2018-2019学年湖北省黄冈市浠水县七年级下期末数学试卷

合集下载

黄冈市七年级下学期期末考试数学试题

黄冈市七年级下学期期末考试数学试题

黄冈市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八下·合肥期中) 下列四个选项中,正确是()A .B . 2﹣3=﹣6C .D . (﹣5)4÷(﹣5)2=﹣522. (2分)如图,AB∥ED,∠ECF=70°,则∠BAF的度数为()A . 130°B . 110°C . 70°D . 20°3. (2分) (2017七下·海安期中) 在平面直角坐标系中,点(-1,m2+1)一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)以方程组的解为坐标的点(x,y)位于平面直角坐标系中的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2017七下·岳池期末) 若,则下列不等式错误的是()A .B .C .D .6. (2分)下列调查中,比较适合用全面调查方式的是()A . 了解某班同学立定跳远的情况B . 了解某种品牌奶粉中是否含三聚氰胺C . 了解一批炮弹的杀伤半径D . 了解全国青少年喜欢的电视节目7. (2分)在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是()A .B .C .D .8. (2分)用一把带有刻度的直角尺,①可以画出两条平行的直线a与b,如图(1);②可以画出∠AOB的平分线OP,如图(2);③可以检验工作的凹面是否成半圆,如图(3);④可以量出一个圆的半径,如图(4)。

上述四个方法中,正确的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分) (2017八上·三明期末) 能说明命题“对于任何实数a,a2≥a”是假命题的一个反例可以是()A . a=﹣2B . a=1C . a=0D . a=0.210. (2分)(2020·梧州模拟) 小芳给校方提供学生体育锻炼的情况报告,在校内对全校学生进行了抽样调查,每位学生只选择一项自己最喜欢的体育运动.其中,a代表最喜欢参加兵乒球运动;b代表最喜欢参加羽毛球运动;c代表最喜欢气排球运动;d代表最喜欢篮球运动,下图是她还未完成的条形统计图与扇形统计图,根据统计图所给出的信息,这个样本中最喜欢篮球运动(即d)的百分率与人数是()A . 24,26%B . 33,26.4%C . 28,22.4%D . 25,23.6%二、填空题 (共6题;共6分)11. (1分) (2016八上·长春期中) ﹣27的立方根是________.12. (1分)七(2)班全体同学准备分成几个小组比赛,若每组7人,就多出3人,若每组8人,就会少5人,若设七(2)班共有x名同学,共分为y个小组,则可列方程组________13. (1分)宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有________ 种.14. (1分)某公司从超市购买了墨水笔和圆珠笔共15盒,所付金额超过570元,但不到580元.已知墨水笔的单价为每盒34.90元,圆珠笔的单价为每盒44.90元.设购买圆珠笔x盒,可列不等式组为________15. (1分)如图,∠1=82°,∠2=98°,∠4=80°,∠3=________16. (1分) (2020七下·云梦期中) 如图,长方形BCDE的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点同时出发,沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位/秒匀速运动,则两个物体运动后的第2020次相遇地点的坐标是________.三、解答题 (共8题;共87分)17. (10分) (2018七下·龙岩期中)(1)解方程:(2)解方程:(x-5)3 .18. (7分) (2020七下·金华期中) 阅读材料,解答问题:在(x²+ax+b)(2x²-3x-1)的结果中,x3项的系数为-5,x²项的系数为-6,求a,b的值。

