高考数学文一轮分层演练:第11章复数、算法、推理与证明章末总结

合集下载

近年高考数学一轮复习第11章算法、复数、推理与证明11.2数系的扩充与复数的引入课后作业文(202

近年高考数学一轮复习第11章算法、复数、推理与证明11.2数系的扩充与复数的引入课后作业文(202

2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入课后作业文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入课后作业文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.2 数系的扩充与复数的引入课后作业文的全部内容。

11.2 数系的扩充与复数的引入[基础送分 提速狂刷练]一、选择题1.(2018·湖南长沙四县联考)i 是虚数单位,若复数z 满足z i =-1+i ,则复数z 的实部与虚部的和是( )A .0B .1C .2D .3 答案 C解析 复数z 满足z i =-1+i,可得z =-1+ii=错误!=1+i 。

故复数z 的实部与虚部的和是1+1=2,故选C.2.(2018·湖北优质高中联考)已知复数z =1+i (i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 答案 B解析 错误!-z 2=错误!-(1+i )2=错误!-2i =1-i -2i =1-3i,其共轭复数是1+3i ,故选B 。

3.(2017·河南洛阳模拟)设复数z 满足错误!=|1-i|+i (i 为虚数单位),则复数z =( )A 。

错误!-i B.错误!+i C .1 D .-1-2i 答案 A解析 复数z 满足错误!=|1-i |+i =错误!+i,则复数z =错误!-i 。

2019高考数学文一轮分层演练第11章复数、算法、推理与证明第3讲 Word版含解析

2019高考数学文一轮分层演练第11章复数、算法、推理与证明第3讲 Word版含解析

[学生用书(单独成册)]一、选择题.观察下列各式:+=,+=,+=,+=,+=,…,则+=( )....解析:选.法一:令=+,则=,=,=,=,…,得+=++,从而=,=,=,=,=.法二:由+=,+=,得=-,代入后三个等式中符合,则+=(+)-=..某种树的分枝生长规律如图所示,第年到第年的分枝数分别为,,,,,则预计第年树的分枝数为( )....解析:选.因为=+,=+,=+,即从第三项起每一项都等于前两项的和,所以第年树的分枝数为+=..已知“整数对”按如下规律排成一列:(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),…,则第个“整数对”是( ).(,).(,).(,).(,)解析:选.依题意,把“整数对”的和相同的分为一组,不难得知第组中每个“整数对”的和均为+,且第组共有个“整数对”,这样的前组一共有个“整数对”,注意到<<,因此第个“整数对”处于第组(每个“整数对”的和为的组)的第个位置,结合题意可知每个“整数对”的和为的组中的各对数依次为:(,),(,),(,),(,),(,),…,因此第个“整数对”是(,)..如图,在梯形中,∥,=,=(>).若∥,到与的距离之比为∶,则可推算出:=,用类比的方法,推想出下面问题的结果.在上面的梯形中,分别延长梯形的两腰和交于点,设△,△的面积分别为,,则△的面积与,的关系是( ).=.=.=.=解析:选.在平面几何中类比几何性质时,一般是由平面几何点的性质类比推理线的性质;由平面几何中线段的性质类比推理面积的性质.故由=类比到关于△的面积与,的关系是=,故选..学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ).人.人.人.人解析:选.假设满足条件的学生有位及位以上,设其中位同学分别为甲、乙、丙、丁,则位同学中必有两个人语文成绩一样,且这两个人数学成绩不一样,那么这两个人中一个人的成绩比另一个人好,故满足条件的学生不能超过人.当有位学生时,用,,表示“优秀”“合格”“不合格”,则满足题意的有,,,所以最多有人..已知数列{}:,,,,,,,,,,…,依它的前项的规律,则+的值为( )....解析:选.通过将数列的前项分组得到第一组有一个数:,分子、分母之和为;第二组有两个数:,,分子、分母之和为;第三组有三个数:,,,分子、分母之和为;第四组有四个数,以此类推,,分别是第十四组的第个数和第个数,分子、分母之和为,所以=,=.故+=.二、填空题.甲、乙、丙三位同学被问到是否去过,,三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.。

高考数学(文)一轮复习文档:第十一章 复数、算法、推理与证明 第1讲数系的扩充与复数的引入 Word版含答

高考数学(文)一轮复习文档:第十一章 复数、算法、推理与证明 第1讲数系的扩充与复数的引入 Word版含答

第1讲 数系的扩充与复数的引入, )1.复数的有关概念 (1)复数的定义形如a +b i(a ,b ∈R )的数叫做复数,其中实部是a ,虚部是b . (2)复数的分类复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数(a =0,b ≠0),非纯虚数(a ≠0,b ≠0).(3)复数相等a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).(4)共轭复数a +b i 与c +d i 共轭⇔a =c 且b =-d (a ,b ,c ,d ∈R ).(5)复数的模向量OZ →的模叫做复数z =a +b i 的模,记作|z |或|a +b i|,即|z |=|a +b i|=r =a 2+b 2(r ≥0,a 、b ∈R ).2.复数的几何意义(1)复数z =a +b i ←――→一一对应复平面内的点Z (a ,b )(a ,b ∈R ). (2)复数z =a +b i(a ,b ∈R )←――→一一对应平面向量OZ →. 3.复数的运算(1)复数的加、减 、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ;③乘法:z 1·z 2=(a +b i )·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b ic +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).1.辨明三个易误点 (1)两个虚数不能比较大小.(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. (3)注意不能把实数集中的所有运算法则和运算性质照搬到复数集中来.例如,若z 1,z 2∈C ,z 21+z 22=0,就不能推出z 1=z 2=0;z 2<0在复数范围内有可能成立.2.复数的运算技巧(1)设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.3.复数代数运算中常用的几个结论在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i 1+i =-i ;(2)-b +a i =i(a +b i); (3)i 4n=1,i4n +1=i ,i4n +2=-1,i4n +3=-i ,i 4n +i4n +1+i4n +2+i4n +3=0,n ∈N *.1.教材习题改编设m ∈R ,复数z =m 2-1+(m +1)i 表示纯虚数,则m 的值为( ) A .1 B .-1 C .±1D .0A 由题意得⎩⎪⎨⎪⎧m 2-1=0,m +1≠0,即⎩⎪⎨⎪⎧m =±1m ≠-1. 所以m =1.故选A.2.教材习题改编设x ,y ∈R ,若(x +y )+(y -1)i =(2x +3y )+(2y +1)i ,则复数z =x +y i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 D 由题意得⎩⎪⎨⎪⎧x +y =2x +3y ,y -1=2y +1,所以x =4,y =-2,所以复数z =4-2i 位于第四象限,故选D. 3.教材习题改编复数-5i -2的共轭复数为( )A .2+iB .2-iC .-2+iD .-2-iB-5i -2=52-i =5(2+i )(2-i )(2+i )=5(2+i )5=2+i. 因为2+i 的共轭复数为2-i ,故选B.4.(2015·高考全国卷Ⅰ)设复数z 满足1+z 1-z =i ,则|z |=( )A .1B . 2C . 3D .2A 由1+z 1-z =i ,得z =-1+i 1+i =(-1+i )(1-i )2=2i 2=i ,所以|z |=|i|=1,故选A.5.教材习题改编已知(1+2i)z =4+3i ,则z =________. 因为z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i ,所以z =2+i. 2+i复数的有关概念(1)(2016·高考全国卷乙)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( )A .-3B .-2C .2D .3(2)若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3D .-1,4(3)若复数z 满足z (1+i)=2i(i 为虚数单位),则|z |=( ) A .1 B .2 C . 2D . 3【解析】 (1)(1+2i)(a +i)=(a -2)+(2a +1)i ,由已知条件,得a -2=2a +1,解得a =-3.故选A.(2)(1+i)+(2-3i)=3-2i =a +b i ,所以a =3,b =-2. (3)z (1+i)=2i ⇒z =2i 1+i =2i (1-i )(1+i )(1-i )=2+2i 2=1+i.所以|z |=12+12= 2. 【答案】 (1)A (2)A (3)C解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.1.(2017·九江第一次统考)设复数z =2-i1+i ,则z 的共轭复数为( )A .12-32i B .12+32iC .1-3iD .1+3iB z =2+i 1-i =(2+i )(1+i )2=12+32i.2.(2017·郑州第一次质量预测)设i 是虚数单位,若复数m +103+i (m ∈R )是纯虚数,则m 的值为( )A .-3B .-1C .1D .3A 依题意得m +103+i=(m +3)-i 是纯虚数,于是有m +3=0,m =-3.复数的几何意义(1)(2017·唐山模拟)复数z =3+i1+i+3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限(2)在复平面内与复数z =5i1+2i 所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1+2iB .1-2iC .-2+iD .2+i(3)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则|z 1+z 2|=( )A .2B .3C .2 2D .3 3【解析】 (1)z =3+i 1+i +3i =(3+i )(1-i )(1+i )(1-i )+3i =4-2i2+3i =2-i +3i =2+2i ,故z 在复平面内对应的点在第一象限,故选A.(2)依题意得,复数z =5i (1-2i )(1+2i )(1-2i )=i(1-2i)=2+i ,其对应的点的坐标是(2,1),因此点A (-2,1)对应的复数为-2+i.(3)由题图可知,z 1=-2-i ,z 2=i ,则z 1+z 2=-2,所以|z 1+z 2|=2. 【答案】 (1)A (2)C (3)A复数的几何意义及应用(1)复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.1.(2017·长春质量检测)复数1-i2-i 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限A 因为1-i 2-i =35-15i ,所以其共轭复数为35+15i ,在第一象限.2.(2016·高考全国卷甲)已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)A 由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1), 所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1,故选A.复数代数形式的运算(高频考点)复数代数形式的四则运算是每年高考的必考内容,题型为选择题或填空题,难度很小. 高考对复数代数形式的运算的考查主要有以下三个命题角度: (1)复数的乘法运算; (2)复数的除法运算;(3)利用复数相等求参数.(1)(2016·高考北京卷)复数1+2i2-i =( )A .iB .1+iC .-iD .1-i(2)(2016·高考全国卷丙)若z =1+2i ,则4iz z -1=( )A .1B .-1C .iD .-i(3)已知i 是虚数单位,则⎝ ⎛⎭⎪⎫21-i 2 016+⎝ ⎛⎭⎪⎫1+i 1-i 6=________. 【解析】 (1)1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i5=i.(2)4iz z -1=4i(1+2i )(1-2i )-1=i. (3)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 21 008+⎝ ⎛⎭⎪⎫1+i 1-i 6=⎝ ⎛⎭⎪⎫2-2i 1 008+i 6=i 1 008+i 6=i 4×252+i 4+2=1+i 2=0.【答案】 (1)A (2)C (3)0复数代数形式运算问题的解题策略(1)复数的乘法:复数的乘法类似于多项式的乘法运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.角度一 复数的乘法运算1.已知i 是虚数单位,则(2+i)(3+i)=( ) A .5-5i B .7-5i C .5+5iD .7+5iC (2+i)(3+i)=6+5i +i 2=5+5i ,故选C.角度二 复数的除法运算 2.计算下列各式的值:(1)⎝ ⎛⎭⎪⎫2i 1+i 2;(2)2+4i (1+i )2;(3)1+i 1-i +i 3. (1)⎝ ⎛⎭⎪⎫2i 1+i 2=4i2(1+i )2=-42i =2i. (2)2+4i (1+i )2=2+4i 2i=2-i. (3)1+i 1-i +i 3=(1+i )2(1-i )(1+i )+i 3=2i 2+i 3=i -i =0.角度三 利用复数相等求参数3.(2015·高考全国卷Ⅱ)若a 为实数,且2+a i 1+i =3+i ,则a =( )A .-4B .-3C .3D .4D 因为 2+a i1+i=3+i ,所以2+a i =(3+i)(1+i)=2+4i ,所以a =4,故选D., )1.(2017·安徽皖南八校联考)复数1(1+i )i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限C1(1+i )i =1-1+i =-1-i (-1+i )(-1-i )=-12-12i ,其在复平面上对应的点位于第三象限.2.(2017·安徽安庆模拟)设i 是虚数单位,如果复数a +i 2-i的实部与虚部相等,那么实数a 的值为( )A .13B .-13C .3D .-3Ca +i 2-i=2a -1+(a +2)i5,由题意知2a -1=a +2,解得a =3.3.(2017·广东肇庆模拟)若复数z 满足(1+2i)z =1-i ,则|z |=( ) A .25 B .35 C .105D .10C z =1-i 1+2i =-1-3i 5⇒|z |=105.4.(2017·福建基地综合测试)已知x1+i =1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( )A .1+2iB .1-2iC .2+iD .2-iD x 1+i =12(x -x i)=1-y i ,所以⎩⎪⎨⎪⎧12x =1,-12x =-y ,解得x =2,y =1,故选D. 5.(2017·安徽江南十校联考)若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A .2-12B .2-1C .1D .2+12A 由z (1-i)=|1-i|+i ,得z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=2-12+2+12i ,故z 的实部为2-12,故选A. 6.(2017·商丘模拟)已知⎝ ⎛⎭⎪⎫1+2i 2=a +b i(a ,b ∈R ,i 为虚数单位),则a +b =( )A .-7B .7C .-4D .4A 因为⎝ ⎛⎭⎪⎫1+2i 2=1+4i +4i 2=-3-4i , 所以-3-4i =a +b i ,则a =-3,b =-4, 所以a +b =-7,故选A.7.已知t ∈R ,i 为虚数单位,复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则t 等于________.因为z 1=3+4i ,z 2=t +i ,所以z 1·z 2=(3t -4)+(4t +3)i ,又z 1·z 2是实数,所以4t +3=0,所以t =-34. -348.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z |=________. 因为z =-1-i ,所以z =-1+i ,所以(1-z )·z =(2+i)(-1+i)=-3+i ,所以|(1-z )·z |=|-3+i|=10.109.已知i 是虚数单位,m ,n ∈R ,且m (1+i)=1+n i ,则⎝ ⎛⎭⎪⎫m +n i m -n i 2=________. 由m (1+i)=1+n i ,得m +m i =1+n i ,即m =n =1,所以⎝ ⎛⎭⎪⎫m +n i m -n i 2=⎝ ⎛⎭⎪⎫1+i 1-i 2=i 2=-1.-110.已知复数z =4+2i (1+i )2(i 为虚数单位)在复平面内对应的点在直线x -2y +m =0上,则实数m =________. z =4+2i (1+i )2=4+2i 2i =(4+2i )i 2i 2=1-2i ,复数z 在复平面内对应的点的坐标为(1,-2),将其代入x -2y +m =0,得m =-5.-511.计算:(1)(1+2i )2+3(1-i )2+i; (2)1-i (1+i )2+1+i (1-i )2; (3)1-3i (3+i )2. (1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i 2+i =i (2-i )5=15+25i. (2)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. (3)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4 =-14-34i.12.定义一种运算如下:⎣⎢⎡⎦⎥⎤x 1x 2 y 1y 2=x 1y 2-x 2y 1,则复数z =⎣⎢⎡⎦⎥⎤3+i 3-i -1i (i 是虚数单位)的共轭复数是________________________________________________________.z =(3+i)i -(3-i)(-1)=3i +i 2+3-i =(3-1)i +3-1, 所以z =(3-1)+(1-3)i.(3-1)+(1-3)i13.复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值.z 1+z 2=3a +5+(a 2-10)i +21-a +(2a -5)i =⎝⎛⎭⎪⎫3a +5+21-a +i =a -13(a +5)(a -1)+(a 2+2a -15)i. 因为z 1+z 2是实数,所以a 2+2a -15=0,解得a =-5或a =3.因为a +5≠0,所以a ≠-5,故a =3.14.已知复数z 的共轭复数是z ,且满足z ·z +2i z =9+2i.求z .设z =a +b i(a ,b ∈R ),则z =a -b i.因为z ·z +2i z =9+2i ,所以(a +b i)(a -b i)+2i(a +b i)=9+2i , 即a 2+b 2-2b +2a i =9+2i ,所以⎩⎪⎨⎪⎧a 2+b 2-2b =9,①2a =2.② 由②得a =1,代入①,得b 2-2b -8=0. 解得b =-2或b =4.所以z =1-2i 或z =1+4i.。

