数学人教版七年级下册8.2用代入消元法解二元一次方程组(第一课时)

合集下载

人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)

人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)
人教版数学七年级下册8.2-消元——二元一 次方程组的解法(第1课时)
复习回顾:
判断下列各方程是否为二元一次方程:
① 2x32y√
② 1 1×
x y
③ 6ab 3ab× ④ x y y 2×
x
⑤ 2R2r6√
复习回顾:
判断下列各方程组是否为二元一次方程组:
√ ①
2x y
3
y
4
z
3 7
×
x
3y
7
0.
解方程组即可得出x,y的值.
【答案】 -3 —130
巩固提高:
4、若方程 5x2m n4y3m 2n9是关于 x, y的二
元一次方程,求m , n的值.
解:根据题意得
2m n 1, 3m 2n 1.
解得 m 3 , n 1 . 77
巩固提高:
5、下列是用代入法解方程组

m
m
n
8
1
③3ab 4 Nhomakorabeaa
5
8
1
9
×
√ ⑤
5 p
p q
q 1
8 2

m m 2
1 2n
4n
9 5
×
复习回顾:
用含x的式子表示 y :
(1)x2y30 (2)2x5y21
y x3 2
y 2x 21 5
(3)0.5xy7
y0.5x7
知识新授:
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几头
x y 3 ①
【例2】解方程组
3
x
8
y
14

分析:方程①中x的系数是1,用含y的式子表示x,比较简便.

8.2消元---解二元一次方程组(第1课时)课件人教版七年级数学下册

8.2消元---解二元一次方程组(第1课时)课件人教版七年级数学下册

D.直接把②代入①,消去x
2.用代入法解下列方程组
y 2x 3, (1) 3x 2 y 8;
2x y 5, (2) 3x 4 y 2;
解:(1)
y=2x-3,① 3x+2 y=8.② 把①代入②,
得3x+2(2x-3)=8,解得x=2.
把x=2代入①,得y=1.
所以原方程组的解是
(3)解这个一元一次方程,求出一个未知数的值;
(4)把求得的未知数的值代入方程③,求出另一个未知数 的值;
(5)用大括号写出两个未知数的值,得到方程组的解。
(6)检验求得的结果:代入原方程组中进行检验,方程是 否满足左边=右边.
尝试练习 (独立完成4+展示2)
课本P93----练习2
属 于




属 于
数学思想?

把二元一次方程组中一个方程的一个未知数
于 思
用含另一个未知数的式子表示出来,再代 考
入另一个方程最为关键,这样实现消元, 的

把二元一次方程组转化为一元一次方程, 学
进而求得这个二元一次方程组的解.体现了
消元和转化的数学思想.
【流程】独立思考—自由展示
(3+3+2)
探究点二 用代入消元法解二元一次方程组
变形 x-y=3, x =y+3.
解得x


代入
x=2
y=-1 解得y
方 程
3x-8y=14
消x 一元一次方程 3(y+3)-8y=14.

用y+3代替x,
消未知数x.
代入法解二元一次方程的一般步骤:
(1)选取其中一个方程进行变形,用含有一个未知数的 代数式表示另一个未知 数的形式,记作方程③;

人教版七年级下册8.2.1用代入消元法法解二元一次方程组(教案)

人教版七年级下册8.2.1用代入消元法法解二元一次方程组(教案)
-难点三:对比代入消元法和换元消元法,通过具体的例子让学生明白两者适用的场景,如代入消元法适用于方程组中某个方程已经解出一个变量时,而换元消元法则适用于系数较复杂的情况。
-难点四:针对实际问题,如“小明和小华一起去书店,小明比小华多走了一段路,已知小明的速度是小华的两倍,两人一共用了30分钟,问小明和小华各走了多少时间?”需要指导学生如何建立方程组模型,并应用代入消元法求解。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代入消元法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二元一次方程组的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生逻辑推理能力,通过代入消元法解二元一次方程组的实践,让学生理解数学问题的解决过程,提高他们分析问题和解决问题的能力;
2.增强学生数学运算能力,熟练掌握代入消元法的运算步骤,培养学生的运算准确性和效率;
3.激发学生数学建模思维,将现实生活中的问题转化为数学模型,通过代入消元法求解,使学生体会数学的应用价值;
2.教学难点
-难点一:选择适当的方程进行代入,特别是当方程组中方程的系数较复杂时,如何选择简化的方程;
-难点二:在代入过程中,正确处理变量间的替换关系,避免计算错误;
-难点三:理解代入消元法与换元消元法的区别和联系,以及在不同问题中如何选择合适的方法;
-难点四:将实际问题转化为方程组模型,并应用代入消元法求解。
此外,我也在思考如何更好地处理教学难点。在今后的教学中,我可能会引入更多的实际案例,让学生在不同的情境中应用代入消元法,通过反复的实践,加深对难点知识的理解。