湖北省浠水县七年级数学下学期期末试题(扫描版)新人教版

湖北省浠水县七年级数学下学期期末试题(扫描版)新人教版

湖北省浠水县2017-2018学年七年级数学下学期期末试题浠水县2018年春季七年级期末调研考试数学参考答案(说明 只要推导合理,方法正确,其它解法请参照评分标准酌情给分)一、选择题(每小题3分,共24分)1.C 2.A 3.D 4.C 5.A 6.D 7.B 8.B二、填空题(每小题3分,共24分)9.2 10.(3,-5) 11.280 12.1,2,3,4 13.20° 14.3 15.a 16.(2017,1)三、解答题17.解 (1)⎪⎩⎪⎨⎧==.1,21y x ……………………………………………………………………5分(2)由 ①解得1<x ; …………………………………………………………2分由 ②解得x <4; …………………………………………………………4分 ∴ 1<x <4. …………………………………………………………5分18.解 如图,火车站(0,0),宾馆(2,2),市场(4,3),文化宫(-3,1),体育场(-4,3),医院(-2,-2),超市(2,-3).(答案不唯一,原点2分,其它点1分)………………………………………8分19.解 设该兴趣小组男生有x 人,女生有y 人,依题意得⎪⎩⎪⎨⎧-=--=).1(53,1)1(2y x x y …………………………………………………………4分解得 ⎩⎨⎧==.21,12y x …………………………………………………………………7分答:该兴趣小组男生有12人,女生有21人. ………………………………………8分20.解 设他乘此出租车从甲地到乙地行驶的路程是x 千米,依题意:7+2.4(x -3)≤19,………………………………………………………………4分 解得:x ≤8. ………………………………………………………………………7分 答:他乘此出租车从甲地到乙地行驶路程不超过8千米. …………………………8分21.解 (1)90÷30%=300(名),故,一共调查了300名学生;………………………………………………2分(2)艺术的人数:300×20%=60名, ………………………………………3分其它的人数:300×10%=30名; ………………………………………4分 补全折线图如图; …………………………………………………………6分(3)体育部分所对应的圆心角的度数为:30040×360°=48°;………………8分(4)1800×30080=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480. …………………10分22.证明:(1)∵ ∠A =∠AGE ,∠D =∠DGC .又 ∵ ∠AGE =∠DGC ,∴ ∠A =∠D ,∴ AB ∥CD . ………………………………3分(2)∵ ∠1+∠2=180°,又 ∵ ∠CGD +∠2=180°,∴ ∠CGD =∠1,∴ CE ∥FB ,…………………………………5分∴ ∠C =∠BFD ,∠CEB +∠B =180°.又∵ ∠BEC =2∠B +30°,∴ 2∠B +30°+∠B =180°,∴ ∠B =50°.……………………………………………………………………6分 ∴ ∠BEC =130°.∵ AB ∥CD .∴ ∠BEC +∠C =180°,∴ ∠C =50°.……………………………………………………………………8分23.解(1) 设租甲种客车x 辆,则租乙种客车(8-x )辆,依题意,得45x +30(8-x )≥318+8, …………………………………2分 解得x ≥51511, ………………………………………………………3分∵ 打算同时租甲、乙两种客车,∴ x <8,即51511≤x <8,x =6,7, ………………………………………………………4分有两种租车方案:租甲种客车6辆,则租乙种客车2辆,租甲种客车7辆,则租乙种客车1辆;………………………5分(2)∵ 6×800+2×600=6000元,7×800+1×600=6200元,∴ 租甲种客车6辆;租乙种客车2辆,所需付费最少为6000(元);………………………………………………………7分(3)设同时租65座、45座和30座的大小三种客车各x 辆,y 辆,(7-x -y )辆,根据题意得出:65x +45y +30(7-x -y )=318+7,整理得出:7x +3y =23, ……………………………………………8分 1≤x <7,1≤y <7,1≤7-x -y <7,故符合题意的有:x =2,y =3,7-x -y =2,租车方案为:租65座的客车2辆,45座的客车3辆,30座的2辆. ……………………………………………………………………10分24.解:(1)由方程组⎩⎨⎧=+=+112,132b a b a 解得⎩⎨⎧==.3,5b a ;………………………………………2分(2)由(1)可知,A (5,0),B (3,2),当m >0时,如图1所示,过B 点作BD ⊥x 轴,垂足为D ,则S △ABQ =S 梯形BDEQ -S △ABD -S △AQE =21(2+m )×(6-3)-21×2×(5-3)-21×(6-5)·m=m +1;……………………………………………………………5分当m <0时,如图2所示,过点B 作BM ⊥EQ 于点M ,则S △ABQ =S △BMQ -S △AEQ -S 梯形AEMB =21×(2-m )×(6-3)-21×(6-5)×(-m ) -21×(6-3+6-5)×2=3-23m +21m -4=-m -1.…………………………………………………………7分(3) ∵ S 梯形OABC =21×(3+5)×2=8,依题意,得 │m │+1=21×8,解得 m =±3,∴ Q (6,3)或(6,-3).………………………………………………10分。

