2018-2019学年高中数学人教A版选修4-1创新应用教学案:第一讲三相似三角形的判定-含答案
高中数学人教A版选修4-1 3.1相似三角形的判定 教案
相似三角形的性质和判定(第一课时)教学目标1、知识与技能:理解并掌握相似三角形的判定方法.2、过程与方法:以问题的形式,创设一个有利于学生动手和探究的情境,达到掌握相似三角形判定的方法的目的.3、态度、情感、价值观:培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值.教学重点:掌握相似三角形的判定方法教学难点:理解和应用相似三角形判定.教具:课件、多媒体展台教学方法:讲练结合、点拨与讨论结合学具:教学过程及教学内容设计:问题与情境师生行为设计意图活动一:问题探究1. 如图,D 、E 分别为AB 、AC 中点,求证:(1)DE ∥BC ;(2)△ABC ∽△ADE 吗?E D CB A2.如图所示, DE ∥BC ,问△ABC ∽△ADE 成立吗? 12.51.51.523ABC D E活动二:相似三角形的判定 1.上面练习1、2中为特殊情形若推广到一般是否成立呢?2.判定方法1:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.已知:如图, DE ∥BC ,DE 交AB 、AC 于D 、E .求证:△ADE ∽△ABC . 写出推理格式.复习巩固证明:∵D 、E 分别为AB 、AC 中点,∴DE 是△ABC 的中位线∴DE ∥BC ,且BC DE 21=∴∠ADE =∠B ,∠AED =∠C ,21=BC DE∵D 、E 分别为AB 、AC 中点,∴AD =21AB ,AE=21AC即21==AC AE AB AD 又∠A=∠A ∴△ADE ∽△ABC2.==AC AE AB AD 53=BC DE ∠ADE=∠B ,∠AED=∠C ,∠A=∠A∴△ADE ∽△ABC学生熟练运用判定方法推理格式: ∵DE ∥BC∴△ADE ∽△ABC .这两道小题的设计目的是复习旧知识,探索新知.通过练习题导入新知,这样可使学生思维连贯, 培养学生的归纳能力.掌握推理格式3.3相似三角形的性质和判定(第二课时)教学过程设计教学过程设计问题与情境师生行为设计意图证明:在线段A ′B (或它的延长线)上截取A ′D =AB ,过点D 作DE ∥B ′C ′,交A ′C ′于点E , 根据前面的结论可得△A ′DE ∽△A ′B ′C ′. ∴''''''''CA E A CB DE B A D A == 又B A AB ''=C B BC ''=AC CA'',A ′D =AB∴'''C A E A =A C CA '' ∴A′E =AC 同理DE =BC△A ′DE ≌△ABC△ABC ∽△A ′B ′C ′.4.三角形相似的判定方法:三边对应成比例的两个三角形相似.活动三:应用举例 例1.根据下列条件,判断△ABC 和 △A′B′C′是否相似,并说明理由. (1)AB =4,BC =6,AC =8,A′B′=12, B′C′=18, A′C′=21;(2)AB =5,BC =4,AC =3,A′B′=10,B′C′=8, A′C′=6. 例2.探究:. 如图,△ABC 中,D 、E 分别在AB 、AC 上,且AD =3,BD =4,AE =6,EC =8,DE =4,BC =328.能否得到DE ∥BC ? 分析:要证明△ABC ∽△A ′B ′C ′,可以先作一个与△ABC 全等的三角形,证明它与△A ′B ′C ′相似.这里所作的三角形是证明的桥梁,它把△ABC 与△A ′B ′C ′联系起来.师生分析解题思路,教师展示解题详细步骤.师生一起运用判定方法解决问题,学生书写.例1.解(1)B A AB ''=C B BC ''=21而B A AB ''=76 ∴B A AB ''=C B BC ''≠A C CA '', ∴△ABC 和△A′B′C′不相似.(2)B A AB ''=C B BC ''=A C CA ''=21,∴△ABC ∽△A′B′C′学生分析,口述证明过程,教师板书. 例2.解:∵ AD =3,BD =4, AE =6,EC =8 ∴AB =7,AC =14 ∴73===BC DE AC AE AB AD ∴△ADE ∽△ ABC∴∠ADE =∠B∴ DE ∥BC通过猜测、验证、证明得出相似三角形判定方法:三边对应成比例,两三角形相似.巩固三角形相似的判定方法让学生通过自己解决问题后发现新的问题,激发学生的学习兴趣,鼓励学生自己解决问题.4.3相似三角形的性质和判定(第三课时)〔教学目标〕1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
高中数学人教A版选修4-1学案创新应用第一讲 知识归纳与达标验收 Word版含解析
[对应学生用书]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系..如图,在梯形中,∥,=,=,,分别为,上的点,且=,∥,则梯形与梯形的面积比为.解析:由=,=,=,得=(+),∴是梯形的中位线,则梯形与梯形有相同的高,设为,于是两梯形的面积比为(+)∶(+)=∶.答案:∶.如图,圆上一点在直径上的射影为,点在半径上的射影为.若=,则的值为.解析:连接,,则∠=°.设=,则=,于是=,=.如图,由射影定理得=·=,则=.在△中,===.则===,=-=-=.因此==.答案:[对应学生用书]交的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为的特例.[例]如图,在△中,∥,∥.求证:∥.[证明]∵∥,∴=.∵∥,∴=.∴·=·=·.∴=.∴∥.[例] 如图,直线分别交△的边,,于点,,,且=,=,试求.[解]作∥交于点,并作∥交于点,由平行截割定理,知=,=,两式相乘,得·=·,即=·.又由=,得=,由=,得=,所以=×=.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例]如图所示,、是△的两条高线,在上取一点,使=,再从点引的平行线与交于点.求证:=.[证明]∵、是△的两条高线,∴∠=∠=°.又∠=∠,∴△∽△.∴=.。
2018学年高中数学人教A版课件选修4-1 第一讲 相似三角形的判定及有关性质 第1讲 3 1 精品
图 1-3-6
【自主解答】 ∵DE∥BC, ∴GFCE=AAGF=DFGB ,即DGGE=CFBF. 又∵DF∥AC,∴EHHB=CFBF. ∴DGGE =EHHB,∴GEDE=EEHB . 又∠GEH=∠DEB,∴△EGH∽△EDB, ∴∠EHG=∠EBD,∴GH∥AB.
1.由平行线可以得到比例式,由比例式也可以确定两直线 的平行关系.
【自主解答】 ∵∠BAC=90°,AD⊥BC, ∴∠C=∠BAD,Rt△ADB∽Rt△CDA, ∴AACB=BADD. 又∵E 是 AC 的中点,∴AE=DE=EC, ∴∠DAE=∠ADE,∴∠BAD=∠BDF. 又∠F=∠F,∴△FDB∽△FAD. ∴BADD=DAFF, 即AACB=DAFF.
学业分层测评(三) 点击图标进入…
图 1-3-11 【证明】 因为∠DAE=120°,△ABC 是等边三角形, 所以∠ABE=120°=∠DAE, 又∠E 为公共角, 在△EAB 和△EDA 中,有两组对应角相等,所以△EAB∽△EDA.
我还有这些不足: (1) __________________________________________________ (2) _________________________________________________ 我的课下提升方案: (1) _________________________________________________ (2) _________________________________________________
2.给出下列四个命题:
①三边对应成比例的两个三角形相似;
②一个角对应相等的两个直角三角形相似;
③一个锐角对应相等的两个直角三角形相似;
2018-2019学年高中数学人教A版选修4-1创新应用课件:第一讲 三 1.相似三角形的判定
3.如图,D 在 AB 上,且 DE∥BC 交 AC 于 E,F 在 AD 上, 且 AD2=AF· AB,求证:△AEF∽△ACD.
AC AB 证明:∵DE∥BC,∴AE=AD.① AD AB ∵AD =AF· AB,∴AF =AD.②
2
AC AD 由①②两式得AE=AF , 又∠A 为公共角,∴△AEF∽△ACD.
第三边 . _________
(3)判定定理 3:对于任意两个三角形,如果一个三角形 的三条边和另一个三角形的三条边对应成比例,那么这两个
三边 对应成比例,两三角形相似. 三角形相似,简述为:______
[说明]
1.在这些判定方法中,应用最多的是判定定理 1,
即两角对应相等, 两三角形相似. 因为它的条件最容易寻求. 在 实际证明当中,要特别注意两个三角形的公共角.判定定理 2 则常见于连续两次证明相似时,在证明时第二次使用此定理的 情况较多. 2.引理是平行线分线段成比例定理的推论的逆定理,可以 判定两直线平行.
(2)判定定理 2:对于任意两个三角形,如果一个三角形的 两边和另一个三角形的两边对应成比例,并且夹角相等,那么
夹角 相等, 两边 对应成比例且______ 这两个三角形相似, 简述为: ______
两三角形相似.
引理:如果一条直线截三角形的两边(或两边的延长线) 所得的对应线段成比例,那么这条直线平行于三角形的
∠A=36° ,BD 是角平分线,证明:△ABC∽△ BCD. [思路点拨] 已知 AB=AC,∠A=36° ,所
以∠ABC=∠C=72° ,而 BD 是角平分线,因此,可以考虑使 用判定定理 1.
[证明]
∵∠A=36° ,AB=AC,
∴∠ABC=∠C=72° . 又∵BD 平分∠ABC, ∴∠ABD=∠CBD=36° , ∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BCD.
