第3章单元系的相变
大学热力学统计物理第四版汪志诚答案2
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4) 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T Tpακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p = 其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T p ακ==,式(3)可表为11ln .V dT dp T p ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体 积由0V 最终变到V ,有000ln=ln ln ,V T p V T p -即00p V pV C T T ==(常量),或 .p V C T = (5)式(5)就是由所给11,T Tpακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。
热力学统计物理总复习知识点
概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U 是一个态函数:A B U U W -=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。
13.定压热容比:pp T H C ⎪⎭⎫ ⎝⎛∂∂=;定容热容比:V V T U C ⎪⎭⎫ ⎝⎛∂∂= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。
云南师范大学热力学统计物理期末复习讲解
各章知识点整理和复习第一章 热力学的基本定律知识点1、热力学第一定律dU dQ dW =+2、热力学第二定律3、热力学基本方程dU TdS pdV =-4、热力学第二定律的数学表述dU TdS pdV ≤-5、克劳修斯熵BRB A Ad Q S S T-=⎰,玻尔兹曼熵ln S k =Ω 6、熵增加原理。
复习题1、简述热力学第二定律及其统计解释。
参考:热力学第二定律的开尔文表述:热不可能全部转变为功而不引起其他变化。
热力学第二定律的克劳修斯表述:热量不能自动地从低温物体传向高温物体。
或第二类永动机不可能。
热力学第二定律的微观意义是,一切自然过程总是沿着分子热运动的无序性(或混乱度)增大的方向进行,系统对应的微观状态数增大,根据玻尔兹曼熵ln S k =Ω,因此系统的熵值增加,即熵增加原理。
2、简述熵增加原理及其统计解释。
参考:孤立系统中所进行的自然过程总是沿着熵增大的方向进行。
根据玻尔兹曼熵公式ln S k =Ω,可知孤立系统中所进行的自然过程总是向着微观状态数(或混乱度)增大的方向进行。
第二章 均匀物质的热力学性质知识点1、基本热力学函数的全微分和麦氏关系的得出。
dU TdS pdV dH TdS Vdp dF SdT pdV dG SdT Vdp=-=+=--=-+ ()()()()()()()()S V S pT V T p T p V ST Vp SS pV T S V p T∂∂=-∂∂∂∂=∂∂∂∂=∂∂∂∂=-∂∂2、麦氏关系的应用。
2、气体的节流过程。
3、特性函数的应用。
4、热辐射(平衡辐射)的热力学结果,斯特方玻尔兹曼定律。
复习题1、写出焦汤系数的数学表达式,简述节流过程的特点;利用焦汤系数分析通过节流产生致冷效应、致温效应和零效应的原理。
(P57)2、证明能态方程T VU p T p V T ∂∂⎛⎫⎛⎫=-⎪ ⎪∂∂⎝⎭⎝⎭。
参考:选T 、V 作为状态参量时,有V TU U dU dT dV TdS pdV T V ∂∂⎛⎫⎛⎫=+=- ⎪ ⎪∂∂⎝⎭⎝⎭V TS S dS dT dV T V ∂∂⎛⎫⎛⎫=+⎪ ⎪∂∂⎝⎭⎝⎭ 得: V T S S dU T dT T p dV T V ⎡⎤∂∂⎛⎫⎛⎫=+- ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦比较得: T TU S T p V V ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 将麦氏关系T V S p V T ∂∂⎛⎫⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭代入,即得T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭3、证明焓态方程p TH V V T p T ⎛⎫∂∂⎛⎫=-⎪ ⎪∂∂⎝⎭⎝⎭。
热力学_统计物理学答案第三章
后
pv 3 = a(v − 2b)
RT a ⎛ p + a ⎞(v − b ) = RT ; p= − 2 ⎜ 2 ⎟ v ⎠ v −b v ⎝
极值点组成的曲线:
RT 2a RT a = 3 ;由 = p+ 2 2 v−b (v − b ) v v
⎞ ⎟ ⎟ ⎠V
⎛ ∂S ⎞ ⎛ ∂µ ⎞ ⎜ ⎟ = −⎜ ⎟ ⎝ ∂n ⎠T ,V ⎝ ∂T ⎠V ,n (2) 由式(3.2.6)得:
⎛ ∂ 2G ⎞ ⎛ ∂ 2G ⎞ ⎛ ∂µ ⎞ ⎛ ∂V ⎞ ⎟ ⎜ ⎟ = =⎜ ⎟ ⎜ ⎟ =⎜ ⎜ ⎟ ⎜ ⎟ ⎟ ⎝ ∂n ⎠T , p ⎝ ∂p∂n ⎠ T ⎝ ∂n∂p ⎠ T ⎜ ⎝ ∂p ⎠T , n
ww
=⎜
∂(T , S ) ∂ (V , T ) ∂(T , S ) ⎛ ∂p ⎞ ⋅ ⋅ ⎟ + ⎝ ∂V ⎠ S ∂ (V , T ) ∂(V , S ) ∂(V , T )
∂ (V , T ) ⎛ ∂p ⎞ ⋅ =⎜ ⎟ + ⎝ ∂V ⎠ S ∂(V , S ) ⎛ ∂p ⎞ ⎛ ∂T ⎞ =⎜ ⎟ + ⎜ ⎟ ⎝ ∂V ⎠ S ⎝ ∂S ⎠ V
∂V ⎞ ⎛ ∂p ⎞ ⎛ ⎟ ⋅ CV =⎜ ⎟ ⋅⎜ ⎜ ⎝ ∂V ⎠ S ⎝ ∂p ⎟ ⎠T
w.