浠水县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

浠水县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

浠水县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()A.50°B.60°C.70°D.80°【答案】D【考点】平行线的判定与性质,三角形内角和定理【解析】【解答】解:∵∠B+∠DAB=180°,∴AD∥BC,∵∠C=50°,∴∠C=∠DAC=50°,又∵AC平分∠DAB,∴∠DAC=∠BAC=∠DAB=50°,∴∠DAB=100°,∴∠B=180°-∠DAB=80°.故答案为:D.【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.2、(2分)如图,由下列条件不能得到∥的是()A. =B. =C. + =D. =【答案】B【考点】平行线的判定【解析】【解答】解:A由∠3 = ∠4推出AB∥CD,故A符合题意;B 、由∠1 = ∠2推出AD∥CB,故B不符合题意;C 、由∠B + ∠B CD = 180 °推出AB∥CD,故C不符合题意;D 、由∠B = ∠5 推出AB∥CD,故D不符合题意;故应选:B.【分析】由内错角相等二直线平行由∠3 = ∠4推出AB∥CD;由∠1 = ∠2推出AD∥CB,由同旁内角互补,两直线平行、由∠B + ∠B C D = 180 °推出AB∥CD;由同位角相等两直线平行由∠B = ∠5 推出AB ∥CD;即可得出答案。

3、(2分)下列各数: 0.3,0.101100110001…(两个1之间依次多一个0), 中,无理数的个数为()A. 5个B. 4个C. 3个D. 2个【答案】C【考点】无理数的认识【解析】【解答】解:依题可得:无理数有:-,-,0.101100110001… (两个1之间依次多一个0),故答案为:C.【分析】无理数:无限不循环小数,由此即可得出答案.4、(2分)如图所表示的是下面哪一个不等式组的解集()A.B.C.D.【答案】D【考点】在数轴上表示不等式(组)的解集【解析】【解答】解:由图示可看出,从-2出发向右画出的线且-2处是空心圆,表示x>-2;从1出发向左画出的线且1处是实心圆,表示x≤1,所以这个不等式组为故答案为:D.【分析】写出图中表示的两个不等式的解集,这两个式子就是不等式.这两个式子组成的不等式组就满足条件.不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、(2分)股票有风险,入市须谨慎、我国A股股票市场指数从2007年10月份6100多点跌到2008年10月份2000点以下,小明的爸爸在2008年7月1日买入10手某股票(股票交易的最小单位是一手,一手等于100股),如图,是该股票2008年7﹣11月的每月1号的收盘价折线图,已知8,9月该股票的月平均跌幅达8.2%,10月跌幅为5.4%,已知股民买卖股票时,国家要收千分之二的股票交易税即成交金额的2‰,下列结论中正确的个数是()①小明的爸爸若在8月1日收盘时将股票全部抛出,则他所获纯利润是(41.5﹣37.5)×1000×(1﹣2‰)元;②由题可知:10月1日该股票的收盘价为41.5×(1﹣8.2%)2元/股;③若小明的爸爸的股票一直没有抛出,则由题可知:7月1日﹣11月1日小明的爸爸炒股票的账面亏损为37.5×1000×(1﹣2‰)﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.A. 0个B. 1个C. 2个D. 3个【答案】C【考点】折线统计图【解析】【解答】解:读图分析可得:③说法不对,账面亏损不含股票交易税;故应为账面亏损为37.5×1000﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.①与②的说法都正确,故答案为:C【分析】根据统计图中的数据进行计算,从而进行计算即可判断.6、(2分)若2m-4与3m-1是同一个正数的平方根,则m为()A. -3B. 1C. -1D. -3或1【答案】D【考点】平方根【解析】【解答】解:由题意得:2m-4=3m-1或2m-4=-(3m-1)解之:m=-3或m=1故答案为:D【分析】根据正数的平方根由两个,它们互为相反数,建立关于x的方程求解即可。