高考数学一轮复习第11章算法复数推理与证明11.5数学归纳法课后作业理

高考数学一轮复习第11章算法复数推理与证明11.5数学归纳法课后作业理

高考数学一轮复习第 11 章算法复数推理与证明 11.5 数学 归纳法课后作业理 0521271[基础送分 提速狂刷练]一、选择题 1.(2016·安庆高三月考)用数学归纳法证明 2n>n2(n≥5,n∈N*),第一步应验证( )A.n=4 B.n=5 C.n=6 D.n=7答案 B解析 根据数学归纳法的步骤,首先要验证 n 取第一个值时命题成立,又 n≥5,故第一步验证 n=5.故选 B. 2.用数学归纳法证明 12+22+…+(n-1)2+n2+(n-1)2+…+22+12=n2n2+1 3时,由 n=k 的假设到证明 n=k+1 时,等式左边应添加的式子是( ) A.(k+1)2+2k2 B.(k+1)2+k2 C.(k+1)2D.13(k+1)[2(k+1)2+1]答案 B 解析 由 n=k 到 n=k+1 时,左边增加(k+1)2+k2.故选 B. 3.(2018·沈阳调研)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被 9 整除”,利用归纳法假设证明 n=k+1 时,只需展开( A.(k+3)3 C.(k+1)3) B.(k+2)3 D.(k+1)3+(k+2)3答案 A 解析 假设 n=k 时,原式 k3+(k+1)3+(k+2)3 能被 9 整除,当 n=k+1 时,(k+1)3 +(k+2)3+(k+3)3 为了能用上面的归纳假设,只须将(k+3)3 展开,让其出现 k3 即可.故选A. 4.已知 f(n)=(2n+7)·3n+9,存在自然数 m,使得对任意 n∈N*,都能使 m 整除 f(n),则最大的 m 的值为( )A.30 B.26 C.36 D.6答案 C解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36,∴f(1),f(2),f(3)都能被 36 整除,猜想 f(n)能被 36 整除.证明如下:当 n=1,2 时,由以上得证.假设当 n=k(k≥2) 时,f(k)=(2k+7)·3k+9 能被 36 整除,则当 n=k+1 时,f(k+1)-f(k)=(2k+9)·3k+1 -(2k+7)·3k=(6k+27)·3k-(2k+7)·3k=(4k+20)·3k=36(k+5)·3k-2(k≥2),∴f(k1+1)能被 36 整除.∵f(1)不能被大于 36 的数整除,∴所求最大的 m 的值为 36. 5.(2017·泉州模拟)用数学归纳法证明 n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*)时,若记 f(n)=n+(n+1)+(n+2)+…+(3n-2),则 f(k+1)-f(k)等于( )A.3k-1 B.3k+1 C.8k D.9k答案 C解析 因为 f(k)=k+(k+1)+(k+2)+…+(3k-2),f(k+1)=(k+1)+(k+2)+…+(3k-2)+(3k-1)+(3k)+(3k+1),则 f(k+1)-f(k)=3k-1+3k+3k+1-k=8k.故选C.6.(2018·太原质检)平面内有 n 条直线,最多可将平面分成 f(n)个区域,则 f(n)的表达式为 ( )A.n+1 n2+n+2C. 2B.2n D.n2+n+1答案 C解析 1 条直线将平面分成 1+1 个区域;2 条直线最多可将平面分成 1+(1+2)=4 个区域;3 条直线最多可将平面分成 1+(1+2+3)=7 个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n)=1+nn+1 2n2+n+2 = 2 个区域.故选 C.7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数 1,3,6,10,第 n个三角形数为nn+1 2=12n2+12n.记第 n 个 k 边形数为 N(n,k)(k≥3),以下列出了部分 k边形数中第 n 个数的表达式:三角形数 N(n,3)=12n2+12n;正方形数 N(n,4)=n2;五边形数 N(n,5)=32n2-12n;六边形数 N(n,6)=2n2-n.可以推测 N(n,k)的表达式,由此计算 N(10,24)=( )A.500 B.1000 C.1500 D.2000答案 B解析 由已知得,N(n,3)=12n2+12n=3-2 2n2+4-2 3n,N(n,4)=n2=4-2 2n2+4-2 4n,N(n,5)=32n2-12n=5-2 2n2+4-2 5n,N(n,6)=2n2-n=6-2 2n2+4-2 6n,根据归纳推理可得,N(n,k)=k-2 2n2+4-2 kn.所以 N(10,24)=24- 2 2×102+4-224×10=1100-100=1000,故答案为1000.选 B. 8.若数列{an}满足 an+5an+1=36n+18,n∈N*,且 a1=4,猜想其通项公式为( ) A.3n+1 B.4n C.5n-1 D.6n-2答案 D2解析 由 a1=4 求得 a2=10,a3=16,经检验 an=6n-2.故选 D. 二、填空题9.设 Sn=1+12+13+14+…+21n,则 Sn+1-Sn=______.1111答案 2n+1+2n+2+2n+3+…+2n+2n解析 Sn+1=1+12+13+14+…+2n1+1Sn+1-Sn=2n+1 1+2n+1 2+2n+1 3+…+2n+1 2n.10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有 1 个蜂巢,第二个图有 7 个蜂巢,第三个图有 19个蜂巢,按此规律,以 f(n)表示第 n 个图的蜂巢总数,则用 n 表示的 f(n)=________.答案 3n2-3n+1解析 由于 f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,推测当 n≥2 时,有 f(n)-f(n-1)=6(n-1),所以 f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+[f(n-2)-f(n-3)]+…+[f(2) -f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.又 f(1)=1=3×12-3×1+1,∴f(n)=3n2-3n+1. 11.设数列{an}的前 n 项和为 Sn,且对任意的自然数 n 都有(Sn-1)2=anSn,通过计算 S1, S2,S3,猜想 Sn=______.n 答案 n+1解析 由(S1-1)2=S21,得 S1=12;由(S2-1)2=(S2-S1)S2,得 S2=23;由(S3-1)2=(S3-S2)S3,得 S3=34.猜想 Sn=n+n 1.12.(2018·云南名校联考)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+ 43=102,…,根据上述规律,第 n 个等式为________.答案13+23+33+…+n3=nn+1 223解析 由第一个等式 13=12,得 13=(1+0)2;第二个等式 13+23=32,得 13+23=(1+2)2; 第三个等式 13+23+33=62,得 13+23+33=(1+2+3)2;第四个等式 13+23+33+43=102,得 13+23+33+43=(1+2+3+4)2,由此可猜想第 n 个等式为 13+23+33+43+…+n3=(1+2+3+…+n)2=nn+1 22.三、解答题13.(2017·河南期末)设等差数列{an}的公差 d>0,且 a1>0,记 Tn=a11a2+a21a3+…+ana1n+1. (1)用 a1,d 分别表示 T1,T2,T3,并猜想 Tn; (2)用数学归纳法证明你的猜想.解(1)T1=a11a2=a11 a1+d;T2=a11a2+a12a3=1da11-a12+1da12-a13=1da11-a13=a12a3=a12 a1+2d;T3=a11a2+a12a3+a13a4=1da11-a12+1da12-a13+1da13-a14=1da11-a14=a31a4=a13 a1+3d;由此可猜想 Tn=a1n a1+nd.(2)证明:①当 n=1 时,T1=a11 a1+d②假设当 n=k 时(k∈N*)时结论成立,,结论成立,即 Tk=a1k a1+kd,则当 n=k+1 时,Tk+1=Tk+ak+11ak+2k1=a1 a1+kd + a1+kd [a1+ k+1 d]=a1k[a1+ a1+kdk+1 d]+a1 [a1+ k+1 d]=a1a1+kd k+1 a1+kd [a1+ k+1k+1 d]=a1[a1+ k+1d].即 n=k+1 时,结论成立.由①②可知,Tn=a11 a1+nd对于一切 n∈N*恒成立.14.(2017·扬州模拟)在数列{an}中,an=cos3×π2n-2(n∈N*).(1)试将 an+1 表示为 an 的函数关系式; (2)若数列{bn}满足 bn=1-n·2n!(n∈N*),猜想 an 与 bn 的大小关系,并证明你的结论.解 (1)an=cos3×π2n-2=cos3×2π2n-14=2cos3×π2n-12-1, ∴an=2a2n+1-1,∴an+1=±an+2 1,又 n∈N*,n+1≥2,an+1>0,∴an+1=an+2 1.(2)当 n=1 时,a1=-12,b1=1-2=-1,∴a1>b1,当 n=2 时,a2=12,b2=1-12=12,∴a2=b2,当 n=3 时,a3= 23,b3=1-19=89,∴a3<b3. 猜想:当 n≥3 时,an<bn, 下面用数学归纳法证明: ①当 n=3 时,由上知,a3<b3,结论成立. ②假设 n=k,k≥3,n∈N*时,ak<bk 成立, 即 ak<1-k·2k!,则当 n=k+1,ak+1= ak+2 1<2 2-k·k!2=1-k·1k!,bk+1=1-k+12 · k+1!,要证 ak+1<bk+1,即证明 1-k·1k!2<1- k+114即证明 1-k·k!<1- k+1 · k+1 !+2 · k+1!2,k+12 · k+1!2,即证明k·1k!-k+14 · k+1!+即证明 kk-1 2 k+1 · k+1!+k+1k+12 · k+1!2>0,2 · k+1!2>0,显然成立.∴n=k+1 时,结论也成立.综合①②可知:当 n≥3 时,an<bn 成立. 综上可得,当 n=1 时,a1>b1;当 n=2 时,a2=b2; 当 n≥3,n∈N*时,an<bn. 15.(2018·上饶模拟)已知等差数列{an}的公差 d 大于 0,且 a2,a5 是方程 x2-12x+27 =0 的两根,数列{bn}的前 n 项和为 Tn 且 Tn=1-12bn.5(1)求数列{an},{bn}的通项公式; (2)设数列{an}的前 n 项和为 Sn,试比较b1n与 Sn+1 的大小,并说明理由.解 (1)设 an 的首项为 a1, ∵a2,a5 是方程 x2-12x+27=0 的两根,∴a2+a5=12, a2·a5=27,解得a1=1, d=2,∴an=2n-1. ∵n=1 时,b1=T1=1-12b1,∴b1=23.n≥2 时,Tn=1-12bn①,Tn-1=1-12bn-1②,①-②得 bn=13bn-1 数列是等比数列.∴bn=23·13n-1=32n.(2)Sn=1+2n-1 2n=n2,Sn+1=(n+1)2,1 以下比较bn与Sn+1的大小:当 n=1 时,b11=32,S2=4,b11<S2,当 n=2 时,b12=92,S3=9,b12<S3,当 n=3 时,b13=227,S4=16,b13<S4,当 n=4 时,b14=821,S5=25,b14>S5,猜想:n≥4 时,b1n>Sn+1.下面用数学归纳法证明:①当 n=4 时,已证.②假设当 n=k(k∈N*,k≥4)时,b1k>Sk+1, 即32k>(k+1)2,那么,n=k+1 时,bk1+1=3k2+1=3·32k>3(k+1)2=3k2+6k+3 =(k2+4k+4)+2k2+2k-1>[(k+1)+1]2=S(k+1)+1. 综合①②,当 n≥4 时,b1n>Sn+1. 16.(2018·合肥模拟)函数 f(x)=x2-2x-3.定义数列{xn}如下:x1=2,xn+1 是过两点6P(4,5),Qn(xn,f(xn))的直线 PQn 与 x 轴交点的横坐标. (1)证明:2≤xn<xn+1<3; (2)求数列{xn}的通项公式. 解 (1)证明:用数学归纳法证明 2≤xn<xn+1<3. ①当 n=1 时,x1=2,直线 PQ1 的方程为 y-5=f 22-4-5(x-4),令 y=0,解得 x2=141,所以 2≤x1<x2<3.②假设当 n=k 时,结论成立,即 2≤xk<xk+1<3.f 直线 PQk+1 的方程为 y-5=xxkk++11-4-5(x-4),令 y=0,解得 xk+2=32++4xxkk++11.由归纳假设知xk+2=3+4xk+1 2+xk+1=4-5 2+xk+1<4-5 2+3=3,xk+2-xk+1=3-xk+11+xk+12+xk+1>0,即 xk+1<xk+2.所以 2≤xk+1<xk+2<3,即当 n=k+1 时,结论也成立.由①②知对任意的正整数 n,2≤xn<xn+1<3.(2)由(1)及题意得 xn+1=32++4xxnn.设 bn=xn-3,则bn1+1=b5n+1,即bn1+1+14=5b1n+41,所以数列b1n+14是首项为-34,公比为 5 的等比数列,因此b1n+14=-34·5n-1,即 bn=- 4 3·5n-1+1.故数列{xn}的通项公式为 xn=3-3·5n4-1+1.7。