[推荐学习]2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第1节平面直角坐标
[核心必知]1.平面直角坐标系 (1)平面直角坐标系的作用通过直角坐标系,平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现了数与形的结合.(2)坐标法解决几何问题的“三部曲”第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算解决代数问题;第三步:把代数运算结果翻译成几何结论.2.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.[问题思考]1.用坐标法解决几何问题时,坐标系的建立是否是唯一的?提示:对于同一个问题,可建立不同的坐标系解决,但应使图形上的特殊点尽可能多地落在坐标轴,以便使计算更简单、方便.2.伸缩变换中的系数λ,μ有什么特点?在伸缩变换下,平面直角坐标系是否发生变化?提示:伸缩变换中的系数λ>0,μ>0,在伸缩变换下,平面直角坐标系保持不变,只是对点的坐标进行伸缩变换.已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.[精讲详析]解答此题需要结合几何图形的结构特点,建立适当的平面直角坐标系,然后设出所求动点的坐标,寻找满足几何关系的等式,化简后即可得到所求的轨迹方程.以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).法一:由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).法二:由△ABC是直角三角形可知AC⊥BC,所以k AC·k BC=-1,则yx+a·yx-a=-1(x≠±a),化简得直角顶点C的轨迹方程为x2+y2=a2(x≠±a).法三:由△ABC是直角三角形可知|OC|=|OB|,且点C与点B不重合,所以x2+y2=a(x≠±a),化简得直角顶点C的轨迹方程为x2+y2=a2(x≠±a).求轨迹方程,其实质就是根据题设条件,把几何关系通过“坐标”转化成代数关系,得到对应的方程.(1)求轨迹方程的一般步骤是:建系→设点→列式→化简→检验.(2)求轨迹方程时注意不要把范围扩大或缩小,也就是要检验轨迹的纯粹性和完备性.(3)由于观察的角度不同,因此探求关系的方法也不同,解题时要善于从多角度思考问题.1.已知线段AB与CD互相垂直平分于点O,|AB|=8,|CD|=4,动点M满足|MA|·|MB|=|MC|·|MD|,求动点M的轨迹方程.解:以O为原点,分别以直线AB,CD为x轴、y轴建立直角坐标系,则A(-4,0),B(4,0),C(0,2),D(0,-2).设M(x,y)为轨迹上任一点,则|MA|=(x+4)2+y2,|MB|=(x-4)2+y2,|MC|=x2+(y-2)2,|MD|=x2+(y+2)2,∴由|MA|·|MB|=|MC|·|MD|,可得[(x+4)2+y2][(x-4)2+y2]=[x2+(y-2)2][x2+(y+2)2].化简,得y2-x2+6=0.∴点M的轨迹方程为x2-y2=6.已知△ABC中,AB=AC,BD、CE分别为两腰上的高.求证:BD=CE.[精讲详析]本题考查坐标法在几何中的应用.解答本题可通过建立平面直角坐标系,将几何证明问题转化为代数运算问题.如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系. 设B (-a ,0),C (a ,0),A (0,h ).则直线AC 的方程为y =-ha x +h ,即:hx +ay -ah =0.直线AB 的方程为y =ha x +h ,即:hx -ay +ah =0.由点到直线的距离公式:|BD |=|2ah |a 2+h2,|CE |=|2ah |a 2+h2,∴|BD |=|CE |, 即BD =CE .(1)建立适当的直角坐标系,将平面几何问题转化为解析几何问题,即“形”转化为“数”,再回到“形”中,此为坐标法的基本思想,务必熟练掌握.(2)建立坐标系时,要充分利用图形的几何特征.例如,中心对称图形,可利用它的对称中心为坐标原点;轴对称图形,可利用它的对称轴为坐标轴;题设中有直角,可考虑以两直角边所在的直线为坐标轴等.2.已知△ABC 中,BD =CD ,求证:AB 2+AC 2=2(AD 2+BD 2). 证明:以A 为坐标原点O ,AB 所在直线为x 轴,建立平面直角坐系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则D (a +b 2,c 2),∴AD 2+BD 2=(a +b )24+c 24+(a -b )24+c 24=12(a 2+b 2+c 2), AB 2+AC 2=a 2+b 2+c 2. ∴AB 2+AC 2=2(AD 2+BD 2).在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧x ′=13x ,y ′=12y后的图形是什么形状?(1)y 2=2x ;(2)x 2+y 2=1.[精讲详析] 本题考查伸缩变换的应用,解答此题需要先根据伸缩变换求出变换后的方程,然后再判断图形的形状.由伸缩变换⎩⎨⎧x ′=13x ,y ′=12y .可知⎩⎪⎨⎪⎧x =3x ′,y =2y ′.(1)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入y 2=2x ,可得4y ′2=6x ′,即y ′2=32x ′.即伸缩变换之后的图形还是抛物线.(2)将⎩⎪⎨⎪⎧x =3x ′,y =2y ′代入x 2+y 2=1,得(3x ′)2+(2y ′)2=1,即x ′219+y ′214=1, 即伸缩变换之后的图形为焦点在y 轴上的椭圆.利用坐标伸缩变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)求变换后的曲线方程,其实质是从中求出⎩⎨⎧x =1λx ′,y =1μy ′,然后将其代入已知的曲线方程求得关于x ′,y ′的曲线方程.3.将圆锥曲线C 按伸缩变换公式⎩⎪⎨⎪⎧3x ′=x ,2y ′=y 变换后得到双曲线x ′2-y ′2=1,求曲线C 的方程.解:设曲线C 上任意一点P (x ,y ),通过伸缩变换后的对应点为P ′(x ′,y ′), 由⎩⎪⎨⎪⎧3x ′=x ,2y ′=y得⎩⎨⎧x ′=13x ,y ′=12y .代入x ′2-y ′2=1得(x 3)2-(y 2)2=1,即x 29-y 24=1为所求.本课时考点常以解答题(多出现在第(1)小问)的形式考查轨迹方程的求法,湖北高考将圆锥曲线的类型讨论同轨迹方程的求法相结合,以解答题的形式考查,是高考命题的一个新热点.[考题印证](湖北高考改编)设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标.[命题立意] 本题考查圆锥曲线的相关知识以及轨迹方程的求法. [解]如图,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |. ①因为A 点在单位圆上运动,所以x 20+y 20=1. ②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0);当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).一、选择题1.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后,曲线方程变为( )A .y ′=3cos x ′2 B .y ′=3cos 2x ′C .y ′=13cos x ′2D .y ′=13cos 2x ′解析:选A 由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 得⎩⎨⎧x =12x ′,y =13y ′.又∵y =cos x ,∴13y ′=cos x ′2,即y ′=3cos x ′2. 2.直线2x +3y =0经伸缩变换后变为x ′+y ′=0,则该伸缩变换为( )A.⎩⎪⎨⎪⎧x ′=12x ,y ′=3yB.⎩⎪⎨⎪⎧x ′=2x ,y ′=3yC.⎩⎪⎨⎪⎧x ′=2x ,y ′=13yD.⎩⎨⎧x ′=12x ,y ′=13y 解析:选B 设变换为⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0),将其代入方程x ′+y ′=0,得, λx +μy =0.又∵2x +3y =0,∴λ=2,μ=3.即⎩⎪⎨⎪⎧x ′=2x ,y ′=3y .3.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆 D .双曲线 解析:选D 由伸缩变换的意义可得.4.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P 点的坐标为(x ,y ), ∵|P A |=2|PB |,∴(x +2)2+y 2=4[(x -1)2+y 2]. 即(x -2)2+y 2=4.故P 点的轨迹是以(2,0)为圆心,以2为半径的圆, 它的面积为4π. 二、填空题5.将点P (2,3)变换为点P ′(1,1)的一个伸缩变换公式为________.解析:设伸缩变换为⎩⎪⎨⎪⎧x ′=hx (h >0)y ′=kx (k >0),由⎩⎪⎨⎪⎧1=2h1=3k,解得⎩⎨⎧h =12,k =13∴⎩⎨⎧x ′=x2,y ′=y 3.答案:⎩⎨⎧x ′=x 2,y ′=y36.将对数曲线y =log 3x 的横坐标伸长到原来的2倍得到的曲线方程为________. 解析:设P (x ,y )为对数曲线y =log 3x 上任意一点,变换后的对应点为P ′(x ′,y ′),由题意知伸缩变换为⎩⎪⎨⎪⎧x ′=2xy ′=y ,∴⎩⎪⎨⎪⎧x =12x ′,y =y ′.代入y =log 3x 得y ′=log 312x ′,即y =log 3x 2.答案:y =log 3x27.把圆x 2+y 2=16沿x 轴方向均匀压缩为椭圆x ′2+y ′216=1,则坐标变换公式是________.解析:设φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0),则⎩⎨⎧x =x ′λ,y =y ′μ.代入x 2+y 2=16得x ′216λ2+y ′216μ2=1.∴16λ2=1,16μ2=16. ∴⎩⎪⎨⎪⎧λ=14,μ=1.故⎩⎪⎨⎪⎧x ′=x 4,y ′=y .答案:⎩⎪⎨⎪⎧x ′=x 4,y ′=y8.已知A (2,-1),B (-1,1),O 为坐标原点,动点M ,其中m ,n ∈R ,且2m 2-n 2=2,则M 的轨迹方程为________.解析:设M (x ,y ),则(x ,y )=m (2,-1)+n (-1,1)=(2m -n ,n -m ),∴⎩⎪⎨⎪⎧x =2m -n ,y =n -m .又2m 2-n 2=2,消去m ,n 得x 22-y 2=1.答案:x 22-y 2=1三、解答题9.在同一平面直角坐标系中,将曲线x 2-36y 2-8x +12=0变成曲线x ′2-y ′2-4x ′+3=0,求满足条件的伸缩变换.解:x 2-36y 2-8x +12=0可化为 (x -42)2-9y 2=1.① x ′2-y ′2-4x ′+3=0可化为 (x ′-2)2-y ′2=1.②比较①②,可得⎩⎨⎧x ′-2=x -42,y ′=3y ,即⎩⎪⎨⎪⎧x ′=x 2,y ′=3y .所以将曲线x 2-36y 2-8x +12=0上所有点的横坐标变为原来的12,纵坐标变为原来的3倍,就可得到曲线x ′2-y ′2-4x ′+3=0的图象.10.在正三角形ABC 内有一动点P ,已知P 到三顶点的距离分别为|P A |,|PB |,|PC |,且满足|P A |2=|PB |2+|PC |2,求点P 的轨迹方程.解:以BC 的中点为原点,BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立如图所示的直角坐标系,设点P (x ,y ),B (-a ,0),C (a ,0),A (0,3a ),(y >0,a >0)用点的坐标表示等式|P A |2=|PB |2+|PC |2,有x 2+(y -3a )2=(x +a )2+y 2+(x -a )2+y 2,化简得x 2+(y +3a )2=(2a )2,即点P 的轨迹方程为x 2+(y +3a )2=4a 2(y >0).11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.解:(1)∴e =33, ∴e 2=c 2a 2=a 2-b 2a 2=13, ∴b 2a 2=23. 又圆x 2+y 2=b 2与直线y =x +2相切,∴b =21+1= 2. ∴b 2=2,a 2=3.因此,a =3,b = 2.(2)由(1)知F 1,F 2两点的坐标分别为(-1,0),(1,0),由题意可设P (1,t ).那么线段PF 1的中点为N (0,t 2). 设M (x ,y ),由于MN ―→=(-x ,t 2-y ), PF 1―→=(-2,-t ),则⎩⎪⎨⎪⎧MN ―→·PF 1―→=2x +t (y -t 2)=0y =t,消去t 得所求轨迹方程为y 2=-4x ,曲线类型为抛物线.。
人教A版2019高中数学选修4-1教学案:第一讲 一 平行线等分线段定理_含答案
