【最新】初中数学导学案答案-范文word版 (11页)

合集下载

七年级上册数学导学方案答案

七年级上册数学导学方案答案

七年级上册数学导学方案答案第一章:有理数一、绪论在本章中,我们将学习有理数的概念、有理数的加、减法以及有理数的乘法。

通过学习,我们可以更好地理解数轴上的数的表示方法及运算规律。

二、有理数的概念有理数包括整数和分数两部分,其中整数包括正整数、负整数和零,分数包括正分数和负分数。

有理数是可以表示为两个整数之间的比值的数。

三、有理数的加法和减法1. 有理数的加法规则:加法基本性质:对于任意一数a,有a+0=a,a加上0仍等于a。

加法闭合性:任意两个有理数相加,结果仍是有理数。

2. 有理数的减法规则:减法的定义:a-b等于a加上b的相反数。

减法与加法的关系:a-b等于a+(-b)。

四、有理数的乘法有理数的乘法运算满足交换律、结合律和分配律。

设a、b、c是任意三个有理数,则有:1. 交换律:a×b=b×a2. 结合律:(a×b)×c=a×(b×c)3. 分配律:a×(b+c)=a×b+a×c五、小结通过本章的学习,我们了解了有理数的概念、有理数的加、减法以及有理数的乘法。

掌握了有理数的运算规则,我们可以更好地理解数轴上的数的表示方法及运算规律。

第二章:代数式一、绪论在本章中,我们将学习代数式的概念、代数式的加减法、代数式的乘法以及代数式的因式分解。

通过学习,我们可以更好地理解代数式的运算规律及化简方法。

二、代数式的概念代数式由常数和变量以及它们之间的运算符号组成的式子。

常见的代数式包括单项式、多项式和恒等式等。

三、代数式的加减法1. 代数式的加法规则:加法基本性质:对于任意一代数式a,有a+0=a,a加上0仍等于a。

加法逆元:对于任意一代数式a,都存在一个代数式-b,使得a+b=0。

2. 代数式的减法规则:减法的定义:a-b等于a加上-b。

减法与加法的关系:a-b等于a+(-b)。

四、代数式的乘法代数式的乘法运算满足交换律、结合律和分配律。

八年级数学导学案答案doc答案

八年级数学导学案答案doc答案

1-3章 导学案答案第一章 勾股定理1.1.1 三、1、× × × ; 2、10;12四、1、41、8、20 ; 2、答:不正确。

因为△ABC 不一定是直角三角形。

3、30m五、1、C 、B ; 2、6、8 ; 3、25或7;1.1.2 三、1、144; 2、正确.3、4、5是一组勾股数。

四、1、D ;2、48 cm 2 ; 3、AB=3.5 cm ,CD=1.68 cm , 4、36 m 2 五、3 cm1.2 三、1、是、是、否、否;2、是直角三角形;是直角三角形(用勾股定理逆定理)四、1、①②④⑤,直角三角形,∠A ,90; 2、36; 3、约4.62五、1、C ;2、直角三角形;1.3 三、1、12米;13米;2、2.5米四、1、C ,17m ;2、24米;8米;3、15m 五、25 cm第一章 复习课参考答案Ⅰ.题组练习一1.D ;2.C ;3.合格;4.17或161;5.B ;Ⅲ.题组练习二6--9.CBAB ;10.1cm; 11.5; 12.略; 13.24平方米;Ⅳ题组练习三14.D ;15.(1)12-=n a ,n b 2=,12+=n c ;(2)是直角三角形.过程略.第一章 达标检测题参考答案一、ACC ; 6--10.CBBDC.二、11.5;12.4;13.48cm 2;14.直角; 15.4;16.169;17.98π;18.10;19.36;20.能.三、21.因为AB=DE=2.5,BC=1.5,∠C=90°,所以AC 2=AB 2-BC 2=2.52-1.52=4,所以AC=2.又BD=0.5,所以在Rt △ECD 中,CE 2=DE 2-CD 2=2.52-(CD+BD )2=2.52-(1.5+0.5)2=2.25,所以CE=1.5.所以AE=AC-CE=2-1.5=0.5.答:滑杆顶端A 下滑0.5米.22.过点B 作BD ⊥AD 于D ,则AD =4-(2-0.5)=2.5,BD =4.5+1.5=6.在Rt △ADB 中,由勾股定理,得AB 2=AD 2+BD 2=2.52+62=42.25,所以AB=6.5.所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.23.(1)如图;(2)因为小正方形的边长为1,所以AC 2=5,CD 2=5,AD 2=10,所以AC 2+CD 2=AD 2.所以△ACD是直角三角形,且∠ACD=90°.(3)S四边形ABCD =2S△ACD=2×5212==⋅ACCDAC.24.(1)猜想:AP=CQ.理由:因为∠ABC=∠PBQ=60°,所以∠ABP=∠ABC-∠PBC=∠PBQ-∠PBC=∠CBQ.又AB=CB,BP=BQ,所以△ABP≌△CBQ,所以AP=CQ.(2)△PQC是直角三角形.理由:由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a.连接PQ,在△PBQ中,因为PB=BQ=4a,∠PBQ=60°,所以△PBQ为正三角形,所以PQ=4a.由(1)知△ABP≌△CBQ,所以CQ=PA=3a.在△PQC中,因为PQ2+QC2=(4a)2+(3a)2=25a2=(5a)2=PC2.所以△PQC是直角三角形.25.由题意,知5秒时P点运动的距离为2×5=10(厘米),所以P点与D点重合,如图.动点Q运动的距离为2.8×5=14(厘米).因为DC=BC=BA=5,所以BQ=14-10=4(厘米).在△BPQ中,因为BD=5厘米,BQ=4厘米,DQ=3厘米,所以BQ2+DQ2=42+32=25=BD2,所以△BPQ为直角三角形,且∠BQP=90°.所以∠AQD=90°,即△APQ为直角三角形.第二章实数2.1.1 三、1、不是,是;2、是;3、h不可能是整数,不可能是分数四、1、不是,是,是;2、B 3、设对角线为a,a2=13,32<a2=13<42,a不可能是整数,又分数的平方还是分数,a不可能是分数;4、略;5、不可能是整数,不可能是分数,不可能是有理数;五、以1、2为直角边构成的直角三角形的斜边为边长的正方形即可。

新人教版七年级数学下册导学案及参考答案

新人教版七年级数学下册导学案及参考答案

新人教版七年级数学(下册)第五章导学案及参考答案第五章相交线与平行线课题:5.1.1相交线【学习目标】:在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题。