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·仙游期末) 下列方程中,解为2的是()A . 3x+6=0B .C .D . 3-2x=12. (2分) (2018八上·兰考期中) 下列命题中,不是定理的是()A . 直角三角形两锐角互余B . 两直线平行,同旁内角互补C . n边形的内角和为(n﹣2)×180°D . 相等的角是对顶角3. (2分)(2017·长沙模拟) 下列四个图形中,不是中心对称图形的是()A .B .C .D .4. (2分)下列备选答案的四个数中,最大的一个是()A . -3B . 3C . -D .5. (2分)若关于x的二元一次方程kx+3y=5有一组解是,则k的值是()A . 1B . -1C . 0D . 26. (2分)某市为迎接大学生冬季运动会,正在进行城区人行道路翻新,准备只选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是()A . 正三角形B . 正方形C . 正六边形D . 正八边形7. (2分) (2019七下·哈尔滨期中) 把一根长7m的钢管截成2m和1m长两种规格的钢管(每种钢管的数量都不为0),一共有几种不同的截法().A . 1种B . 2种C . 3种D . 4种8. (2分)不等式组的解集是()A . x≤1B . x>﹣7C . -7<x≤1D . 无解9. (2分)(2017·濮阳模拟) 如图,平行四边形ABCD的顶点A(﹣2,3),B(﹣3,1),C(0,1),规定“平行四边形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,则连续经过2017次变换后,平行四边形ABCD 的对角线的交点M的坐标为()A . (﹣2017,2)B . (﹣2017,﹣2)C . (﹣2018,﹣2)D . (﹣2018,2)10. (2分) (2020八上·重庆开学考) 如图,直线,平分于点,若,则的度数为()A . 40°B . 41°C . 50°D . 51°二、填空题 (共5题;共5分)11. (1分) (2020八上·重庆开学考) 已知关于的二元一次方程组的解满足,且关于的不等式组无解,那么所有符合条件的整数的个数为________.12. (1分)(2016·南岗模拟) 已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为________13. (1分) (2020八上·哈尔滨月考) 已知,三角形的三边长为3,5,m,则m的取值范围是________.14. (1分)正十边形的每个内角为________15. (1分)当a=________ 时,方程组的解中,x与y的值到为相反数.三、解答题 (共8题;共71分)16. (10分)(2018·深圳模拟) 甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?17. (10分)(2017·苏州模拟) 关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2 .(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.18. (5分)在Rt△ABC中,∠C=90°,sinB= ,求cosA的值.19. (5分) (2020八上·西湖期末) 若不等式的最小整数解为方程的解,求a的值.20. (15分) (2020七下·北京月考) 如图,在平面直角坐标系xOy中,三个顶点的坐标分别为,,将向右平移5个单位长度,再向下平移4个单位长度,得到,其中点,,分别为点A , B , C的对应点.(1)请在所给坐标系中画出,并直接写出点的坐标;(2)若AB边上一点P经过上述平移后的对应点为,用含x , y的式子表示点P的坐标;直接写出结果即可(3)求的面积.21. (6分)(2017·金安模拟) 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为________.22. (10分) (2019七下·邵阳期中) 在解方程组时,由于粗心,甲看错了方程组中的,而得解为,乙.看错了方程组中的,而得解为 .(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的符合题意解.23. (10分)(2017·潍坊) 工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共71分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷

湖北省黄冈市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若2ym+5xn+3与﹣3x2y3是同类项,则mn=()A .B . -C . 1D . -22. (2分)如果a+b>0,ab>0,那么()A . a>0,b>0B . a<0,b<0C . a>0,b<0D . a<0,b>03. (2分)若关于x的不等式组的解集是x>4,则a的取值范围是()A . a≤4B . a>4C . a<4D . a≥44. (2分)二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A . .B . .C . .D . .5. (2分)下列条件中能得到互相平行的直线的是()A . 互为邻补角的角平分线所在的直线B . 对顶角的平分线所在的直线C . 两条平行线的一对内错角的平分线所在的直线D . 两条平行线的一对同旁内角的平分线所在的直线6. (2分)三角形两边长为6与8,那么周长l的取值范围()A . 2<l<14B . 16<l<28C . 14<l<28D . 20<l<247. (2分)下列命题是真命题的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的四边形是矩形C . 对角线互相垂直的四边形是菱形D . 对角线互相垂直的四边形是正方形8. (2分)如图所示,∠1=∠2,BC=EF ,欲证△ABC≌△DEF ,则还须补充的一个条件是()A . AB=DEB . ∠ACE=∠DFBC . BF=ECD . ∠ABC=∠DEF9. (2分)关于x的不等式组有四个整数解,则a的取值范围是()A . a≥1B . 1<a≤2C . 1≤a<2D . 1<a<210. (2分)(2019·武汉模拟) 点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A .B .C .D .二、填空题 (共8题;共10分)11. (1分)某种生物细胞的直径约为0.000056米,用科学记数法表示为________米.12. (1分)(2017·柳江模拟) 因式分解:ab+a=________13. (1分)若n为正整数,且x2n=3,则(3x3n)2的值为________.14. (1分) (2017七下·江都月考) 一个多边形的内角和是1800°,这个多边形是________边形.15. (3分)如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加一个条件是________(2)若以“AAS”为依据,则需添加一个条件是________(3)若以“ASA”为依据,则需添加一个条件是________16. (1分) (2018八上·东城期末) 如果实数满足 ________;17. (1分) (2019八下·温江期中) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC 交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD= AE+AF= 则,其中正确结论有________(填序号).18. (1分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为________ .三、解答题 (共8题;共70分)19. (10分) (2020八上·昆明期末)(1)计算:(2)分解因式:20. (10分) (2016八上·东城期末) 因式分解:(1) 4x2 -9(2) 3ax2 -6axy+3ay221. (5分)求不等式组的整数解.22. (5分) (2018八上·重庆期中) 先化简,再求值.(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=- .23. (10分) (2017七下·滦南期末) 解方程(不等式)组(1)解方程组;(2)解不等式组24. (5分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△C GF;(2)四边形EFGH是菱形.25. (15分)(2017·邗江模拟) 如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.26. (10分)(2017·阜宁模拟) 县内某小区正在紧张建设中,现有大量的沙石需要运输,“建安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“建安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“建安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分) 19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、25-1、25-2、25-3、26-1、26-2、。