近年高考数学一轮复习第11章算法、复数、推理与证明11.4直接证明与间接证明课后作业文(2021年

近年高考数学一轮复习第11章算法、复数、推理与证明11.4直接证明与间接证明课后作业文(2021年

2019版高考数学一轮复习第11章算法、复数、推理与证明11.4 直接证明与间接证明课后作业文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.4 直接证明与间接证明课后作业文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.4 直接证明与间接证明课后作业文的全部内容。

11.4 直接证明与间接证明[基础送分提速狂刷练]一、选择题1.(2018·无锡质检)已知m〉1,a=错误!-错误!,b=错误!-错误!,则以下结论正确的是()A.a〉b B.a〈bC.a=b D.a,b大小不定答案B解析∵a=错误!-错误!=错误!,b=错误!-错误!=错误!.而错误!+错误!〉错误!+错误!〉0(m〉1),∴错误!<错误!,即a〈b。

故选B。

2.设x,y,z〉0,则三个数错误!+错误!,错误!+错误!,错误!+错误!()A.都大于2 B.至少有一个大于2C.至少有一个不小于2 D.至少有一个不大于2答案C解析由于错误!+错误!+错误!+错误!+错误!+错误!=错误!+错误!+错误!≥2+2+2=6,∴错误!+错误!,错误!+错误!,错误!+错误!中至少有一个不小于2.故选C.3.若用分析法证明:“设a〉b〉c,且a+b+c=0,求证:错误!<错误!a"索的“因”应是( )A.a-b〉0 B.a-c>0C.(a-b)(a-c)〉0 D.(a-b)(a-c)〈0答案C解析错误!<错误!a⇔b2-ac〈3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2〈0⇔-2a2+ac+c2<0⇔2a2-ac-c2〉0⇔(a-c)(2a+c)>0⇔(a-c)(a-b)〉0。