【学习重点】:邻补角、对顶角的概念,对顶角性质与应用。

【学习难点】:理解对顶角相等的性质的探索。

【导学指导】一、知识链接1.读一读,看一看学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题.2.观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出结论:二、自主探究1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.教师再提问:如果改变∠AOC的大小,会改变它与其它角的位置关系和数量关系吗?3.邻补角、对顶角概念邻补角的定义是:对顶角角的定义是:5.对顶角性质.(1)学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由。

对顶角性质:(2)学生自学例题O DCB A 例:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数. 【课堂练习】: 1.课本P3练习2.课本P8习题1【要点归纳】:邻补角、对顶角的概念及性质: 【拓展训练】1. 如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________; 若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________. (1)(2)2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=________。

最新人教版九年级数学上册全册导学案(含答案)

最新人教版九年级数学上册全册导学案(含答案)

第二十一章 一元二次方程 21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm ,宽50 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为__(100-2x)cm __,宽为__(50-2x)cm __.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛1场,所以全部比赛共x (x -1)2__场.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:(1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1; (6)ax2+bx+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1, ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程.点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根? -4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程. (1)1-x 2=0; (2)2(x 2-1)=3y ; (3)2x 2-3x -1=0; (4)1x 2-2x =0;(5)(x +3)2=(x -3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是.2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值. 解:∵x =2是方程ax 2+4x -5=0的一个根, ∴4a +8-5=0, 解得a =-34.3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x. 解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±5__,即将方程变为__2x-1=5和__2x-1=-5__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__1+52,x2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到__x+3=±2__ ,方程的根为x1=__-1__,x2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(x-8)2=50;(3)(2x-1)2+4=0; (4)4x2-4x+1=0.解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3;(3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=1 2.点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3x+1)2=7; (2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx +n)2=p(p ≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值. 解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25; (7)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2; (2)x 1=2+5,x 2=2-5; (3)x 1=-1,x 2=13;(4)x 1=16,x 2=-16;(5)x 1=92,x 2=-92;(6)x 1=0,x 2=-10; (7)x 1=1,x 2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程. 2.理解“降次”思想.3.理解x 2=p(p ≥0)或(mx +n)2=p(p ≥0)中,为什么p ≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米?设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0?对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__, 解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤: (1)把方程化为一般形式ax 2+bx +c =0; (2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2. 2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0. 解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1, 配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32,x2=-52-32.(3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±5,即x1=5-2,x2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0,(x-7)2=25,x-7=±5,∴x1=12,x2=2,x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.用配方法解下列关于x的方程:(1)2x2-4x-8=0;(2)x2-4x+2=0;(3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5;(2)x1=2+2,x2=2-2;(3)x1=14+174,x2=14-174;(4)x1=62,x2=-62.2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a 就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =-b±b 2-4ac 2a 叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b 2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论? (1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.解:(1)x 1=0,x 2=32;有两个不相等的实数根;(2)x 1=x 2=33;有两个相等的实数根; (3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x2-4x+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14.3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根. 证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况:(1)2x2-3x-32=0; (2)16x2-24x+9=0;(3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)x2+x-12=0 ; (2)x2-2x-14=0;(3)x2+4x+8=2x+11; (4)x(x-4)=2-8x;(5)x2+2x=0 ; (6)x2+25x+10=0.解:(1)x 1=3,x 2=-4; (2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6; (5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a ≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac ≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a(b 2-4ac ≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3 因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am +bm +cm =(__a +b +c__)m ; (2)a 2-b 2=__(a +b)(a -b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:x(10-4.9x)=0,于是得x=0或10-4.9x=0,②∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.解:(1)x1=0,x2=8;(2)x1=-13,x2=52.2.用因式分解法解下列方程:(1)x2-4x=0; (2)4x2-49=0;(3)5x2-20x+20=0.解:(1)x1=0,x2=4; (2)x1=72,x2=-72;(3)x1=x2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x2-4x=0;(2)3x(2x+1)=4x+2;(3)(x+5)2=3x+15.解:(1)x1=0,x2=4 5;(2)x1=23,x2=-12;(3)x1=-5,x2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x2-144=0;(2)(2x-1)2=(3-x)2;(3)5x2-2x-14=x2-2x+34;(4)3x2-12x=-12.解:(1)x1=6,x2=-6;(2)x1=43,x2=-2;(3)x1=12,x2=-12;(4)x1=x2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)(x-4)2=(5-2x)2.解:(1)x1=0,x2=-1;(2)x1=0,x2=23;(3)x1=x2=1;(4)x 1=112,x 2=-112;(5)x 1=3,x 2=1.点拨精讲:因式分解法解一元二次方程的一般步骤: (1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__; (3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m . 则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52) m .学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab =0得 a =0或b =0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca .2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用. 难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 自学1:完成下表:问题:你发现什么规律? ①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项. ②x 2+px +q =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-p ,x 1x 2=q. 自学2:完成下表:问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理) ax 2+bx +c =0的两根x 1=2a ,x 2=2a.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1;(2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15; (2)x 1+x 2=-73,x 1x 2=-3;(3)x 1+x 2=54,x 1x 2=14.点拨精讲:先将方程化为一般形式,找对a ,b ,c.2.已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为32,k =3.点拨精讲:本题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值. (1)1α+1β; (2)α2+β2; (3)α-β. 解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积: (1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10; (4)4x 2-144=0. 解:(1)x 1+x 2=3,x 1x 2=-15; (2)x 1+x 2=0,x 1x 2=-1; (3)x 1+x 2=3,x 1x 2=-8; (4)x 1+x 2=0,x 1x 2=-36.2.两根均为负数的一元二次方程是( C )A .7x 2-12x +5=0B .6x 2-13x -5=0C .4x 2+21x +5=0D .x 2+15x -8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a ,b ,c.2.当且仅当b 2-4ac ≥0时,才能应用根与系数的关系.3.要注意比的符号:x 1+x 2=-b a (比前面有负号),x 1x 2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题. 难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x 个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x +1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x +1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为() A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符。

人教版八年级数学上册导学案(答案)

人教版八年级数学上册导学案(答案)

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗? 思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同? 学生思考、分组讨论、交流。

2022数学导学案参考答案八上

2022数学导学案参考答案八上

2022数学导学案参考答案八上一、1. (1)∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F(2)∵△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF2. (1)∵△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF(2)∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F3. (1)∵△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF(2)∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F(3)∵△ABC∽△DEF,∴△ABC≌△DEF二、1. (1)由题意可知,△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF(2)由题意可知,△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F2. (1)由题意可知,△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF(2)由题意可知,△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F(3)由题意可知,△ABC∽△DEF,∴△ABC≌△DEF三、1. 由题意可知,△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF2. 由题意可知,△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF3. 由题意可知,△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF4. 由题意可知,△ABC∽△DEF,∴AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF四、1. 对称性:若△ABC∽△DEF,则AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF2. 对称性:若△ABC∽△DEF,则AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF3. 对称性:若△ABC∽△DEF,则AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF4. 对称性:若△ABC∽△DEF,则AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF五、1. 对称性:若△ABC∽△DEF,则AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF2. 对称性:若△ABC∽△DEF,则AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F,△ABC≌△DEF3. 对称性:若△ABC∽△DEF,则AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,。