kh da
后 课
⎛ ∂G ⎞ ⎜ ⎟ =µ ⎝ ∂n ⎠T ,V
证:
(1) 开系吉布斯自由能
答 案
∂µ ⎞ ⎛ ∂µ ⎞ ⎛ ∂S ⎞ 习题 3.4 求 证 : ( 1) ⎛ ⎜ ⎟ = − ⎜ ⎟ ;( 2) ⎜ ⎜ ∂p ⎟ ⎟ =− ⎝ ∂T ⎠ V , n ⎝ ∂n ⎠T ,V ⎝ ⎠T,n
热力学与统计物理学第三章 相平衡与相变
(3) 范氏气体出现一个不稳定区,是任何一个物态方程均有 的共同性质。事实上,T TK ,气液二相的可逆转变必 然经历一个双相共存的区域。
(4) p-T-V的函数关系的物态方程,它只能描写系统的一种性 质,而不能同时反映体系具有两种不同的状态:相变。
(5) 等面积法则:饱和蒸气压的数值由该法则确定。
解:设2相为气体,1相为液体,则有 v2 v1,与气相的比容 相变可以忽略液相的比 容,气体近似为理想气 体,它的物态
方程是
v2
RT p
。将这些事实代入到克
拉珀龙方程之中,有
dp dT
L
T
RT p
Lp RT 2
dp p
LdT RT 2
假设潜热与温度无关, 对以上方程进行不定积 分
ln
p
L RT
C
p
24
第三章 相平衡与相变
动机和目的 一、开放系统与相律 二、克拉珀龙方程 三、气液两相的平衡与转变 四、相变的分类
小结和习题课
25
第三章习题课
[3.1]温度为T的长圆柱形物质处于重力场中,圆柱分成 两部分,上部是液体,下部是固体。温度降低 T时,
发现固-液分界面上升了 l,如果忽略固体的热膨胀并设
15
再加大压强,液体难以压缩,p很大,而v的变化很小。
2.0
p/p c
1.5
T=1.2Tc
T=1.0Tc
1.0
T=0.9Tc
0.5
T=0.85Tc
0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
v/vc
(2)等温线中的水平段随温度的升高而缩短,说明液、气两相 的比容随温度的升高而接近;
热力学与统计物理答案(汪志诚)
第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。
解:由得:nRT PV = VnRT P P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=α T PVRn T P P V /1)(1==∂∂=β P PnRT V P V V T T /111)(12=--=∂∂-=κ 习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1T α= 1T pκ= ,试求物态方程。
解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pV V T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT V dV dp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdp T dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。
问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。
热统3、4
即要求
p CV 0, ( )T 0 V
第三章 单元系的相变 19
上式称为热力学稳定平衡条件。
用热学平衡的稳定性条件对简单系统作平衡稳定性分析 假如子系统的温度由于涨落或某种外界影响而略 高于媒质(T↑),由热力学第二定律知,热量将从子 系统传到媒质(Δ Q﹤0 ),根据CV= ΔQ / ΔT ﹥0 , 热量的传出将使子系统的温度降低(T↓ ),从而恢复 平衡。该过程可简单表示为
2
得
S 1 ( )V , U T
S p ( )U V T
17
第三章 单元系的相变
于是
1 1 p p S [ ( )U ( )V ]U [ ( )U ( )V ]V U T V T U T V T 1 p 2[ ( )U ( )V ] 0 T T
T Q 0 T
相反的过程表示为
T Q 0 T
第三章 单元系的相变 20
用力学平衡的稳定性条件对简单系统作平衡稳定性分析 假如子系统的体积由于某种原因发生收缩
( V↓ ),由
(
p p )T 0 ,子系统的压强将增 V V
加( p↑ ),于是子系统发生膨胀而恢复平衡( V↑ )。
第三章 单元系的相变
10
p VdpTdS Vdp TdSpdU TdS p S dH dG dF dU SdT S, H pdV dU pdV dF T T 0dF Vdp G, H dG TdS F, F U,,,V0SdT pdV V V0dG SdT G p dH SdT SS H U V G T F S
f f f f ( y y0 ) dx dy 一级微分 df ( x x0 ) x y x y
热力学
1、热力学系统与外界 (1)系统:从相互作用的物体中划出一 部分物体,此物体中仍包含大量 微观粒子。
系统—热力学研究的对象
(2)外界:与系统作用的其它部分。 (3)系统的分类: 孤立系统:与外界无物质交换,也
无能量交换。
封闭系统:与外界无物质交换,有能 量交换。
开放系统:与外界既有物质交换,又 有能量交换。
理想气体的物态方程: PV nRT
(4)理想气体: 宏观:严格遵从玻马定律、阿伏伽德罗定律、 焦耳定律的气体。 微观:可忽略气体分子之间的相互作用力 的气体。
通常压强不高的真实气体均可视为理想气体。
2、真实气体: 范德瓦尔斯方程
(
p
an2 V2
)(V
nb)
nRT
1mol :
(
p
a v2
1、机械能转换为热能
2、电能转换为热量
结论:在各种绝热过程中,让物体升高一定的温度 所需的功相等。 说明:系统经过绝热过程,由初态达 到终态,外界对系统所做的功仅取决 于初末两态,而与实际过程无关。
四、内能 U U U B U A WS
(1)定义:在热力学系统中,在做功与热量的 双重作用下,使系统所具有的总能量。
的每一个物体都与第三个物体处于热 平衡,则他们彼此也处于热平衡。 分析:
二、温标 温度测量: 温度计:利用水银或酒精的热胀 冷缩特性。
热力学温标:与任何物质特性无关。
单位:开尔文 K 在理想气体温标使用范围内,热 力学温标与理想气体温标一致。
§1.3 物态方程
一、物态方程: 对于一个简单可压缩系统而言:
引言:
热力学的研究对象:研究物质热运 动的规律。
热力学与统计物理答案第三章