人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)

人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)

③+④,得 19x=114 x=6
把x=6代入①,得
3×6+4y=16
y=
-
1 2
x=6
所以这个方程组的解是 y= - 1
2
你能不能用加减消元的方法消去x呢?
x+y=10 ① 2x+y=16 ②
解:①×2,得
2x+2y=20

③- ②,得 y=4
把y=4代入①,得 x=6
所以这个方程组的解是 x=6 y=4
x=6 y=4
① -②也能消去 未知数y,求得x 吗?
联系上面的解法,想一想怎样解方程组
3x+10y =2.8

15x-10y =8

解:
① +②,得
18x=10.8 从上面两个方解程得组的解法x=可0.以6 看出:当二元一次方程组的两个方程中同一未知数 的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知
x+yy=10 ① 2x+y=16 ② 的解,这个方程组的两个方程中,y的系数有什么关系?利用这 种关系你能发现新的消元方法吗?
这两个方程中未知数y的系数相等,②-①可消去未知数y,得x=6
②-①就是用方程 ②的左边减去①的 左边,方程②的右 边减去方程①的右 边
把x=6代入①,得y=4
所以这个方程组的解是
解:设这些消毒液应该分装x大瓶、y小瓶.根据大、小瓶数的比,以及消毒液分装量 与总生产量的数量关系,得
5x=2y

500x+250y=22500000 ②
5
由①,得y= 2 x ③
把③代入②,得
500x+250×
5 2
x=22500000.

人教版七年级数学下册第八章《消元—解二元一次方程组》第1课时公开课课件

人教版七年级数学下册第八章《消元—解二元一次方程组》第1课时公开课课件
“一切问题都可以转化为数学问题,一切 数学问题都可以转化为代数问题,而一切代数 问题又都可以转化为方程问题,因此,一旦解 决了方程问题,一切问题将迎刃而解!”
——法国数学家 笛卡儿[Descartes, 1596-1650 ]
8.2 消元—解二元一次方程组 第1课时
问题情境
学校准备建设一个周长为60米的长方形游泳池, 要求游泳池的长是宽的2倍,为了帮建筑工人计 算出长和宽各是多少米?请你列出相应的方程组。
3x-y=5 x-y=2
作业
练习:93页第1、2题
这一 样个 的人 人所 才受 有的 学教 问育 。超
过 了 自 己 的 智 力 ,
You made my day!
我们,还在路上……
x+y=5
5x+2y=16 解得: x=2
y=3
答:小明买钢笔2支,买圆珠笔3支.
• 5、如图所示,将长方形ABCD的一个 角折叠,折痕为AE,∠BAD比∠BAE大 48°.设∠BAE和∠BAD的度数分别为x ,y 度,那么x,y所适合的一个方程组是 ( C)
A y x 48 B y x 48 D
2y – 3(y – 1)= 1
2y – 3y + 3 = 1
2y – 3y = 1 - 3
-y = -2
y= 2
把y = 2代入②,得
x=y–1=2–1=1
∴方程组的解是
x=1 y=2
说说方法:
例2 解方程组
x –y = 3 ① 3x -8 y = 14 ②
用代入法解二元一次 方程组的一般步骤
解:由①得:x = 3+ y ③ 变
C
y x 90
y 2x
B
E