最新人教版九年级数学上册全册导学案(含答案)

最新人教版九年级数学上册全册导学案(含答案)

第二十一章 一元二次方程 21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm ,宽50 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为__(100-2x)cm __,宽为__(50-2x)cm __.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛1场,所以全部比赛共x (x -1)2__场.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:(1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1; (6)ax2+bx+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1, ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程.点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根? -4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程. (1)1-x 2=0; (2)2(x 2-1)=3y ; (3)2x 2-3x -1=0; (4)1x 2-2x =0;(5)(x +3)2=(x -3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是.2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值. 解:∵x =2是方程ax 2+4x -5=0的一个根, ∴4a +8-5=0, 解得a =-34.3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x. 解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±5__,即将方程变为__2x-1=5和__2x-1=-5__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__1+52,x2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到__x+3=±2__ ,方程的根为x1=__-1__,x2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(x-8)2=50;(3)(2x-1)2+4=0; (4)4x2-4x+1=0.解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3;(3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=1 2.点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3x+1)2=7; (2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx +n)2=p(p ≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值. 解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25; (7)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2; (2)x 1=2+5,x 2=2-5; (3)x 1=-1,x 2=13;(4)x 1=16,x 2=-16;(5)x 1=92,x 2=-92;(6)x 1=0,x 2=-10; (7)x 1=1,x 2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程. 2.理解“降次”思想.3.理解x 2=p(p ≥0)或(mx +n)2=p(p ≥0)中,为什么p ≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米?设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0?对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__, 解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤: (1)把方程化为一般形式ax 2+bx +c =0; (2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2. 2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0. 解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1, 配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32,x2=-52-32.(3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±5,即x1=5-2,x2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0,(x-7)2=25,x-7=±5,∴x1=12,x2=2,x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.用配方法解下列关于x的方程:(1)2x2-4x-8=0;(2)x2-4x+2=0;(3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5;(2)x1=2+2,x2=2-2;(3)x1=14+174,x2=14-174;(4)x1=62,x2=-62.2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a 就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =-b±b 2-4ac 2a 叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b 2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论? (1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.解:(1)x 1=0,x 2=32;有两个不相等的实数根;(2)x 1=x 2=33;有两个相等的实数根; (3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x2-4x+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14.3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根. 证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况:(1)2x2-3x-32=0; (2)16x2-24x+9=0;(3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)x2+x-12=0 ; (2)x2-2x-14=0;(3)x2+4x+8=2x+11; (4)x(x-4)=2-8x;(5)x2+2x=0 ; (6)x2+25x+10=0.解:(1)x 1=3,x 2=-4; (2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6; (5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a ≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac ≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a(b 2-4ac ≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3 因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am +bm +cm =(__a +b +c__)m ; (2)a 2-b 2=__(a +b)(a -b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:x(10-4.9x)=0,于是得x=0或10-4.9x=0,②∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.解:(1)x1=0,x2=8;(2)x1=-13,x2=52.2.用因式分解法解下列方程:(1)x2-4x=0; (2)4x2-49=0;(3)5x2-20x+20=0.解:(1)x1=0,x2=4; (2)x1=72,x2=-72;(3)x1=x2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x2-4x=0;(2)3x(2x+1)=4x+2;(3)(x+5)2=3x+15.解:(1)x1=0,x2=4 5;(2)x1=23,x2=-12;(3)x1=-5,x2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x2-144=0;(2)(2x-1)2=(3-x)2;(3)5x2-2x-14=x2-2x+34;(4)3x2-12x=-12.解:(1)x1=6,x2=-6;(2)x1=43,x2=-2;(3)x1=12,x2=-12;(4)x1=x2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)(x-4)2=(5-2x)2.解:(1)x1=0,x2=-1;(2)x1=0,x2=23;(3)x1=x2=1;(4)x 1=112,x 2=-112;(5)x 1=3,x 2=1.点拨精讲:因式分解法解一元二次方程的一般步骤: (1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__; (3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m . 则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52) m .学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab =0得 a =0或b =0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca .2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用. 难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 自学1:完成下表:问题:你发现什么规律? ①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项. ②x 2+px +q =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-p ,x 1x 2=q. 自学2:完成下表:问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理) ax 2+bx +c =0的两根x 1=2a ,x 2=2a.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1;(2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15; (2)x 1+x 2=-73,x 1x 2=-3;(3)x 1+x 2=54,x 1x 2=14.点拨精讲:先将方程化为一般形式,找对a ,b ,c.2.已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为32,k =3.点拨精讲:本题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值. (1)1α+1β; (2)α2+β2; (3)α-β. 解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积: (1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10; (4)4x 2-144=0. 解:(1)x 1+x 2=3,x 1x 2=-15; (2)x 1+x 2=0,x 1x 2=-1; (3)x 1+x 2=3,x 1x 2=-8; (4)x 1+x 2=0,x 1x 2=-36.2.两根均为负数的一元二次方程是( C )A .7x 2-12x +5=0B .6x 2-13x -5=0C .4x 2+21x +5=0D .x 2+15x -8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a ,b ,c.2.当且仅当b 2-4ac ≥0时,才能应用根与系数的关系.3.要注意比的符号:x 1+x 2=-b a (比前面有负号),x 1x 2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题. 难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x 个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x +1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x +1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为() A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符。

九年级数学导学案答案.doc

九年级数学导学案答案.doc

九年级数学导学案答案相似三角形教学目标:使学生掌握相似三角形的判定与性质教学重点:相似三角形的判定与性质教学过程:一知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。

特例:全等形。

相似形的识别:对应边成比例,对应角相等。

成比例线段:对于四条线段a、b、c、d,如果其中两条线ac段的长度的比与另两条线段的长度的比相等,即?,那bd么,这四条线段叫做成比例线段,简称比例线段。

黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0・618?。

这种分割称为黄金分割,点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。

例1:放大镜下的图形和原来的图形相似吗?哈哈镜中的形象与你本人相似吗?你能举出生活中的一些相似形的例子吗/例2:判断下列各组长度的线段是否成比例:2厘米,3厘米,4厘米,1厘米1. 5厘米,2. 5厘米,4. 5厘米,6. 5厘米1. 1厘米,2. 2 厘米,3. 3厘米,4. 4厘米1厘米,厘米,2厘米,4厘米。