热⼒学与统计物理答案第三章第三章单元系的相变3.1 证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡态的U 最⼩. (b )在,S p 不变的情形下,稳定平衡态的H 最⼩. (c )在,H p 不变的情形下,稳定平衡态的S 最⼩. (d )在,F V 不变的情形下,稳定平衡态的T 最⼩. (e )在,G p 不变的情形下,稳定平衡态的T 最⼩. (f )在,U S 不变的情形下,稳定平衡态的V 最⼩. (g )在,F T 不变的情形下,稳定平衡态的V 最⼩.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发⽣各种可能的⾃发虚变动. 由于不存在⾃发的可逆变动,根据热⼒学第⼆定律的数学表述(式(1.16.4)),在虚变动中必有,U T S W δδ<+ (1)式中U δ和S δ是虚变动前后系统内能和熵的改变,?W 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度.由于虚变动只涉及⽆穷⼩的变化,T 也等于系统的温度. 下⾯根据式(1)就各种外加约束条件导出相应的平衡判据.(a )在,S V 不变的情形下,有0,0.S W δ==根据式(1),在虚变动中必有0.U δ< (2)如果系统达到了U 为极⼩的状态,它的内能不可能再减少,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最⼩.(b )在,S p 不变的情形下,有0,,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极⼩的状态,它的焓不可能再减少,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最⼩.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极⼤的状态,它的熵不可能再增加,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最⼤.(d )由⾃由能的定义F U TS =-和式(1)知在虚变动中必有.F S T W δδ<-+在F 和V 不变的情形下,有0,0,F W δ==故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极⼩的状态,它的温度不可能再降低,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最⼩.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极⼩的状态,它的温度不可能再降低,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最⼩.(f )在,U S 不变的情形下,根据式(1)知在虚变动中⼼有0.W >上式表明,在,U S 不变的情形下系统发⽣任何的宏观变化时,外界必做功,即系统的体积必缩⼩. 如果系统已经达到了V 为最⼩的状态,体积不可能再缩⼩,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最⼩.(g )根据⾃由能的定义F U TS =-和式(1)知在虚变动中必有δδ?.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T ==必有0W > (8)上式表明,在,F T 不变的情形下,系统发⽣任何宏观的变化时,外界必做功,即系统的体积必缩⼩. 如果系统已经达到了V 为最⼩的状态,体积不可能再缩⼩,系统就不可能⾃发发⽣任何宏观的变化⽽处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最⼩.3.2 试由式(3.1.12)导出式(3.1.13)解:式(3.1.12)为22δδ2δδδ0.S S S S U U V V U U V V ??=++(1)将2δS 改写为2δδδδδδδ.S S SS S U V U U V V UU V U U VV V=+++ ?(2)但由热⼒学基本⽅程TdS dU pdV =+可得1,,V U S S p U T V T== ? ?(3)代⼊式(2),可将式(1)表达为211δδδδδδδS p p S U V U U V V U T V T U T V T=+++ ? ? ? ????? 1δδδδ0.p U V T T ?? =+< ? ?(4)以,T V 为⾃变量,有δδδV TU U U T V T V=+ ? ???????δδ,V V p C T T p V T =+- ???(5)T V T T T V T=+ ? ? ?????????21δ,T T =-(6)δδδV Tp p p T V T T T V T =+ ? ? ?211δδ.V T p p T p T V T T T V =-+ ? ???????????(7)将式(5)—(7)代⼊式(4),即得()()22221δδδ0,V TC p S T V T T V =-+< (8)这就是式(3.1.13).3.3 试由0V C >及0Tp V <证明0p C >及0.S p V< 解:式(2.2.12)给出2.p V TVT C C ακ-=(1)稳定性条件(3.1.14)给出0,0,V Tp C V>< (2)其中第⼆个不等式也可表为10,T TV V p κ=-> (3)故式(1)右⽅不可能取负值. 由此可知0,p V C C ≥> (4)第⼆步⽤了式(2)的第⼀式.根据式(2.2.14),有.S S VT p TV p C C Vp κκ??? ?==(5)因为V p C C 恒正,且1V pCC ≤,故0,S TV V p p≤< ? ? (6)第⼆步⽤了式(2)的第⼆式.3.4 求证:(a ),,;V n T V S T n µ=- ? ?(b ),,.T p t n V p n µ= ? ????解:(a )由⾃由能的全微分(式(3.2.9))dF SdT pdV dn µ=--+ (1)及偏导数求导次序的可交换性,易得,,.V n T VS T n µ=- ? ??????? (2)这是开系的⼀个麦⽒关系.(b )类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn µ=-++ (3)可得,,.T pT n V p n µ= ? ? (4)这也是开系的⼀个麦⽒关系.3.5 求证:,,.T V V nU T n T µµ-=- ? ???????解:⾃由能F U TS =-是以,,T V n 为⾃变量的特性函数,求F 对n 的偏导数(,T V 不变),有,,,.T V T V T VF U S T n n n=- ? ? ?????????? (1)但由⾃由能的全微分dF SdT pdV dn µ=--+可得,,,,,T VT V V nF n S n T µµ==- ? ??????? (2)代⼊式(1),即有,,.T V V nU T n T µµ-=- ? ? (3)3.6 两相共存时,两相系统的定压热容量p pSC T T= ,体胀系数1pV V T α= ?和等温压缩系数1T TV V p κ=- ?均趋于⽆穷,试加以说明. 解:我们知道,两相平衡共存时,两相的温度、压强和化学势必须相等.如果在平衡压强下,令两相系统准静态地从外界吸取热量,物质将从⽐熵较低的相准静态地转移到⽐熵较⾼的相,过程中温度保持为平衡温度不变. 两相系统吸取热量⽽温度不变表明它的(定压)热容量p C 趋于⽆穷. 在上述过程中两相系统的体积也将发⽣变化⽽温度保持不变,说明两相系统的体胀系数1pV V T α= 也趋于⽆穷. 如果在平衡温度下,以略⾼(相差⽆穷⼩)于平衡压强的压强准静态地施加于两相系统,物质将准静态地从⽐容较⾼的相转移到⽐容较低的相,使两相系统的体积发⽣改变. ⽆穷⼩的压强导致有限的体积变化说明,两相系统的等温压缩系数1T T V V p κ??=- 也趋于⽆穷.3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ??=-如果⼀相是⽓相,可看作理想⽓体,另⼀相是凝聚相,试将公式化简. 解:发⽣相变物质由⼀相转变到另⼀相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满⾜.m m m U H p V ?=?-? (1)平衡相变是在确定的温度和压强下发⽣的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ?=克拉珀龙⽅程(式(3.4.6))给出,mdp L dT T V =? (3)即.m L dTV T dp=(4)将式(2)和式(4)代⼊(1),即有1.m p dT U L T dp ??=-(5)如果⼀相是⽓体,可以看作理想⽓体,另⼀相是凝聚相,其摩尔体积远⼩于⽓相的摩尔体积,则克拉珀龙⽅程简化为2.dp LpdT RT= (6)式(5)简化为1.m RT U L L ??=-(7)3.8 在三相点附近,固态氨的蒸⽓压(单位为Pa )⽅程为3754ln 27.92.p T =-液态氨的蒸⽓压⼒⽅程为3063ln 24.38.p T=-试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热.解:固态氨的蒸⽓压⽅程是固相与⽓相的两相平衡曲线,液态氨的蒸⽓压⽅程是液相与⽓想的两相平衡曲线. 三相点的温度t T 可由两条相平衡曲线的交点确定:3754306327.9224.38,t tT T -=- (1)由此解出195.2.t T K =将t T 代⼊所给蒸⽓压⽅程,可得5934Pa.t p =将所给蒸⽓压⽅程与式(3.4.8)In Lp A RT=-+ (2)⽐较,可以求得443.12010J,2.54710J.L L =?=?升汽氨在三相点的熔解热L 溶等于40.57310J.L L L =-=?溶升汽3.9 以C βα表⽰在维持β相与α相两相平衡的条件下1mol β相物质升⾼1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m pV LC C V V T βββαβα=- ?- 如果β相是蒸⽓,可看作理想⽓体,α相是凝聚相,上式可简化为,p LC C Tββα=-并说明为什么饱和蒸⽓的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升⾼1K 所吸收的热量C βα为.mm m p T dS S S dp C T T T dT T p dTββββα==+(1)式(2.2.8)和(2.2.4)给出,.m p pS T C T S V p T ββββ= ??=- ? ? (2)代⼊式(1)可得.m p pV dp C C T T dT βββα=- ?(3)将克拉珀龙⽅程代⼊,可将式(3)表为.m p m m pV LC C V V T βββαβα=- ?- (4)如果β相是⽓相,可看作理想⽓体,α相是凝聚相,mm V V αβ,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为.p LC C Tββα=-(5) C βα是饱和蒸⽓的热容量. 由式(5)可知,当p L C Tβ<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p m mp p V V dL L L C C dT T T T V V βαβαβα=-+--?? ? ???- 如果β相是⽓相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα相变潜热随温度的变化率为.mm m m p T p T H H H H dL dp dp dT T p dT T p dTββαα=+-- ? ? ? ?(2)式(2.2.8)和(2.2.10)给出,,p pp TH C T H V V T p T = ?=- ? ? (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dT βαβαβα=-+---?? ? ???将式中的dpdT⽤克拉珀龙⽅程(3.4.6)代⼊,可得,m m p p m mp p V V dL L L C C dT T T T V V βαβαβα=-+--?? ? ???- (4)这是相变潜热随温度变化的公式.如果β相是⽓相,α相是凝聚相,略去m V α和m pV T α,并利⽤m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5)3.11 根据式(3.4.7),利⽤上题的结果计及潜热L 是温度的函数,但假设温度的变化范围不⼤,定压热容量可以看作常量,试证明蒸⽓压⽅程可以表为ln ln .Bp A C T T+ 解: 式(3.4.7)给出了蒸⽓与凝聚相两平衡曲线斜率的近似表达式21.dp Lp dT RT = (1)⼀般来说,式中的相变潜热L 是温度的函数. 习题3.10式(5)给出.p p dL C C dTβα=- (2)在定压热容量看作常量的近似下,将式(2)积分可得()0,p p L L C C T βα=+- (3)代⼊式(1),得021,p pC C L dL p dT RT RTβα-=+ (4)积分,即有ln ln ,Bp A C T T=-+ (5)其中0,,p pC LB C A R C βα==是积分常数.3.12 蒸⽓与液相达到平衡. 以mdV dT表⽰在维持两相平衡的条件下,蒸⽓体积随温度的变化率. 试证明蒸⽓的两相平衡膨胀系数为111.m m dV L V dT T RT ??=-解:蒸⽓的两相平衡膨胀系数为11.m m m p m m T dV V V dp V dT V T p dT ??=+??,11.m p m m m T V V T T V V p p= ?=- ?(2)在克拉珀龙⽅程中略去液相的摩尔体积,因⽽有2.m dp L LpdT TV RT== (3)将式(2)和式(3)代⼊式(1),即有111.m m dV L V dT T RT ??=-(4)3.13 将范⽒⽓体在不同温度下的等温线的极⼤点N 与极⼩点J 联起来,可以得到⼀条曲线NCJ ,如图所⽰. 试证明这条曲线的⽅程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范⽒⽅程为2.m mRT ap V b V =-- (1)求偏导数得()232.m m Tm p RT aV V V b =-+ ??-?? (3)等温线的极⼤点N 与极⼩点J 满⾜0,m Tp V = ? 即()232,mm RT()()32.m m mRT aV b V b V =-- (3)将式(3)与式(1)联⽴,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的⽅程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸⽓;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ??> ,不满⾜平衡稳定性的要求.3.14 证明半径为r 的肥皂泡的内压强与外压强之差为4rσ. 解:以p β表⽰肥皂泡外⽓体的压强,p γ表⽰泡内⽓体的压强,p α表⽰肥皂液的压强,根据曲⾯分界的⼒学平衡条件(式(3.6.6)),有2,p p r αβσ=+(1)2,p p rγασ=+ (2)式中σ是肥皂液的表⾯张⼒系数,r 是肥皂泡的半径. 