一平行线等分线段定理[对应学生用书P1]1.平行线等分线段定理(1)如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.(2)用符号语言表述:已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A 、B 、C 和A ′、B ′、C ′(如图),如果AB =BC ,那么A ′B ′=B ′C ′.[说明](1)定理中的平行线组是指每相邻的两条距离都相等的一组特殊的平行线;它是由三条或三条以上的平行线组成的.(2)“相等线段”是指在“同一条直线”上截得的线段相等. 2.平行线等分线段定理的推论[对应学生用书P1][例1] 已知如图,直线l 1∥l 2∥l 3∥l 4,l ,l ′分别交l 1,l 2,l 3,l 4于A ,B ,C ,D ,A 1,B 1,C 1,D 1,AB =BC =CD .求证:A 1B 1=B 1C 1=C 1D 1.[思路点拨] 直接利用平行线等分线段定理即可. [证明] ∵直线l 1∥l 2∥l 3,且AB =BC , ∴A 1B 1=B 1C 1.∵直线l 2∥l 3∥l 4且BC =CD , ∴B 1C 1=C 1D 1, ∴A 1B 1=B 1C 1=C 1D 1.平行线等分线段定理的应用非常广泛,在运用的过程中要注意其所截线段的确定与对应,分析存在相等关系的线段,并会运用相等线段来进行相关的计算与证明.1.已知:如图,l1∥l 2∥l 3,那么下列结论中错误的是( ) A .由AB =BC 可得FG =GH B .由AB =BC 可得OB =OG C .由CE =2CD 可得CA =2BC D .由GH =12FH 可得CD =DE解析:OB 、OG 不是一条直线被平行线组截得的线段. 答案:B2.如图,已知线段AB ,求作线段AB 的五等分点.作法:如图,(1)作射线AC ;(2)在射线AC 上依任意长顺次截取AD =DE =EF =FG =GH ;(3)连接HB ;(4)过点G ,F ,E ,D 分别作HB 的平行线GA 1,F A 2,EA 3,DA 4,分别交AB 于点A 1,A 2,A 3,A 4.则A 1,A 2,A 3,A 4就是所求的五等分点. 证明:过点A 作MN ∥HB , 则MN ∥DA 4∥EA 3∥F A 2∥GA 1∥HB . 又AD =DE =EF =FG =GH ,∴AA 4=A 4A 3=A 3A 2=A 2A 1=A 1B (平行线等分线段定理).[例2] 交AD 的延长线于E .求证:AG =2DE .[思路点拨] AF =FC ,GF ∥EC →AG =GE →△BDG ≌△CDE →AG =2DE [证明] 在△AEC 中, ∵AF =FC ,GF ∥EC , ∴AG =GE . ∵CE ∥FB ,∴∠GBD =∠ECD ,∠BGD =∠E . 又BD =DC , ∴△BDG ≌△CDE .故DG =DE ,即GE =2DE , 因此AG =2DE .此类问题往往涉及平行线等分线段定理的推论1的运用,寻找便于证明三角形中线段相等或平行的条件,再结合三角形全等或相似的知识,达到求解的结果.3.如图,在▱ABCD 中,对角线AC 、BD 相交于O ,OE 平行于AB 交BC 于E ,AD =6,求BE 的长.解:因为四边形ABCD 是平行四边形, 所以OA =OC ,BC =AD . 又因为AB ∥DC ,OE ∥AB , 所以DC ∥OE ∥AB . 又因为AD =6,所以BE =EC =12BC =12AD =3.4.已知:AD 是BC 边上的中线,E 是AD 的中点,BE 的延长线交AC 于点F . 求证:AF =13AC .证明:如图,过D 作DG ∥BF 交AC 于G .在△BCF 中,D 是BC 的中点, DG ∥BF ,∴G 为CF 的中点.即CG =GF .在△ADG 中,E 是AD 的中点,EF ∥DG , ∴F 是AG 的中点.即AF =FG . ∴AF =13AC .[例3] 已知,如图,梯形ABCD 中,AD ∥BC ,∠ABC =90°,M 是CD的中点,求证: AM =BM .[思路点拨] 解答本题应先通过作辅助线构造推论2的应用条件. [证明] 过点M 作ME ∥BC 交AB 于点E , ∵AD ∥BC , ∴AD ∥EM ∥BC .又∵M 是CD 的中点, ∴E 是AB 的中点. ∵∠ABC =90°, ∴ME 垂直平分AB . ∴AM =BM .有梯形且存在线段中点时,常过该点作平行线,构造平行线等分线段定理的推论2的基本图形,进而进行几何证明或计算.5.若将本例中“M 是CD 的中点”与“AM =BM ”互换,那么结论是否成立?若成立,请给予证明.解:结论成立.证明如下: 过点M 作ME ⊥AB 于点E , ∵AD ∥BC ,∠ABC =90°, ∴AD ⊥AB ,BC ⊥AB . ∵ME ⊥AB ,∴ME ∥BC ∥AD . ∵AM =BM ,且ME ⊥AB ,∴E 为AB 的中点,∴M 为CD 的中点.6.已知:如图,▱ABCD 的对角线AC 、BD 交于点O ,过点A ,B ,C ,D ,O 分别作直线a 的垂线,垂足分别为A ′,B ′,C ′,D ′,O ′;求证:A ′D ′=B ′C ′.证明:∵▱ABCD 的对角线AC ,BD 交于O 点, ∴OA =OC ,OB =OD .∵AA ′⊥a ,OO ′⊥a ,CC ′⊥a , ∴AA ′∥OO ′∥CC ′.∴O ′A ′=O ′C ′. 同理:O ′D ′=O ′B ′.∴A ′D ′=B ′C ′.[对应学生用书P3]一、选择题1.梯形ABCD 中,AB ∥CD ,E ,F 分别是AD ,BC 的中点,且EF =2 cm ,则AB +CD 等于( )A .1 cmB .2 cmC .3 cmD .4 cm解析:由梯形中位线定理知EF =12(AB +CD ),∴AB +CD =4 cm. 答案:D2.如图,AD 是△ABC 的高,E 为AB 的中点,EF ⊥BC 于F ,如果DC =13BD ,那么FC 是BF 的( )A.53倍 B.43倍 C.32倍 D.23倍 解析:∵EF ⊥BC ,AD ⊥BC ,∴EF ∥AD . 又E 为AB 的中点,由推论1知F 为BD 的中点, 即BF =FD .又DC =13BD ,∴DC =23BF .∴FC =FD +DC =BF +DC =53BF .答案:A3.梯形的中位线长为15 cm ,一条对角线把中位线分成3∶2两段,那么梯形的两底长分别为( )A .12 cm 18 cmB .20 cm 10 cmC .14 cm 16 cmD .6 cm 9 cm解析:如图,设MP ∶PN =2∶3,则MP =6 cm ,PN =9 cm.∵MN 为梯形ABCD 的中位线,在△BAD 中,MP 为其中位线, ∴AD =2MP =12 cm. 同理可得BC =2PN =18 cm. 答案:A4.梯形的一腰长10 cm ,该腰和底边所形成的角为30°,中位线长为12 cm ,则此梯形的面积为( )A .30 cm 2B .40 cm 2C .50 cm 2D .60 cm 2解析:如图,过A 作AE ⊥BC ,在Rt △ABE 中,AE =AB sin 30°=5 cm.又已知梯形的中位线长为12 cm ,∴AD +BC =2×12=24(cm). ∴梯形的面积S =12(AD +BC )·AE=12×5×24=60 (cm 2). 答案:D 二、填空题5.如图所示,已知a ∥b ∥c ,直线m 、n 分别与a 、b 、c 交于点A 、B 、C 和A ′、B ′、C ′,如果AB =BC =1,A ′B ′=32,则B ′C ′=________.解析:直接利用平行线等分线段定理. 答案:326.如图,在△ABC 中,E 是AB 的中点,EF ∥BD ,EG ∥AC 交BD 于G ,CD =12AD ,若EG =2 cm ,则AC =______;若BD =10 cm ,则EF =________.解析:由E 是AB 的中点,EF ∥BD ,得EG =12AD =FD =2 cm ,结合CD =12AD ,可以得到F 、D 是AC 的三等分点, 则AC =3EG =6(cm).由EF ∥BD ,得EF =12BD =5(cm).答案:6 cm 5 cm7.如图,梯形ABCD 中,AD ∥BC ,E 为AB 的中点,EF ∥BC ,G 是BC 边上任一点,如果S △GEF =2 2 cm 2,那么梯形ABCD 的面积是________cm 2.解析:因为E 为AB 的中点,EF ∥BC , 所以EF 为梯形ABCD 的中位线, 所以EF =12(AD +BC ),且△EGF 的高是梯形ABCD 高的一半, 所以S 梯形ABCD =4S △EGF =4×2 2 =82(cm 2). 答案:8 2 三、解答题8.已知△ABC 中,D 是AB 的中点,E 是BC 的三等分点(BE >CE ),AE 、CD 交于点F . 求证:F 是CD 的中点.证明:如图,过D 作DG ∥AE 交BC 于G ,在△ABE 中,∵AD =BD ,DG ∥AE , ∴BG =GE .∵E 是BC 的三等分点, ∴BG =GE =EC .在△CDG 中,∵GE =CE ,DG ∥EF , ∴DF =CF .即F 是CD 的中点.9.如图,先把矩形纸片ABCD 对折后展开,并设折痕为MN ;再把点B 叠在折痕线上,得到Rt △AB 1E .沿着EB 1线折叠,得到△EAF .求证:△EAF 是等边三角形.证明:因为AD∥MN∥BC,AM=BM,所以B1E=B1F.又因为∠AB1E=∠B=90°,所以AE=AF,所以∠B1AE=∠B1AF.根据折叠,得∠BAE=∠B1AE,所以∠BAE=∠B1AE=∠B1AF=30°,所以∠EAF=60°,所以△EAF是等边三角形.10.已知:梯形ABCD中,AD∥BC,四边形ABDE是平行四边形,AD的延长线交EC于F.求证:EF=FC.证明:法一:如图,连接BE交AF于O,∵四边形ABDE是平行四边形,∴BO=OE.又∵AF∥BC,∴EF=FC.法二:如图,延长ED交BC于点H,∵四边形ABDE是平行四边形,∴AB∥ED,AB∥DH,AB=ED.又∵AF∥BC,∴四边形ABHD是平行四边形.∴AB=DH.∴ED=DH.∴EF=FC.法三:如图,延长EA交CB的延长线于M,∵四边形ABDE是平行四边形,∴BD∥EA,AE=BD.又AD∥BC.∴四边形AMBD是平行四边形.∴AM=BD.∴AM=AE. ∴EF=FC.。
[推荐学习]2018-2019学年高中数学人教A版选修4-1学案创新应用:第一讲四直角三角形的射影定
四直角三角形的射影定理[对应学生用书P14]1.射影(1)点在直线上的正射影:从一点向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影.(2)线段在直线上的正射影:线段的两个端点在这条直线上的正射影间的线段.(3)射影:点和线段的正射影简称为射影.2.射影定理(1)文字语言:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.(2)图形语言:如图,在Rt△ABC中,CD为斜边AB上的高,则有CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.[对应学生用书P14][例1]如图,在Rt△ABC中,CD为斜边AB上的高,若AD=2 cm,DB=6 cm,求CD,AC,BC的长.[思路点拨]在直角三角形内求线段的长度,可考虑使用勾股定理和射影定理.[解]∵CD2=AD·DB=2×6=12,∴CD=12=23(cm).∵AC2=AD·AB=2×(2+6)=16,∴AC=16=4(cm).∵BC 2=BD ·AB =6×(2+6)=48, ∴BC =48=43(cm).故CD 、AC 、BC 的长分别为2 3 cm,4 cm,4 3 cm.(1)在Rt △ABC 中,共有AC 、BC 、CD 、AD 、BD 和AB 六条线段,已知其中任意两条,便可求出其余四条.(2)射影定理中每个等积式中含三条线段,若已知两条可求出第三条.1.如图,在Rt △ABC 中,∠C =90°,CD 是AB 上的高.已知BD=4,AB =29,试求出图中其他未知线段的长.解:由射影定理,得BC 2=BD ·AB , ∴BC =BD ·AB =4×29=229. 又∵AD =AB -BD =29-4=25. 且AC 2=AB 2-BC 2, ∴AC =AB 2-BC 2=292-4×29=529.∵CD 2=AD ·BD ,∴CD =AD ·BD =25×4=10.2.已知:CD 是直角三角形ABC 斜边AB 上的高,如果两直角边AC ,BC 的长度比为AC ∶BC =3∶4.求:(1)AD ∶BD 的值; (2)若AB =25 cm ,求CD 的长. 解:(1)∵AC 2=AD ·AB , BC 2=BD ·AB , ∴AD ·AB BD ·AB =AC 2BC 2. ∴AD BD =(AC BC )2=( 34)2=916. (2)∵AB =25 cm ,AD ∶BD =9∶16, ∴AD =99+16×25=9(cm),BD=169+16×25=16(cm).∴CD=AD·BD=9×16=12(cm).[例2]DG⊥BE,F、G分别为垂足.求证:AF·AC=BG·BE.[思路点拨]先将图分解成两个基本图形(1)(2),再在简单的图形中利用射影定理证明所要的结论.[证明]∵CD垂直平分AB,∴△ACD和△BDE均为直角三角形,且AD=BD.又∵DF⊥AC,DG⊥BE,∴AF·AC=AD2,BG·BE=DB2.∵AD2=DB2,∴AF·AC=BG·BE.将原图分成两部分来看,就可以分别在两个三角形中运用射影定理,实现了沟通两个比例式的目的.在求解此类问题时,关键就是把握基本图形,从所给图形中分离出基本图形进行求解或证明.3.如图所示,设CD是Rt△ABC的斜边AB上的高.求证:CA·CD=BC·AD.证明:由射影定理知:CD2=AD·BD,CA2=AD·AB,BC 2=BD ·AB .∴CA ·CD =AD 2·BD ·AB =AD ·BD ·AB , BC ·AD =AD ·AB ·BD . 