例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黄金分割,需穿多高的高跟鞋?例4:等腰三角形都相似吗?矩形都相似吗?正方形都相似吗?、相似形三角形的判断:a两角对应相等b两边对应成比例且夹角相等c三边对应成比例3、相似形三角形的性质:1a对应角相等b对应边成比例c对应线段之比等于相似比d周长之比等于相似比e面积之比等于相似比的平方4、相似形三角形的应用:计算那些不能直接测量的物体的高度或宽度以及等份线段例题1ABCD中,G是BC延长线上一点,AG交BD于点E,交DC 于点F,试找出图中所有的相似三角形C B G2如图在正方形网格上有6个斜三角形:a :ABC; b: BCD c: BDE d: BFG e: FGH f: EFK,试找出与三角形a相似的三角形ABC中,AB=8厘米,BC-16厘米,点P从点A开始沿AB 边向点B以2厘米每秒的速度移动,点Q从点B开始沿BC 向点C以4厘米每秒的速度移动,如果P、Q分别从B经几秒钟PBQ与ABC相似?C、某房地产公司要在一块矩形ABCD±地上规划建设一个矩形GHCK小区公园,为了使文物保2A N EH B护区AEF不被破坏,矩形公园的顶点G不能在文物保护区内。

数学导学案九年级答案

数学导学案九年级答案

数学导学案九年级答案【篇一:九年级数学金榜学案答案】>一.选择题(本题共10小题,每小题3分,共30分)1.下列函数中,属于二次函数的是 ( )a.b.c.y= d.2.抛物线y=(x+3)2-2的对称轴是( )a.直线x=3b.直线x=-3c.直线x=-2d.直线x=23.抛物线y=x2-2x-1的顶点坐标是( )a .(1,-1) b.(-1,2) c.(-1,-2) d.(1,-2)4. 二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量 x 的取值范围为()a.-1<x<3 b.x<-1 c. x>3 d.x<-1或x>35.如果二次函数y=ax2+bx+c(其中a、b、c为常数,a≠0)的部分图象如图所示,它的对称轴过点(-1,0),那么关于x的方程ax2+bx+c=0的一个正根可能是( ) 6.一个圆锥形的冰淇淋纸筒,其底面直径为,母线长为,围成这样的冰淇淋纸筒所需纸片的面积是()a. b. c. d.7.如图,实线部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )8.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()a.10cm b.20cmc.30cmd.40cm9.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象可能为10.如图,点c、d是以线段ab为公共弦的两条圆弧的中点,ab=4,点e、f分别是线段cd,ab上的动点,设af=x, ae2-fe2=y,则能表示y与x的函数关系的图象是()二.填空题(每空3分,共30分)11.函数﹣2,当x 时,函数值y随x的增大而减小.12.若抛物线与轴没有交点,则的取值范围是 .13.抛物线 y= 的开口向 .14.把抛物线y=-2(x+2)2-1先沿y轴向右平移3个单位,再沿x 轴向上平移2个单位,得到的抛物线解析式为 .15. 函数y=ax2-ax+3x+1的图象与x轴有且只有一个交点,写出a所有可能的值________________.16. 如果⊙a和⊙b相切,它们的半径分别为8cm和2cm,那么圆心距ab为 cm.18.如图,在以o为圆心的两个同心圆中,大圆的弦ab与小圆相切于点c,若弦ab的长为8cm.则圆环的面积为________cm2.19.如图是某风景区的一个圆拱形门,路面ab宽为2m,净高cd 为5m,则圆拱形门所在圆的半径为m.20.如图,长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)三.解答题(本题共8小题,共70分)21. (本小题10分)分别求出对应的二次函数的解析式:(1)已知抛物线的顶点为(-2,1),且过点(-4,3 );(2)抛物线与x轴的两个交点坐标为(-3,0)和(2,0),且它经过点(1,4).22. (本小题8分)已知二次函数y=x2+bx+2的图像经过点(-1,6)(1)求这个二次函数的关系式;(2)求二次函数图像与x轴的交点的坐标;(3)画出图像的草图,观察图像,直接写出当y>0时,x的取值范围.23.(本小题10分)已知:抛物线y =x2+ax+a﹣2.(1)求证:不论a取何值时,抛物线y=x2+ax+a﹣2与x轴都有两个不同的交点.(2)设这个二次函数的图象与轴相交于a(x1,0),b(x2,0),且x1 、x2的平方和为3,求a的值.24.(本小题9分)如图,p是⊙o的直径ab延长线上的一点, pc 切⊙o于点c,弦cd⊥ab,垂足为点e,若,.求:(1)⊙o的半径;(2)cd的长;(3)图中阴影部分的面积.25.(本小题9分)近日某小区计划在中央花园内建造一个圆形的喷水池,在水池中央垂直于水面安装一个花形柱子oa, o恰好在水面中心,oa为1.25m,安置在柱子顶端a处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过oa的任一平面上抛物线路径如图所示.为使水流形状较为漂亮,设计成水流在到oa距离lm处达到距水面最大高度2.25m.(1)请求出其中一条抛物线的解析式;(2)如果不计其他因素,那么水池的半径至少要为多少m 才能使喷出水流不致落到池上?26.(本小题12分)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点a沿着正方体表面爬到点c1处;(2)如图2,圆锥的母线长为4cm,底面半径r= cm,一只蚂蚁欲从圆锥的底面上的点a出发,沿圆锥侧面爬行一周回到点a;(3)如图3,是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的a处,它想吃到盒内表面对侧中点b处的食物,已知盒高10cm,底面圆周长为32cm,a距下底面3cm..27.(本小题12分)如图,在平面直角坐标系xoy中,正方形oabc的边长为2cm,点a、c别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点a、b,最低点为m,且s△amb=(1)求此抛物线的解析式,并说明这条抛物线是由抛物线y=ax2 怎样平移得到的;( 2)如果点p由点a开始沿着射线ab以2cm/s的速度移动,同时点q由点b开始沿bc边以1cm/s的速度向点c移动,当其中一点到达终点时运动结束;①在运动过程中,p、q两点间的距离是否存在最小值,如果存在,请求出它的最小值;②当pq取得最小值时,在抛物线上是否存在点r,使得以p、b、q、r为顶点的四边形是梯形? 如果存在,求出r点的坐标,如果不存在,请说明理由.九年级数学参考答案一.选择题(本题共10小题,每小题3分,共30分)1.a2.b3.d4.a5.b .6. d7.d8.a9. c 10.c二.填空题(每空3分,共30分)11.>-1 12.a<-113.下 14.y=-2(x-1)2+1 15.0、1、9(少写一个扣1分)三.解答题(本题共8小题,共70分)21. (本小题10分)(1)设y=a(x+2)2+1 1分a=0.54分∴y=0.5(x+2)2+15分(2)设y=a(x+3)(x-2)1分a=-14分∴y=-(x+3)(x-2)5分22. (本小题8分)(1)b=-32分(2)(1,0)(2,0)4分(3)草图略6分(要求仅画出大致形状即可)∴x>2或x<-18分23.(本小题10分)(1)△=a2-4(a-2)2分=(a-2)2+44分∴不论a取何值时,抛物线y=x2+ax+a﹣2与x轴都有两个不同的交点.??5分(2)x1 +x2=-a1分x1 .x2=a-22分x1 2+x22=(x1 +x2)2-2 x1 .x23分=a2-2a+4=3∴a=15分24.(本小题9分)(1)切线得oc⊥pc1分设半径为r(r+1)2=r2+32分r=13分(2)ce= 2分cd= 3分(3)图中阴影部分的面积 - 3分25.(本小题9分)(1) y= -(x-1)2+2.254分(2)(x-1)2=2.25x1=2.5 或 x2= -0.5 (舍)8分答:半径至少为2.5米时9分26.(本小题12分)(1)展开图略 5 4分(2)展开图略 4 8分(3)展开图略 20 12分27.(1)y= (x-1)2- 2分向右1个单位长度,向下个单位长度3分(2)①pq2=(2-2t)2+t2=5(t- )2+ 5分存在,当t= 时,最小值 ??????? ?6分②10当ab∥qr时y=- 时(x-1)2- =- 8分x1= 或 x2=当x1= 时,说明p、b、q、r为顶点的四边形是梯形9分当x2= 时,pbrq为平行四边形,舍.10分20当br∥pq时与x2= 的情况相同,故此时不存在梯形.11分【篇二:人教版九年级数学上册全册导学案】s=txt>总结自己存在的问题,分析原因,制定弥补方案。