肥皂液很薄,可以认为泡内外表⾯的半径都是r . 从两式中消去p α,即有4.p p rγβσ-=(3)3.15 证明在曲⾯分界⾯的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββµµ= (3)根据化学势的定义,m m m U TS pV µ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)3.16 证明爱伦费斯特公式:()(2)(1)(2)(1)(2)(1)(2)(1),.p p dp dT C C dp dT TV αακκαα-=--=- 解:根据爱⽒对相变的分类,⼆级相变在相变点的化学势和化学势的⼀级偏导数连续,但化学势的⼆级偏导数存在突变. 因此,⼆级相变没有相变潜热和体积突变,在相变点两相的⽐熵和⽐体积相等. 在邻近的两个相变点(),T p 和(),T dT p dp ++,两相的⽐熵和⽐体积的变化也相等,即(1)(2)v v ,d d = (1)(1)(2).ds ds = (2)v v v v .p Td υdT dp T p dT dp ακ=+ ? ?=- 由于在相变点(1)(2)v v =,所以式(1)给出(1)(1)(2)(2),dT dp dT dp ακακ-=-即(2)(1)(2)(1).dp dT αακκ-=- (3)同理,有v .p T p pp s s ds dT dp T p C υdT dpT T C dT dp Tα=+ ? ?=- =- 所以式(2)给出(1)(2)(1)(1)(2)(2)v v ,ppC C dT dp dT dp TTαα-=-即()(2)(1)(2)(1),v p p C C dp dT T αα-=- (4)式中(2)(1)v v v ==. 式(3)和式(4)给出⼆级相变点压强随温度变化的斜率,称为爱伦费斯特⽅程.3.17 试根据朗道⾃由能式(3.9.1)导出单轴铁磁体的熵函数在⽆序相和有序相的表达式,并证明熵函数在临界点是连续的。
2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载
2023年热力学统计物理第五版(汪志诚著)课后答案下载热力学统计物理第五版(汪志诚著)内容简介导言第一章热力学的基本规律1.1 热力学系统的平衡状态及其描述1.2 热平衡定律和温度1.3 物态方程1.4 功1.5 热力学第一定律1.6 热容和焓1.7 理想气体的内能1.8 理想气体的绝热过程附录1.9 理想气体的卡诺循环1.10 热力学第二定律1.11 卡诺定理1.12 热力学温标1.13 克劳修斯等式和不等式1.14 熵和热力学基本方程1.15 理想气体的熵1.16 热力学第二定律的数学表述1.17 熵增加原理的简单应用1.18 自由能和吉布斯函数习题第二章均匀物质的热力学性质2.1 内能、焓、自由能和吉布斯函数的全微分 2.2 麦氏关系的简单应用2.3 气体的节流过程和绝热膨胀过程2.4 基本热力学函数的确定2.5 特性函数2.6 热辐射的热力学理论2.7 磁介质的.热力学2.8 获得低温的方法习题第三章单元系的相变3.1 热动平衡判据3.2 开系的热力学基本方程3.3 单元系的复相平衡条件3.4 单元复相系的平衡性质3.5 临界点和气液两相的转变3.6 液滴的形成3.7 相变的分类3.8 临界现象和临界指数3.9 朗道连续相变理论习题第四章多元系的复相平衡和化学平衡热力学第三定律 4.1 多元系的热力学函数和热力学方程4.2 多元系的复相平衡条件4.3 吉布斯相律4.4 二元系相图举例附录4.5 化学平衡条件4.6 混合理想气体的性质4.7 理想气体的化学平衡4.8 热力学第三定律习题第五章不可逆过程热力学简介5.1 局域平衡熵流密度与局域熵产生率 5.2 线性与非线性过程昂萨格关系5.3 温差电现象5.4 最小熵产生定理5.5 化学反应与扩散过程5.6 非平衡系统在非线性区的发展判据 5.7 三分子模型与耗散结构的概念习题第六章近独立粒子的最概然分布6.1 粒子运动状态的经典描述6.2 粒子运动状态的量子描述6.3 系统微观运动状态的描述6.4 等概率原理6.5 分布和微观状态6.6 玻耳兹曼分布6.7 玻色分布和费米分布……第七章玻耳兹曼统计第八章玻色统计和费米统计第九章系综理论第十章涨落理论第十一章非平衡态统计理论初步附录A 热力学常用的数学结果B 概率基础知识C 统计物理学常用的积分公式索引参考书目物理常量表热力学统计物理第五版(汪志诚著)图书目录《“十二五”普通高等教育本科国家级规划教材:热力学统计物理(第5版)》是“十二五”普通高等教育本科国家级规划教材,是作者在第四版的基础上全面修订而成的。
《热力学与统计物理》第三章 单元系的相变
三.化学势分析
Vm
O K
范氏方程的平衡曲线
B T, p A T, p
J
J
K O
G
B G+L
D
N
L
A
M
R
p
D NR BA M
p
d SmdT Vmdp
p
dT 0 O pO Vmdp
NDJ段:Gm 最大, 不稳定 OKBAMR段:Gm 最小, 稳定
BN段: 亚稳 过饱和蒸气
JA段:
过热液体
两相平衡曲线:两相平衡共存,温 度和压强只有一个独立。
三相点:三相平衡共存,温度和压 强完全确定。
临界点:汽化线终点,温度高于此 点,无液相。由于临界点的存在, 从两相中任意一相的某一个状态出 发,可以经绕过临界点的任意路径 连续进行气—液的过渡而无需经过 相分离(或两相共存)的状态。
固 三相点 •
RT ln pr p
将上式代入*,以及p 2 ,得 :
r
2 v ln pr
r 107 m, pr r 108 m, pr r 109 m, pr
RTr
p
可见,液滴的平衡蒸汽压与液滴的半径有关
p 1.011; p 1.115; p 2.966;
三.中肯半径与过饱和蒸气
S U pV ,
T
S0
U0
p0V0
T0
2.稳定性条件
2S0 2S
系统的平衡条件
2S 2S 0
TdS
dU
pdV
S U
V
1 T
,
S V
U
p T
以 T,V 为自变量,有:
1 T
T
1 T
V
T
第三章 单元系的相变
)
x
(
y
y0
)
y
]
f
( x0
,
y0
)
f
f
(x x0 ) x xx0 , y y0 ( y y0 ) y xx0 , y y0
二级变分
2f
[(
x
x0
)
x
(
y
y0
)
y
]2
f (x0 , y0 )
热力学函数作泰勒展开,
S
S(U ,V )
S
S
1
2
2S
F F(T,V ) F F 1 2F
所以:
U
n S,V
H n
S,
p
F n
T ,V
G n T , p
2. 巨热力学势 J
定义:巨热力学势 J J F n
显然:dJ SdT pdV nd
即:巨热力学势 J是以T,V,μ为独立变量的特性
函数
dJ SdT pdV nd
由此可得:
S
J T
V ,
,
p
U (T1
1 T
)
V
(
p T
p T
)
n
(
T
T
)0
由此得: T T (热平衡条件) p p (力学平衡条件)
(相变平衡条件)
即:单元二相系达到平衡时,两相的温度、压强 和化学势必须相等。这就是复相系的平衡条件。 此结论对三相、四相等均匀复相系均适用。
讨论:如果上述平衡条件未能满足,复相系将发生变化, 变化进行的方向如何?