高考数学一轮复习 第11章 算法、复数、推理与证明 11.5 数学归纳法学案 理-人教版高三全册数学

高考数学一轮复习 第11章 算法、复数、推理与证明 11.5 数学归纳法学案 理-人教版高三全册数学

11.5 数学归纳法[知识梳理] 数学归纳法的定义一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: 1.(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;2.(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立,上述证明方法叫做数学归纳法.[诊断自测] 1.概念思辨(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( )(2)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( )(3)用数学归纳法证明等式:1+2+3+…+n 2=n 4+n 22(n ∈N *)时,从n =k 到n =k +1左边应添加的项为(k +1)2.( )(4)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( )答案 (1)× (2)× (3)× (4)√2.教材衍化(1)(选修A2-2P 99B 组T 1)在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验n 等于( )A .1B .2C .3D .4 答案 C解析 三角形是边数最少的凸多边形,故第一步应检验n =3.故选C.(2)(选修A2-2P 96T 1)用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立时,其初始值至少应取( )A.7 B .8 C .9 D .10 答案 B解析 左边=1+12+14+…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.故选B.3.小题热身(1)已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案 D解析 分母为首项为n ,公差为1的等差数列,故f (n )共有n 2-n +1项,当n =2时,1n =12,1n 2=14,故f (2)=12+13+14.故选D. (2)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真.答案 2k +1解析 由于步长为2,所以2k -1后一个奇数应为2k +1.题型1 用数学归纳法证明恒等式典例 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明 (1)当n =1时,左边=1-12=12,右边=11+1=12.左边=右边.(2)假设n =k 时等号成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,则当n =k +1时, 1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1)(2)可知,对一切n ∈N *,等式成立. 方法技巧数学归纳法证明等式的思路和注意点1.思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少.2.注意点:由n =k 时等式成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程.提醒:归纳假设就是证明n =k +1时命题成立的条件,必须用上,否则就不是数学归纳法.冲关针对训练 用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(其中n ∈N *). 证明 (1)当n =1时,等式左边=12×4=18,等式右边=14(1+1)=18,∴等式成立.(2)假设n =k (k ≥1,k ∈N *)时等式成立. 即12×4+14×6+…+12k (2k +2)=k 4(k +1)成立,那么当 n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2]=k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2)=k +14[(k +1)+1],即n =k +1时等式成立.由(1)(2)可知,对任意n ∈N *等式均成立. 题型2 用数学归纳法证明不等式典例 已知数列{a n },当n ≥2时,a n <-1,又a 1=0,a 2n +1+a n +1-1=a 2n ,求证:当n ∈N *时,a n +1<a n .证明 (1)当n =1时,∵a 2满足a 22+a 2-1=0,且a 2<0, ∴a 1>a 2.(2)假设当n =k (k ∈N *)时,a k +1<a k ,∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0,∴a 2k +1-a 2k >0. 又a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0, ∴a k +2<a k +1,即当n =k +1时,命题成立. 由(1)(2)可知,当n ∈N *时,a n +1<a n . 方法技巧应用数学归纳法证明不等式应注意的问题1.适用范围:当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.2.关键:用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.冲关针对训练已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈⎣⎢⎡⎦⎥⎤14,12时,f (x )≥18. (1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.解 (1)由题意,知f (x )=ax -32x 2=-32⎝ ⎛⎭⎪⎫x -a 32+a26.又f (x )max ≤16,所以f ⎝ ⎛⎭⎪⎫a 3=a 26≤16.所以a 2≤1.又x ∈⎣⎢⎡⎦⎥⎤14,12时,f (x )≥18,所以⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫12≥18,f ⎝ ⎛⎭⎪⎫14≥18,即⎩⎪⎨⎪⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1. (2)证明:用数学归纳法证明: ①当n =1时,0<a 1<12,显然结论成立.因为当x ∈⎝ ⎛⎭⎪⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立.由(1)知a =1,f (x )=x -32x 2,因为f (x )=x -32x 2的对称轴为直线x =13,所以当x ∈⎝ ⎛⎦⎥⎤0,13时,f (x )为增函数. 所以由0<a k <1k +1≤13, 得0<f (a k )<f ⎝⎛⎭⎪⎫1k +1.于是,0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立. 根据①②,知对任何n ∈N *,不等式a n <1n +1成立.1.(2016·武陵期末)用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n ∈N *)的过程中,由n =k 递推到n =k +1时,下列说法正确的是( )A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中两项,但又少了一项1k +1 D .增加了A 中一项,但又少了一项1k +1答案 C解析 当n =k 时,左端=1k +1+1k +2+ (12), 那么当n =k +1时,左端=1k +2+…+12k +12k +1+12(k +1), 故第二步由k 到k +1时不等式左端的变化是增加了两项,同时减少了1k +1这一项.故选C.2.(2017·珠海期末)《庄子·天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”,反映这个命题本质的式子是( )A .1+12+122+…+12n =2-12nB.12+122+…+12n <1C.12+122+…+12n =1 D.12+122+…+12n >1 答案 B解析 根据已知可得每次截取的长度构造一个以12为首项,以12为公比的等比数列,∵12+122+…+12n =1-12n <1, 故反映这个命题本质的式子是12+122+…+12n <1.故选B.3.(2017·北京西城区期末)若不等式1n +1+1n +2+1n +3+ (12)>a (n ∈N *)恒成立,则a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-∞,12解析 设f (n )=1n +1+1n +2+1n +3+…+12n, 则f (n +1)=1n +2+1n +3+…+12n +12n +1+12(n +1), 则f (n +1)-f (n )=12n +1+12(n +1)-1n +1=12n +1-12n +2>0, ∴数列f (n )是关于n (n ∈N *)的递增数列, ∴f (n )≥f (1)=12,∵不等式1n +1+1n +2+1n +3+…+12n >a (n ∈N *)恒成立,∴a <12,故a 的取值范围为⎝⎛⎭⎪⎫-∞,12 4.(2016·桥西期末)用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *)时,从n =k 到n =k +1时左边需增乘的代数式是________.答案 4k +2解析 用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n·1·3·5·…·(2n -1)(n ∈N *)时,从n =k 到n =k +1时左边需增乘的代数式是(k +1+k )(k +1+k +1)k +1=2(2k +1).故答案为4k +2.[基础送分 提速狂刷练]一、选择题1.(2016·安庆高三月考)用数学归纳法证明2n >n 2(n ≥5,n ∈N *),第一步应验证( ) A .n =4 B .n =5 C .n =6 D .n =7 答案 B解析 根据数学归纳法的步骤,首先要验证n 取第一个值时命题成立,又n ≥5,故第一步验证n =5.故选B.2.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( )A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D.13(k +1)[2(k +1)2+1] 答案 B解析 由n =k 到n =k +1时,左边增加(k +1)2+k 2.故选B.3.(2018·沈阳调研)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,利用归纳法假设证明n=k+1时,只需展开( )A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3答案 A解析假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故选A.4.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为( )A.30 B.26 C.36 D.6答案 C解析∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36,∴f(1),f(2),f(3)都能被36整除,猜想f(n)能被36整除.证明如下:当n=1,2时,由以上得证.假设当n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则当n=k+1时,f(k+1)-f(k)=(2k +9)·3k+1-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k=(4k+20)·3k=36(k+5)·3k-2(k≥2),∴f(k+1)能被36整除.∵f(1)不能被大于36的数整除,∴所求最大的m的值为36.5.(2017·泉州模拟)用数学归纳法证明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n-2),则f(k+1)-f(k)等于( )A.3k-1 B.3k+1 C.8k D.9k答案 C解析因为f(k)=k+(k+1)+(k+2)+…+(3k-2),f(k+1)=(k+1)+(k+2)+…+(3k-2)+(3k-1)+(3k)+(3k+1),则f(k+1)-f(k)=3k-1+3k+3k+1-k=8k.故选C.6.(2018·太原质检)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为 ( )A.n+1 B.2nC.n2+n+22D.n2+n+1答案 C解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.故选C.7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数N (n,3)=12n 2+12n ;正方形数N (n,4)=n 2; 五边形数N (n,5)=32n 2-12n ;六边形数N (n,6)=2n 2-n .可以推测N (n ,k )的表达式,由此计算N (10,24)=( ) A .500 B .1000 C .1500 D .2000 答案 B解析 由已知得,N (n,3)=12n 2+12n =3-22n 2+4-32n ,N (n,4)=n 2=4-22n 2+4-42n ,N (n,5)=32n 2-12n =5-22n 2+4-52n ,N (n,6)=2n 2-n =6-22n 2+4-62n ,根据归纳推理可得,N (n ,k )=k -22n 2+4-k 2n .所以N (10,24)=24-22×102+4-242×10=1100-100=1000,故答案为1000.选B.8.若数列{a n }满足a n +5a n +1=36n +18,n ∈N *,且a 1=4,猜想其通项公式为( ) A .3n +1 B .4n C .5n -1 D .6n -2 答案 D解析 由a 1=4求得a 2=10,a 3=16,经检验a n =6n -2.故选D. 二、填空题9.设S n =1+12+13+14+…+12n ,则S n +1-S n =______.答案12n+1+12n +2+12n +3+…+12n +2n解析 S n +1=1+12+13+14+…+12n +1S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n . 10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.答案 3n 2-3n +1解析 由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6, 推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+[f (n -2)-f (n -3)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1,∴f (n )=3n 2-3n +1.11.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =______.答案nn +1解析 由(S 1-1)2=S 21,得S 1=12;由(S 2-1)2=(S 2-S 1)S 2,得S 2=23;由(S 3-1)2=(S 3-S 2)S 3,得S 3=34.猜想S n =nn +1.12.(2018·云南名校联考)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22解析 由第一个等式13=12,得13=(1+0)2;第二个等式13+23=32,得13+23=(1+2)2;第三个等式13+23+33=62,得13+23+33=(1+2+3)2;第四个等式13+23+33+43=102,得13+23+33+43=(1+2+3+4)2,由此可猜想第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n )2=⎣⎢⎡⎦⎥⎤n (n +1)22.三、解答题13.(2017·河南期末)设等差数列{a n }的公差d >0,且a 1>0,记T n =1a 1a 2+1a 2a 3+…+1a n a n +1.(1)用a 1,d 分别表示T 1,T 2,T 3,并猜想T n ; (2)用数学归纳法证明你的猜想. 解 (1)T 1=1a 1a 2=1a 1(a 1+d );T 2=1a 1a 2+1a 2a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3=1d ⎝ ⎛⎭⎪⎫1a 1-1a 3=2a 1a 3=2a 1(a 1+2d );T 3=1a 1a 2+1a 2a 3+1a 3a 4=1d ⎝ ⎛⎭⎪⎫1a 1-1a 2+1d ⎝ ⎛⎭⎪⎫1a 2-1a 3+1d ⎝ ⎛⎭⎪⎫1a 3-1a 4=1d ⎝ ⎛⎭⎪⎫1a 1-1a 4=3a 1a 4=3a 1(a 1+3d );由此可猜想T n =na 1(a 1+nd ).(2)证明:①当n =1时,T 1=1a 1(a 1+d ),结论成立,②假设当n =k 时(k ∈N *)时结论成立, 即T k =ka 1(a 1+kd ),则当n =k +1时,T k +1=T k +1a k +1a k +2=ka 1(a 1+kd )+1(a 1+kd )[a 1+(k +1)d ]=k [a 1+(k +1)d ]+a 1a 1(a 1+kd )[a 1+(k +1)d ]=(a 1+kd )(k +1)a 1(a 1+kd )[a 1+(k +1)d ]=k +1a 1[a 1+(k +1)d ].即n =k +1时,结论成立. 由①②可知,T n =1a 1(a 1+nd )对于一切n ∈N *恒成立.14.(2017·扬州模拟)在数列{a n }中,a n =cos π3×2n -2(n ∈N *).(1)试将a n +1表示为a n 的函数关系式; (2)若数列{b n }满足b n =1-2n ·n !(n ∈N *),猜想a n 与b n 的大小关系,并证明你的结论. 解 (1)a n =cos π3×2n -2=cos 2π3×2n -1=2⎝ ⎛⎭⎪⎫cos π3×2n -12-1,∴a n =2a 2n +1-1, ∴a n +1=±a n +12,又n ∈N *,n +1≥2,a n +1>0,∴a n +1=a n +12.(2)当n =1时,a 1=-12,b 1=1-2=-1,∴a 1>b 1,当n =2时,a 2=12,b 2=1-12=12,∴a 2=b 2,当n =3时,a 3=32,b 3=1-19=89,∴a 3<b 3. 猜想:当n ≥3时,a n <b n , 下面用数学归纳法证明:①当n =3时,由上知,a 3<b 3,结论成立. ②假设n =k ,k ≥3,n ∈N *时,a k <b k 成立, 即a k <1-2k ·k !, 则当n =k +1,a k +1=a k +12<2-2k ·k !2=1-1k ·k !,b k +1=1-2(k +1)·(k +1)!, 要证a k +1<b k +1,即证明⎝⎛⎭⎪⎫1-1k ·k !2<⎝ ⎛⎭⎪⎫1-2(k +1)·(k +1)!2, 即证明1-1k ·k !<1-4(k +1)·(k +1)!+ ⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2,即证明1k ·k !-4(k +1)·(k +1)!+⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2>0,即证明 (k -1)2k (k +1)·(k +1)!+⎣⎢⎡⎦⎥⎤2(k +1)·(k +1)!2>0,显然成立.∴n =k +1时,结论也成立.综合①②可知:当n ≥3时,a n <b n 成立.综上可得,当n =1时,a 1>b 1;当n =2时,a 2=b 2; 当n ≥3,n ∈N *时,a n <b n .15.(2018·上饶模拟)已知等差数列{a n }的公差d 大于0,且a 2,a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n 且T n =1-12b n .(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由.解 (1)设a n 的首项为a 1,∵a 2,a 5是方程x 2-12x +27=0的两根, ∴⎩⎪⎨⎪⎧a 2+a 5=12,a 2·a 5=27,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1.∵n =1时,b 1=T 1=1-12b 1,∴b 1=23.n ≥2时,T n =1-12b n ①,T n -1=1-12b n -1②,①-②得b n =13b n -1数列是等比数列.∴b n =23·⎝ ⎛⎭⎪⎫13n -1=23n .(2)S n =1+(2n -1)2n =n 2,S n +1=(n +1)2,以下比较1b n与S n +1的大小:当n =1时,1b 1=32,S 2=4,1b 1<S 2,当n =2时,1b 2=92,S 3=9,1b 2<S 3,当n =3时,1b 3=272,S 4=16,1b 3<S 4,当n =4时,1b 4=812,S 5=25,1b 4>S 5,猜想:n ≥4时,1b n>S n +1.下面用数学归纳法证明: ①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k>S k +1,即3k2>(k +1)2,那么,n =k +1时, 1b k +1=3k +12=3·3k2>3(k +1)2=3k 2+6k +3 =(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1. 综合①②,当n ≥4时,1b n>S n +1.16.(2018·合肥模拟)函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.解 (1)证明:用数学归纳法证明2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为y -5=f (2)-52-4(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3. 直线PQ k +1的方程为y -5=f (x k +1)-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3,x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论也成立. 由①②知对任意的正整数n,2≤x n <x n +1<3. (2)由(1)及题意得x n +1=3+4x n2+x n .设b n =x n -3, 则1b n +1=5b n +1,即1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14, 所以数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1.故数列{x n }的通项公式为x n =3-43·5n -1+1.。

近年高考数学一轮复习第11章算法、复数、推理与证明11.3合情推理与演绎推理课后作业理(2021年

近年高考数学一轮复习第11章算法、复数、推理与证明11.3合情推理与演绎推理课后作业理(2021年

2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理的全部内容。

11。

3 合情推理与演绎推理[基础送分提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A.甲 B.乙 C.丙 D.丁答案D解析若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D。

2.已知a1=3,a2=6,且a n+2=a n+1-a n,则a2016=( )A.3 B.-3 C.6 D.-6答案B解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{a n}是以6为周期的周期数列.又2016=6×335+6,∴a2016=a6=-3.故选B。

近年高考数学一轮复习第11章算法、复数、推理与证明11.1算法与程序框图课后作业文(2021年整理)

近年高考数学一轮复习第11章算法、复数、推理与证明11.1算法与程序框图课后作业文(2021年整理)

2019版高考数学一轮复习第11章算法、复数、推理与证明11.1 算法与程序框图课后作业文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.1 算法与程序框图课后作业文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.1 算法与程序框图课后作业文的全部内容。

11.1 算法与程序框图[基础送分提速狂刷练]一、选择题1.(2015·湖南高考)执行如图所示的程序框图,如果输入n=3,则输出的S=( )A.错误!B.错误!C.错误!D.错误!答案B解析当输入n=3时,输出S=错误!+错误!+错误!=错误!错误!=错误!.故选B。

2.(2015·全国卷Ⅱ)如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0 B.2 C.4 D.14答案B解析开始:a=14,b=18,第一次循环:a=14,b=4;第二次循环:a =10,b=4;第三次循环:a=6,b=4;第四次循环:a=2,b=4;第五次循环:a=2,b=2.此时,a=b,退出循环,输出a=2.故选B。

3.(2018·江西赣州十四县联考)如图所示的程序框图,若输入x,k,b,p的值分别为1,-2,9,3,则输出的x值为()A.-29B.-5C.7D.19答案D解析程序执行过程如下:n=1,x=-2×1+9=7;n=2,x=-2×7+9=-5;n=3,x=-2×(-5)+9=19;n=4>3,终止循环,输出x=19。