新人教版七年级数学下册第8章《8.2 消元-解二元一次方程组》教学PPT

新人教版七年级数学下册第8章《8.2 消元-解二元一次方程组》教学PPT

课件说明
学习目标: (1)会用加减消元法解简单的二元一次方程组. (2)理解解二元一次方程组的思路是“消元”, 经历由未知向已知转化的过程,体会化归思想.
学习重点: 用加减消元法解简单的二元一次方程组.
探究新知
问题1
我们知道,对于方程组
x y 10,① 2x y 16 ②
可以用代入消元法求解,除此之外,还有没有 其他方法呢?
(1)
y= 2 x-3 3x+ 2 y=8
(2) 2x-y=5 3x+4y=2
设计意图:第1题体现了难点突破中”关键”即二 元一次方程变形的关键,第二题能让学生通过 解决问题,总结归纳出解题的一般步骤和技巧.
·代入法解二元一次方程组的一般步骤:
①变形(选择其中一个方程,把它变形为用一个未知数的 代数式表示另一个未知数);
追问1 代入消元法中代入的目的是什么?
消元
探究新知
问题1
我们知道,对于方程组
x y 10,① 2x y 16 ②
可以用代入消元法求解,除此之外,还有没有其 他方法呢?
追问2 这个方程组的两个方程中,y的系数有什么 关系?利用这种关系你能发现新的消元方法吗?
两个方程中的系数相等;用②-①可消去未知 数y,得(2x+y)-(x+y)=16-10.
把③代入②,得
3(y+3) -8y=14. 解这个方程,得y= -1.
把y = -1代
入① 或②可 以吗?
把y = -1代入③,得
x=2.
所以,这个方程组的解是
x2 y1
2、课堂练习 练习1:把下列方程改写用含x的式子表示y的形式
(1)2x-y=3;(2)3x+y-1=0

人教版七年级下册(新)第八章《8.2消元解二元一次方程组(第1课时)》优秀教学案例

人教版七年级下册(新)第八章《8.2消元解二元一次方程组(第1课时)》优秀教学案例
3. 教师对学生的学习情况进行简要点评,指出他们的优点和需要改进的地方,鼓励他们继续努力。
(五)作业小结
1. 教师布置一些与本节课内容相关的作业,让学生巩固所学知识,提高他们的实践能力。解决问题的能力。
3. 教师对学生的作业进行认真批改,及时反馈,帮助他们改进学习方法,提高学习效果。
五、案例亮点
1. 生活情境导入:通过设置一个购物预算问题,让学生思考如何选择商品才能使得总费用不超过预算,从而引出二元一次方程组的概念。这种生活情境的导入方式能够激发学生的学习兴趣,使他们更加主动地参与到课堂学习中。
2. 实验现象导入:设计一个简单的实验,如在一个容器中加入不同颜色的水,让学生观察混合后的颜色变化,从而引导学生发现混合问题背后的二元一次方程组。这种实验现象的导入方式能够激发学生的探究欲望,使他们更加主动地参与到课堂学习中。
3. 讲授新知与实例分析相结合:在讲授消元法解二元一次方程组的基本步骤和技巧的同时,利用实例分析,让学生亲身体验消元法解题的过程,引导他们发现消元法的规律,提高他们的数学思维能力。
4. 小组合作学习:将学生分成若干小组,每组提供一道实际的消元问题,要求学生在小组内讨论、交流,共同解决问题。这种小组合作学习的方式能够培养学生的团队合作精神,提高他们的沟通能力,同时也能够使他们更好地理解和掌握消元法的应用。
人教版七年级下册(新)第八章《8.2消元解二元一次方程组(第1课时)》优秀教学案例
一、案例背景
人教版七年级下册(新)第八章《8.2消元解二元一次方程组(第1课时)》优秀教学案例,是基于学生已掌握一元一次方程的解法,二元一次方程的基本概念,以及解二元一次方程的基本方法——代入法的基础上进行的。本节课的主要内容是引导学生学习消元法解二元一次方程组,通过实例分析,让学生掌握消元法的基本步骤和技巧,提高他们解决实际问题的能力。

人教版数学七年级下册 8.2 消元--解二元一次方程组 课件1(共21张PPT)

人教版数学七年级下册 8.2 消元--解二元一次方程组 课件1(共21张PPT)
3×0.6+10y=2.8
解得:y=0.1
x=0.6
所以这个方程组的解是
y=0.1

列方程解应用题的总思路:
实际
问题
分析
方程
抽象
(组)
求解
检验
1. 审(题)
3. 设(未知数)
2. 找(等量关系) 4. 列(方程组)
问题
解决
5. 解(方程组)
6. 验(检验)
7. 答
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
消元--解二元一次方程组
新知导入
我校七年级准备举行篮球比赛,13个班打单循环比赛,每场
比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果6班为了
争取较好名次,想在全部12场比赛中得20分,那么这个队胜负场数
用学过的一元一
应分别是多少?
次方程能解决此
问题吗?
这可是两个
未知数呀?
新知学习
例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g),
审题:等量关系: (1)大瓶数
2×小瓶数=5×大瓶数
1.审题
(2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
2.找等量关系
试一试:
1.用含x的代数式表示y:
x+y=2
y=2-x
2.用含x的代数式表示y:
x-y=2
y x2
解方程组
x +y = 12

2x + y =20
解: 由①,得
未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二
元一次方程组的解.这种方法叫做代入消元法,简称代入法.