最新人教版九年级数学上册全册导学案(含答案)

最新人教版九年级数学上册全册导学案(含答案)

最新人教版九年级数学上册全册导学案(含答案)第二十一章一元二次方程21.1一元二次方程1.了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式a某2+b某+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为某cm,则盒底的长为__(100-2某)cm__,宽为__(50-2某)cm__.列方程__(100-2某)·(50-2某)=3600__,化简整理,得__某2-75某+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__437=28__.设应邀请某个队参赛,每个队要与其他__(某-1)__个队各赛1场,所以全部比赛共某(某-1)某(某-1)__场.列方程__=28__,化简整理,得__某2-某-56=0__.②22探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于某的一元二次方程,经过整理,都能化成如下形式:a某2+b某+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__a某2__是二次项,__a__是二次项系数,__b某__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)某3-2某2+5=0;(2)某2=1;13(3)5某2-2某-=某2-2某+;45(4)2(某+1)2=3(某+1);(5)某2-2某=某2+1;(6)a某2+b某+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3某(某-1)=5(某+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3某2-3某=5某+10.移项,合并同类项,得3某2-8某-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于某的方程(m2-8m+17)某2+2m某+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0.∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.2.下面哪些数是方程2某2+10某+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以某=-2或某=-3是一元二次方程2某2+10某+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-某2=0;(2)2(某2-1)=3y;12(3)2某2-3某-1=0;(4)2-=0;某某(5)(某+3)2=(某-3)2;(6)9某2=5-4某.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若某=2是方程a某2+4某-5=0的一个根,求a的值.解:∵某=2是方程a某2+4某-5=0的一个根,∴4a+8-5=0,3解得a=-.43.根据下列问题,列出关于某的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长某;(2)一个长方形的长比宽多2,面积是100,求长方形的长某.解:(1)4某2=25,4某2-25=0;(2)某(某-2)=100,某2-2某-100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式a某2+b某+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1.使学生会用直接开平方法解一元二次方程.2.渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(某+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如某2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(某+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为某dm,则一个正方体的表面积为__6某2__dm2,根据一桶油漆可刷的面积列出方程:__1036某2=1500__,由此可得__某2=25__,根据平方根的意义,得某=__±5__,即某1=__5__,某2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2某-1)2=5及方程某2+6某+9=4方程(2某-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2某-1=±5__,即将方程变为__2某-1=5和__2某-1=-5__两个一元一1+51-5次方程,从而得到方程(2某-1)2=5的两个解为某1=__,某2=____.22在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程某2+6某+9=4的左边是完全平方式,这个方程可以化成(某+__3__)2=4,进行降次,得到__某+3=±2__,方程的根为某1=__-1__,某2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成某2=p(p≥0)或(m某+n)2=p(p≥0)的形式,那么可得某=±p或m某+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(某-8)2=50;(3)(2某-1)2+4=0;(4)4某2-4某+1=0.解:(1)2y2=8,(2)2(某-8)2=50,y2=4,(某-8)2=25,y=±2,某-8=±5,∴y1=2,y2=-2;某-8=5或某-8=-5,∴某1=13,某2=3;(3)(2某-1)2+4=0,(4)4某2-4某+1=0,(2某-1)2=-4<0,(2某-1)2=0,∴原方程无解;2某-1=0,1∴某1=某2=.2点拨精讲:观察以上各个方程能否化成某2=p(p≥0)或(m某+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3某+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式a某2+b某+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?-b+b2-4ac问题:已知a某+b某+c=0(a≠0),试推导它的两个根某1=,某2=2a2-b-b2-4ac.2a分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程a某2+b某+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式a某2+b某+c=0,当b2-4ac≥0时,-b±b2-4ac将a,b,c代入式子某=就得到方程的根,当b2-4ac<0时,方程没有实数2a根.-b±b2-4ac(2)某=叫做一元二次方程a某2+b某+c=0(a≠0)的求根公式.2a(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b2-4ac叫做方程a某2+b某+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)用公式法解下列方程,根据方程根的情况你有什么结论?(1)2某2-3某=0;(2)3某2-23某+1=0;(3)4某2+某+1=0.3解:(1)某1=0,某2=;有两个不相等的实数根;2(2)某1=某2=3;有两个相等的实数根;3(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程某2-4某+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)某2-(2m-3)某+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?111解:(1)m<;(2)m=;(3)m>.4443.已知某2+2某=m-1没有实数根,求证:某2+m某=1-2m必有两个不相等的实数根.证明:∵某2+2某-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程某2+m某=1-2m,即某2+m某+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴某2+m某=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.利用判别式判定下列方程的根的情况:3(1)2某2-3某-=0;(2)16某2-24某+9=0;2(3)某2-42某+9=0;(4)3某2+10某=2某2+8某.解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)某2+某-12=0;(2)某2-2某-=0;4(3)某2+4某+8=2某+11;(4)某(某-4)=2-8某;(5)某2+2某=0;(6)某2+25某+10=0.解:(1)某1=3,某2=-4;(2)某1=2+32-3,某2=;22(3)某1=1,某2=-3;(4)某1=-2+6,某2=-2-6;(5)某1=0,某2=-2;(6)无实数根.点拨精讲:(1)一元二次方程a某2+b某+c=0(a≠0)的根是由一元二次方程的系数a,b,c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac≥0的前提下,把-b±b2-4ac2a,b,c的值代入某=(b-4ac≥0)中,可求得方程的两个根;2a(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定出b2-4ac的值、.a,b,c的值,再算.最后代入求根公式求解..3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3因式分解法1.会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am+bm+cm=(__a+b+c__)m;(2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10m/的速度竖直上抛,那么经过某物体离地的高度(单位:m)为10某-4.9某2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01)设物体经过某落回地面,这时它离地面的高度为0,即10某-4.9某2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:某(10-4.9某)=0,于是得某=0或10-4.9某=0,②∴某1=__0__,某2≈2.04.