多元系:含两种以上化学组分的系统
单相系(均匀系):系统各部分的(物理和化学) 性质完全一样
热力学与统计物理第三章
2020/4/4
17
由开系的基本热力学方程知: dU TdS pdV dn
S
U
p V
T
n
S
U
p V
T
n
由熵的广延性质: S S S
δS
1 T
1 T
δU
p T
p T
δV
T
T
δn
利用熵判据,平衡时总熵应有极大值,所以: δS 0
2020/4/4
18
T T 热平衡条件
独立变化。
• 相平衡曲线 在单元两相系中,由相平衡
条件所得到的T—p之间的关系p = p( T ),在T—p图上所描述的曲线
称为相平衡曲线。
AC—汽化线,分开气相区和液相区; AB—熔解线,分开液相区和固相区; 0A—升华线,分开气相区和固相区。
2020/4/4
24
单元两相平衡共存时,必须满足下面三个平衡条件:
第三章 单元系的相变
单元系:化学上纯的物质系统。 相:被一定边界包围,性质均匀的部分。
2020/4/4
1
§3.1 热动平衡判据
一、熵判据
• 虚变动
为了对系统的平衡态作出判断,必须考虑系统在平衡态 附近的一切可能的变动,这里面就有趋向平衡态的变动和 离开平衡态的变动。在热力学范围内,不考虑涨落现象, 系统一旦达到平衡态以后,其性质就不再发生变化了。因 此,在平衡态附近的一切可能的变动就是理论上虚拟的, 并不代表系统真实的物理过程,引进它的目的完全是为了 从数学上方便地导出系统的平衡条件。这类似于理论力学 中的“虚位移”概念。并以δ表示之。
它对各种平衡态系统包括化学平衡系统均成立。
2020/4/4
22
云南师范大学热力学统计物理期末复习讲解
各章知识点整理和复习第一章热力学的基本定律知识点1、热力学第一定律dU dQ dW2、热力学第二定律3、热力学基本方程dU TdS pdV4、热力学第二定律的数学表述dU TdS pdV5、克劳修斯熵BRB AAd QS ST,玻尔兹曼熵lnS k6、熵增加原理。
复习题1、简述热力学第二定律及其统计解释。
参考:热力学第二定律的开尔文表述:热不可能全部转变为功而不引起其他变化。
热力学第二定律的克劳修斯表述:热量不能自动地从低温物体传向高温物体。
或第二类永动机不可能。
热力学第二定律的微观意义是,一切自然过程总是沿着分子热运动的无序性(或混乱度)增大的方向进行,系统对应的微观状态数增大,根据玻尔兹曼熵lnS k,因此系统的熵值增加,即熵增加原理。
2、简述熵增加原理及其统计解释。
参考:孤立系统中所进行的自然过程总是沿着熵增大的方向进行。
根据玻尔兹曼熵公式lnS k,可知孤立系统中所进行的自然过程总是向着微观状态数(或混乱度)增大的方向进行。
第二章均匀物质的热力学性质知识点1、基本热力学函数的全微分和麦氏关系的得出。
dU TdS pdV dH TdS Vdp dF SdTpdVdGSdT Vdp()()()()()()()()S VS p T V TpT p V S T Vp S S pV T S VpT2、麦氏关系的应用。
2、气体的节流过程。
3、特性函数的应用。
4、热辐射(平衡辐射)的热力学结果,斯特方玻尔兹曼定律。
复习题1、写出焦汤系数的数学表达式,简述节流过程的特点;利用焦汤系数分析通过节流产生致冷效应、致温效应和零效应的原理。
(P57)2、证明能态方程TVU p Tp VT。
参考:选T 、V 作为状态参量时,有VTU U dU dT dV TdS pdVTVVTS S dSdTdVTV 得:VTS S dU T dT Tp dVTV比较得:TTU S TpV V将麦氏关系TVS p VT代入,即得TVU p TpVT3、证明焓态方程pTH V V TpT 。
热统-(PDF)
§ 3.8 临界现象和临界指数
二、液气流体系统
t T Tc Tc
1、l g (t) , t 0
1、临l界 指g数:(t )
,
t
0.34
0
2、T (t) T (t ) '
t 0, t 0。
' 1.2
28
§ 3.8 临界现象和临界指数
3、p pc c , t 0 K 5.0 4.6
p
( p ' 2 , T ) ( p ', T )
r
( p ' p 2 )v RT ln p '
r
p
14
§3.6 液滴的形成
实际问题中,p ' p 2 / r , 上式可近似为:
( p ' p 2 )v RT ln p '
r
p
ln p ' 2 v
p RTr
以水滴为例:在温度T = 291K时,水的表面张力系数和
r 自由能判据:定温定容时平衡态的自由能最小。
F=0 ;V 和n 可独立变动,有: 力学平衡条件 p p 2
r
相变平衡条件
说明:当两相分界面是平面时(即r →∞),两相的力学 平衡条件为两相的压强相等。
12
§3.6 液滴的形成
2. 曲面上的蒸汽压与平面上的饱和蒸汽压的关
系:
设分界面为平面时,饱和蒸汽压强为p;分界面
整个系统的自由能为三相的自由能之和: F F F F ( p p )V A ( ) n
假定液滴是球形,则有:
V 4 r3, A 4 r2
3
V 4 r2 r A 8 r r
11
§3.6 液滴的形成
师大物理本科
