)处切线的斜率为312. 求函数xx y tan ln e=的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f xe e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即 当1>x 时,e e )(-='x x f 0>,可知()f x 为),1[+∞上的严格单调增加函数, 即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x xx xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值,,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值. 解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表知,上凹区间(1,1)-,下凹区由此可(,1)(1,)-∞-+∞,曲线的间拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线(1)xxy ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim 0,可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim2, []b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f xcos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何?答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe xd 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x xx d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x, (12)⎰-24d x x . 解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2. (5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12. (10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112x x⎰=C x+2arcsin . 4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22x x x x t t t -=-⋅⋅==,故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C xx x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x x x +--212arcsin 21.5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e 4,(4)⎰x x xd 4sine 5, (5) ⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰- =⎰+-2241)(d 2arctan x x x x=)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. (4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x x xd 4cose 544sin e5155⎰-1=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x x x xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin=C xx x +-100100cos 10000100sin .(6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅- =x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x xxd e )1(2⎰+ , (2) 3s e c d x x ⎰.解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2xe x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=x e =+--)e e (21C x x x )12(2++x x C x+e (12C C =), 为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xedx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e .(2)3sec d x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec=sec tan x x -⎰x x d sec 3+x x tan sec ln +, 式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x .8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t xxx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-20d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1. (2)⎰-122d ||x x x =⎰--023d )(x x +⎰13d x x=10402444x x +--=4+41741=. (3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-4d 11x xx=⎰+-20d 211t t t t =⎰+--20d ]1424[t t t(2)⎰4π04d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x x d e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x xx =5155e 5e51e 6=--x .(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x x()1e 23ln 231e 4ln )21e 2(+--++=. (3) x x x d πcos e 10π⎰=ππsin d e 10πx x ⎰ =0x x x d πsin e 10π⎰-=)ππcos d(e 1πxx --⎰ =-+-)1e (π1πx x x d πcos e 10π⎰移项合并得x x x d πcos e 10π⎰)1e (π21π+-=.(4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰ =4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e .17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2)⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d x x . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21,故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1xx =+∞=-=-+∞→→+∞+x x x x x 1lim 1lim )1(00, ∴⎰∞+02d 1x x发散. (3)x xd e 1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x=20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x xx x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ], 则面积微元 A d =y y y d )242(2-+, 则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ], 则面积微元 A d 2=[)4(212--x x ]x d , 于是得A =A 1+A 2A =⎰2d 22x x+A x xx d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积y=135)325(πx x x ++=π1528. 二、 微分方程1. 验证xx C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: xx C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x y x y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yy d d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 , 求积分得 3313Cx y +=-, 从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解)(2)分离变量得21d d xx y y -=,(0≠y )两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=, 即 )e (e ee 11arcsin arcsin C x xCC C y ±==±=,从而通解为 xC y arcsin e =,验证0=y 也是方程的解.(3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d y x x y +=. 解:(1)因a x P =)(, x b x Q s i n )(=, 故通解为)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x y y d 2d =, 两边积分,得x x y y ⎰⎰=d 2d ,C x y +=2ln , )e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e)(2=代入通解的公式得=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x , 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx xx +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x xx +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx 121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P . 