2020版高考数学一轮复习第11章算法复数推理与证明第3讲课后作业理含解析

2020版高考数学一轮复习第11章算法复数推理与证明第3讲课后作业理含解析

高考数学一轮复习第11章算法复数推理与证明:第11章 算法复数推理与证明 第3讲A 组 基础关1.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a ·b )c =a (b ·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”; ⑤“|m ·n |=|m ||n |”类比得到“|a ·b |=|a ||b |”; ⑥“ac bc =a b ”类比得到“a ·cb ·c =ab”. 以上式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 ∵向量的数量积满足交换律,∴①正确; ∵向量的数量积满足分配律,∴②正确; ∵向量的数量积不满足结合律,∴③不正确; ∵向量的数量积不满足消去律,∴④不正确; 由向量的数量积公式,可知⑤不正确; ∵向量的数量积不满足消去律,∴⑥不正确; 综上知,正确的个数为2个,故B 正确.2.在用演绎推理证明通项公式为a n =cq n(cq ≠0)的数列{a n }是等比数列的过程中,大前提是( )A .a n =cq nB.a na n -1=q (n ≥2)C .若数列{a n }满足a n +1a n(n ∈N *)是常数,则{a n }是等比数列 D .若数列{a n }满足a n +1a n(n ≥2)是常数,则{a n }是等比数列 答案 C解析 证明一个数列是等比数列的依据是等比数列的定义,其公式表示为a n +1a n(n ∈N *)或a na n -1(n ≥2)是常数. 3.(2018·江西南昌模拟)已知13+23=⎝ ⎛⎭⎪⎫622,13+23+33=⎝ ⎛⎭⎪⎫1222,13+23+33+43=⎝ ⎛⎭⎪⎫2022,…,若13+23+33+43+…+n 3=3025,则n =( )A .8B .9C .10D .11 答案 C解析 观察所提供的式子可知,等号左边最后一个数是n 3时,等号右边的数为⎣⎢⎡⎦⎥⎤nn +122,因此,令⎣⎢⎡⎦⎥⎤n n +122=3025,则n n +12=55,n =10或n =-11(舍去).4.(2018·山西孝义期末)我们知道:在平面内,点(x 0,y 0)到直线Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x +2y +2z+3=0的距离为( )A .3B .5 C.5217 D .3 5答案 B解析 利用类比的方法,在空间中,点(x 0,y 0,z 0)到直线Ax +By +Cz +D =0的距离d ′=|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2,所以点(2,4,1)到平面x +2y +2z +3=0的距离d =2+8+2+31+4+4=153=5.5.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2017到2019的箭头方向是( )答案 B 解析看作一个循环体,又因为2016=504×4.所以从2017到2019的箭头方向是.6.(2018·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12 B.5-12 C.1+52 D.1-52答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍去,故1+11+11+…=1+52,故选C. 7.(2018·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =13(S 1+S 2+S 3+S 4)R ,所以R =3VS 1+S 2+S 3+S 4.故选C.8.(2018·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr ,即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S =4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.9.(2018·重庆调研)甲、乙、丙三人各从图书馆借来一本书,他们约定读完后互相交换.三人都读完了这三本书之后,甲说:“我最后读的书与丙读的第二本书相同.”乙说:“我读的第二本书与甲读的第一本书相同.”根据以上说法,推断乙读的最后一本书是________读的第一本书.答案 丙解析 因为共有三本书,而乙读的第一本书与第二本书已经明确,只有丙读的第一本书乙还没有读,所以乙读的最后一本书是丙读的第一本书.10.已知点A (x 1,a x1),B (x 2,a x2)是函数y =a x的图象上任意不同的两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有成立.运用类比思想方法可知,若点A (x 1,sin x 1),B (x 2,sin x 2)是函数y =sin x (x ∈(0,π))图象上任意不同的两点,则类似地有______________成立.答案sin x 1+sin x 22<sin x 1+x 22解析 由题意知,点A ,B 是函数y =a x的图象上任意不同的两点,该函数是一个变化率逐渐变大的函数,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有成立;而函数y =sin x (x ∈(0,π)),其变化率逐渐变小,线段AB 总是位于A ,B 两点之间函数图象的下方,故可类比得到结论sin x 1+sin x 22<sinx 1+x 22.B 组 能力关1.已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为a i ,j ,比如a 3,2=9,a 4,2=15,a 5,4=23,若a i ,j =2019,则i +j =( )1 3 5 11 9 7 13 15 17 19 29 27 25 23 21……A .64B .65C .71D .72 答案 C解析 根据数表排列可得,第1行到第i 行末共有1+2+…+i =i 1+i2个奇数,所以第1行到第44行末共有990个奇数,到第45行末共有1035个奇数,又(2019+1)÷2=1010,即2019是第1010个奇数, 所以2019在第45行,即i =45.因为第45行第一个奇数是整体数表的第991个数,即为991×2-1=1981,所以1981+2(x -1)=2019,解得x =20,又第45行奇数从右到左依次递增,所以j =45+1-20=26,所以i +j =71. 2.已知f (x )=2x2-x,设f 1(x )=f (x ),f n (x )= f n -1[f n -1(x )](n >1,n ∈N *),若f m (x )=x1-256x(m ∈N *),则m =( )A .9B .10C .11D .126 答案 B解析 由题意可得f 2(x )=f 1[f 1(x )]=f 1⎝ ⎛⎭⎪⎫2x 2-x =2×2x 2-x 2-2x 2-x =x 1-x ,同理可得,f 3(x )=x 1-2x ,f 4(x )=x1-4x,f 5(x )=x 1-8x ,…,f n (x )=x1-2n -2x,由f m (x )=x1-256x (m ∈N *)恒成立,可得2m -2=256=28,即有m -2=8,即m =10.3.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *),试归纳猜想出S n 的表达式为( )A .S n =2n n +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2n n +2答案 A解析 ∵S n =n 2a n =n 2(S n -S n -1),∴S n =n 2n 2-1·S n -1,又S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2nn +1,故选A. 4.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 答案 D解析 由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.5.(2018·黑龙江检测)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论我们可以得到的一个真命题为:设等比数列{b n }的前n 项积为T n ,则________________成等比数列.答案 T 4,T 8T 4,T 12T 8,T 16T 12解析 设等比数列{b n }的公比为q ,首项为b 1, 则T 4=b 41q 6,T 8=b 81q1+2+…+7=b 81q 28,T 12=b 121q 1+2+…+11=b 121q 66, T 16=b 161q1+2+…+15=b 161q 120, ∴T 8T 4=b 41q 22,T 12T 8=b 41q 38,T 16T 12=b 41q 54, 故T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. 6.如图,平面上,点A ,C 为射线PM 上的两点,点B ,D 为射线PN 上的两点,则有S △PAB S △PCD=PA ·PBPC ·PD(其中S △PAB ,S △PCD 分别为△PAB ,△PCD 的面积);空间中,点A ,C 为射线PM 上的两点,点B ,D 为射线PN 上的两点,点E ,F 为射线PL 上的两点,则有V P -ABEV P -CDF=________(其中V P -ABE ,V P -CDF 分别为四面体P -ABE ,P -CDF 的体积).答案PA ·PB ·PEPC ·PD ·PF解析 设PM 与平面PDF 所成的角为α,则A 到平面PDF 的距离h 1=PA sin α,C 到平面PDF 的距离h 2=PC sin α,∴V P -ABE =V A -PBE=13S △PBE ·h 1, V P -CDF =V C -PDF =13S △PDF ·h 2,∴V P -ABE V P -CDF =13S △PBE ·h 113S △PDF ·h 2=13PB ·PE ·PA sin α13PD ·PF ·PC sin α=PA ·PB ·PEPC ·PD ·PF.7.如图,将边长分别为1,2,3的正八边形叠放在一起,同一边上相邻珠子之间的距离为1,若以此方式再放置边长为4,5,6,…,10的正八边形,则这10个正八边形镶嵌的珠子总数是________.答案 341解析 边长为1,2,3,…,10的正八边形叠放在一起,则各个正八边形上的珠子数分别为8,2×8,3×8,…,10×8,其中,有3个珠子被重复计算了10次,有2个珠子被重复计算了9次,有2个珠子被重复计算了8次,有2个珠子被重复计算了7次,有2个珠子被重复计算了6次,…,有2个珠子被重复计算了1次,故不同的珠子总数为(8+2×8+3×8+…+10×8)-(3×9+2×8+2×7+2×6+…+2×1)=440-⎝ ⎛⎭⎪⎫27+2×8×92=341,故所求总数为341.8.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为20192的格点的坐标为________.答案 (1010,1009) 解析 观察已知图形可知, 点(1,0)处标1,即12,点(2,1)处标9,即32,点(3,2)处标25,即52,……由此推断,点(n+1,n)处标(2n+1)2.当2n+1=2019时,n=1009,故标签为20192的格点的坐标为(1010,1009).。

近年高考数学一轮复习第11章复数、算法、推理与证明第2讲算法与程序框图演练文(2021年整理)

近年高考数学一轮复习第11章复数、算法、推理与证明第2讲算法与程序框图演练文(2021年整理)

2019高考数学一轮复习第11章复数、算法、推理与证明第2讲算法与程序框图分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第11章复数、算法、推理与证明第2讲算法与程序框图分层演练文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第11章复数、算法、推理与证明第2讲算法与程序框图分层演练文的全部内容。

第2讲算法与程序框图一、选择题1.执行如图所示的程序框图,若输出i的值为2,则输入x的最大值是()A.5 B.6C.11 D.22解析:选D.执行该程序可知错误!解得错误!即8〈x≤22,所以输入x的最大值是22.2.(2018·新疆第二次适应性检测)阅读如图所示的程序框图,运行相应的程序,则输出的n的值为()A.3 B.4C.5 D.6解析:选C.依题意,结合题中的程序框图,注意到sin 错误!+sin 错误!+sin 错误!=错误!<3,sin 错误!+sin 错误!+sin 错误!+sin 错误!=错误!+错误!>3,因此输出的n的值为5,选C.3.(2018·太原模拟)执行如图所示的程序框图,已知输出的s∈[0,4].若输入的t∈[0,m],则实数m的最大值为()A.1 B.2C.3 D.4解析:选D.由程序框图得s=错误!,图象如图所示.由图象得,若输入的t∈[0,m],输出的s∈[0,4],则m的最大值为4,故选D.4.(2017·高考天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为( )A.0 B.1C.2 D.3解析:选C.由程序框图可知,N的取值依次为19,18,6,2,故输出N 的值为2.5.运行如图所示的程序框图,若输出的点恰有5次落在直线y=x上,则判断框中可填写的条件是()A.i>6 B.i〉7C.i>8 D.i〉9解析:选D.要使输出的点恰有5次落在直线y=x上,则i=2,3,4,…,9都不满足判断框内的条件,i=10满足判断框内的条件,则判断框内可填写的条件是i〉9,故选D.6.(2018·郑州第一次质量预测)我们可以用随机模拟的方法估计π的值,下面的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为781,则由此可估计π的近似值为()A.3.119 B.3.124C.3.132 D.3.151解析:选B.根据题意,本题可以转化为在平面直角坐标系中,在{(x,y)|0〈x〈1,0<y〈1}中随机产生1 000个点,其中满足{(x,y)|x2+y2<1}的点有781个.根据几何概型概率计算公式可得错误!=错误!,由此可估计π的近似值为3.124.故选B.7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.35 B.20C.18 D.9解析:选C.根据程序框图有:n=3,x=2,v=1,i=2≥0,所以v=1×2+2=4,i=1≥0,所以v=4×2+1=9,i=0≥0,所以v=9×2+0=18,i =-1〈0,不满足条件,跳出循环,输出v=18.8.(2018·东北四市教研联合体模拟)庄子说:“一尺之锤,日取其半,万世不竭”.这句话描述的是一个数列问题.现用程序框图描述,如图所示,若输入某个正整数n后,输出的S∈错误!,则输入的n的值为()A.7 B.6C.5 D.4解析:选C.由程序框图,可知:S=错误!+错误!+错误!+…+1=错误!=1-错误!错误!,2n因为错误!<S<错误!,所以错误!<1-错误!错误!<错误!,即4<n〈6.又n∈Z,所以n=5.故选C.9.(2018·福州综合质量检测)执行如图所示的程序框图,若输入的m=168,n=112,则输出的k,m的值分别为()A.4,7 B.4,56C.3,7 D.3,56解析:选C.对第一个当型循环结构,第一次循环:k=1,m=84,n=56,m,n均为偶数;第二次循环:k=2,m=42,n=28,m,n均为偶数;第三次循环:k=3,m=21,n=14,因为m不是偶数,所以结束第一个循环.又m≠n,所以执行第二个当型循环结构,第一次循环:d=|21-14|=7,m=14,n=7,m ≠n;第二次循环:d=|14-7|=7,m=7,n=7,因为m=n,所以结束循环,输出k=3,m=7,故选C.10.如图,给出的是计算错误!+错误!+…+错误!的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( )A.i>100,n=n+1 B.i>100,n=n+2C.i>50,n=n+2 D.i≤50,n=n+2解析:选C.经第一次循环得到的结果是错误!经第二次循环得到的结果是错误!经第三次循环得到的结果是错误!据观察S中最后一项的分母与i的关系是分母=2(i-1),令2(i-1)=100,解得i=51,即需要i=51时输出.故图中判断框内(1)处和执行框中的(2)处应填的语句分别是i>50,n =n+2.11.(2018·福州五校联考)定义[x]为不超过x的最大整数,例如[1.3]=1.执行如图所示的程序框图,当输入的x为4.7时,输出的y值为()A.7 B.8.6C.10.2 D.11.8解析:选C.当输入的x为4.7时,执行程序框图可知,4.7-[4.7]=0.7,即4.7-[4.7]不等于0,因而可得y=7+([4.7-3]+1)×1.6=10.2,输出的值为10.2,故选C.12.(2018·湖南五市十校联考)执行如图所示的程序框图,则输出的a 值为( )A.-3 B.错误!C.-错误!D.2解析:选D.第1次循环,a=-3,i=2;第2次循环,a=-错误!,i=3;第3次循环,a=错误!,i=4;第4次循环,a=2,i=5;…所以周期为4,故最后输出的a的值为2.二、填空题13.执行如图所示的程序框图,则输出的s的值为________.解析:由程序框图可知k=1,s=2;k=2,s=错误!;k=3,s=错误!.此时k<3不成立,故输出s=错误!.答案:5 314.下列程序执行后输出的结果是________.i=11S=1DOS=S*ii=i-1LOOP UNTIL i〈9PRINT SENDi=11⇒S=11×1,i=10;i=10⇒S=11×10,i=9;i=9⇒S=11×10×9,i=8;i=8〈9退出循环,执行“PRINT S",故S=990.答案:99015.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A1,A2,…,A16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,则该算法流程图输出的结果是________.解析:由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图可知:数学成绩大于等于90的人数为10,因此输出的结果为10.答案:1016.输入x=5,运行如图所示的程序之后得到的y等于________.解析:由题意,得y错误!所以f(5)=(5-1)2=16.答案:16。