即CA ·CD =BC ·AD .4.Rt △ABC 中有正方形DEFG ,点D 、G 分别在AB 、AC 上,E 、F 在斜边BC 上.求证:EF 2=BE ·FC .证明:过点A 作AH ⊥BC 于H .则DE ∥AH ∥GF . ∴DE AH =BE BH ,GF AH =FC CH . ∴DE ·GF AH 2=BE ·FC BH ·CH . 又∵AH 2=BH ·CH , ∴DE ·GF =BE ·FC . 而DE =GF =EF , ∴EF 2=BE ·FC .[对应学生用书P15]一、选择题1.已知Rt △ABC 中,斜边AB =5 cm ,BC =2 cm ,D 为AC 上一点,DE ⊥AB 交AB 于E ,且AD =3.2 cm ,则DE =( )A .1.24 cmB .1.26 cmC .1.28 cmD .1.3 cm解析:如图,∵∠A =∠A ,∴Rt △ADE ∽Rt △ABC , ∴AD AB =DE BC, DE =AD ·BC AB =3.2×25=1.28.答案:C2.已知直角三角形中两直角边的比为1∶2,则它们在斜边上的射影比为( ) A .1∶2 B .2∶1 C .1∶4D .4∶1解析:设直角三角形两直角边长分别为1和2,则斜边长为5,∴两直角边在斜边上的射影分别为15和45. 答案:C3.一个直角三角形的一条直角边为3 cm ,斜边上的高为2.4 cm ,则这个直角三角形的面积为( )A .7.2 cm 2B .6 cm 2C .12 cm 2D .24 cm 2解析:长为3 cm 的直角边在斜边上的射影为32-2.42=1.8(cm),由射影定理知斜边长为321.8=5(cm),∴三角形面积为12×5×2.4=6(cm 2).答案:B4.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足,若CD =6 cm ,AD ∶DB =1∶2,则AD 的值是( )A .6 cmB .3 2 cmC .18 cmD .3 6 cm解析:∵AD ∶DB =1∶2, ∴可设AD =t ,DB =2t . 又∵CD 2=AD ·DB ,∴36=t ·2t ,∴2t 2=36,∴t =32(cm),即AD =3 2 cm. 答案:B 二、填空题5.若等腰直角三角形的一条直角边长为1,则该三角形在直线l 上的射影的最大值为________.解析:射影的最大值即为等腰直角三角形的斜边长. 答案: 26.如图所示,四边形ABCD 是矩形,∠BEF =90°,①②③④这四个三角形能相似的是________.解析:因为四边形ABCD 为矩形, 所以∠A =∠D =90°.因为∠BEF =90°,所以∠1+∠2=90°. 因为∠2+∠3=90°,所以∠1=∠3. 所以△ABE ∽△DEF . 答案:①③7.在△ABC 中,∠A =90°,AD ⊥BC 于点D ,AD =6,BD =12,则CD =__________,AC =__________,AB 2∶AC 2=__________.解析:如图,AB 2=AD 2+BD 2,又AD =6,BD =12, ∴AB =6 5.由射影定理可得,AB 2=BD ·BC , ∴BC =AB 2BD=15.∴CD =BC -BD =15-12=3. 由射影定理可得,AC 2=CD ·BC , ∴AC =3×15=3 5. ∴AB 2AC 2=BD ·BC CD ·BC =BD CD =123=4. 答案:3 35 4∶1 三、解答题8.如图:在Rt △ABC 中,CD 是斜边AB 上的高,DE 是Rt △BCD 斜边BC 上的高,若BE =6,CE =2.求AD 的长是多少.解:因为在Rt △BCD 中,DE ⊥BC ,所以由射影定理可得:CD 2=CE ·BC , 所以CD 2=16,因为BD2=BE·BC,所以BD=6×8=4 3.因为在Rt△ABC中,∠ACB=90°,CD⊥AB,所以由射影定理可得:CD2=AD·BD,所以AD=CD 2BD =1643=433.9.如图,在△ABC中,CD⊥AB于D,且CD2=AD·BD,求证:∠ACB=90°.证明:∵CD⊥AB,∴∠CDA=∠BDC=90°.又∵CD2=AD·BD,即AD∶CD=CD∶BD,∴△ACD∽△CBD.∴∠CAD=∠BCD.又∵∠ACD+∠CAD=90°,∴∠ACB=∠ACD+∠BCD=∠ACD+∠CAD=90°.10.已知直角三角形周长为48 cm,一锐角平分线分对边为3∶5两部分.(1)求直角三角形的三边长;(2)求两直角边在斜边上的射影的长.解:(1)如图,设CD=3x,BD=5x,则BC=8x,过D作DE⊥AB,由题意可得,DE=3x,BE=4x,∴AE+AC+12x=48.又AE=AC,∴AC=24-6x,AB=24-2x.∴(24-6x)2+(8x)2=(24-2x)2,解得:x1=0(舍去),x2=2.∴AB=20,AC=12,BC=16,∴三边长分别为:20 cm,12 cm,16 cm.(2)作CF⊥AB于F点,∴AC2=AF·AB.∴AF=AC 2AB =12220=365(cm);同理:BF=BC 2AB =16220=645(cm).∴两直角边在斜边上的射影长分别为365cm,645cm.[对应学生用书P16]近两年高考中,由于各地的要求不同,所以试题的呈现形式也不同.但都主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;一般试题难度不大,解题中要注意观察图形特点,巧添辅助线对解题可起到事半功倍的效果.在使用平行线分线段成比例定理及其推论时,一定要搞清有关线段或边的对应关系,切忌搞错比例关系.1.如图,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为________.解析:由CD=2,AB=4,EF=3,得EF=12(CD+AB),∴EF是梯形ABCD的中位线,则梯形ABFE与梯形EFCD有相同的高,设为h,于是两梯形的面积比为 12(3+4)h ∶12(2+3)h =7∶5. 答案:7∶52.如图,圆O 上一点C 在直径AB 上的射影为D ,点D 在半径OC 上的射影为E .若AB =3AD ,则CEEO的值为________.解析:连接AC ,BC ,则∠ACB =90°. 设AD =2,则AB =6, 于是BD =4,OD =1.如图,由射影定理得CD 2=AD ·BD =8,则CD =2 2. 在Rt △OCD 中,DE =OD ·CD OC =1×223=223.则CE =DC 2-DE 2=8-89=83, EO =OC -CE =3-83=13.因此CE EO =8313=8.答案:8[对应学生用书P16]的直线上截得的线段所呈现的规律,主要用来证明比例式成立、证明直线平行、计算线段的长度,也可以作为计算某些图形的周长或面积的重要方法,其中,平行线等分线段定理是线段的比为1的特例.[例1] 如图,在△ABC 中,DE ∥BC ,DH ∥GC . 求证:EG ∥BH .[证明] ∵DE ∥BC , ∴AE AC =AD AB. ∵DH ∥GC ,∴AH AC =ADAG .∴AE ·AB =AC ·AD =AH ·AG . ∴AE AH =AGAB.∴EG ∥BH . [例2] 如图,直线l 分别交△ABC 的边BC ,CA ,AB 于点D ,E ,F ,且AF =13AB ,BD =52BC ,试求EC AE.[解] 作CN ∥AB 交DF 于点N ,并作EG ∥AB 交BC 于点G ,由平行截割定理,知BF CN =DB DC ,CN AF =EC AE,两式相乘,得BF CN ·CN AF =DB DC ·ECAE ,即EC AE =BF AF ·DC DB. 又由AF =13AB ,得BFAF =2,由BD =52BC ,得DC DB =35,所以EC AE =2×35=65.角关系.其应用非常广泛,涉及到多种题型,可用来计算线段、角的大小,也可用来证明线段、角之间的关系,还可以证明直线之间的位置关系.其中,三角形全等是三角形相似的特殊情况.[例3] 如图所示,AD 、CF 是△ABC 的两条高线,在AB 上取一点P ,使AP =AD ,再从P 点引BC 的平行线与AC 交于点Q .求证:PQ =CF .[证明] ∵AD 、CF 是△ABC 的两条高线, ∴∠ADB =∠BFC =90°. 又∠B =∠B ,∴△ABD ∽△CBF . ∴AD CF =AB CB. 又∵PQ ∥BC ,∴△APQ ∽△ABC . ∴PQ BC =AP AB .∴AP PQ =AB BC .∴AD CF =AP PQ . 又∵AP =AD ,∴CF =PQ .[例4] 四边形ABCD 中,AB ∥CD ,CE 平分∠BCD ,CE ⊥AD 于点E ,DE =2AE ,若△CED 的面积为1,求四边形ABCE 的面积.[解] 如图,延长CB 、DA 交于点F ,又CE 平分∠BCD ,CE ⊥AD .∴△FCD 为等腰三角形,E 为FD 的中点. ∴S △FCD =12FD ·CE=12×2ED ·CE =2S △CED =2, EF =ED =2AE . ∴F A =AE =14FD .又∵AB ∥CD , ∴△FBA ∽△FCD .∴S △FBAS △FCD =(F A FD )2=(14)2=116.∴S △FBA =116×S △FCD =18. ∴S 四边形ABCE =S △FCD -S △CED -S △FBA=2-1-18=78.系,此定理常作为计算与证明的依据,在运用射影定理时,要特别注意弄清射影与直角边的对应关系,分清比例中项,否则在做题中极易出错.[例5] 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,DE ⊥AC于E ,EF ⊥AB 于F .求证:CE 2=BD ·DF .[证明] ∵∠ACB =90°,DE ⊥AC , ∴DE ∥BC .∴BD CE =AB AC .同理:CD ∥EF ,∴CE DF =AC AD. ∵∠ACB =90°,CD ⊥AB , ∴AC 2=AD ·AB . ∴AC AD =AB AC . ∴CE DF =BD CE . ∴CE 2=BD ·DF .[对应学生用书P41] (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,已知AA ′∥BB ′∥CC ′,AB ∶BC =1∶3,那么下列等式成立的是( )A .AB =2A ′B ′ B .3A ′B ′=B ′C ′ C .BC =B ′C ′D .AB =A ′B ′解析:∵AA ′∥BB ′∥CC ′,∴AB BC =A ′B ′B ′C ′=13.∴3A ′B ′=B ′C ′. 答案:B2.如图,∠ACB =90°.CD ⊥AB 于D ,AD =3、CD =2,则AC ∶BC 的值是( )A .3∶2B .9∶4 C.3∶ 2D.2∶ 3解析:Rt △ACD ∽Rt △CBD ,∴AC BC =AD CD =32.答案:A3.在Rt △ABC 中,CD 为斜边AB 上的高,若BD =3 cm ,AC =2 cm ,则CD 和BC 的长分别为( )A. 3 cm 和3 2 cm B .1 cm 和 3 cm C .1 cm 和3 2 cm D. 3 cm 和2 3 cm 解析:设AD =x ,则由射影定理得x (x +3)=4, 即x =1(负值舍去), 则CD =AD ·BD =3(cm), BC =BD ·AB =3(3+1)=23(cm).答案:D4.如图,在△ABC 中,∠BAC =90°,AD 是斜边BC 上的高,DE 是△ACD 的高,且AC =5,CD =2,则DE 的值为( )A.2215B.215C.3215D.2125解析:AC 2=CD ·BC , 即52=2×BC , ∴BC =252.∴AB =BC 2-AC 2=2524-52=5212. ∵DE AB =DC BC ,∴DE =2215. 答案:A5.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC ;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( )A .1B .2C .3D .4解析:①由∠B =∠ACD ,再加上公共角∠A =∠A ,可得两个三角形相似;②由∠ADC =∠ACB ,再加上公共角∠A =∠A ,可得两个三角形相似;③AC CD =ABBC ,而夹角不一定相等,所以两个三角形不一定相似;④AC 2=AD ·AB 可得AC AD =ABAC,再加上公共角∠A =∠A ,可得两个三角形相似.答案:C6.如图,DE ∥BC ,S △ADE ∶S 四边形DBCE =1∶8,则AD ∶DB 的值为( )A .1∶4B .1∶3C .1∶2D .1∶5解析:由S △ADE ∶S 四边形DBCE =1∶8 得S △ADE ∶S △ABC =1∶9. ∵DE ∥BC , ∴△ADE ∽△ABC . ∴(AD AB )2=S △ADE S △ABC =19. ∴AD AB =13,AD DB =12. 答案:C7.△ABC 和△DEF 满足下列条件,其中不一定使△ABC 与△DEF 相似的是( )A .∠A =∠D =45°38′,∠C =26°22′,∠E =108°B .AB =1,AC =1.5,BC =2,DE =12,EF =8,DF =16 C .BC =a ,AC =b ,AB =c ,DE =a ,EF =b ,DF =cD .AB =AC ,DE =DF ,∠A =∠D =40° 解析:A 中∠A =∠D ,∠B =∠E =108°, ∴△ABC ∽△DEF ;B 中AB ∶AC ∶BC =EF ∶DE ∶DF =2∶3∶4; ∴△ABC ∽△EFD ; D 中AB AC =DEDF,∠A =∠D , ∴△ABC ∽△DEF ;而C 中不能保证三边对应成比例. 