根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为xx C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,其特征方程为0622=-+r r , 特征根为711+-=r , 712--=r ,故通解 xxC C y )71(2)71(1e e --+-+=.因x3e-中3-=λ不是特征方程的根,且1)(=x P m , 故设原方程特解xp A y 3e-=,代入原方程化简,得31-=A ,从而原方程通解为x x C C y )71(2)71(1e e --+-+=x 3e 31--.由0)0(=y ,得03121=-+C C , 由0)0('=y ,得11)71()71(21=++-+-C C ,解得42771+=C , 42772-=C , 故所求特解x xxp y 3)71()71(e 31e 4277e 4277---+---++=. (2)先解02=+''y y ,其特征方程为022=+r ,特征根为i 2,i 221-==r r ,故通解x C x C y C 2sin 2cos 21+=.设原方程特解x b x a y s i n c o s *+=,代入原方程,化简得1,0==b a ,故原方程通解x x C x C y sin 2sin 2cos 21++=,由00)0(1==C y 得,由1)0(='y ,得02=C ,故所求特解为x y sin =.11. 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解:对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.12.求微分方程 x y y y x2sin e 842=+'-''的通解.解:对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
大一高等数学复习题(含标准答案)
复习题一、单项选择题:1、5lg 1)(-=x x f 的定义域是( D )A 、()),5(5,+∞∞-B 、()),6(6,+∞∞-C 、()),4(4,+∞∞-D 、())5,4(4, ∞- ()),6(6,5+∞2、如果函数f(x)的定义域为[1,2],则函数f(x)+f(x 2)的定义域是( B ) A 、[1,2] B 、[1,2] C 、]2,2[- D 、]2,1[]1,2[ -- 3、函数)1lg()1lg(22x x x x y -++++=( D ) A 、是奇函数,非偶函数 B 、是偶函数,非奇函数 C 、既非奇函数,又非偶函数 D 、既是奇函数,又是偶函数解:定义域为R ,且原式=lg(x 2+1-x 2)=lg1=0 4、函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f ( C )A 、21x -B 、21x --C 、)01(12≤≤--x xD 、)01(12≤≤---x x 5、下列数列收敛的是( C )A 、1)1()(1+-=+n n n f n B 、⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)(C 、⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( D 、⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f n nnn ,221,221)( 解:选项A 、B 、D 中的数列奇数项趋向于1,偶数项趋向于-1,选项C 的数列极限为0 6、设1111.0个n n y =,则当∞→n 时,该数列( C )A 、收敛于0.1B 、收敛于0.2C 、收敛于91D 、发散 解:)1011(91101101101111.02n n n y -=+++== 7、“f(x)在点x=x 0处有定义”是当x →x 0时f(x)有极限的( D )A 、必要条件B 、充分条件C 、充分必要条件D 、无关条件 8、下列极限存在的是( A )A 、2)1(lim x x x x +∞→ B 、121lim -∞→xx C 、xx e 1lim → D 、xx x 1lim2++∞→ 解:A 中原式1)11(lim =+=∞→xx 9、xx xx x x sin 2sin 2lim 22+-+∞→=( A )A 、21B 、2C 、0D 、不存在 解:分子、分母同除以x2,并使用结论“无穷小量与有界变量乘积仍为无穷小量”得10、=--→1)1sin(lim21x x x ( B ) A 、1 B 、2 C 、21D 、0 解:原式=21)1sin()1(lim 221=--⋅+→x x x x 11、下列极限中结果等于e 的是( B )A 、x x x x x sin 0)sin 1(lim +→ B 、xxx x x sin )sin 1(lim +∞→ C 、xxx xxsin )sin 1(lim -∞→-D 、xxx xxsin 0)sin 1(lim +→解:A 和D 的极限为2, C 的极限为1 12、函数||ln 1x y =的间断点有( C )个 A 、1 B 、2 C 、3 D 、4 解:间数点为无定义的点,为-1、0、113、下列函灵敏在点x=0外均不连续,其中点x=0是f(x)的可去间断点的是( B ) A 、x x f 11)(+= B 、x xx f sin 1)(= C 、xe xf 