2019版高考数学一轮复习第11章算法、复数、推理与证明115数学归纳法课后作业理.doc

2019版高考数学一轮复习第11章算法、复数、推理与证明115数学归纳法课后作业理.doc

11.5数学归纳法E课后作业孕谀[基础送分提速狂刷练]一、选择题1.(2016 •安庆高三月考)用数学归纳法证明2W(/?>5,胆NJ,第一步应验证()A.n=4B. /7=5C.刀=6D. n=7答案B解析根据数学归纳法的步骤,首先要验证刀取第一个值时命题成立,又刀N5,故第一步验证77=5.故选B.2.用数学归纳法证明12+22+-+(/7- 1) 2+/72+(/7-1)2 + - + 22+12 = /? 2/?3+1时,由n=k的假设到证明n=k+\时,等式左边应添加的式子是()A.(A+1)2+2A2B.(&+1F+护C.(Zr+1)2D.|a+1) [2a+l)2+l]答案B解析由n=k 80 n= k+1时,左边增加(&+1)' + #.故选B.3.(2018 •沈阳调研)用数学归纳法证明“/『+(卄1)'+(卄2)江用2)能被9整除”, 利用归纳法假设证明n=k+1时,只需展开()A. (&+3)‘B. (&+2)‘C. (A+l)3D. U+l)3+(A+2)3答案A解析假设n=k时,原式护+(外1尸+(斤+2)'能被9整除,当n=k+1时,(斤+1)‘ + (A+2)3+(A+3)3为了能用上面的归纳假设,只须将U+3)3展开,让其出现#即可.故选A.4.己知代刀)=(2刀+7)・3"+9,存在自然数加使得对任意用N*,都能使刃整除A/?), 则最大的/〃的值为()A. 30B. 26C. 36D. 6答案C解析・.・f(l)=36, /(2) =108 = 3X36, f(3) =360=10X36, :f(2), f(3)都能被36整除,猜想fS)能被36整除证明如下:当/7=1,2时,由以上得证.假设当n= kgb 时,f(/d = (2A+7)・3"+9 能被36 整除,则当n=k+1 时,/U+1)—/W = (2&+9) • 3小一(2斤+7)・3“=(6£+27)・ 3*-(2£+7)・ 3"= (4W+20)・ 3"=36(斤+5)・ 3"_2(^2), :. f(k + 1)能被36整除・・・・f(l)不能被大于36的数整除,.••所求最大的/〃的值为36.5.(2017 •泉州模拟)用数学归纳法证明n+ (/?+!) + (/?+2) +•••+ (3/?-2) = (2/7-1)2(/?GN*)时,若记/'(刀)=刀+ (刀+1) + (卄2) ------- (3刀一2),则 f{k+Y) —/*(A)等于()A. 3A-1B. 3A+1C. 8kD. 9k答案C解析因为 f(&)=&+4+1)+ 4+2)+・・・+(3&—2), AA+1) = a+1) + a+2) +••• + (3&—2) + (3斤一 1)+ (3&) + (3£+1),则 f(k+1) 一/W =3—1 +3k+3k+1 一k=8k.故选C.6. (2018 •太原质检)平面内有刃条直线,最多可将平面分成代刃)个区域,则代刀)的表 达式为()A. n+1 r 孑乜+2答案C解析1条直线将平面分成1 + 1个区域;2条直线最多可将平面分成1 + (1+2)= 4个区 域;3条直线最多可将平面分成1 +(1+2 + 3) =7个区域;……;〃条直线最多可将平面分成 1 + (1+2 + 3 +・・・+ 〃)=1 + " 罗 =刃+;汁2个区域.故选c.7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第〃 个三角形数为刀 罗1 =*+切.记第〃个斤边形数为AO,力(Q3),以下列出了部分斤 边形数中第〃个数的表达式:三角形数Nln, 3) =£/『+£〃;正方形数Nln, 4) =n :六边形数N 〈n, 6) = 2n —n.可以推测川刀,力的表达式,由此计算M10, 24) = ()A. 500B. 1000C. 1500D. 2000答案B11Q — 94 — 34 — 24 — 4解析 由已知得,Nln, 3) =~rf +㊁刀厂/?, N(n, 4) =/=—厂/+—厂刀,N(n, 5)31^ — 9 4—斤 fi —9 4 — 6_:门=匕一川+ J m Nlm 6) = 2n — n= o n + °根据归纳推理可得,Nlm &)k —2 2 4 — k 广 i i、 24 — 2 2 4 — 24丄匚亦,八亠=二一/?「+飞一刀.所以 M10, 24) X 10"+^—X 10= 1100-100 = 1000,故答案为1000.选 B.8.若数列{弘}满足%+5如1 = 36/?+18,刀丘『 且6/1 = 4,猜想其通项公式为()A. 3/7+1B. 4/7C. 5/7— 1D. 6/7—2B. 2/7 D ・ n +〃+13五边形数N5, 5)=夺 1答案D解析由0=4求得臼2=10,臼3=16,经检验臼”=6/7—2.故选D.二、填空题9. 设$=l+*+g+# -------------- 寺,则$+1 —$= _______2“+1 +2/,+ 2+2//+3+,,<+9+1 — ^=2'+1+2/,+2 +2/,+3_1 卜2"+2"10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形, 下图为一组蜂巢的截面图•其屮第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19 个蜂巢,按此规律,以代/7)表示笫/7个图的蜂巢总数,则用/7表示的A/;) =•解析 由于 f(2)—f(l)=7—l=6, A3)-A2) =19-7=2X6, 推测当心2 时,有 f(/7)— f(/7—1) =6(/7—1),所以 f {n) = [f(n) — f\n — 1) ] + [f(〃一 1) —/'(〃一2) ] + [Az?-2) —f(n —3)] 卜[f(2)-f(l)]+f(l)=6[(/?-l) + (/?-2)+・・・ + 2 + l]+l=3/-3/?+l.又 f(l) =l=3xr-3Xl + l, ・・・f(/7)=3//-3〃+l.11. 设数列{/}的前刀项和为S”且对任意的自然数刀都有($—1)2=/$,通过计算S,$, 猜想 Sn= __________ .n答案币解析由($ —1)2=£,得 $=*; 2由(1)2= (5 —$)$,得 $=§;答案 解析S T +1 = 1 b 2 + 3+44 答案1'+2'+3'+4‘=(1+2+3+4)2,由此可猜想第刀个等式为 1'+2‘+3'+4‘+・・・ + /= (1+2+3、9 n n+1+・・+沪=———三. 解答题13. (2017 •河南期末)设等差数列&}的公差小0,且 沙0,记T lt =——3\32 日2&3 3n3trV\(1) 用句,〃分别表示蛊,兀,并猜想兀; (2) 用数学归纳法证明你的猜想.解 (1) T\= = TTJ~;由此可猜想T tl = ------ .a\ a\-r nd(2)证明:①当〃=1吋,7\= ------ ,结论成立,a\ a\ + d②假设当n=k 时(圧N")时结论成立, 即 Tk= I ,,—,a\ a\~\~kd则当 n=k+1 时,Tk+i = T k + ---- -禺+偸+2=—士—+ __________________ 1 ___________ a\ a\ + kd a\ + kd [&+ k+l d]•: 3f t = 2 3n+1 — 1 91 . 112 —十 日日花】 日2丿“ T1 1 1 1 1 ¥ I' /3 —十 十 臼<31 电丄丄' | 2 2® di) 日 1 日 3 a\ a\ + 2d(1) COS'3X2^=COS2兀 3X2^= 2(COS ^^7・・・盼产土寸岁,又“+122,日”+i〉0,(2)当刀=1 时,0=_*,方】=1一2 = — 1, /. ai>Z?i,当n=2时,&2=刁血=1—㊁=空,:.氐=b“当n— 3时,臼3=^"",厶=1 —§=§,猜想:当/?23时,必人,下面用数学归纳法证明:①当77=3时,由上知,曰3<厶,结论成立.②假设n=k, 5,时,幼5成立,1 4即证明I~T^T< 1 - k+\•A+1 ! +「2 ]•・_ £+1 ~~-~~k+\~~"J 'I 4 「 2 T即证明&+i •&+i ! +[ &+1 •&+1 ! %,k_\ 2「 2 n即讪明k k+1—•—~k+l — +|_ —•—k+l —显然成立・:.n=k+1吋,结论也成立.综合①②可知:当心3时,成立.综上可得,当门=1时,0>方1;当n=2时,6?2=&;当〃23, /7EN*时,冰bn、15.(2018 •上饶模拟)已知等差数列{/}的公差〃大于0,且昂是方程/-12^+27 =0的两根,数列{爲的前刀项和为%且7;=1—尹.(1)求数列{廟,{加的通项公式;(2)设数列⑷的前/?项和为$,试比较*与恥的大小,并说明理由.解(1)设弘的首项为V^2,念是方程x — 12x+27 = 0的两根,• •禺=2/7 — 1.1 2T 〃= 1 时,A=7i = l —前,:.bi =-心2时,%=1-如"①,%一】=1-挤一1②,(2)5=1+ 7_1 刀=//,汕=(卄1严, 以下比较+与Sm 的大小:On1 3 1当n =1时,〒=云,$=4,〒〈$,力:2 bi 1 9 1当刀=2 时,—$=9, —<S, b> z th1271当刀=3 时,—=~, $=16, 了〈$,‘ 1 1 81 1 日刀=4 吋,厂二£=25, 丁>&,b\ 2 b\猜想:刀24时,}>9+i.bn 下面用数学归纳法证明: ① 当77=4时,已证.② 假设当n=k(kwN, ^4)吋,*Sz3X 即y>(A+l)2,那么,n=k+1 时, ] 3*+i 3*"_=~=3 •石>3(*+1)2=3#+6A+3—(F + 4&+4) +2 护+2A —1> [ (&+1) + 1]'=S(A +I )+I .综合①②,当刀$4时,+>SrH ・16. (2018 •合肥模拟)函数A%)=/-2x-3.定义数列{必}如下:匿=2, 是过两点户(4, 5), @(疋,f(^))的直线/U 与X 轴交点的横坐标.⑴证明:2W 血5+K3;解得曰1 = 1,d=2、①一②得仏=飢7数列是等比数列.2(2)求数列{/}的通项公式.解(1)证明:用数学归纳法证明卄K3. ① 当刀=1时,孟=2,直线PQ 的方程为 厂5丿二「5匕—4),令尸0,解得上=¥,所以2£眉<卫〈3. ② 假设当n=k 时,结论成立,即2W 池5+K3. 直线PQz 的方程为y-^=r:)(A-4),血+i —4所以2W*H 5+2<3,即当n=k+1时,结论也成立. 由①②知对任意的正整数门,2W 疋<^+K3・3 +4 x ⑵由⑴及题意得设 bn=X r — Z,'1 11 3 1 1 Q所以数列云+才是首项为一孑公比为5的等比数列,因此云+2=—]・門,即b 严一3 • 5z?_,+r3 由($ —1)2=($ — *S )得 $=孑猜想5?=刀+ ].12. (2018 •云南名校联考)观察下列等式:13 4= I 2,13+23=32,13+23+33=62,13+23+33+ 4:i=10\…,根据上述规律,第刀个等式为 __________ ・3 3 3 3 「77〃+ 1 I.,答案 1'+2'+3'+・・・+ /= ---------- ------ 〜解析 由第一个等式 13=12,得 13=(1+0)2;第二个等式 13+23=32,得 1'+2'= (1+2)2; 第三个等式13+23+33=62,得 13+23+33=(1+2+3)2;第四个等式 13+23+33+43=102,得故数列{小的通项公式为如=32 + 池+1由归纳假设知心+2=驻g_ k\_a\+&+1 d\-\~ a\a\ a\ + kd[<3i+ k+\ d]& + kd&+1 k~\~ 1 a\ a\ + kd[0+k+1 d]0 [臼1+ k+1 d\'即n=k+1时,结论成立.由①②可知,几=----- 对于一切用2恒成立.a\ a\十nd14.(2017 •扬州模拟)在数列 &}中,日“=cos3x 2(〃WN*).(1)试将N沖表示为②的函数关系式;2(2)若数列{加满足5=\———(/?eN*),猜想/与人的大小关系,并证明你的结论.n • n\。