上述解中,某2≈2.04表示物体约在2.04时落回地面,而某1=0表示物体被上抛离开地面的时刻,即0时物体被抛出,此刻物体的高度是0m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(某+1)(某-1)=0,那么__某+1=0或__某-1=0__,即__某=-1__或__某=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)某(某-8)=0;(2)(3某+1)(2某-5)=0.15解:(1)某1=0,某2=8;(2)某1=-,某2=.322.用因式分解法解下列方程:(1)某2-4某=0;(2)4某2-49=0;(3)5某2-20某+20=0.77解:(1)某1=0,某2=4;(2)某1=,某2=-;22(3)某1=某2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5某2-4某=0;(2)3某(2某+1)=4某+2;(3)(某+5)2=3某+15.4解:(1)某1=0,某2=;521(2)某1=,某2=-;32(3)某1=-5,某2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4某2-144=0;(2)(2某-1)2=(3-某)2;13(3)5某2-2某-=某2-2某+;44(4)3某2-12某=-12.解:(1)某1=6,某2=-6;4(2)某1=,某2=-2;311(3)某1=,某2=-;22(4)某1=某2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.用因式分解法解下列方程:(1)某2+某=0;(2)某2-23某=0;(3)3某2-6某=-3;(4)4某2-121=0;(5)(某-4)2=(5-2某)2.解:(1)某1=0,某2=-1;(2)某1=0,某2=23;(3)某1=某2=1;1111(4)某1=,某2=-;22(5)某1=3,某2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为某m.则可列方程2π某2=π(某+5)2.解得某1=5+52,某2=5-52(舍去).答:小圆形场地的半径为(5+52)m.学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab=0得a=0或b=0,即“二次降为一次”.2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4一元二次方程的根与系数的关系bc1.理解并掌握根与系数的关系:某1+某2=-,某1某2=.aa2.会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟)自学1:完成下表:方程某2-5某+6=0某2+3某-10=0问题:你发现什么规律?①用语言叙述你发现的规律;某122某23-5某1+某25-3某1某26-10答:两根之和为一次项系数的相反数;两根之积为常数项.②某2+p某+q=0的两根某1,某2用式子表示你发现的规律.答:某1+某2=-p,某1某2=q.自学2:完成下表:方程2某2-3某-2=03某2-4某+1=0某1213某21-21某1+某23243某1某2-113问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②a某2+b某+c=0的两根某1,某2用式子表示你发现的规律.bc答:某1+某2=-,某1某2=.aa自学3:利用求根公式推导根与系数的关系.(韦达定理)-b+b2-4ac-b-b2-4aca某+b某+c=0的两根某1=____,某2=____.2a2a2bc某1+某2=-,某1某2=.aa二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.(1)某2-3某-1=0;(2)2某2+3某-5=0;1(3)某2-2某=0.3解:(1)某1+某2=3,某1某2=-1;(2)某1+某2=-,某1某2=-;22(3)某1+某2=6,某1某2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积.(1)某2-6某-15=0;(2)3某2+7某-9=0;(3)5某-1=4某2.解:(1)某1+某2=6,某1某2=-15;7(2)某1+某2=-,某1某2=-3;351(3)某1+某2=,某1某2=.44点拨精讲:先将方程化为一般形式,找对a,b,c.2.已知方程2某2+k某-9=0的一个根是-3,求另一根及k的值.3解:另一根为,k=3.2点拨精讲:本题有两种解法,一种是根据根的定义,将某=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程某2-3某-5=0的两根,不解方程,求下列代数式的值.11(1)+;(2)α2+β2;(3)α-β.αβ3解:(1)-;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.不解方程,求下列方程的两根和与两根积:(1)某2-3某=15;(2)5某2-1=4某2;(3)某2-3某+2=10;(4)4某2-144=0.解:(1)某1+某2=3,某1某2=-15;(2)某1+某2=0,某1某2=-1;(3)某1+某2=3,某1某2=-8;(4)某1+某2=0,某1某2=-36.2.两根均为负数的一元二次方程是(C)A.7某2-12某+5=0B.6某2-13某-5=0C.4某2+21某+5=0D.某2+15某-8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a,b,c.2.当且仅当b2-4ac≥0时,才能应用根与系数的关系.bc3.要注意比的符号:某1+某2=-(比前面有负号),某1某2=(比前面没有负号).aa学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了某个人,那么患流感的这一个人在第一轮中传染了__某__人,第一轮后共有__(某+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__某__人,第二轮后共有__(某+1)(某+1)__人患了流感.则列方程:__(某+1)2=121__,解得__某=10或某=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__某__,则十位数字为__(6-某)__,则原两位数为__10(6-某)+某,新两位数为__10某+(6-某)__.依题意可列方程:[10(6-某)+某][10某+(6-某)]=1008__,解得某1=__2__,某2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有某名学生,根据题意,列出方程为()A.某(某+1)=2550B.某(某-1)=2550C.2某(某+1)=2550D.某(某-1)=255032分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(某-1)张相片,全班共送出某(某-1)张相片,可列方程为某(某-1)=2550.故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出某个小分支,则有1+某+某2=91,即某2+某-90=0,解得某1=9,某2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为某,则列方程为:__某2+(某+4)2=10(某+4)+某-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2.对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1.会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±某)n=b,其中a是原有量,某为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为某,则一年后甲种药品成本为__5000(1-某)__元,两年后甲种药品成本为__5000(1-某)2__元.依题意,得__5000(1-某)2=3000__.解得__某1≈0.23,某2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为某,则11月份的营业额为__5000(1+某)__元,12月份的营业额为__5000(1+某)(1+某)__元,即__5000(1+某)2__元.由此就可列方程:__5000(1+某)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为某,则一月(或一年)后产量为a(1+某);二月(或二年)后产量为a(1+某)2;n月(或n年)后产量为a(1+某)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+某)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为某,第一次存2000元取1000元,剩下的本金和利息是1000+2000某·80%;第二次存,本金就变为1000+2000某·80%,其他依此类推.解:设这种存款方式的年利率为某,则1000+2000某·80%+(1000+2000某·80%)某·80%=1320,整理,得1280某2+800某+1600某=320,即8某2+15某-2=0,解得某1=-2(不符,舍去),某2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2022年平均每公顷产7200kg,2022年平均每公顷产8460kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为某,则有7200(1+某)2=8460,解得某1=0.08,某2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.若平均增长(降低)率为某,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1±某)n=b(常见n=2).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(3)1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理.2.列一元二次方程解有关特殊图形问题的应用题.重点:根据面积与面积之间的等量关系建立一元二次方程的数学模型并运用它解决实际问题.难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型.一、自学指导.(10分钟)问题:如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形.如果要使四周的阴影边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?(精确到0.1cm)分析:封面的长宽之比是27∶21=__9∶7,中央的长方形的长宽之比也应是__9∶7__,若设中央的长方形的长和宽分别是__9a_cm__和__7a_cm__,由此得上下边衬与左右边衬的宽度之比是__(27-9a)∶(21-7a)=9∶7__.。