师大物理本科陕西师大远程教育学院物理本科函授生《热力学与统计物理学》作业题第一章热力学的基本规律 1.1已知状态方程f (p,v ,T )=0证明(1)VV p T T p=1(2) pΤVT V V p Τp ?-=??? ???? (3) 1-=???? ??????? ??????? ????Tp V p V V T T p1.2 试求理想气体的定压膨胀系数α、定容压强系数β和等温压系数κT 。
1.3 假设在压强不太高时,1摩尔真实气体的物态方程表示为pv =RT (1+Bp )。
其中,B 为温度的函数。
求α和κT ,并给出在p →0时的极限值。
1.4已知某气体的定压膨胀系数和等温压缩系数分别为pV nR =α ; V ap T +=1κ, 其中n 、R 和α均为常数。
求此气体的物态方程。
1.4证明任何一种具有两个独立变量T , p 的物质,其物态方程可由实验测得的α和κT 根据下列积分求得;()?=p T V T d -d ln κα.如果α= 1/T ,κT =1/p ,试求物态方程。
1.5 1摩尔范氏气体在准静态等温过程中体积由V 1膨胀至V 2。
求气体所作的功。
1.6 温度为0℃的1kg 水与温度为100℃的恒温热源接触后,水温达到100℃,试分别求水和热源的熵变以及整个系统的总熵变。
已知水的比热为4.18J ﹒ g -1﹒K -1。
1.7 有两个体积相同的容器,分别装有一摩尔的同种理想气体,令其进行热接触。
若气体的初温分别为300K 和400K ,在接触时保持各自的体积不变,且已知摩尔热容量为R ,求:⑴ 最后的共同温度;⑵ 熵的变化;⑶ 若初温为T 1及T 2,证明当T 1≠T 2时,熵总是增加的。
1.8 理想气体分别经等压过程和等容过程,温度由Τ1升至Τ2。
假设γ是常数,试证明前者的熵增是后者的γ倍。
1.9 一物体,其初温高于某热源的温度(T 2),有一热机在此物体与热源之间工作,直到物体的温度降低到T 2为止。
第三章相变
第三章相变1-3-1选择题:1、在下面给出的系统中,属于单元复相系的系统是:(A)有晶体盐析出的盐的水溶液。
(B)冰水混合物。
(C)水和酒精的混合物。
(D) 铜锌合金。
2、在下述的各种相变中,属于一级相变的是:(A) 铁磁-顺磁相变。
(B) 正常氦与超流氦之间的转变。
(C) 冰与液态水之间的转变。
(D) 超导态与正常态之间的转变。
3、在下述的各种相变中,属于二级相变的是:(A) 铁磁-顺磁相变。
(B) 水蒸发变成水蒸汽。
(C) 冰与液态水之间的转变。
(D) 液态金属凝固成固态金属。
4、对下面各种说法:(1) 液相转变为气相时,沸点总是随压强的增加而升高。
(2) 液相转变为气相时,沸点不一定随压强的增加而升高。
(3) 固相转变为液相时,熔点总是随压强的增加而升高。
(4) 固相转变为液相时,熔点不一定随压强的增加而升高。
其中正确的是(A)(1) 和(3) (B)(2) 和(4)(C)(2) 和(3) (D) (1) 和(4)5、对饱和蒸汽压,下面的说法正确的是:(A) 饱和蒸汽压的大小与温度无关,只与是那种物质有关。
(B) 饱和蒸汽压的大小与液面的形状无关。
(C) 饱和蒸汽压的大小与液面的形状有关,对凹形液面饱和蒸汽压会降低,对凸形液面饱和蒸汽压会升高。
(D) 饱和蒸汽压的大小与液面的形状有关,对凹形液面饱和蒸汽压会升高,对凸形液面饱和蒸汽压会降低。
1-3-2填空题:1、单元系一级相变的普遍特征是:在相变发生时伴随有 ,并吸收或放出 。
2、1mol 气体的范德瓦尔斯方程可写为:RT b v v a p =-⎪⎭⎫ ⎝⎛+)(的形式。
与理想气体状态方程相比较,其中 “va” 的出现是因为考虑了气体分子间的 的结果;而 “–b ”的出现是因为考虑了气体分子间的 的结果。
3、已知氦的临界温度为T k = 5.3 K ,临界压强为p k = 2.28 × 10 5 Pa 则1mol 的氦气体的范德瓦尔斯方程中的常数a = , b = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S 0 中性平衡
3.1 热动平衡判据
2、自由能判据
等温等容条件下系统的自由能永不增加,平衡态自由能最小。
系统状态的虚变动,引起的自由能变动:
稳定平衡态的必要和充分条件: F 0
F F 1 2F 2
由 F 0 可得平衡条件
2F 0
可得平衡的稳定性条件
极大值 平衡
最小极小 稳定平衡 较小极小亚稳平衡
F 0 中性平衡
3.1 热动平衡判据
3、吉布斯函数判据
等温等压条件下系统的吉布斯函数永不增加,平衡态时最小。
系统状态的虚变动,引起吉布斯函数的变动:
G G 1 2G 2
稳定平衡态的必要和充分条件: G 0
由 G 0 可得平衡条件
2G 0 可得平衡的稳定性条件
极大值 平衡 最小极小稳定平衡 较小极小亚稳平衡
3.1 热动平衡判据
一、熵、自由能、吉布斯函数判据
1、熵判据:
孤立系统的熵永不减少。平衡态熵最大。——熵判据 系统状态的虚变动,引起的熵变动: S S 1 2S
2
稳定平衡态的必要和充分条件: S 0
由 S 0 可得平衡条件
2S 0
可得平衡的稳定性条件
极大值 平衡 最大极大 稳定平衡 较小极大 亚稳平衡