1)9= D 、⎪⎩⎪⎨⎧≥<=0,0,)(1x e x e x f x x解:A 中极限为无穷大,所以为第二类间断点B 中极限为1,所以为可去间断点C 中右极限为正无穷,左极限为0,所以为第二类间断点D 中右极限为1,左极限为0,所以为跳跃间断点 14、下列结论错误的是( A )A 、如果函数f(x)在点x=x 0处连续,则f(x)在点x=x 0处可导B 、如果函数f(x)在点x=x 0处不连续,则f(x)在点x=x 0处不可导C 、如果函数f(x)在点x=x 0处可导,则f(x)在点x=x 0处连续D 、如果函数f(x)在点x=x 0处不可导,则f(x)在点x=x 0处也可能连续15、设f(x)=x(x+1)(x+2)(x+3),则f ’(0)=( A ) A 、6 B 、3 C 、2 D 、016、设f(x)=cosx ,则=∆∆--→∆xx a f a f x )()(lim0( B )A 、a sinB 、a sin -C 、a cosD 、a cos -解:因为原式=)()()(lim 0a f xx a f a f x '=∆-∆--→∆17、x y 2cos 2=,则=dy ( D )A 、dx x x )2()2(cos 2'' B 、x d x 2cos )2(cos 2'C 、xdx x 2sin 2cos 2-D 、x xd 2cos 2cos 218、f(x)在点x=x 0处可微,是f(x)在点x=x 0处连续的( C ) A 、充分且必要条件 B 、必要非充分条件C 、充分非必要条件D 、既非充分也非必要条件 19、设xnex y 2-+=,则=)0()(n y( A )A 、n n )2(!-+B 、n!C 、1)2(!--+n n D 、n!-220、下列函数在给定区间上满足罗尔定理条件的是( A ) A 、y=x 2-5x+6 [2,3] B 、2)1(1-=x y [0,2]C 、xxey -= [0,1] D 、⎩⎨⎧≥<+=5,15,1x x x y [0,5]21、求下列极限能直接使用洛必达法则的是( B )A 、x x x sin lim∞→ B 、x xx sin lim 0→ C 、x x x 3sin 5tan lim 2π→D 、x x x x sin 1sinlim20→22、设232)(-+=xxx f ,则当x 趋于0时( B )A 、f(x)与x 是等价无穷小量B 、f(x)与x 是同阶非等价无穷小量C 、f(x)是比x 较高阶的无穷小是D 、f(x)是比x 较低阶的无穷小量 解:利用洛必达法则13ln 2ln 13ln 32ln 2lim 232lim )(lim 00000≠+=+-+=→→→x x x x x x x x x x f 23、函数xxee xf -+=)(在区间(-1,1)内( D )A 、单调增加B 、单调减少C 、不增不减D 、有增有减 24、函数21x xy -=在(-1,1)内( A )A 、单调增加B 、单调减少C 、有极大值D 、有极小值 25、函数y=f(x)在x=x 0处取得极大值,则必有( D ) A 、f ’(x 0)=0 B 、f ”(x 0)<0C 、f ‘(x 0)=0且f “(x 0)<0D 、f ‘(x 0)=0或f ‘(x 0)不存在26、f ‘(x0)=0,f “(x0)>0是函数f(x)在点x=x0处以得极小值的一个( B ) A 、必要充分条件 B 、充分非必要条件C 、必要非充分条件D 、既非必要也非充分条件27、函数y=x 3+12x+1在定义域内( A )A 、单调增加B 、单调减少C 、图形上凹D 、图形下凹 28、设函数f(x)在开区间(a ,b )内有f ‘(x)<0且f “(x)<0,则y=f(x)在(a ,b)内( C ) A 、单调增加,图形上凹 B 、单调增加,图形下凹 C 、单调减少,图形上凹 D 、单调减少,图形下凹29、对曲线y=x 5+x 3,下列结论正确的是( D )A 、有4个极值点B 、有3个拐点C 、有2个极值点D 、有1个拐点 30、若⎰+=C e x dx x f x 22)(,则f(x)=( D )A 、ze x 22 B 、zxe24 C 、xe x 222 D 、)1(22x xe x+31、已知x y 2=',且x=1时y=2,则y=( C ) A 、x 2B 、x 2+C C 、x 2+1 D 、x 2+2 32、=⎰x d arcsin ( B ) A 、x arcsinB 、x arcsin +C C 、x arccosD 、x arccos +C33、设)(x f '存在,则[]='⎰)(x df ( B )A 、f(x)B 、)(x f 'C 、f(x)+CD 、)(x f '+C 34、若⎰+=C x dx x f 2)(,则=-⎰dx x xf )1(2( D )A 、C x +-22)1(2 B 、C x +--22)1(2 C 、C x +-22)1(21D 、C x +--22)1(21解:C x x d x f dx x xf +--=---=-⎰⎰22222)1(21)1()1(21)1( 35、设⎰+=C x dx x f sin )(,则=-⎰dx xx f 21)(arcsin ( D )A 、arcsinx+CB 、C x +-21sin C 、C x +2)(arcsin 21D 、x+C 解:原式=⎰+=+=C x c x x d x f )sin(arcsin arcsin )(arcsin36、设xex f -=)(,则='⎰dx x x f )(ln ( C )A 、C x +-1B 、C x +-ln C 、C x+1D 、lnx+C解:原式=C xC e C x f x d x f x +=+=+='⎰-1)(ln ln )(ln ln 