答案:C8.在Rt △ACB 中,∠C =90°.CD ⊥AB 于D .若BD ∶AD =1∶4,则tan ∠BCD 的值是( ) A.14 B.13 C.12D .2解析:由射影定理得CD 2=AD ·BD ,又BD ∶AD =1∶4. 令BD =x ,则AD =4x (x >0), ∴CD 2=4x 2,∴CD =2x ,tan ∠BCD =BD CD =x 2x =12.答案:C9.在▱ABCD 中,E 为CD 上一点,DE ∶CE =2∶3,连接AE 、BE 、BD 且AE 、BD 交于点F ,则S △DEF ∶S △EBF ∶S △ABF =( )A .4∶10∶25B .4∶9∶25C .2∶3∶5D .2∶5∶25 解析:∵AB ∥CD , ∴△ABF ∽△EDF .∴DE AB =DF FB =25. ∴S △DEF S △ABF =(25)2=425.又△DEF 和△BEF 等高. ∴S △DEF S △EBF =DF FB =25=410. 答案:A10.如图,已知a ∥b ,AF BF =35,BCCD =3.则AE ∶EC =( )A.125 B.512 C.75D.57解析:∵a ∥b ,∴AE EC =AG CD ,AF BF =AGBD .∵BCCD =3,∴BC =3CD ,∴BD =4CD . 又AF BF =35, ∴AG BD =AF BF =35.∴AG 4CD =35.∴AG CD =125. ∴AE EC =AG CD =125. 答案:A二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.如图,D ,E 分别是△ABC 边AB ,AC 上的点,且DE ∥BC ,BD =2AD ,那么△ADE 的周长∶△ABC 的周长等于________.解析:∵DE ∥BC ,∴△ADE ∽△ABC . ∵BD =2AD ,∴AB =3AD .∴AD AB =13.∴△ADE 的周长△ABC 的周长=AD AB =13.答案:1312.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE ∶AC =3∶5, DE =6,则BF =________.解析:∵DE ∥BC ,∴DE BC =AE AC ,∴BC =DE ·AC AE =6×53=10, 又DF ∥AC ,∴DE =FC =6. ∴BF =BC -FC =4. 答案:413.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO 与DE 、BC 分别交于N 、M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:OD OC =DN MC =14,∴OE OB =OD OC =14. ∴NE BM =OE OB =14. 又DE BC =OD OC =14, ∴AE AC =DE BC =14. ∴AE ∶EC =1∶3. 答案:1∶4 1∶314.阳光通过窗口照到室内,在地面上留下2.7 m 宽的亮区(如图所示),已知亮区一边到窗下的墙角距离CE =8.7 m ,窗口高AB =1.8 m ,那么窗口底边离地面的高BC 等于________m.解析:∵BD ∥AE ,∴BCAB =CDDE .∴BC =AB ·CD DE.∵AB =1.8 m ,DE =2.7 m ,CE =8.7 m , ∴CD =CE -DE =8.7-2.7=6(m). ∴BC =1.8×62.7=4(m).答案:4三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)如图,△ABC 中,BC 的中点为D ,∠ADB和∠ADC 的平分线分别交AB 、AC 于点M 、N .求证:MN ∥BC .证明:∵MD 平分∠ADB , ∴AD BD =AM MB. ∵ND 平分∠ADC ,∴AD DC =ANNC .∵BD =DC ,∴AM MB =AD BD =AD DC =AN NC . ∴MN ∥BC .16.(本小题满分12分)如图,已知:△ABC 中,AB =AC ,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F ,求证:BP 2=PE ·PF .证明:连接PC , ∵AB =AC ,AD 是中线,∴AD 是△ABC 的对称轴, 故PC =PB , ∠PCE =∠ABP . ∵CF ∥AB ,∴∠PFC =∠ABP , 故∠PCE =∠PFC , ∵∠CPE =∠FPC , ∴△EPC ∽△CPF , 故PC PF =PE PC, 即PC 2=PE ·PF , ∴BP 2=PE ·PF .17.(本小题满分12分)如图,四边形ABCD 是平行四边形,P 是BD 上任意一点,过P 点的直线分别交AB 、DC 于E 、F ,交DA 、BC 的延长线于G 、H .(1)求证:PE ·PG =PF ·PH ;(2)当过P 点的直线绕点P 旋转到F 、H 、C 重合时,请判断PE 、PC 、PG 的关系,并给出证明.解:(1)证明:∵AB ∥CD ,∴PE PF =PB PD .∵AD ∥BC ,∴PH PG =PBPD ,∴PE PF =PHPG.∴PE ·PG =PH ·PF . (2)关系式为PC 2=PE ·PG .证明:由题意可得到右图, ∵AB ∥CD , ∴PE PC =PB PD . ∵AD ∥BC ,∴PC PG =PB PD. ∴PE PC =PCPG,即PC 2=PE ·PG . 18.(本小题满分14分)某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 m 、20 m 的梯形空地上种植花木(如图).(1)他们在△AMD 和△BMC 地带上种植太阳花,单位为8元/m 2,当△AMD 地带种满花后(图中阴影部分)共花了160元,请计算种满△BMC 地带所需的费用;(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?解:(1)∵四边形ABCD 为梯形,∴AD ∥BC . ∴△AMD ∽△CMB ,∴S △AMD S △CMB =(AD BC )2=14.∵种植△AMD 地带花费160元, ∴S △AMD =1608=20(m 2). ∴S △CMB =80(m 2).∴△CMB 地带的花费为80×8=640元. (2)S △ABMS △AMD =BM DM =BCAD =2, ∴S △ABM =2S △AMD =40(m 2). 同理:S △DMC =40(m 2).所剩资金为:1600-160-640=800元, 而800÷(S △ABM +S △DMC )=10(元/m 2). 故种植茉莉花刚好用完所筹集的资金.。
人教A版高中数学选修4-1第一讲3.1相似三角形的判定教案
3 相似三角形的判定【目的要求】1.使学生理解相似三角形和相似比的概念,掌握相似三角形的判定定理,会灵活运用这些定理解决一些简单的证明和计算问题。
会按已知相似比作一个三角形与已知三角形相似。
2.通过相似三角形判定定理的学习,要求了解类比方法的作用,认识类比方法是获取新知识的一种重要方法。
【知识要点】一、相似三角形1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似)。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似。
)6.直角三角形相似的判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2【重点和难点分析】重点:1.相似三角形的有关概念及相似三角形的基本定理。
高中数学人教A版选修4-1课件:本讲整合3
������������1 ������������2
= ������ , 其中������是椭圆的离心率,
知识建构
专题一 专题二
综合应用
解析:如图,设 l 是椭圆的准线,焦距为 2c,长轴长为 2a.
知识建构
专题一 专题二
综合应用
应用1
如图,点O为正方体ABCD-A1B1C1D1的中心,点E为面BCC1B1的中 心,点F为B1C1的中点,则空间四边形D1OEF在该正方体的面上的正 射影可能是 .
知识建构
专题一 专题二
综合应用
提示:要画出四边形D1OEF在该正方体各个面上的正射影,只要 画出四个顶点D1,O,E,F在每个面上的射影,再顺次连接即得在该面 上的射影. 解析:在面DCC1D1上的射影是图①;在面BCC1B1上的射影是图②; 在面ABCD上的射影为图③. 答案:①②③
本讲整合
-1-
知识建构
综合应用
知识建构
专题一 专题二
综合应用
专题一 正射影问题 正射影的要求较平行射影要高,在以前的学习中也有一定的介绍, 要求会作出某个图形在平面上的正射影(尤其是在三视图中更明 显),而平行射影只要求了解即可.常与简单几何体相联系,在选择题、 填空题、解答题中均有可能出现,预计将来还会保持这种形式. 画出一个图形在一个平面上的射影的关键是确定该图形的关键 点如顶点等,画出这些关键点的射影,再依次连接即可得,此图形在 该平面上的射影.如果对平行投影理解不充分,对该类题目容易不 知所措.避免出现这种情况的方法是依据平行投影的含义,借助于 空间想象来完成.
【配套K12】2018-2019学年高中数学人教A版选修4-4创新应用教学案:第一讲第3节第1课时圆
第1课时 圆的极坐标方程[核心必知]1.曲线的极坐标方程在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合f (ρ,θ)=0的点都在曲线C 上,那么方程f (ρ,θ)=0叫做曲线C 的极坐标方程.2.圆的极坐标方程圆心为C (a ,0)(a >0)半径为a 的圆的极坐标方程为ρ=2a cos_θ.[问题思考]1.在直角坐标系中,曲线上每一点的坐标一定适合它的方程.那么,在极坐标系中,曲线上一点的所有极坐标是否一定都适合方程?提示:在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如给定曲线ρ=θ,设点P 的一极坐标为(π4,π4),那么点P 适合方程ρ=θ,从而是曲线上的一个点,但点P 的另一个极坐标(π4,9π4)就不适合方程ρ=θ了.所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.2.圆心在极点,半径为r 的圆的极坐标方程是什么?圆心在点⎝⎛⎭⎫a ,π2处且过极点的圆的方程又是什么?提示:圆心在极点,半径为r 的圆的极坐标方程为ρ=r ;圆心在点(a ,π2)处且过极点的圆的方程为ρ=2a sin_θ(0≤θ≤π).设一个直角三角形的斜边长一定,求直角顶点轨迹的极坐标方程.[精讲详析] 本题考查极坐标方程的求法,解答此题需要根据题目特点建立恰当的极坐标系,然后再求直角顶点的轨迹方程.设直角三角形的斜边为OD ,它的长度是2r ,以O 为极点,OD 所在射线为极轴,建立极坐标系,如图所示:设P (ρ,θ)为轨迹上的一点, 则OP =ρ,∠xOP =θ. 在直角三角形ODP 中, OP =OD ·cos θ,∵OP =ρ,OD =2r ,∴ρ=2r cos θ(ρ≠0,ρ≠2r ). 这就是所求轨迹的方程.(1)求曲线的极坐标方程的步骤如下: ①建立适当的极坐标系.②设P (ρ,θ)是曲线上任一点. ③列出ρ,θ的关系式. ④化简整理.(2)极坐标中的坐标是由长度与角度表示的,因此,建立极坐标方程常常可以在一个三角形中实现,找出这样的三角形便形成了解题的关键.1.设M 是定圆O 内一定点,任作半径OA ,连接MA ,过M 作MP ⊥MA 交OA 于P ,求P 点的轨迹方程.解:以O 为极点,射线OM 为极轴,建立极坐标系,如图. 设定圆O 的半径为r ,OM =a ,P (ρ,θ)是轨迹上任意一点. ∵MP ⊥MA ,∴|MA |2+|MP |2=|P A |2.由余弦定理,可知|MA |2=a 2+r 2-2ar cos θ,|MP |2=a 2+ρ2-2aρcos θ.而|P A |=r -ρ,由此可得a 2+r 2-2ar cos θ+a 2+ρ2-2aρcos θ=(r -ρ)2.整理化简,得ρ=a (a -r cos θ)a cos θ-r.求圆心在(ρ0,θ0),半径为r 的圆的方程. [精讲详析]在圆周上任取一点P (如图) 设其极坐标为(ρ,θ).由余弦定理知:CP 2=OP 2+OC 2-2OP ·OC cos ∠COP ,∴r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).故其极坐标方程为r 2=ρ20+ρ2-2ρρ0cos (θ-θ0).(1)圆的极坐标方程是曲线的极坐标方程的一种特殊情况,其求解过程同曲线的极坐标方程的求法.(2)特别地,当圆心在极轴上即θ0=0时,方程为r 2=ρ20+ρ2-2ρρ0cos θ;若再有ρ0=r ,则其方程为ρ=2ρ0cos θ=2r cos θ;若ρ0=r ,θ0≠0,则方程为ρ=2r cos(θ-θ0),这几个方程经常用来判断图形的形状和位置.2.在极坐标系中,已知圆C 的圆心为⎝⎛⎭⎫3,π3,半径为3,Q 点在圆周上运动.(1)求圆C 的极坐标方程; (2)若P 是OQ 中点,求P 的轨迹. 解:(1)如图,设Q (ρ,θ)为圆上任意一点,连接DQ 、OQ , 则|OD |=6, ∠DOQ =π3-θ,或∠DOQ =θ-π3,∠DQO =π2.在Rt △ODQ 中,|OQ |=|OD |cos (θ-π3),即ρ=6cos (θ-π3).(2)若P 的极坐标为(ρ,θ),则Q 点的极坐标为(2ρ,θ).∴2ρ=6cos (θ-π3),∴ρ=3cos (θ-π3).∴P 的轨迹是圆.