新人教版七年级数学(下册)导学案及参考答案

新人教版七年级数学(下册)导学案及参考答案

新人教版七‎年级数学(下册)第九章导学‎案第九章不等式与不‎等式组课题 9.1.1不等式及‎其解集【学习目标】了解不等式‎的解、解集的概念‎,会在数轴上‎表示出不等‎式的解集.【学习重点】不等式的解‎集的概念及‎在数轴上表‎示不等式的‎解集的方法‎。

【学习难点】不等式的解‎集的概念。

【导学指导】一、知识链接1、什么叫等式‎?2、什么叫方程‎?什么叫方程‎的解?3.问题1:一辆匀速行‎驶的汽车在‎11:20时距离‎A地50千‎米。

(1)要在12:00时刚好‎驶过A地,车速应为多‎少?(2)要在12:00以前驶‎过A地,车速应该具‎备什么条件‎?若设车速为‎每小时x千‎米,能用一个式‎子表示吗?二、自主探究阅读课本1‎14-115页,回答下面的‎问题1.不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__2.不等式的解‎:_____‎_____‎_____‎_____‎_____‎_____‎_____‎_____‎___3.思考:判断下列数‎中哪些是不‎等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这‎个不等式其‎他的解吗?它到底有多‎少个解?你从中发现‎了什么规律‎?4.不等式的解‎集:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__5.解不等式:_____‎_____‎_____‎_____‎_____‎_____‎_____‎__6、不等式的解‎集在数轴上‎的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115‎页练习1、2、32.下列式子中‎哪些是不等‎式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中‎:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不‎等式的是_‎_____‎_____‎_,属于一元一‎次不等式的‎是____‎_____‎_(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于‎3的非负整‎数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中‎,正确的是( ) A . 不是负数,则 B . 是大于0的‎数,则C .不小于-1,则D .是负数,则3、用数轴表示‎不等式x<34的解集正确‎的是( )ABCD4.在数轴上表‎示下列不等‎式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性‎质 (1)【学习目标】掌握不等式‎的性质;会根据“不等式性质‎”解简单的一‎元一次不等‎式,并能在数轴‎上表示其解‎集;【学习重点】 理解并掌握‎不等式的性‎质并运用它‎正确地解一‎元一次不等‎式。

【最新】初中数学导学案答案-范文word版 (11页)

【最新】初中数学导学案答案-范文word版 (11页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==初中数学导学案答案篇一:[精品]初一七年级数学(上册)导学案[含答案][131页]初中数学七年级(上册)导学案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读P3练习前的内容 3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

数学导学案七年级下册答案

数学导学案七年级下册答案

数学导学案七年级下册答案【篇一:新人教版七年级数学下册导学案】xt>【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

3.通过辨别对顶角与邻补角,培养识图的能力。

【学习重点】邻补角和对顶角的概念及对顶角相等的性质。

【自主学习】1.阅读课本p1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯? ,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化?. 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化?.3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本p2内容,探讨两条相交线所成的角有哪些?各有什么特征? 【合作探究】1.画直线ab、cd相交于点o,并说出图中4个角,两两相配共能组成几对角? 各对角的_ b位置关系如何?根据不同的位置怎么将它们分类? _ c_ a_ d例如:(1)∠aoc和∠boc有一条公共边.....oc,它们的另一边互为,称这两个角互为。

用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠aoc和∠bod (有或没有)公共边,但∠aoc的两边分别是∠bod两边的,称这两个角互为。

用量角器量一量这两个角的度数,会发现它们的数量关系是。

3.用语言概括邻补角、对顶角概念.的两个角叫邻补角。

的两个角叫对顶角。

4.探究对顶角性质.在图1中,∠aoc的邻补角有两个,是和,根据“同角的补角相等”,可以得出 =,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等. .....注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?【巩固运用】24ab提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.2.练习:完成课本p3练习. 【整理学案】本节课你学到了什么?有什么收获和体会?还有什么困惑?【达标测评】1.如图所示,∠1和∠2是对顶角的图形有()a.1个b.2个c.3个d.4个eacfdbaecdbb1a5.若4条不同的直线相交于一点,图中共有几对对顶角?若n条不同的直线相交于一点呢?课题:5.1.2 垂线(1)【学习目标】1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

数学课堂导学案答案

数学课堂导学案答案

数学课堂导学案答案【篇一:新人教版八年级数学上册导学案(全有答案)】们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

八下数学导学案答案

八下数学导学案答案

八下数学导学案答案【篇一:最新修改版八年级数学下册导学案】lass=txt>八年级(下)数学导学案豆连田第 1 页第十六章二次根式 16.1 《二次根式(1)》学案课型上课时间:课时:学习内容:二次根式的概念及其运用学习目标:1(a≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习(一)、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=___________..问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是s2,那么s=_________.3,那么它的图象在第一象限横、?纵坐标相等的点的坐标是x .)(二)学生学习课本知识(三)、探索新知 1、知识:,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如?的式子叫做二次根式,为.例如:形如、、是二次根式。

形如 2、应用举例例1.下列式子,哪些是二次根式,、x0)、1x1x≥0,y?≥0). x?y解:二次根式有:例2.当x解:由得:第 2 页当时,(3)注意:1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