近年高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文(2

近年高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文(2

(北京专用)2019版高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第十一章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本文的全部内容。

第一节数系的扩充与复数的引入A组基础题组1。

(2017北京东城期末)在复平面内,复数z=i(1+i)(i为虚数单位),那么|z|= ()A。

1 B。

C。

D。

22。

(2017北京海淀期末)复数i(2—i)(i为虚数单位)在复平面内对应的点的坐标为( ) A。

(-2,1)B。

(2,-1)C。

(1,2) D.(-1,2)3.已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数是( )A. B. C。

D.4.已知i是虚数单位,则复数=()A。

1—i B。

-1+i C。

1+i D.—1—i5。

已知复数z满足z(1-i)=4(i为虚数单位),则z=( )A.1+B.-2-2iC.-1—iD.1—i6。

(2016北京朝阳二模)复数z=(i为虚数单位)在复平面内对应的点位于()C.第三象限D。

第四象限7.若复数z=+a(i为虚数单位)在复平面上对应的点在第二象限,则实数a可以是() A。

-4 B。

—3C.1D.28。

若(1+i)+(2—3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别为( )A。

高考复习数学文一轮分层演练:第11章复数、算法、推理与证明第4讲 Word版含解析

高考复习数学文一轮分层演练:第11章复数、算法、推理与证明第4讲 Word版含解析

[学生用书P288(单独成册)]一、选择题1.用反证法证明某命题时,对结论“自然数a ,b ,c 中恰有一个偶数”正确的反设是( )A .自然数a ,b ,c 中至少有两个偶数B .自然数a ,b ,c 中至少有两个偶数或都是奇数C .自然数a ,b ,c 都是奇数D .自然数a ,b ,c 都是偶数解析:选B .“恰有一个偶数”反面应是“至少有两个偶数或都是奇数”.故选B . 2.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:选C .b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2 ⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.故选C .3.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是( ) A .a >b >c B .b >c >a C .c >a >bD .a >c >b解析:选A .因为a =3-2=13+2,b =6-5=16+5,c =7-6=17+6, 且7+6>6+5>3+2>0, 所以a >b >c .4.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +xy ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2解析:选C .假设三个数都小于2, 则y x +y z +z x +z y +x z +xy<6, 由于y x +y z +z x +z y +x z +x y =⎝⎛⎭⎫y x +x y +⎝⎛⎭⎫z x +x z +⎝⎛⎭⎫y z +z y ≥2+2+2=6, 所以假设不成立,所以y x +y z ,z x +z y ,x z +xy中至少有一个不小于2.故选C .5.已知函数f (x )=⎝⎛⎭⎫12x,a ,b 是正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选A .因为a +b 2≥ab ≥2ab a +b,又f (x )=⎝⎛⎭⎫12x 在R 上是减函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎪⎫2ab a +b .6.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是( ) A .m >n B .m ≥n C .m <nD .m ≤n解析:选C .a -b <a -b ⇐b +a -b >a ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立,故m <n .选C .二、填空题7.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )的函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,所以c n 随n 的增大而减小,所以c n +1<c n . 答案:c n +1<c n8.关于x 的方程ax +a -1=0在区间(0,1)内有实根,则实数a 的取值范围是________. 解析:①当a =0时,方程无解.②当a ≠0时,令f (x )=ax +a -1,则f (x )在区间(0,1)上是单调函数,依题意,得f (0)f (1)<0, 所以(a -1)(2a -1)<0, 所以12<a <1.答案:⎝⎛⎭⎫12,19.设函数f (x )=e x +x -a (a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f (f (b ))=b 成立,则a 的取值范围是________.解析:易知f (x )=e x +x -a 在定义域内是增函数,由f (f (b ))=b ,猜想f (b )=b .反证法:若f (b )>b ,则f (f (b ))>f (b )>b ,与题意不符, 若f (b )<b ,则f (f (b ))<f (b )<b ,与题意也不符,故f (b )=b , 即f (x )=x 在[0,1]上有解. 所以e x +x -a =x ,a =e x -x 2+x ,令g (x )=e x -x 2+x ,g ′(x )=e x -2x +1=(e x +1)-2x , 当x ∈[0,1]时,e x +1≥2,2x ≤2,所以g ′(x )≥0,所以g (x )在[0,1]上是增函数, 所以g (0)≤g (x )≤g (1)⇒1≤g (x )≤e , 即1≤a ≤e . 答案:[1,e]10.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法)令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0,解得p ≤-3或p ≥32, 故满足条件的p 的取值范围为⎝⎛⎭⎫-3,32. 法二:(直接法)依题意有f (-1)>0或f (1)>0,即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎫-3,32. 答案:⎝⎛⎭⎫-3,32 三、解答题11.在△ABC 中,设a ,b ,c 分别是内角A ,B ,C 所对的边,且直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,求证:△ABC 是直角三角形.证明:法一:由两直线平行可知b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin 2B -12sin 2A =0,故2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,两直线重合,不符合题意,故A +B =π2,即△ABC 是直角三角形.法二:由两直线平行可知b cos B -a cos A =0, 由余弦定理,得a ·b 2+c 2-a 22bc =b ·a 2+c 2-b 22ac ,所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), 所以c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2),所以(a 2-b 2)(a 2+b 2-c 2)=0,所以a =b 或a 2+b 2=c 2. 若a =b ,则两直线重合,不符合题意, 故a 2+b 2=c 2,即△ABC 是直角三角形.12.已知数列{a n }满足a 1=12,且a n +1=a n3a n +1(n ∈N *).(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <16.解:(1)由已知可得,当n ∈N *时,a n +1=a n 3a n +1,两边取倒数得,1a n +1=3a n +1a n =1a n +3,即1a n +1-1a n =3,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=2,公差为3的等差数列,其通项公式为1a n =2+(n -1)×3=3n -1,所以数列{a n }的通项公式为a n =13n -1.(2)证明:由(1)知a n =13n -1,故b n =a n a n +1=1(3n -1)(3n +2)=13⎝ ⎛⎭⎪⎫13n -1-13n +2, 故T n =b 1+b 2+…+b n =13×⎝⎛⎭⎫12-15+13×⎝⎛⎭⎫15-18+…+13×⎝ ⎛⎭⎪⎫13n -1-13n +2=13⎝ ⎛⎭⎪⎫12-13n +2=16-13·13n +2.因为13n +2>0,所以T n <16.。

高考数学文一轮分层演练:第11章复数、算法、推理与证明章末总结(1)

高考数学文一轮分层演练:第11章复数、算法、推理与证明章末总结(1)

章末总结C.(1+i)2D.i(1+i)程序框图(2015·高考全国卷Ⅱ,T8,5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14必修3 P36例1(2017·高考全国卷Ⅱ,T8,5分)执行如图的程序框图,如果输入的a=-1,则输出的S=()A.2 B.3C.4 D.5必修3 P41例4、P42程序框图推理与证明(2017·高考全国卷Ⅲ,T19,12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.必修2P79B组T1一、选择题1.(选修1-2 P 61A 组T 5(4)改编)i 为虚数单位,则5i (2+i )等于( )A .-2-iB .-2+iC .-1+2iD .-1-2i解析:选D .5i (2+i )=5-1+2i=5(-1-2i )5=-1-2i .2.(选修1-2 P 33内文改编)有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片; 乙说:甲或丙拿到标有2的卡片; 丙说:标有1的卡片在甲手中; 丁说:甲拿到标有3的卡片.结果显示甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为( )A .3、4、2、1B .4、2、1、3C .2、3、1、4D .1、3、2、4解析:选B .由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4、2、1、3.3.(选修1-2 P 30练习T 2改编)如图所示的数阵中,用A (m ,n )表示第m 行的第n 个数,则依此规律A (15,2)为( )13 16 16 110 13 110 115 1330 1330 115 121 12 1315 12 121…A .2942B .710C .1724D .73102解析:选C .由数阵知A (3,2)=16+16=16+23×4,A (4,2)=16+16+110=16+23×4+24×5,A (5,2)=16+16+110+115=16+23×4+24×5+25×6,…,则A (15,2)=16+23×4+24×5+25×6+…+215×16=16+2⎝⎛⎭⎫13-14+14-15+…+115-116=16+2⎝⎛⎭⎫13-116 =16+2×1348=1724,选项C 正确. 4.(必修3 P 34-35案例1改编)如图所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m ,n 分别为495,135,则输出的m =( )A .0B .5C .45D .90解析:选C .该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m =45,故选C .二、填空题5.(选修1-2 P 61A 组T 3改编)ABCD 是复平面内的平行四边形,A 、B 、C 三点对应的复数分别为1+2i ,-i ,2+i ,O 为复平面原点,则|OD |=________.解析:设D 点对应的复数为x +y i(x ,y ∈R ), 因为ABCD 是平行四边形, 所以AB →=DC →,即-i -(1+2i)=(2+i)-(x +y i), 即-1-3i =(2-x )+(1-y )i ,所以⎩⎪⎨⎪⎧2-x =-11-y =-3,解得x =3,y =4.所以D 点对应的复数为3+4i . 所以|OD |=|3+4i|=5, 答案:56.(选修1-2 P 44B 组T 1改编)已知sin α-cos αsin α+2cos α=-1,则tan 2α=________.解析:由sin α-cos αsin α+2cos α=-1,可得2sin α=-cos α,所以tan α=-12,所以tan 2α=2tan α1-tan 2α=2×⎝⎛⎭⎫-121-⎝⎛⎭⎫-122=-43. 答案:-43三、解答题7.(选修1-2 P 35B 组T 1改编)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n+2=a n (n ≥2).计算S 1、S 2、S 3,并猜想S n .解:n =1时,S 1=a 1=-23.n =2时,S 2+1S 2+2=a 2=S 2-S 1=S 2+23,所以S 2=-34.n =3时,S 3+1S 3+2=a 3=S 3-S 2=S 3+34,所以S 3=-45,所以猜想S n =-n +1n +2.8.(必修2 P 45探究、P 52B 组T 1(1)改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示:(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,所以BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH,因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.。