37、设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ) A 、C x +--32)1(43 B 、C x +--32)1(31 C 、C x +-322)1(43 D 、C x +-322)1(32解:对⎰+=C x dx x xf arcsin )(两端关于x 求导得211)(xx xf -=,即211)(xx x f -=,所以C x x d x dx x x dx x f +--=---=-=⎰⎰⎰22222)1(31)1(1211)(1 38、若sinx 是f(x)的一个原函数,则⎰='dx x f x )(( A )A 、xcosx-sinx+CB 、xsinx+cosx+CC 、xcosx+sinx+CD 、xsinx-cosx+C解:由sinx 为f(x)的一个原函数知f(x)=cosx ,则使用分部积分公式得39、设x e f x+='1)(,则f(x)=( B )A 、1+lnx+CB 、xlnx+C C 、C x x ++22D 、xlnx-x+C 40、下列积分可直接使用牛顿—莱布尼茨公式的是( A ) A 、dx x x ⎰+5231 B 、dx xdx ⎰--1121 C 、⎰-40223)5(x xdx D 、⎰11ln exx xdx解:选项A 中被积函数在[0,5]上连续,选项B 、C 、D 中被积函数均不能保证在闭区间上连续 41、≠⎰-22|sin |ππdx x ( A )A 、0B 、⎰2|sin |2πdx x C 、⎰--02)sin (2πdx x D 、⎰20sin 2πxdx42、使积分⎰=+-22232)1(dx x kx 的常数k=( C )A 、40B 、-40C 、80D 、-80 解:原式=325202)11(2)1()1(2220222==+-=++⎰-k x k x d x k 43、设⎩⎨⎧≤≤-<≤-+=10,101,12)(x x x x f x ,则 =⎰-11)(dx x f ( B )A 、312ln 21+B 、352ln 21+C 、312ln 21-D 、352ln 21- 解:352ln 2101)1(3210)22ln 1(1)12()(2312111+=---+=-++=⎰⎰⎰--x x dx x dx dx x f x x44、⎰+-=xdt t t y 02)2()1(,则==0x dxdy( B )A 、-2B 、2C 、-1D 、1解:dy/dx=(x+1)2(x+2)45、下列广义积分收敛的是( B ) A 、⎰10x dxB 、⎰10x dxC 、⎰10x x dxD 、⎰103x dx解:四个选项均属于⎰1p xdx,该广义积分当p<1时收敛,大于等于1时发散 二、填空题 1、⎰=+dx exe x ( )解:原式=xxxe xe e xe de e dx e e ==⋅⎰⎰+C 2、已知一函数的导数为211)(x x f -=,且当x=1时,函数值为π23,则此函数F(x)=( π+x arcsin )解:ππ=∴=+=+=-=∴='⎰C C F Cx dx xx F x f x F ,231arcsin )1(arcsin 11)()()(23、曲线2x e y -=的上凸区间是( (22,22-) ) 解:22,)12(2,2222±=∴-=''-='--x e x y xey x x 4、=+⎰-xdx x x 322cos )sin (22ππ( 8π) 解:⎰⎰⎰⎰--=-===∴222020222222323824cos 1212sin 412cos sin 0cos cos πππππππdx x xdx xdx x xdx x ,x 为奇函数5、若f(x)的一个原函数是sinx ,则⎰=''dx x f )(( -sinx+C )解:x x f x x f x x x f cos )(,sin )(,cos )(sin )(-=''-='='= 6、设2222)ln()(a x a x x x x f +-++=,其中0≠a ,则='')0(f (a1) 解:222222222222222221)0(1)2211(1)()ln(221)2211()ln()(a f a x a x xa x x x f a x x a x x a x x a x x x a x x x f =''+=+⋅+++=''++=+⋅-+⋅++++++='7、曲线⎰+=+=ty t t x sin 1cos cos 2上对应于4π=t 的点外的法线斜率为( 21+ )8、设)2(2x f y =,而x x f tan )(=',则==8πx dy ( π2 )解:)2tan(4)2()2(222x x x x f dxdy='⋅'= 9、=++++++∞→)2211(lim 222nn n n n n ( 21)10、设1)1(lim)(2+-=∞→nx xn x f n ,则f(x)的间断点为x=( 0 )解:x 不等于0时,xn x n n x x f n 1111lim )(2=-+-=∞→ X=0时,f(x)=f(0)=0,显然x 不等于0时,f(x)=1/x 连续,又)0()(lim 0f x f x ≠∞=→三、计算题1、求极限22220sin 112lim xx x x x +-+→ 参考答案:原式=81)(81lim )](81211[12lim 4440444220=-=+-+-+→→xx o x x x o x x x x x 2、求极限)1ln()13()1(11320limx e x x xx x +----+→ 参考答案:利用等价无穷小:x x x x a x a x e xxαα~1)1(,~)1ln(,ln ~1,~1-++-- 原式=3ln 32lim 31lim 3ln 