p 0, ( V )T
0。
3.2 开系的热力学方程
一、开系的吉布斯函数 闭系的摩尔数不变:dG SdT Vdp 开系的摩尔数可变: dG SdT Vdp μdn
μ
(
G n
)T
,
p
称为化学势,等于T、P不变时增加1mol物质时G的改变。
G(T ,
p, n)
nGm (T ,
p),
(
G n
)T
,
《 Thermodynamics and Statistical Physics 》
热力学与统计物理学
主讲教师:王涛
第三章 单元系的相变
3.1 热动平衡判据 3.2 开系的热力学基本方程 3.3 单元系的复相平衡条件 3.4 单元复相系的平衡性质
3.5 临界点和气液两相的转变 3.6 液滴的形成 3.7 相变的分类 3.8 临界现象和临界指数
(相变平衡)
整个系统达到平衡时,两相的温度、压强和化学势必须相等。
3.3 单元复相系的平衡条件
二、未平衡时复相系发生变化的方向
δS
δS α
δS β
δU
α
(
1 Tα
1 Tβ
)
δV
α
(
pα Tα
pβ Tβ
)
δnα
(
μ T
α α
μβ Tβ
)
1、热平衡未满足,则
δS
0,
δU
α
(
1 Tα
1 Tβ
)
0;若T α
T β ,则δU α
0
2、热平衡满足,但力学平衡未满足,则
S
0,
即U
(
1 T
1 T)VFra bibliotek(p T
p T
)
n
(
T
T
)
0
V
(
p T
p T
)
0;若p
p ,则V
0
3.3 单元复相系的平衡条件
3、热平衡满足,但相变平衡未满足,则
δnα
(
μα Tα
μβ Tβ
)
0,
δnα
(
μα Tα
μβ Tβ
)
0;当μα
μ β , δnα
0
三、三相系平衡条件
T α T β T(γ 热平衡) pα p β p(γ 力学平衡) μα μ β μγ (相变平衡)
平衡的稳定性条件
CV
p 0,( V )T
0。
3.4 单元复相系的平衡性质
一、相图
S
1 2
2S
平衡态的必要条件: S~ S S0 0
S0
S0
1 2
2S0
热力学基本方程: S U pV
T
S0
U0
p0V0 T0
可得:
S~
U
1 T
1 T0
V
P T
P0 T0
0
3.1 热动平衡判据
S~ S S0 0
T T0 P P0
平衡条件
表明平衡时子系统和媒质具有相同的温度和压强。
p
Gm ,摩尔吉布斯函数
3.2 开系的热力学方程
二、开系的热力学基本微分方程 dG SdT Vdp μdn
特性函数:G(T, p, n)
G
G
G
S
( T
) P ,n ;V
( P
)T ,n; μ
(
n )T , p
由U G TS pV可得: dU TdS pdV μdn
此即开系的热力学基本微分方程
pβ Tβ
)
δnα
(
μα Tα
μβ Tβ
)
3.3 单元复相系的平衡条件
整个系统的熵变:
δS
δS α
δS β
δU
α
(
1 Tα
1 Tβ
)
δV
α
(
pα Tα
pβ Tβ
)
δnα
(
μ T
α α
μβ Tβ
)
系统平衡时,熵取极大值,有: δS 0
T T( 热学平衡)
p p( 力学平衡)此即单元两相系达到平衡满足的条件。
3.2 开系的热力学方程
三、开系的焓、自由能的微分关系 dU TdS pdV μdn
由H U pV可得:
dH TdS Vdp μdn
由F U TS可得:
dF SdT pdV μdn
dG SdT Vdp μdn
G
U
H
F
μ ( n )T , p ( n )S,V ( n )S, p ( n )T ,V
G 0 中性平衡
3.1 热动平衡判据
二、均匀系统的热动平衡和平衡的稳定性条件 孤立系统: 设子系统(T,p)发生一个虚变动: U, V
媒质相应的变动: U0 ,V0
U U0 0 V V0 0
媒质
T0,P0 T,P
子系统
3.1 热动平衡判据
整个系统的熵变: S~ S S0
将S和S0作泰勒展开,准确到二级:S
设一虚变动: δU α δU β 0;δV α δV β 0;δnα δnβ 0
两相的熵变:δS α
δU α
p α δV Tα
α
μ α δnα
;δS β
δU
β
p β δV Tβ
β
μ βδnβ
根据熵的广延性质,整个系统的熵变:
δS
δS α
δS β
δU
α
(
1 Tα
1 Tβ
)
δV
α
(
pα Tα
3.2 开系的热力学方程
四、巨热力学势
dF SdT pdV μdn
J是以T、V为独立变量的特性函数:J F n
dJ SdT pdV nd
J
J
J
S
( T
)V , ,
p
( V
)T , , n
( )T ,V
3.3 单元复相系的平衡条件
一、单元两相系达到平衡满足的条件
孤立系统: U α U β 常量;V α V β 常量;nα nβ 常量
若 2S~ 0,则熵函数取极大值
子系统比整个系统小多(V V0 , CV CV0 ) 2S~ 2S0 2S 2S, 故2S 0
2S
(
2S U2
)(U)2
2
2S UV
UV
(
2S V 2
)(V)2
变换可得:2S
CV 2T2
(T)2
1 2T
(
p V
)T
(V)2
0
故 平 衡 的 稳 定 性 条 件 : CV