进行直角坐标方程与极坐标方程的互化 (1)y 2=4x ;(2)y 2+x 2-2x -1=0;(3)ρcos 2θ2=1;(4)ρ2cos 2θ=4;(5)ρ=12-cos θ.[精讲详析] 本题考查极坐标与直角坐标的互化公式. (1)将x =ρcos θ,y =ρsin θ代入y 2=4x , 得(ρsin θ)2=4ρcos θ. 化简,得ρsin 2θ=4cos θ.(2)将x =ρcos θ,y =ρsin θ代入y 2+x 2-2x -1=0, 得(ρsin θ)2+(ρcos θ)2-2ρcos θ-1=0, 化简,得ρ2-2ρcos θ-1=0. (3)∵ρcos 2θ2=1,∴ρ·1+cos θ2=1,即ρ+ρcos θ=2.∴x 2+y 2+x =2.化简,得y 2=-4(x -1).(4)∵ρ2cos 2θ=4,∴ρ2cos 2θ-ρ2sin 2θ=4,即x 2-y 2=4. (5)∵ρ=12-cos θ,∴2ρ-ρcos θ=1.∴2x 2+y 2-x =1.化简,得3x 2+4y 2-2x -1=0.直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.3.把极坐标方程ρcos ⎝⎛⎭⎫θ-π6=1化为直角坐标方程.解:由ρcos (θ-π6)=1得32ρcos θ+12ρsin θ=1,将ρcos θ=x ,ρsin θ=y 代入上式,得32x +y2=1, 即3x +y -2=0.利用圆的极坐标方程求圆心、半径,再利用圆心、半径解决问题,是高考命题的重点题型之一.湖南高考以填空题的形式考查了圆的极坐标方程与直角坐标方程的互化,是高考命题的一个新亮点.[考题印证](湖南高考)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.[命题立意] 本题考查将圆的极坐标方程化为直角坐标方程的方法. [解析] ∵ρ=2sin θ, ∴ρ2=2ρsin θ, ∴x 2+y 2=2y ,即曲线C 的直角坐标方程为x 2+y 2-2y =0. 答案:x 2+y 2-2y =0一、选择题1.(北京高考)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.⎝⎛⎭⎫1,π2B.⎝⎛⎭⎫1,-π2C .(1,0)D .(1,π)解析:选B 因为该圆的直角坐标方程为x 2+y 2=-2y ,即为x 2+(y +1)2=1,圆心的直角坐标方程为(0,-1),化为极坐标是(1,-π2).2.极坐标方程ρ=cos ⎝⎛⎭⎫π4-θ所表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆解析:选D ∵ρ=cos (π4-θ)=22cos θ+22sin θ,ρ2=22ρcos θ+22ρsin θ, ∴x 2+y 2=22x +22y ,这个方程表示一个圆. 3.在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点⎝⎛⎭⎫4,π6作曲线C 的切线,则切线长为( )A .4 B.7 C .22 D .2 3解析:选C ρ=4sin θ化为普通方程为x 2+(y -2)2=4,点(4,π6)化为直角坐标为(23,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为(23)2+(2-2)2-22=2 2.4.(安徽高考)在极坐标系中,点⎝⎛⎭⎫2,π3到圆ρ=2cos θ的圆心的距离为( )A .2 B. 4+π29C.1+π29D. 3解析:选D 由⎩⎪⎨⎪⎧x =ρcos θ=2cos π3=1y =ρsin θ=2sin π3=3可知,点(2,π3)的直角坐标为(1,3),圆ρ=2cos θ的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,则圆心到点(1,3)的距离为 3.二、填空题5.(江西高考)若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________.解析:∵⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,ρ2=x 2+y 2,∴ρ2=2ρsin θ+4ρcos θ⇒x 2+y 2=2y +4x ⇒x 2+y 2-4x -2y =0.答案:x 2+y 2-4x -2y =06.在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =5,则圆C 的极坐标方程为________.解析:将圆心C (2,π3)化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5. 再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5.化简,得ρ2-4ρcos (θ-π3)-1=0,此即为所求的圆C 的极坐标方程.答案:ρ2-4ρcos (θ-π3)-1=07.(天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.解析:圆ρ=4cos θ的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3.答案:2 38.已知曲线C 与曲线ρ=53cos θ-5sin θ关于极轴对称,则曲线C 的极坐标方程是________.解析:曲线ρ=53cos θ-5sin θ=10cos (θ+π6),它关于极轴对称的曲线为ρ=10cos (-θ+π6)=10cos (θ-π6).答案:ρ=10cos (θ-π6)三、解答题 9.如图,在圆心极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点轨迹的极坐标方程,并将其化为直角坐标方程.解:设M (ρ,θ)是轨迹上任意一点,连接OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ得ρ0=8cos θ0, 所以2ρ=8cos θ, 即ρ=4cos θ,故所求轨迹方程是ρ=4cos θ. 因为x =ρcos θ,y =ρsin θ, 由ρ=4cos θ得ρ2=4ρcos θ, 所以x 2+y 2=4x ,即x 2+y 2-4x =0为轨迹的直角坐标方程.10.指出极坐标方程ρ=2cos ⎝⎛⎭⎫θ+π3,ρ=2cos ⎝⎛⎭⎫θ-π3,ρ=2cos θ代表的曲线,并指出它们之间的关系.解:ρ=2cos (θ+π3)是以点(1,-π3)为圆心,半径为1的圆.ρ=2cos (θ-π3)是以点(1,π3)为圆心,半径为1的圆.ρ=2cos θ是以点(1,0)为圆心,半径为1的圆.因此曲线ρ=2cos (θ+π3),可看成曲线ρ=2cos θ绕极点顺时针旋转π3得到的曲线.ρ=2cos (θ-π3)是由曲线ρ=2cos θ绕极点逆时针旋转π3得到的曲线.11.已知半径为R 的定圆O ′外有一定点O ,|OO ′|=a (a >R ),P 为定圆O ′上的动点,以OP 为边作正三角形OPQ (O 、P 、Q 按逆时针方向排列),求Q 点的轨迹的极坐标方程.解:如图所示,以定点O 为极点,射线OO ′为极轴正向建立极坐标系, 则⊙O ′的极坐标方程是ρ2-(2a cos θ)ρ+a 2-R 2=0. 设Q (ρ,θ),则有P (ρ,θ-π3),又P 在⊙O ′上,∴ρ2-[2a cos (θ-π3)]ρ+a 2-R 2=0.即所求Q 点的轨迹方程是:最新K12教育教案试题 ρ2-2aρcos (θ-π3)+a 2-R 2=0.。
2018_2019学年高中数学第一讲相似三角形的判定及有关性质二平行线分线段成比例定理课件新人教A版选修4_1
规律方法 通过添加辅助线,构造基本 图形,借图寻找合适的等量关系,再结 合其他知识综合利用,以解决问题.
且 DE∥BC,DF∥AC,则下列等式成立的是( AD DE A.BD=BC DF DE C.AC =BC
解析
AE BF B.EC=FC EC BF D.AC=BC
AD AE BD EC ∵DE∥BC,∴BD=EC,∴AD= AE.①
BD BF 又∵DF∥AC,∴DA=FC.② EC BF EC BF EC BF 由①②知 AE=FC,即 = ,∴AC=BC. AE+EC BF+FC
a∥b∥c,直线 m 分别与 a,b,c 相交于点 A,B, 符号语言 C,直线 n 分别与 a,b,c 相交于点 D,E,F,则 DE AB EF BC=____
图形语言
作用
证明分别在两条直线上的线段成比例
2.推论
文字 平行于三角形一边的直线截其他两边(或两边
比例 语言 的延长线)所得的对应线段成段成比例定理来作
1 图,由于 AC= CB,所以 C 为线段 AB 的三等分 2 点,于是作射线 AK,然后在 AK 上依次截取 AB1 =B1B2=B2B3,连接 B3B.过 B1 作 B1C∥B3B,即得 到点 C.
跟踪演练 1
如图,D,E,F 分别在 AB,AC,BC 上, )
答案 D
要点二 例2
平行线分线段成比例定理及推论的简单应用
2018-2019学年高中数学人教A版选修4-1课件创新应用:第三讲 圆锥曲线性质的探讨
答案:一条线段或梯形
3.已知△ABC 的边 BC 在平面 α 内,A 在平面 α 上的射影为 A′(A′不在 BC 上). (1)当∠BAC=90° 时,求证:△A′BC 为钝角三角形; (2)当∠BAC=60° 时, AB、 AC 与平面 α 所成的角分别是 30° 和 45° 时,求 cos∠BA′C.
椭圆 . (1)定理 1:圆柱形物体的斜截口是_______
(2)定理 2:在空间中,取直线 l 为轴,直线 l′与 l 相交于 O 点,夹角为 α,l′围绕 l 旋转得到以 O 为顶点,l′为母线的 圆锥面,任取平面 π,若它与轴 l 的交角为 β(当 π 与 l 平行时, 记 β=0),则
椭圆 . ①β>α,平面 π 与圆锥的交线为_____
图形,叫做这个图形的平行射影.
3.正射影与平行射影的联系与区别 正射影与平行射影的投影光线与投影方向都是平行 的.因此,正射影也是平行射影,不同的是正射影的光线与 投影面垂直.而平行射影的投影光线与投影面斜交.平面图 形的正射影与原投影面积大小相等.而一般平行射影的面积 要小于原投影图形的面积.
4.两个定理
(
)
解析:正射影是平行射影的特例,则选项 A 不正确,选项 B 正确;对同一个图形,当投影线垂直于投影面时,其平行射 影就是正射影,否则不相同,则选项 C 不正确;当投影线 垂直于投影面, 且圆面平行于投影面时, 圆的平行射影是圆, 则选项 D 不正确.
最新人教A版选修4-1高中数学本讲整合1公开课课件
专题一
专题二
专题三
专题一 证明等积线段或成比例线段 利用相似三角形的性质可以得到等积式或比例式,是解决这类问 题的基本方法.解决这类问题一般可分为三步: (1)把等积式化为比例式,从而确定相关的两个三角形相似. (2)确定两个相关的三角形的方法是:把比例式横看或者竖看,将 两条线段中的相同字母消去一个,由余下的字母组成三角形. (3)设法找到证明这两个三角形相似的条件.
专题一
专题二
专题三
应用1如图,在△ABC中,∠BAC=90°,BC边的垂直平分线EM和 AB,CA的延长线分别交于D,E两点,连接AM.
求证:AM2=DM· EM.
专题一
专题二
专题三
2
提示:将 AM 即可.
������������ =DM· EM 化为 ������������
=
������������ , 只需证明△AMD∽△EMA ������������
1(2015· 湖北高考,理 15)如图,PA 是圆的切线,A 为切点,PBC 是圆的割 线,且 BC=3PB,则 = ______.
������������ ������������
证明:∵∠BAC=90°,M是BC的中点, ∴AM=CM,∴∠MAC=∠C. ∵EM⊥BC,∴∠E+∠C=90°. 又∵∠BAM+∠MAC=90°, ∴∠E=∠BAM. ∵∠EMA=∠AMD, ∴△AMD∽△EMA.
∴
������������ ������������
=
������������ .∴ ������������
专题一
专题二Βιβλιοθήκη 专题三证明:过点 C 作 CF∥AB 交 ED 于点 F.∴
高中数学人教A版选修4-1 (3)
【自主解答】 (1)AB= = =. (2)AB= = =, BA= = =.
(3)A2==, B2==.
这些计算只需利用矩阵的乘法公式即可,但对揭示矩阵乘法的性质却有着重要的意 义.(1)中尽管A、B均为非零矩阵,但它们的乘积却是零矩阵;(2)中AB≠BA;(3)中尽管B ≠C,但有AB=AC,这与一般数乘有着本质的区别;(4)中A2=A,B2=0,这里0是一个二 阶零矩阵.
在平面直角坐标系中,△OAB的顶点O(0,0),A(2,0),B(1,),求 △OAB在矩阵MN的作用变换下所得图形的面积,其中M=, N=. 【解】 MN= = =.
又因为=, =, =, 所以O,A,B三点在矩阵MN的作用变换下所得点分别为O′(0,0),A′(2,0),B′(2,- 1), 所以S△O′A′B′=×2×1=1. 故△OAB在矩阵MN的作用变换下所得图形的面积为1.
(教材第47页习题2.3第5题)已知 △ABC,A(0,0),B(2,0),C(1,2),对它先作M=对应的变换,再作N=对应的变换,试研究 变换作用后的结果,并用一个矩阵来表示这两次变换.
(2013· 南京模拟)已知曲线C1:x2+y2=1,对它先作矩阵A=对 应的变换,再作矩阵B=对应的变换,得到曲线C2:+y2=1.求实数b的值. 【命题意图】 本题主要考查图形在矩阵对应的变换下的变化特点,考查运算求解能 力.
【提示】 不一致;因为前一个对应着先TN后TM的两次几何变换,而后者对应着先TM 后TN的两次几何变换.