《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。

8.2消元法解二元一次方程组——第一课时(代入法)

8.2消元法解二元一次方程组——第一课时(代入法)

把x=20000代入 ③ 得:y=50000 y 50000
答:这些消毒液应该分装20000大瓶和50000小瓶。
5x 2 y ② 100 5x 250y 22500000

整体代入法 解:把①代入②, 得 100×2y+250y=22500000 解得 y=50000 把y=50000代入① ,得 x=20000
1、什么叫二元一次方程?二元一次方程组?二元一次方程组的解? 2、检验二元一次方程组的解的方法是怎样的? 3、下列方程中是二元一次方程的有( B ) A.xy-7=1 B.2x-1=3y+1 C.4x-5y=3x-5y
D.2x+3x+4y=6 9 5 4、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______ 5、已知二元一次方程2X+3Y+5=0 ⑴用X表示Y ⑵用Y表示X
2X 5 Y 3
3Y 5 X 2
回顾与思考
篮球联赛中每场比赛都要分出胜负,每队胜一 场得2分,负一场得1分.如果某队为了争取较好 名次,想在全部22场比赛中得40分,那么这个队 胜、负场数应分别是多少? 解:设胜x场,负y场; 解:设胜x场,则有: x y 22 ① 2 x (22 x) 40 ③ 2 x y 40 ②
注意:检验方程组的解
x = 2, 用大括号括起来 注意:方程组解 的书写形式 y =-1.
专题研究:
x-y=3 3x-8y=14
① ②
说明 : 用y表示x x-y=3 x = y+3
(2)对于方程②你能用含 y的式子表示x吗?试试看:
问题1:(1)对于方程①你 能用含x的式子表示y吗? 试试看:

代入消元法解二元一次方程组第一课时

代入消元法解二元一次方程组第一课时

8.2消元-----用代入法解二元一次方程组(第一课时)【学习目标】1、 知识与技能:会用代入法解简单的二元一次方程组。

2、 过程与方法:经历探索代入消元法解二元一次方程组的过程,理解代入消元法的基本思想所体现的化归思想方法。

3、 情感与态度:通过提供适当的情景资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。

【教学重点】用代入法解二元一次方程组的消元过程。

【教学难点】探索如何用代入法将“二元”转化为“一元”的消元过程。

【教学过程】一、体验园1、把方程写成用含x 的式子表示y 的形式2、把写成用含y 的式子表示x 的形式.二、探索园 问题 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分.某队10场比赛中得到16分,那么这个队胜负场数分别是多少?问题1 你能根据问题中的等量关系列出二元一次方程组吗?问题2 这个实际问题能列一元一次方程求解吗?问题3 对比方程和方程组,你能发现它们之间的关系吗?问题4 对于二元一次方程组,你能写出求出x 的过程吗?问题5 怎样求出y ?例题:解方程组 ⎩⎨⎧=-=-14833y x y x23;x y -=23;x y -=1、解二元一次方程组的一般步骤:1、 ____2、____3、_____4、______2、上面解方程组的基本思路是把“二元”转化为“一元” —— “消元”,即将未知数的个数由多化少、逐一解决的思想.3、代入消元法:三、训练园1、方程-x+4y=-15用含y 的代数式表示x 为( )A .-x=4y-15B .x=-15+4yC. x=4y+15 D .x=-4y+152、将y=-2x-4代入3x-y=5可得( )A.3x-(2x+4)=5B. 3x-(-2x-4)=5C.3x+2x-4=5D. 3x-2x+4=53、用代入法解方程组⎩⎨⎧=+=+832152y x y x 较为简便的方法是( ) A .先把①变形B .先把②变形C .可先把①变形,也可先把②变形D .把①、②同时变形4、用代入法解二元一次方程组(1)⎩⎨⎧-==+32823x y y x (2)⎩⎨⎧=+=-24352y x y x解: 解:四、三省园对自己说,你有什么收获?对同学说,你有什么温馨提示?对老师说,你还有什么困惑?。