1)1(lim 11lim 3ln 1)3(ln )1(11lim 202202023202320-=⎪⎪⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛---+=⋅---+→→→→→x x x x x x e x x x x e x x x x x x x x x3、设⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,求22dx yd 参考答案:)cos 1(sin t a ta x y dx dy t t -=''= 23222)cos 1(1)cos 1(1cos )cos 1(1)cos 1(sin sin )cos 1(cos )(t a t a t t a t t t t t dx dt dx dy dt d dx dx dy d dx y d --=--=-⋅-⋅--=⋅⎪⎭⎫ ⎝⎛==4、求由方程yxe y +=1所确定隐函数的二阶导数22dxyd 参考答案:把原方程两边对自变量x 求导,得dxdy xe e dx dy y y ⋅+= 解得ye xe e dx dy yy y -=-=21 则32222)2()3()2()()2()2(y e y y dx dye y dx dy e y e dx d dxy d y y yy-⋅-=----⋅=-=5、近似计算数e 的值,使误差不超过10-2参考答案:n x x n x x e !1!2112++++≈ 令x=1)!1(!1!2111++++++=⇒n e n e θ要使误差310-<n R ,只需210)!1(3-<+≤n R n经计算,只需取n=5,所以72.27167.20083.00417.01667.05.2!51!2111≈=+++=++++≈ e 6、讨论函数)1()(3x x x f -=的凸性与相应曲线拐点 参考答案:函数的定义为R3243)(x x x f -=')21(6126)(2x x x x x f -=-=''由0)(=''x f 可得x=0,1/2所以凹区间为),21()0,(+∞⋃-∞ 凸区间为)21,0(拐点为(0,0)和)161,21( 7、 求函数22y x x=+的单调区间、极值点参考答案:定义域为(,0)(0,)-∞⋃+∞.由3222122x y x x x-'=-=,令0y '=得驻点1x =,列表给出单调区间及极值点:所以,函数的单调递减区间为(,0)-∞,(0,1],单调递增区间为[1,)+∞,极小值点为(1,3) 8、 求由,,2y x yx x所围图形的面积参考答案:120174()d (d )233Ax x xx x x 9、设210()0xx x f x ex -⎧+≤=⎨>⎩,求31(2)d f x x -⎰.参考答案:方法一:先作变量代换23112111(2)d ()d (1)d d x tt f x x f t t t t e t -=----==++⎰⎰⎰⎰301111147[]1333tt t e e e ----=+-=-+=-. 方法二:先给出2(2)1(2)2(2)2x x x f x ex --⎧+-≤-=⎨>⎩,于是 3232(2)11127(2)d [1(2)]d d 3x f x x x x e x e ----=+-+=-⎰⎰⎰ 10、求曲线33)1(x x y -+=在A (-1,0),B (2,3),C (3,0)各点处的切线方程 参考答案:323323)3(1313)1()3(31)1(3x x x x x x y -+--=-⋅-⋅++-='- 在A (-1,0)点处,34)1(=-'=y k所以在A 点处的切线方程为)1(43+=x y而在B (2,3)点处,0)2(='=y k所以在B 点处的切线方程为y-3=0又在C (3,0)点处,)3(y k '=不存在,即切线与x 轴垂直所以C 点处的切线方程为x=311、在区间⎥⎦⎤⎢⎣⎡2,0π上,曲线x y sin =与直线0,2==y x π所围成的图形分别绕x 轴和y 轴所产生的放置体的体积。
高等数学最难试题及答案
高等数学最难试题及答案一、单项选择题(每题5分,共20分)1. 函数f(x) = x^3 - 6x^2 + 11x - 6的导数是()。
A. 3x^2 - 12x + 11B. 3x^2 - 12x + 10C. 3x^2 - 6x + 11D. 3x^2 - 6x + 10答案:A2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. 2D. 3答案:B3. 曲线y = x^2 + 2x + 1在点(1, 4)处的切线斜率是()。
A. 2B. 3C. 4D. 5答案:B4. 函数y = sin(x) + cos(x)的不定积分是()。
A. -cos(x) + sin(x) + CB. cos(x) + sin(x) + CC. -cos(x) - sin(x) + CD. cos(x) - sin(x) + C答案:A二、填空题(每题5分,共20分)1. 已知函数f(x) = e^x,求f'(0)的值为______。
答案:12. 函数y = ln(x)的导数为______。
答案:1/x3. 曲线y = x^3 - 3x^2 + 2在点(2, 2)处的切线方程为______。
答案:y = 2x - 24. 求定积分∫(0 to 1) x^2 dx的值为______。
答案:1/3三、解答题(每题15分,共40分)1. 求函数f(x) = x^3 - 3x^2 + 2的极值点。
解:首先求导数f'(x) = 3x^2 - 6x = 3x(x - 2)。
令f'(x) = 0,解得x = 0 或 x = 2。