矩阵的乘法运算 (1)已知A=,B=,计算AB. (2)已知A=,B=,计算AB,BA. (3)已知A=,B=,计算A2、B2. 【思路探究】 利用矩阵乘法法则计算,根据矩阵乘法的几何意义说明.
对于二阶矩阵A、B来说,尽管AB、BA均有意义,但可能AB≠BA. (2)矩阵乘法满足结合律 设M、N、P均为二阶矩阵, 则一定有(MN)P=M(NP). (3)矩阵乘法不满足消去律 设A、B、C为二阶矩阵,当AB=AC时,可能B≠C.
高中数学人教A版选修4-1创新应用第一讲 三 2.相似三角形的性质 课件
2.如果两个相似三角形对应边上的中线之比为 3∶4,周长之
和是 35,那么这两个三角形的周长分别是
()
A.13 和 22
B.14 和 21
C.15 和 20
D.16 和 19
解析:由相似三角形周长之比,中线之比均等于相似比
可得.
∴周长之比ll12=34.又 l1+l2=35, ∴l1=15,l2=20,即两个三角形的周长分别为 15,20. 答案:C
[思路点拨] 此题的解法很多,其关键是添加适当的辅 助线,构造相似三角形,利用相似三角形的知识解题.
[解] 如图,设小张与教学楼的距 离至少应有 x 米,才能看到水塔.
连接 FD,由题意知,点 A 在 FD 上,过 F 作 FG⊥CD 于 G,交 AB 于 H, 则四边形 FEBH,四边形 BCGH 都是矩形.
为 12 cm,面积为 6 cm2,则这块土地的实际周长是 ________m,实际面积是________m2. 解析:这块土地的实际形状与地图上的形状是两个相似三 角形,由比例尺可知,它们的相似比为5010,则实际周长 是 12×500=6 000(cm)=60 m;实际面积是 6×5002=1 500 000(cm2)=150 m2. 答案:60 150
7.如图所示,在矩形 ABCD 中,AE⊥BD 于 E,S 矩形 ABCD=40 cm2.S△ABE∶S△DBA= 1∶5,则 AE 的长为________. 解析:因为∠BAD=90°,AE⊥BD, 所以△ABE∽△DBA. 所以 S△ABE∶S△DBA=AB2∶DB2. 因为 S△ABE∶S△DBA=1∶5, 所以 AB∶DB=1∶ 5.
A.50 cm C.60 cm
B.500 cm D.600 cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相似三角形的判定及性质1.相似三角形的判定[对应学生用书P7]1.相似三角形(1)定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比或(相似系数).(2)预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.相似三角形的判定定理(1)判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,简述为:两角对应相等,两三角形相似.(2)判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似,简述为:两边对应成比例且夹角相等,两三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似,简述为:三边对应成比例,两三角形相似.[说明] 1.在这些判定方法中,应用最多的是判定定理1,即两角对应相等,两三角形相似.因为它的条件最容易寻求.在实际证明当中,要特别注意两个三角形的公共角.判定定理2则常见于连续两次证明相似时,在证明时第二次使用此定理的情况较多.2.引理是平行线分线段成比例定理的推论的逆定理,可以判定两直线平行.3.直角三角形相似的判定定理(1)定理:①如果两个直角三角形有一个锐角对应相等,那么它们相似;②如果两个直角三角形的两条直角边对应成比例那么它们相似.(2)定理:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.[说明]对于直角三角形相似的判定,除了以上方法外,还有其他特殊的方法,如直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.在证明直角三角形相似时,要特别注意直角这一隐含条件的利用.[对应学生用书P8][例1]如图,已知在△ABC中,AB=AC,∠A=36°,BD是角平分线,证明:△ABC∽△BCD.[思路点拨]已知AB=AC,∠A=36°,所以∠ABC=∠C=72°,而BD是角平分线,因此,可以考虑使用判定定理1.[证明]∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∴∠A=∠CBD.又∵∠C=∠C,∴△ABC∽△BCD.判定两三角形相似,可按下面顺序进行:(1)有平行截线,用预备定理;(2)有一对等角时,①找另一对等角,②找夹这个角的两边对应成比例;(3)有两对应边成比例时,①找夹角相等,②找第三边对应成比例,③找一对直角.1.如图,BC∥FG∥ED,若每两个三角形相似,构成一组相似三角形,那么图中相似的三角形的组数是()A.1B.2C.3 D.4解析:△AED 与△AFG 相似,△AED 与△ABC 相似,△AFG 与△ABC 相似. 答案:C2.如图,O 是△ABC 内任一点,D ,E ,F 分别是OA ,OB ,OC 的中点,求证:△DEF ∽△ABC .证明:∵D ,E ,F 分别是OA ,OB ,OC 的中点, ∴DE =12AB ,EF =12BC ,FD =12CA .∴DE AB =EF BC =FD CA =12. ∴△DEF ∽△ABC .3.如图,D 在AB 上,且DE ∥BC 交AC 于E ,F 在AD 上,且AD 2=AF ·AB ,求证:△AEF ∽△ACD .证明:∵DE ∥BC ,∴AC AE =AB AD .①∵AD 2=AF ·AB ,∴AD AF =ABAD .②由①②两式得AC AE =ADAF ,又∠A 为公共角,∴△AEF ∽△ACD .[例2] ,Q 是CD 的中点,求证:△ADQ ∽△QCP .[思路点拨] 由于这两个三角形都是直角三角形,且已知条件是线段间的关系,故考虑证明对应边成比例,即只需证明AD QC =DQCP即可.[证明] 在正方形ABCD 中, ∵Q 是CD 的中点,∴ADQC=2. ∵BP PC =3,∴BC PC =4. 又BC =2DQ ,∴DQ CP =2.在△ADQ 和△QCP 中, AD QC =DQCP =2,∠C =∠D =90°, ∴△ADQ ∽△QCP .直角三角形相似的判定方法:(1)相似三角形的判定定理1,2,3都适用于直角三角形相似的判定.(2)两个直角三角形,已经具备直角对应相等,只要再证明有一对锐角相等,或夹直角的两边对应成比例,就可以证明这两个直角三角形相似.4.如图,∠C =90°,D 是AC 上的一点,DE ⊥AB 于E ,求证:△ADE ∽△ABC .证明:∵DE ⊥AB , ∴∠DEA =90°, ∵∠C =90°, ∴∠DEA =∠C . ∵∠A =∠A . ∴△ADE ∽△ABC5.如图,BD ,CE 是△ABC 的高,BD ,CE 交于F ,写出图中所有与△ACE 相似的三角形.解:∵∠ACE 为公共角,由直角三角形判定定理1,知Rt △FDC ∽Rt △ACE . 又∠A 为公共角,∴Rt △ABD ∽Rt △ACE . 又∵∠A +∠ACE =90°,∠A +∠ABD =90°, ∴∠ACE =∠ABD .∴Rt △FBE ∽Rt △ACE .故共有三个直角三角形,即Rt △ABD ,Rt △FBE , Rt △FCD 与Rt △ACE 相似.[例3] 如图,D 为△ABC 的边AB 上一点,过D 点作DE ∥BC ,DF ∥AC ,AF 交DE 于G ,BE 交DF 于H ,连接GH .求证:GH ∥AB .[思路点拨] 根据此图形的特点可先证比例式GE DE =EHEB 成立,再证△EGH ∽△EDB ,由相似三角形的定义得∠EHG =∠EBD 即可.[证明] ∵DE ∥BC , ∴GE FC =AG AF =DG FB ,即GE DG =CF FB . 又∵DF ∥AC ,∴EH HB =CF FB .∴GE DG =EH HB .∴GE ED =EH EB . 又∠GEH =∠DEB , ∴△EGH ∽△EDB . ∴∠EHG =∠EBD . ∴GH ∥AB .不仅可以由平行线得到比例式,也可以根据比例式的成立确定两直线的平行关系.有时用它来证明角与角之间的数量关系,线段之间的数量关系.6.如图,△ABC 的三边长是2、6、7,△DEF 的三边长是4、12、14,且△ABC 与△DEF 相似,则∠A =__________,∠B =__________,∠C =________.AB ( )=( )EF =AC ( )=________.解析:∠A =∠D ,∠B =∠E ,∠C =F . AB DE =BC EF =AC DF =12. 答案:∠D ∠E ∠F DE BC DF 127.如图,四边形ABCD 是平行四边形,点F 在BA 的延长线上,连接CF 交AD 于点E .(1)求证:△CDE ∽△F AE ;(2)当E 是AD 的中点,且BC =2CD 时, 求证:∠F =∠BCF .证明:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD .又∵点F 在BA 的延长线上, ∴∠DCF =∠F ,∠D =∠F AE . ∴△CDE ∽△F AE .(2)∵E 是AD 的中点,∴AE =DE . 由△CDE ∽△F AE ,得CD F A =DEAE .∴CD =F A .∴AB =CD =AF .∴BF =2CD .又∵BC =2CD ,∴BC =BF .∴∠F =∠BCF .8.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,点E 是AC 的中点,ED 的延长线交AB 的延长线于F .求证:AB AC =DFAF. 证明:∵E 是Rt △ADC 斜边AC 上的中点, ∴AE =EC =ED . ∴∠EDC =∠C =∠BDF .数学又∵AD ⊥BC 且∠BAC =90°, ∴∠BAD =∠C . ∴∠BAD =∠BDF .又∠F =∠F ,∴△DBF ∽△ADF , ∴DB AD =DF AF. 又在Rt △ABD 与Rt △CBA 中,AB AC =DBAD ,∴AB AC =DF AF.[对应学生用书P10]一、选择题1.如图所示,AD ∥EF ∥BC ,GH ∥AB ,则图中与△BOC 相似的三角形共有( )A .1个B .2个C .3个D .4个解析:根据相似三角形的判定定理可得: △OEF ∽△OBC (∵EF ∥BC ); △CHG ∽△CBO (∵HG ∥OB ); △OAD ∽△OBC (∵AD ∥BC ).故与△BOC 相似的三角形共有3个. 答案:C2.下列判断中,不.正确的是( ) A .两直角边分别是3.5,2和2.8,1.6的两个直角三角形相似B .斜边和一直角边长分别是25,4和5,2的两个直角三角形相似C .两条边长分别是7,4和14,8的两个直角三角形相似D .两个等腰直角三角形相似解析:由直角三角形相似判定定理知A 、B 、D 正确. 答案:C3.如图,要使△ACD ∽△BCA ,下列各式中必须成立的是( )A.AC AB =AD BCB.AD CD =AC BC C .AC 2=CD ·CB D .CD 2=AC ·AB解析:∠C =∠C ,只有AC CD =CBAC ,即AC 2=CD ·CB 时,才能使△ACD ∽△BCA .答案:C4.如图,在等边三角形ABC 中,E 为AB 中点,点D 在AC 上,使得AD AC =13,则有( ) A .△AED ∽△BED B .△AED ∽△CBD C .△AED ∽△ABD D .△BAD ∽△BCD解析:因为∠A =∠C ,BC AE =CDAD =2,所以△AED ∽△CBD . 答案:B 二、填空题5.如图,△ABC 中,DE ∥BC ,GF ∥AB ,DE ,GF 交于点O ,则图中与△ABC 相似的三角形共有________个,它们分别是____________________.解析:与△ABC 相似的有△GFC ,△OGE ,△ADE . 答案:3 △GFC ,△OGE ,△ADE6.如图所示,∠ACB =90°,CD ⊥AB 于点D ,BC =3,AC =4,则AD =________,BD =________.解析:由题设可求得AB =5,∵Rt △ABC ∽Rt △ACD , ∴AB AC =AC AD .∴AD =AC 2AB =165. 又∵Rt △ABC ∽Rt △CBD , ∴AB CB =BC BD .∴BD =BC 2AB =95. 答案:165 957.已知:在△ABC 中,AD 为∠BAC 的平分线,AD 的垂直平分线EF 与AD 交于点E ,与BC 的延长线交于点F ,若CF =4,BC =5,则DF =________.解析:连接AF . ∵EF ⊥AD ,AE =ED , ∴AF =DF , ∠F AD =∠FDA .又∵∠F AD =∠DAC +∠CAF , ∠FDA =∠BAD +∠B , 且∠DAC =∠BAD ,∴∠CAF =∠B .而∠CF A =∠AFB , ∴△AFC ∽△BF A . ∴AF CF =BFAF. ∴AF 2=CF ·BF =4×(4+5)=36. ∴AF =6,即DF =6. 答案:6 三、解答题8.如图,已知△ABC 中,AB =AC ,D 是AB 的中点,E 在AB 的延长线上,且BE =AB ,求证:△ADC ∽△ACE .证明:∵D 是AB 的中点,∴AD AB =12.∵AB =AC ,∴AD AC =12.