人教版七年级数学下册习题课件:8.2_第1课时__用代入消元法解二元一次方程组

人教版七年级数学下册习题课件:8.2_第1课时__用代入消元法解二元一次方程组

举一反三 3.已知方程组
的解为
解:将
代入方程组
得关于a,b的方程组为
解得
所以2a-3b=6.
求2a-3b的值.
分层练习 A组 1.已知二元一次方程2x-7y=5,用含x的代数式表示y, 正确的是( B )
A.y=
B.y=
C.x=
D.x=
2.四名学生解二元一次方程组
时,提
出四种不同的解法,其中解法不正确的是( C )
A.由①得x=
,代入②
B.由①得y=
,代入②
C.由②得y=- ,代入①
D.由②得x=3+2y,代入①
3.用代入法解方程组 的是( B ) A.直接把①代入②,消去y B.直接把①代入②,消去x C.直接把②代入①,消去y D.直接把②代入①,消去x
时,下列说法正确
4.方程组 A. C.
的解是( B ) B. D.
所以方程组的解为
请用同样的方法解方程组
ቤተ መጻሕፍቲ ባይዱ:由①,得2x-y=2.③ 把③代入②,得 +2y=9. 解得y=4. 把y=4代入③,得x=3. 则方程组的解为
10.已知关于x,y的方程组

的解相同,求a,b的值.
解:由题意,可联立
由①,得x=
.③
把③代入②,得3×
+2y=11.解得y=1.
将y=1代入③,得x=3.
举一反三 2.解方程组
解: 把②代入①,得6y-7-y=13.解得y=4. 把y=4代入②,得x=17. 则方程组的解为
典型例题
【例3】已知y=kx+b,当x=2时,y=-4;当x=-1时,y=5. 求k,b的值.
解:由题意,得 由②得,b=5+k.③ 将③代入①,得2k+5+k=-4. 解得k=-3. ∴b=2.

消元——解二元一次方程组(第一课时)课件(共24张PPT)人教版数学七年级下册

消元——解二元一次方程组(第一课时)课件(共24张PPT)人教版数学七年级下册

【例题练习】
根据市场调查,某种消毒液的大瓶装(500 g)和小瓶装 (250 g)两种产品的销售数量(按瓶计算)比为2:5.某 厂每天生产这种消毒液22.5t,这些消毒液应该分装大、 小瓶两种产品各多少瓶?
等量关系: ①大瓶数∶小瓶数 = 2∶5; ②大瓶所装消毒液+小瓶所装消毒液 = 总生产量.
所以这个方程组的解是
x2
y
1
………………写解
Байду номын сангаас【注意】最后一定要把所得的解带入原方程组进行检验,看方程的
左右两边是否相等.
【例题练习】
尝试用代入法解该二元一次方程组
x y 3① 3x 8y 14②
方法二:解:由①,得 y = x - 3 . ③ ……………… 变形
把③代入②,得 3x-8(x-3) = 14. ………………代入
一般地,二元一次方程组的两个方程的公共解,叫做二元一次 方程组的解.
下面我们开始进行本章知识的学习
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分, 负1场得1分.某队在10场比赛中得到16分,那么这个队胜负 场数分别是多少?
应用上节所学的知识我们可以设两个未知数
解:设篮球队胜了 x,负了 y 场.得到一个方程组
8.2消元——解二元一次方程组 (第一课时)
——第八章二元一次方程组
教学目标
01.理解并掌握用代入消元法解二元一次 方程组 重难点
02.理解代入消元法的基本思想所体现的化归思想方 法 难点
同学们,在上一节我们学习的二元一次方程组,回顾一下什么是 二元一次方程组?什么是二元一次方程组的解?
方程组中有两个未知数,含有每个未知数的项的次数都是1, 并且一共有两个方程,像这样的方程组叫做二元一次方程组.