高考数学文一轮分层演练:第11章复数、算法、推理与证明章末总结

高考数学文一轮分层演练:第11章复数、算法、推理与证明章末总结

章末总结复数的运算(2017·高考全国卷Ⅰ,T3,5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)选修1­2P59例3(2)程序框图(2015·高考全国卷Ⅱ,T8,5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0 B.2C.4 D.14必修3P36例1(2017·高考全国卷Ⅱ,T8,5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2 B.3C.4 D.5必修3P41例4、P42程序框图推理与证明(2017·高考全国卷Ⅲ,T19,12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;必修2P79B组T1一、选择题1.(选修1­2 P 61A 组T 5(4)改编)i 为虚数单位,则5i (2+i )等于( )A .-2-iB .-2+iC .-1+2iD .-1-2i解析:选D .5i (2+i )=5-1+2i =5(-1-2i )5=-1-2i .2.(选修1­2 P 33内文改编)有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片; 乙说:甲或丙拿到标有2的卡片; 丙说:标有1的卡片在甲手中; 丁说:甲拿到标有3的卡片.结果显示甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为( )A .3、4、2、1B .4、2、1、3C .2、3、1、4D .1、3、2、4解析:选B .由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4、2、1、3.3.(选修1­2 P 30练习T 2改编)如图所示的数阵中,用A (m ,n )表示第m 行的第n 个数,则依此规律A (15,2)为( )13 16 16 110 13 110 115 1330 1330 115 121 12 1315 12 121…A .2942B .710C .1724D .73102解析:选C .由数阵知A (3,2)=16+16=16+23×4,A (4,2)=16+16+110=16+23×4+24×5,A (5,2)=16+16+110+115=16+23×4+24×5+25×6,…,则A (15,2)=16+23×4+24×5+25×6+…+215×16=16+2⎝ ⎛⎭⎪⎫13-14+14-15+…+115-116=16+2⎝ ⎛⎭⎪⎫13-116=16+2×1348=1724,选项C 正确. 4.(必修3 P 34-35案例1改编)如图所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m ,n 分别为495,135,则输出的m =( )A .0B .5C .45D .90解析:选C .该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m =45,故选C .二、填空题5.(选修1­2 P 61A 组T 3改编)ABCD 是复平面内的平行四边形,A 、B 、C 三点对应的复数分别为1+2i ,-i ,2+i ,O 为复平面原点,则|OD |=________.解析:设D 点对应的复数为x +y i(x ,y ∈R ), 因为ABCD 是平行四边形, 所以AB →=DC →,即-i -(1+2i)=(2+i)-(x +y i), 即-1-3i =(2-x )+(1-y )i ,所以⎩⎪⎨⎪⎧2-x =-11-y =-3,解得x =3,y =4.所以D 点对应的复数为3+4i . 所以|OD |=|3+4i|=5, 答案:56.(选修1­2 P 44B 组T 1改编)已知sin α-cos αsin α+2cos α=-1,则tan 2α=________.解析:由sin α-cos αsin α+2cos α=-1,可得2sin α=-cos α,所以tan α=-12,所以tan 2α=2tan α1-tan 2α=2×⎝ ⎛⎭⎪⎫-121-⎝ ⎛⎭⎪⎫-122=-43. 答案:-43三、解答题7.(选修1­2 P 35B 组T 1改编)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n+2=a n (n ≥2).计算S 1、S 2、S 3,并猜想S n .解:n =1时,S 1=a 1=-23.n =2时,S 2+1S 2+2=a 2=S 2-S 1=S 2+23,所以S 2=-34.n =3时,S 3+1S 3+2=a 3=S 3-S 2=S 3+34,所以S 3=-45,所以猜想S n =-n +1n +2.8.(必修2 P45探究、P52B组T1(1)改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示:(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD­EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,所以BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD­EFGH为正方体,所以DH⊥平面EFGH,因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.。

高考数学文一轮分层演练:第11章复数、算法、推理与证明第3讲(1)

高考数学文一轮分层演练:第11章复数、算法、推理与证明第3讲(1)

[学生用书P286(单独成册)]一、选择题1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .121B .123C .231D .211解析:选B .法一:令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n+a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.法二:由a +b =1,a 2+b 2=3,得ab =-1,代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123.2.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55解析:选D .因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.3.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,2)解析:选B .依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).4.如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD与AB 的距离之比为m ∶n ,则可推算出:EF =ma +nbm +n ,用类比的方法,推想出下面问题的结果.在上面的梯形ABCD 中,分别延长梯形的两腰AD 和BC 交于O 点,设△OAB ,△ODC 的面积分别为S 1,S 2,则△OEF 的面积S 0与S 1,S 2的关系是( )A .S 0=mS 1+nS 2m +nB .S 0=nS 1+mS 2m +nC .S 0=m S 1+n S 2m +nD .S 0=n S 1+m S 2m +n解析:选C .在平面几何中类比几何性质时,一般是由平面几何点的性质类比推理线的性质;由平面几何中线段的性质类比推理面积的性质.故由EF =ma +nbm +n 类比到关于△OEF的面积S 0与S 1,S 2的关系是S 0=m S 1+n S 2m +n,故选C .5.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人解析:选B .假设满足条件的学生有4位及4位以上,设其中4位同学分别为甲、乙、丙、丁,则4位同学中必有两个人语文成绩一样,且这两个人数学成绩不一样,那么这两个人中一个人的成绩比另一个人好,故满足条件的学生不能超过3人.当有3位学生时,用A ,B ,C 表示“优秀”“合格”“不合格”,则满足题意的有AC ,CA ,BB ,所以最多有3人.6.已知数列{a n }:11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为( )A .3724B .76C .1115D .715解析:选A .通过将数列的前10项分组得到第一组有一个数:11,分子、分母之和为2;第二组有两个数:21,12,分子、分母之和为3;第三组有三个数:31,22,13,分子、分母之和为4;第四组有四个数,以此类推,a 99,a 100分别是第十四组的第8个数和第9个数,分子、分母之和为15,所以 a 99=78,a 100=69.故a 99+a 100=3724.二、填空题7.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.解析:由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A .答案:A8.(2018·沧州联考)在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我没有责任”.四个人中只有一个人说的是真话,则该事故中需要负主要责任的人是________.解析:若负主要责任的人是甲,则甲、乙、丙说的都是假话,只有丁说的是真话,符合题意;若负主要责任的人是乙,则甲、丙、丁说的都是真话,不符合题意;若负主要责任的人是丙,则乙、丁说的都是真话,不合题意;若负主要责任的人是丁,则甲、乙、丙、丁说的都是假话,不合题意.故该事故中需要负主要责任的人是甲.答案:甲9.设A 和B 是抛物线上的两个动点,且在A 和B 处的抛物线的切线相互垂直,已知由A 、B 及抛物线的顶点所组成的三角形重心的轨迹也是一抛物线,记为L 1,对L 1重复以上过程,又得一抛物线L 2,依此类推.设如此得到抛物线的序列为L 1,L 2,L 3,L 4,…,L n ,若抛物线的方程为y 2=6x ,经专家计算得,L 1:y 2=2(x -1),L 2:y 2=23(x -1-13)=23(x -43),L 3:y 2=29(x -1-13-19)=29(x -139),L 4:y 2=227(x -1-13-19-127)=227(x -4027),…,L n :y 2=2S n (x -T nS n),则2T n -3S n =________.解析:由题意知T 1=1,T 2=4,T 3=13,T 4=40,…,分析得1,4,13,40,…组成一个数列,数列的前后两项之差是一个等比数列,即T n -T n -1=3n -1, …T 3-T 2=32, T 2-T 1=3,把上述式子相加得到T n -1=3+32+…+3n -1, 所以T n =3n -12,由题意知S 1=1,S 2=3,S 3=9,S 4=27,…,分析得1,3,9,27,…组成的数列{S n }的通项是S n =3n -1,所以2T n -3S n =2×3n -12-3×3n -1=-1.答案:-110.如图所示,将正整数从小到大沿三角形的边成螺旋状排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,……,则在第二十个拐弯处的正整数是________.解析:观察题图可知, 第一个拐弯处2=1+1, 第二个拐弯处4=1+1+2, 第三个拐弯处7=1+1+2+3, 第四个拐弯处11=1+1+2+3+4, 第五个拐弯处16=1+1+2+3+4+5,发现规律:拐弯处的数是从1开始的一串连续正整数相加之和再加1,在第几个拐弯处,就加到第几个正整数,所以第二十个拐弯处的正整数就是1+1+2+3+…+20=211.答案:211 三、解答题11.已知函数f (x )=-a a x +a(a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.解:(1)证明:函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点⎝⎛⎭⎫12,-12对称的点的坐标为(1-x ,-1-y ). 由已知y =-aa x +a,则-1-y =-1+a a x +a =-a xa x +a,f (1-x )=-a a 1-x +a =-a a a x+a =-a ·a x a +a ·a x =-a xa x +a ,所以-1-y =f (1-x ),即函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称. (2)由(1)知-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.所以f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1.故f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.12.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin α·cos(30°-α) =sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α· (cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α =34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末总结
B.2
D.14
(2017·高考全国卷Ⅱ,T8,5分)执行如图的程序框图,如果输入
a=-1,则输出的S=(
B.3
D.5
T19,12分)如图,四面体
一、选择题
1.(选修1­2 P 61A 组T 5(4)改编)i 为虚数单位,则5
i (2+i )等于( )
A .-2-i
B .-2+i
C .-1+2i
D .-1-2i
解析:选D .5i (2+i )=5-1+2i =5(-1-2i )
5
=-1-2i .
2.(选修1­2 P 33内文改编)有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:
甲说:乙或丙拿到标有3的卡片; 乙说:甲或丙拿到标有2的卡片; 丙说:标有1的卡片在甲手中; 丁说:甲拿到标有3的卡片.
结果显示甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为( )
A .3、4、2、1
B .4、2、1、3
C .2、3、1、4
D .1、3、2、4
解析:选B .由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4、2、1、3.
3.(选修1­2 P 30练习T 2改编)如图所示的数阵中,用A (m ,n )表示第m 行的第n 个数,则依此规律A (15,2)为( )
1
3 16 16 110 13 110 115 1330 1330 115 121 12 1315 12 121

A .2942
B .710
C .1724
D .73102
解析:选C .由数阵知A (3,2)=16+16=16+2
3×4

A (4,2)=16+16+110=16+
23×4+24×5,A (5,2)=16+16+110+115=16+23×4+24×5
+25×6,…,则A (15,2)=16+23×4+24×5+25×6+…+215×16=1
6+2⎝ ⎛⎭⎪⎫13-14+14-15+…+115-116=16+2⎝ ⎛⎭
⎪⎫13-116
=16+2×1348=17
24
,选项C 正确. 4.(必修3 P 34-35案例1改编)如图所示的程序框图的算法思想源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m ,n 分别为495,135,则输出的m =( )
A .0
B .5
C .45
D .90
解析:选C .该程序框图是求495与135的最大公约数,由495=135×3+90,135=90×1+45,90=45×2,所以495与135的最大公约数是45,所以输出的m =45,故选C .
二、填空题
5.(选修1­2 P 61A 组T 3改编)ABCD 是复平面内的平行四边形,A 、B 、C 三点对应的复数分别为1+2i ,-i ,2+i ,O 为复平面原点,则|OD |=________.
解析:设D 点对应的复数为x +y i(x ,y ∈R ), 因为ABCD 是平行四边形, 所以AB →=DC →,
即-i -(1+2i)=(2+i)-(x +y i), 即-1-3i =(2-x )+(1-y )i ,
所以⎩
⎪⎨⎪⎧2-x =-11-y =-3,解得x =3,y =4.
所以D 点对应的复数为3+4i . 所以|OD |=|3+4i|=5, 答案:5
6.(选修1­2 P 44B 组T 1改编)已知sin α-cos αsin α+2cos α=-1,则tan 2α=________.
解析:由sin α-cos α
sin α+2cos α=-1,可得2sin α=-cos α,
所以tan α=-1
2

所以tan 2α=2tan α1-tan 2
α=2×⎝ ⎛⎭

⎫-121-⎝ ⎛⎭

⎫-122=-43. 答案:-4
3
三、解答题
7.(选修1­2 P 35B 组T 1改编)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1
S n
+2
=a n (n ≥2).计算S 1、S 2、S 3,并猜想S n .
解:n =1时,S 1=a 1=-2
3

n =2时,S 2+1S 2+2=a 2=S 2-S 1=S 2+2
3

所以S 2=-3
4

n =3时,S 3+1S 3+2=a 3=S 3-S 2=S 3+3
4

所以S 3=-4
5,
所以猜想S n =-
n +1
n +2

8.(必修2 P45探究、P52B组T1(1)改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示:
(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);
(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;
(3)证明:直线DF⊥平面BEG.
解:(1)点F,G,H的位置如图所示.
(2)平面BEG∥平面ACH.证明如下:
因为ABCD­EFGH为正方体,所以BC∥FG,BC=FG,
又FG∥EH,FG=EH,所以BC∥EH,BC=EH,
所以BCHE为平行四边形.
所以BE∥CH.
又CH⊂平面ACH,BE⊄平面ACH,
所以BE∥平面ACH.
同理BG∥平面ACH.
又BE∩BG=B,
所以平面BEG∥平面ACH.
(3)证明:连接FH.
因为ABCD­EFGH为正方体,所以DH⊥平面EFGH,
因为EG⊂平面EFGH,所以DH⊥EG.
又EG⊥FH,DH∩FH=H,
所以EG⊥平面BFHD.
又DF⊂平面BFHD,所以DF⊥EG.
同理DF⊥BG.
又EG∩BG=G,
所以DF⊥平面BEG.。

相关文档
最新文档