∵ BE =AB ,∴AB AE =12.又AB =AC ,∴AC AE =12.∴AD AC =AC AE. 又∠A 为公共角,∴△ADC ∽△ACE .9.如图,直线EF 交AB 、AC 于点F 、E ,交BC 的延长线于点D ,AC ⊥BC ,且AB ·CD =DE ·AC .求证:AE ·CE =DE ·EF . 证明:∵AB ·CD =DE ·AC ∴AB DE =ACCD . ∵AC ⊥BC ,∴∠ACB =∠DCE =90°. ∴△ACB ∽△DCE . ∴∠A =∠D .又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ∴AE DE =EF CE . ∴AE ·CE =DE ·EF .10.如图所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AE 是∠CAB 的角平分线,CD 与AE 相交于点F ,EG ⊥AB 于G .求证:EG 2=FD ·EB .证明:因为∠ACE =90°,CD ⊥AB ,所以∠CAE +∠AEC =90°,∠F AD +∠AFD =90°. 因为∠AFD =∠CFE ,所以∠F AD +∠CFE =90°. 又因为∠CAE =∠F AD , 所以∠AEC =∠CFE . 所以CF =CE .因为AE 是∠CAB 的平分线,EG ⊥AB ,EC ⊥AC , 所以EC =EG ,CF =EG .因为∠B +∠CAB =90°,∠ACF +∠CAB =90°, 所以∠ACF =∠B .因为∠CAF =∠BAE , 所以△AFC ∽△AEB ,AF AE =CF EB .因为CD ⊥AB ,EG ⊥AB , 所以Rt △ADF ∽Rt △AGE . 所以AF AE =FD EG ,CF EB =FD EG.所以CF ·EG =FD ·EB ,EG 2=FD ·EB .2.相似三角形的性质[对应学生用书P11]1.相似三角形的性质定理相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 相似三角形周长的比等于相似比. 相似三角形面积的比等于相似比的平方.2.两个相似三角形的外接圆的直径比、周长比、面积比与相似比的关系相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方. [说明] 相似三角形中的“对应线段”不仅仅指对应边、对应中线、角平分线和高,应包括一切“对应点”连接的线段;同时也可推演到对应的内切圆、外接圆的半径.[对应学生用书P11][例1] 已知如图,△ABC 中,CE ⊥AB 于E ,BF ⊥AC 于F ,若S△ABC =36 cm 2,S △AEF =4 cm 2,求sin A 的值.[思路点拨] 由题目条件证明△AEC ∽△AFB ,得AE ∶AF =AC ∶AB ,由此推知△AEF ∽△ACB ,进而求出线段EC 与AC 的比值.[解] ∵CE ⊥AB 于E ,BF ⊥AC 于F , ∴∠AEC =∠AFB =90°. 又∵∠A =∠A ,∴△AEC ∽△AFB . ∴AE AF =AC AB. 又∵∠A =∠A ,∴△AEF ∽△ACB . ∴(AE AC )2=S △AEF S △ACB =436. ∴AE AC =26=13. 设AE =k , 则AC =3k , ∴EC =22k . ∴sin A =EC AC =223.利用相似三角形的性质进行有关的计算往往与相似三角形对应边的比及对应角相等有关,解决此类问题,要善于联想,变换比例式,从而达到目的.1.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点.AB =8 cm ,AC =10 cm ,若△ADE 和△ABC 相似,且S △ABC ∶S △ADE =4∶1,则AE =________cm.解析:因为△ADE ∽△ABC ,且S △ABC ∶S △ADE =4∶1,所以其相似比为2∶1,即AE AC =12或AEAB =12,所以AE =5或4(cm). 答案:5或42.如图,在▱ABCD 中,AE ∶EB =2∶3. (1)求△AEF 与△CDF 周长的比; (2)若S △AEF =8,求S △CDF .解:(1)∵四边形ABCD 是平行四边形, ∴AB ∥CD 且AB =CD .∵AE EB =23,∴AE AE +EB =22+3,即AE AB =25.∴AE CD =25.又由AB ∥CD 知△AEF ∽△CDF , ∴△AEF 的周长∶△CDF 的周长=2∶5. (2)S △AEF ∶S △CDF =4∶25, 又S △AEF =8,∴S △CDF =50.[例2] 如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷.经过了解,教学楼、水塔的高分别是20米和30米,它们之间的距离为30米,小张身高为1.6米.小张要想看到水塔,他与教学楼之间的距离至少应有多少米?[思路点拨] 此题的解法很多,其关键是添加适当的辅助线,构造相似三角形,利用相似三角形的知识解题.[解] 如图,设小张与教学楼的距离至少应有x 米,才能看到水塔. 连接FD ,由题意知,点A 在FD 上,过F 作FG ⊥CD 于G ,交AB 于H ,则四边形FEBH ,四边形BCGH 都是矩形.∵AB ∥CD ,∴△AFH ∽△DFG . ∴AH ∶DG =FH ∶FG .即(20-1.6)∶(30-1.6)=x ∶(x +30), 解得x =55.2(米).故小张与教学楼的距离至少应有55.2米,才能看到水塔.此类问题是利用数学模型解实际问题,关键在于认真分析题意,将实际问题转化成数学问题,构造相似三角形求解.3.如图,△ABC 是一块锐角三角形余料,边BC =200 mm ,高AD =300 mm ,要把它加工成长是宽的2倍的矩形零件,使矩形较短的边在BC 上,其余两个顶点分别在AB 、AC 上,求这个矩形零件的边长.解:设矩形EFGH 为加工成的矩形零件,边FG 在BC 上,则点E 、H 分别在AB 、AC 上,△ABC 的高AD 与边EH 相交于点P ,设矩形的边EH 的长为x mm.因为EH ∥BC ,所以△AEH ∽△ABC . 所以AP AD =EH BC .所以300-2x 300=x 200,解得x =6007(mm),2x =1 2007(mm).答:加工成的矩形零件的边长分别为6007 mm 和1 2007mm.4.已知一个三角形的三边长分别为3 cm,4 cm,5 cm ,和它相似的另一个三角形的最长边为12 cm ,求另一个三角形内切圆和外接圆的面积.解:设边长为3 cm,4 cm,5 cm 的三角形的内切圆半径为r ,外接圆半径为R ,因为该三角形为直角三角形,所以R =52,且12(3+4+5)r =12×3×4,即r =1.∴S 内切圆=π(cm 2),S 外接圆=π·(52)2=25π4(cm 2).又两三角形的相似比为512,∴S ′内切圆=(125)2S 内切圆=144π25(cm 2),S ′外接圆=(125)2S 外接圆=36π(cm 2).[对应学生用书P12]一、选择题1.如图,△ABC 中,DE ∥BC ,若AE ∶EC =1∶2,且AD =4 cm ,则DB 等于( )A .2 cmB .6 cmC .4 cmD .8 cm解析:由DE ∥BC , 得△ADE ∽△ABC , ∴AD AB =AE AC . ∴AD DB =AE EC =12. ∴DB =4×2=8(cm). 答案:D2.如果两个相似三角形对应边上的中线之比为3∶4,周长之和是35,那么这两个三角形的周长分别是( )A .13和22B .14和21C .15和20D .16和19 解析:由相似三角形周长之比,中线之比均等于相似比可得. ∴周长之比l 1l 2=34.又l 1+l 2=35,∴l 1=15,l 2=20,即两个三角形的周长分别为15,20. 答案:C3.如图所示,在▱ABCD 中,AB =10,AD =6,E 是AD 的中点,在AB 上取一点F ,使△CBF ∽△CDE ,则BF 的长是( )A .5B .8.2C .6.4D .1.8解析:∵△CBF ∽△CDE ,∴BF DE =CBCD .∴BF =DE ·CB CD =3×610=1.8.答案:D4.如图,是一个简单的幻灯机,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm ,幻灯片到屏幕的距离是1.5 m ,幻灯片上小树的高度是10 cm ,则屏幕上小树的高度是( )A .50 cmB .500 cmC .60 cmD .600 cm解析:图中的两个三角形相似.设屏幕上小树的高度为x cm ,根据相似三角形对应高的比等于相似比,得x 10=30+15030,解得x =60 cm.答案:C 二、填空题5.在比例尺为1∶500的地图上,测得一块三角形土地的周长为12 cm ,面积为6 cm 2,则这块土地的实际周长是________m ,实际面积是________m 2.解析:这块土地的实际形状与地图上的形状是两个相似三角形,由比例尺可知,它们的相似比为1500,则实际周长是12×500=6 000(cm)=60 m ;实际面积是6×5002=1 500 000(cm 2)=150 m 2.答案:60 1506.如图,在△ABC 中,D 为AC 边上的中点,AE ∥BC ,ED 交AB 于G ,交BC 延长线于F ,若BG ∶GA =3∶1,BC =10,则AE 的长为________.解析:∵AE ∥BC ,∴△BGF ∽△AGE . ∴BF ∶AE =BG ∶GA =3∶1. ∵D 为AC 中点,∴AE CF =ADDC=1. ∴AE =CF .∴BC ∶AE =2∶1.∵BC =10,∴AE =5. 答案:57.如图所示,在矩形ABCD 中,AE ⊥BD 于E ,S矩形ABCD =40 cm 2.S△ABE∶S △DBA =1∶5,则AE 的长为________. 解析:因为∠BAD =90°,AE ⊥BD , 所以△ABE ∽△DBA .所以S △ABE ∶S △DBA =AB 2∶DB 2. 因为S △ABE ∶S △DBA =1∶5, 所以AB ∶DB =1∶ 5. 设AB =k cm ,DB =5k cm , 则AD =2k cm.因为S 矩形ABCD =40 cm 2,所以k ·2k =40,所以k =25(cm). 所以BD =5k =10 (cm).AD =45(cm). 又因为S △ABD =12BD ·AE =20,所以12·10·AE =20.所以AE =4(cm). 答案:4 cm 三、解答题8.如图,已知△ABC 中,∠A =90°,AB =AC ,D 为AB 中点,E 是AC 上的点,BE 、CD 交于M .若AC =3AE ,求∠EMC 的度数.解:如图,作EF ⊥BC 于F ,数学设AB =AC =3,则AD =32,BC =32,CE =2,EF =FC = 2. ∴BF =BC -FC =2 2.∴EF ∶BF =2∶22=1∶2=AD ∶AC . ∴△FEB ∽△ADC .∴∠2=∠1. ∵∠EMC =∠2+∠MCB ,∴∠EMC =∠1+∠MCB =∠ACB =45°.9.如图,▱ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积. 解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD . ∴∠ABF =∠E . ∴△ABF ∽△CEB .(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴△DEF ∽△CEB ,△DEF ∽△ABF . ∵DE =12CD ,∴S △DEF S △CEB =(DE EC )2=19,S △DEF S △ABF =(DE AB)2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8, ∴S 四边形BCDF =S △BCE -S △DEF =16.数学∴S ▱ABCD =S 四边形BCDF +S △ABF =16+8=24.10.如图所示,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点P沿AB 边从点A 开始向点B 以2 cm /s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1 cm/s 的速度移动,如果P 、Q 同时出发,用t 秒表示移动的时间(0≤t ≤6),那么:(1)当t 为何值时,△QAP 为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果无关的结论. (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似? 解:(1)由题意可知:AQ =6-t (cm),AP =2t (cm). 若△QAP 为等腰直角三角形, 则AQ =AP ,即t =2(s).(2)S 四边形QAPC =S 矩形ABCD -S △DQC -S △PBC =12×6-12×12×t -12×6×(12-2t )=72-6t -36+6t =36(cm 2), 结论:无论P 、Q 运动到何处, S 四边形QAPC 都不变,为36 cm 2. (3)①△QAP ∽△ABC , ∴AQ AB =AP BC .∴6-t 12=2t6. ∴t =1.2 s. ②△QAP ∽△CBA ,∴AQ BC =AP AB .∴6-t 6=2t 12.∴t =3 s. 即t 为1.2 s 或3 s 时,以Q 、A 、P 为顶点的三角形与△ABC 相似.。