通过二阶导数测试,f''(x) = 6x - 6,当x = 0时,f''(0) = -6 < 0,所以x = 0是极大值点;当x = 2时,f''(2) = 6 > 0,所以x = 2是极小值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章*例2、设()4f x x =,试利用Lagrange 余项定理给出()f x 以1,0,1,2-为节点的插值多项式()3L x 。
解:由Lagrange 余项定理(1)1()()()()()(1)!n n n n f R x f x L x x n ξω++=-=+ [,]a b ξ∈ 可知:当3n =时,(1)(4)()()4!n x f f x ξξ+===301234!()()()()()()(31)!L x f x x x x x x x x x =-----+4(1)(0)(1)(2)x x x x x =-+---3222x x x =+-例4、已知753()321f x x x x =+++,求差商()0172,2,,2f 和()0182,2,,2f 。
解:根据差商与微商的关系,有(7)017(8)018()7!(2,2,...,2)1,7!7!()0(2,2,...,2)08!8!f f f f ξξ====== *例4、求作二次式()2H x ,使满足()()()200200211,,,H x y H x y H x y ''=== 并给出误差表达式。
解、010,1x x ==,令()()()()2001100H x y A x y A x y B x '=++ 其中,010,,A A B 均为二次多项式,且满足条件()()()()()()()()()00011100001,10011,00001,010A A A A A AB B B '===⎧⎪'===⎨⎪'===⎩由此可得:()()()()220101,,1A x x A x x B x x x =-==-若01,x x 是随意给出的两个节点,记10,x x h -=则()0002001100x x x x x x H x y A y A hy B h h h ---⎛⎫⎛⎫⎛⎫'=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭容易验证,这一问题的插值余项为:备注:定理2 设()f x 在[],a b 上有定义,01,,,n x x x 为[],a b 上的互异节点,则当i x x ≠时,Newton 插值多项式的余项表达式为()()()011,,,,n n n R x f x x x x x ω+=事实上,对()f x 作以01,,,,n x x x x 为节点的1n +次 Newton 插值多项式()1n P x +,则有()()()()()()11011,,,,,n n n n n P x f x P t P t f x x x x t ω+++==+从而有,()()()()()1011,,,,n n n n f x P x P x f x x x x x ω++==+因此,对所有,0,1,,i x x i n ==,有()()()()()01,,,nn n n R x f x P x f x x x x ω+=-=。
若()f x 在[],a b 上具有1n +阶导数,则据Lagrange 余项公式有()()()()()()()1011,,,1!n nn n n f R x f x x x x x n ξωω+++==+约去公因子()1n x ω+,则得(=式()2.4给出了()f x 的1n +阶差商和1n +阶导数之间的关系。
第二章*例8、设()1,14fx C ⎡⎤=⎢⎥⎣⎦,求一线性函数01a a x +解、由于011,x ϕϕ==,故()()()()()()1121100011044112311114413121011444315,1,,,,432121,,3642731,,,.31280dx xdx x dx x y xy ϕϕϕϕϕϕϕϕϕϕ=============⎰⎰⎰⎰⎰由正规方程组()3.11,有()()()()()()00001101001111,,,,,,,a a y a a y ϕϕϕϕϕϕϕϕϕϕ+=⎧⎪⎨+=⎪⎩即01013157 ,43212152131.326480a a a a ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得011088,.27135a a == 即线性函数108827135y x =+ 为y =的最佳平方逼近函数。
在结束本节之前,我们尚需指出,在求最佳平方逼近函数 ()01n n n P x a a x a x =+++时,需要确定的参数是01,,,n a a a ,而()n P x 可以看成是01,,,n a a a 的线性函数,但是有时往往要确定的函数和参数之间不具有线性关系。
这样问题就变得复杂了。
然而,常常可以通过变量替换使其线性化。
例如: (1) 若用函数()b P t at = ()3.12去近似一个已给定的列表函数,其中a b 、是待定的两个参数。
显然()P t 不是a b 、的线性函数,为将其线性化,我们在()3.12式两端取对数,得到ln ln ln P a b t =+记01ln ,ln ,,ln P y a a b a t x ====,则()3.12式变成01y a a x =+这是一个一次多项式,其系数0a 和1a 可由最小二乘法求得。
(2) 若用函数()btP t ae = ()3.13去近似一个已给定的列表函数,其中a b 、是待定的两个参数。
这时,我们可在()3.13的两端取对数: ln ln P a bt =+记01ln ,ln ,,P y a a b a t x ====,则()3.13式变成 01y a a x =+这样,仍可用最小二乘法定出01,a a (从而也就定出了,a b ),得到近似函数()3.13。