七年级数学下册《8.2 消元(第一课时)》教案 新人教版

七年级数学下册《8.2 消元(第一课时)》教案 新人教版

8.2 消元(第一课时)教学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.重点:用代入消元法解二元一次方程组.难点:探索如何用代入法将“二元”转化为“一元”的消元过程.教学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?2、什么是二元一次方程组及二元一次方程组的解?二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组.这个问题能用一元一次方程解决吗?三、讲授新课1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。

主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。

这种解方程组的方法称为代入消元法,简称代入法。

3、把下列方程写成用含x的式子表示y的形式:(1)2x-y=3 (2)3x+y-1=0 (3)5x-3y = x + y (4)-4x+y = -24、例题分析:例1 例25、课堂练习:教科书P98 第2题四、课堂小结问题1、解方程组的基本思路是什么?问题2、解方程组的方法是什么?五、作业布置:教科书P99第3、4题 P103 第1、2题。

8.2.1 二元一次方程组的解法-代入消元法(第一课时)(课件)七年级数学下册(人教版)

8.2.1 二元一次方程组的解法-代入消元法(第一课时)(课件)七年级数学下册(人教版)
【1-3】将4y+8=2x+3写成用y表示x的形式为_____________.
2
考点解析
重点
例2.用代入法解下列方程组:
= 3 + 1 ①
3 − = 7

(1)
(2)
2 − 3 = 4 ②
2 + 3 = −5 ②
解:(1)把①代入②,得
解这个方程,得
2x-3(3x+1)=4.
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
考点解析
重点
例3. 某天,蔬菜经营户老李用145元从蔬菜批发市场批发了一些黄瓜和茄子
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
1.掌握代入消元法的意义;
2.会用代入法解二元一次方程组. (重点、难点)
复习回顾
1.把下列方程写成用含x的式子表示y的形式.
(1) 2x+y=6
y=6-2x
(2) y-3x-1=0
y=3x+1
2.你能把上面两个方程写成用含y的式子表示x的形式.
y 1
6 y
(1) x
(2) x
3
2
3.如何解这样的方程组 .
C. x+x-1=7
D. x+2x+2=7
3 + 4 = 2 ①
【2-2】用代入消元法解二元一次方程组
使得代入后化简比
2 − = 5 ②
较容易的变形是( D )
2−4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(下)数学教案
课题8.2用代入消元法解二元一次方程组(第一课时)编写李才
教学目标:1.会用代入法解简单二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”.
教学重点:会用代入消元法解简单的二元一次方程组;
教学难点:体会解二元一次方程组的思路是“消元”.
教学过程:
一、温故知新:1、什么叫二元一次方程组的解?
2、把下列方程改写成用含有一个未知数的代数式表示另一个未知数的形式:
(1)x-4y=8 (2)2x+y+1=0 (3) 3x-y=5
二、引入新课问题篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分.某队10场比赛中得到16分,那么这个队胜负场数分别是多少?
1、让学生列出一元一次方程和二元一次方程组;
2、通过两种方程的类比探究一元一次方程与二元一次方程组的联系;
3、利用学案中的习题让学生逐步树立“消元”的思想,降低难度突破难点;
4、用问答的方式解出方程组,得出“代入消元法”。

三、新课讲解
1、利用实例探索用代入消元法解二元一次方程组的步骤:
x-y=3
3x-8y=14
注意:(1)变形后的式子能否代入到原式中求解?
(2)求出一个未知数后选择那一个式子求第二未知数较简单;
(3)强调把解用大括号括起来。

2、学生完成学案上的练习,熟悉用代入消元法解二元一次方程组的步骤,并总结归纳在学案上。

3、例用代入消元法解二元一次方程组
2x+3y=16
3x+4y=13
未知数的系数都不为1的情况的处理
四、学生练习:1、用代入消元法解方程组
(1) 4x-y=5 (2) 3x+4y=16
3(x-1)=2y-3 5x-6y=33
五、小结回顾本节课的学习过程,并回答以下问题:
(1)代入法解二元一次方程组大致有哪些步骤?
(2)解二元一次方程组的核心思想是什么?
(3)应注意的问题
六、作业布置教科书第93页练习第2题
第97页习题8.2 第2题
七、课后反思
当堂检测题
1、已知方程x-2y=8,用含x的式子表示y,则y =_________________,用含y的式子表示x,则x =________________
2、用代入法解二元一次方程组:
(1)y =2x-3 (2) 2x-3y=10
3x+2y=8 3x+2y=2
3、若
3
2
x
y
=


=

是方程组
1
8
kx my
mx ky
-=


+=

的解,则k=_______,m=______。

相关文档
最新文档