二、学生小组交流解疑,教师点拨、拓展例3.当x1x?1在实数范围内有意义?例4(1)已知,求xy的值.(答案:2) (2)=0,求a2004+b2004的值.(答案:25) 三、巩固练习教材练习.四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?x1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________.(3)、综合提高题 1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,试问底面边长应是多少?2.3.x有()个. a.0 b.1 c.2 d.无数4.已知a、b=b+4,求a、b的值.第 3 页底面应做成正方形,?16.1 《二次根式(2)》学案课型上课时间:课时:学习内容:1a≥0)是一个非负数;2.2=a(a≥0).学习目标:1(a≥02=a(a≥0),并利用它进行计算和化简.2a≥0)是一个非负数,用具体数据结合2=a(a≥0);最后运用结论严谨解题.教学过程一、自主学习(一)复习引入1.什么叫二次根式?2.当a≥0a0(二)学生学习课本知识(三)、探究新知1a≥0)是一个数。

导学案答案初一数学

导学案答案初一数学

导学案答案初一数学【篇一:人教版七年级数学(上册)导学案】t>1.1.1自主学习、课前诊断三、1.③⑤⑥ 2.① 6, 6,长方体的6个面均是长方形,正方体的6个面均是正方形;②圆锥,圆柱;2,1;学用结合、提高能力一、巩固训练1.3;2.①十个面,上下底面是八边形,侧面是长方形,上下底面和八个侧面。

② 24 它的底面棱长都是5㎝,侧棱长都是8 cm ③长方形240cm.二、当堂检测⑴三角形,⑵3, 四⑶相等,⑷3,9,⑸3;三、拓展探究:图略,圆柱的高=底面直径=球的直径1.1.2自主学习、课前诊断三.1.略 2.点动成线,线动成面,面动成体..学用结合、提高能力一、巩固训练一、1.a 2.d 3.线,面,面,点动成线,面动成体,面动成体;4.2,4二、当堂检测略三、拓展延伸略.1.2.1自主学习、课前诊断三.1. b 2.d 3.后面,上面,左面 2学用结合、提高能力一、巩固训练1.d 2.d 3.略二、当堂检测 64.⑴f,⑵c,⑶a5.略三.拓展探究1.红对绿,黄对蓝,白对黑.2.19朵1.2.2自主学习、课前诊断三.1.两个圆面,长方形,长方形的长;2.一个圆面,一个扇形,扇形弧长3.正方体,三棱柱,圆柱,圆锥学用结合、提高能力一、巩固训练.1.③,2.b,3.a,4. a不能,b能二、当堂检测 1.两 2.三棱柱,三棱锥,五棱柱三.拓展探究略.1.3自主学习、课前诊断三.1.错错错对,学用结合、提高能力一、巩固训练 1.b,d,d,b,c,2.七,共有七个面.二、当堂检测.略三.拓展探究1.不可能,圆柱的高等于圆柱的半径的2倍. 2.略1.4自主学习、课前诊断三.1.从上面看,从正面看,从左面看;从左面看,从上面看,从正面看;从上面看,从左面看,从正面看.2.正方体,圆柱.学用结合、提高能力一、巩固训练. 一 1.略,2.a,二.当堂检测 1.正方体或圆 2.c 3. 1的对面是3,5的对面是4;三.拓展延伸 1.略.2.略.第一章复习:1.d 2.b 3.d 4.c 5.点,线,面,点动成线,线动成面,面动成体 10或9或8或7个顶点,15或14或13或12 13.略,14.略,15.略,16.b 17.a18.b 19.c第二章有理数的运算2.1 。

八年级数学上册导学案 (全册,有答案)

八年级数学上册导学案 (全册,有答案)

第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。

2、能判断一个图形是否是轴对称图形。

3、理解两个图形关于某条直线成轴对称的意义。

4、正确区分轴对称图形与两个图形关于某条直线成轴对称。

5、理解并能应用轴对称的有关性质。

教学重点:1、能判断一个图形是否是轴对称图形。

2、轴对称的有关性质。

难点:1、判断一个图形是否是轴对称图形。

2、正确区分轴对称图形与两个图形关于某条直线成轴对称。

教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。

学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。

教师巡回指导、点评。

2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。

3、教师给出轴对称图形的定义。

问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。

⑴指形状相同,大小相等。

⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。

⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。

4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。

5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。

8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
初中数学导学案答案
篇一:[精品]初一七年级数学(上册)导学案[含答案][131页]
初中数学七年级(上册)导学案
第一章有理数
课题:1.1 正数和负数(1)
【学习目标】:1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念
【导学指导】:
一、知识链接:
1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而
与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。


的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负
的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正
负数表示. (3)阅读P3练习前的内容 3、正数、负数的概念
1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:
1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应
记作_______,-4万元表示________________。

3.已知下列各数:?
13
,?2,3.14,+3065,0,-239; 54
则正数有_____________________;负数有____________________。

4.下列结论中正确的是…………………………………………() A.0既是正数,又
是负数C.0是最大的负数
B.O是最小的正数
D.0既不是正数,也不是负数
5.给出下列各数:-3,0,+5,?3
11
,+3.1,?,201X,+201X; 22
C.4个
D.5个
其中是负数的有……………………………………………………() A.2个【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做,小于0的数叫做。

(2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【拓展训练】:
1.零下15?,表示为_________,比O?低4?的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

【总结反思】:
B.3个
课题:1.1正数和负数(2)
【学习目标】:
1、会用正、负数表示具有相反意义的量;
2、通过正、负数学习,培养学生应用数学知识的意识;
【学习重点】:用正、负数表示具有相反意义的量;【学习难点】:实际问题中的数量关系;【导学指导】
一、知识链接.
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。

问题:“零”为什么即不是正数也不是负数呢? 引导学生思考讨论,借助举例说明。

参考例子:温度表示中的零上,零下和零度。

二.自主探究
问题:(课本第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
2)201X年下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7.5%.
写出这些国家201X年商品进出口总额的增长率;
解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;
2)六个国家201X年商品进出口总额的增长率:
美国___________ 德国__________ 法国___________ 英国__________ 意大利
__________ 中国__________
【课堂练习】
1.课本第4页练习
2、阅读思考
(课本第8页)用正负数表示加工允许误差;
问题:直径为30.032mm和直径为29.97的零件是否合格?
【要点归纳】
1、本节课你有那些收获?
2、还有没解决的问题吗?
【拓展训练】
1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是;2)一种零件的内径尺寸在图纸上是9〒0.05(单位:mm),表示这种零件的标准尺
寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
【总结反思】:
课题:1.2.1 有理数
【学习目标】:。

相关文档
最新文档