*例9、求,a b ,使积分()220sin ax b x dx π+-⎰取得最小值。
解:题意即为在{}1,span x Φ=中求()sin f x x =的最佳平方逼近多项式()101P x a a x =+,故01,a a 满足法方程00001101001111((),())((),())(,())((),())((),())(,())x x a x x a y x x x a x x a y x ϕϕϕϕϕϕϕϕϕϕ+=⎧⎨+=⎩ 2012301128:1824a a a a ππππ⎧+=⎪⎪⎨⎪+=⎪⎩积分可得 02138240.6644389,0.1147707.9624a b a b a a ππππ-⎧==⎪⎪⇒≈≈⎨-⎪==⎪⎩或者按下述方法: 因为()b b a ab a dx x b ax 24224241sin 2232202-++-+=-+⎰πππππ上式分别对,a b 求偏导,并令其为零,有02412123=-+=∂∂ππba a 02412=-+=∂∂ππb a b 从而也有 32496ππ-=a ,2248ππ-=b例10、 用最小二乘原理求矛盾方程组121212121,2,223,3 4.x x x x x x x x -=⎧⎪-+=⎪⎨-=⎪⎪-+=⎩ 的最小二乘解。
注:给定线性代数方程组Ax b =,m n A A ⨯=,当m n >时,称其为超定方程组。
求x *使得22b Ax -取最小值。
应用微分学中多元函数求极值的方法可以证明x *为方程组 T T A Ax A b =的解。
称x *为超定方程组Ax b =的最小二乘解。
解法一:由题意得:12111112223314x x -⎡⎤⎡⎤⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥=⇒⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦121111123111123211212211213314x x -⎡⎤⎡⎤⎢⎥⎢⎥-----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦121597971x x --⎡⎤⎡⎤⎡⎤⇒=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 11212229159712971134x x x x x x ⎧=-⎪-=-⎧⎪⇒⇒⎨⎨-+=-⎩⎪=-⎪⎩ 所以122912134x x ⎧=-⎪⎪⎨⎪=-⎪⎩即是所求的最小二乘解。
误差平方和为222212121212(1)(2)(223)(34)x x x x x x x x δ=--+-+-+--+-+- 解法二:求12,x x ,使误差平方和222212121212(1)(2)(223)(34)x x x x x x x x δ=--+-+-+--+-+-为最小,令0,021=∂∂=∂∂x x δδ 得方程组如下:121230181418142x x x x -=-⎧⎨-+=-⎩解方程组有:413,122921-=-=x x第三章*例2、对()3f x dx ⎰构造一个至少具有三次代数精度的求积公式。
解:因为具有4个求积节点的插值型求积公式,至少有三次代数精度。
如果在[0,3]上取节点0,1,2,3,则插值型求积公式为:3001122330()()()()()f x dx A f x A f x A f x A f x =+++⎰其中系数为 0nbik a i k ii kx x A dx x x =≠-=-∏⎰ 3332000(1)(2)(3)13(6116),(01)(02)(03)68x x x A dx x x x dx ---==--+-=---⎰⎰同理求得 123993,,.888A A A === 即有:33993()(0)(1)(2)(3).8888f x d xf f f f ≈+++⎰*例5、利用2n =时Gauss —Legendre 求积公式计算311I dx x=⎰解: 作变换3131 2.22x t t -+=+=+于是有111122dt dx I t x--==++⎰⎰由Legendre 求积公式,得()211.0980393.k k k I A f x =≈=∑精确值为ln3 1.0986132.I ==第四章例、对下列给定的矩阵A 作LU 分解,并利用分解结果计算A -1。
248418166220A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭解: 248418166220A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭100248210010323110076-⎛⎫⎛⎫ ⎪ ⎪=-⎪⎪ ⎪⎪--⎝⎭⎝⎭L=100210311⎛⎫⎪⎪ ⎪-⎝⎭ U= 248010320076-⎛⎫ ⎪- ⎪ ⎪-⎝⎭由()1111A LU A LU U L ----===有41613190959511149519095511167676⎛⎫--⎪ ⎪⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭ 第五章1. 给定方程组123211*********x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,讨论Jacobi 迭代法和Gause-Seidel 迭代法的收敛性,若收敛写出其迭代格式,并对给定的初始向量()111T计算一次迭代的结果。