2018-2019学年湖北省黄冈市初中七数教学质量监测参考答案

2018-2019学年湖北省黄冈市初中七数教学质量监测参考答案

黄冈市2018年秋季七年级期末质量监测数学参考答案(说明 只要推导合理,方法正确,其它解法请参照评分标准酌情给分)一、选择题(每小题3分,共24分)1.D 2.C 3.A 4.B 5.A 6.A 7.C 8.A二、填空题(每小题3分,共24分)9.1 10.2.2×1011 11.-3 12.135 13.141 14.5 15.28°或68° 16.(416n )三、解答题17.(满分8分,每小题4分)解:(1)原式=12+18-7-15=30﹣22=8;(2)原式=-4+3-9×=-4+3-3=-4.18.(满分8分,每小题4分)(1)原式=(3a 2-4a 2)+(3b 2-3b 2)+2ab =-a 2+2a b ;(2)原式=a 2+5a 2-2a -2a 2+6a =4a 2+4a .19.(满分8分,每小题4分)解:(1)方程去括号得:2x -x -10=6x ,移项合并得:5x=-10,解得:x=-2;(2)解:等式的两边同时乘以12,得4(x +1)=12-3(2x +1)去括号、移项,得4x +6x=12-4-3合并同类项,得10x=5化未知数的系数为1,得x=21.20.(满分6分)解:x 2+(2xy -3y 2)-2(x 2+yx -2y 2),=x 2+2xy -3y 2-2x 2-2yx+4y 2=﹣x 2+y 2,当x=-1,y=2时,原式=-(-1)2+22=-1+4=3.21.(满分6分)(1)∠DOC =∠AOD -∠2=120°-60°=60°;(2)∠BOD =∠AOD +∠AOB =120°+30°=150°.22.(满分8分)解:设AB=2xcm ,BC=5xcm ,CD=3xcm所以AD=AB+BC+CD=10xcm因为M 是AD 的中点所以AM=MD=AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm.23.(满分8分)解:23.设小明看书x日.依题意得:32x+31=36(x-1)+39.解得x=7.所以32×7+31=255.答:这本书共255页.24.(满分8分)解(1)设太阳能热水器使用寿命为x年时,才和使用燃气热水器一样合算.使用燃气热水器的总费用为580+70×3x,依题意有580+70×3x=3730。

黄冈市2018-2019学年七年级下期末数学试卷含答案解析

黄冈市2018-2019学年七年级下期末数学试卷含答案解析

2019-2019学年湖北省黄冈市七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.的算术平方根是()A.B.C.± D.2.点A(﹣2,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在﹣1,π,,﹣中,无理数的个数是()A.1个 B.2个 C.3个 D.4个4.若3x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A.0 B.1 C.2 D.35.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间6.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠C=∠CBE D.∠C+∠ABC=180°7.不等式组的正整数解的个数是()A.1 B.2 C.3 D.48.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A.B.C.D.二、填空题(每小题3分,共24分)9.=.10.已知x=1,y=8是方程3mx﹣y=﹣1的解,则m的值为.11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果,那么.13.如图,已知a∥b,∠1=36°,则∠2=.14.三河中学在全县中学生运动会上,共派出了30名运动员,占所有运动员总数的5%,则这次运动会全县共有名运动员.15.已知整数k满足k<<k+1,则k的值为.16.在平面直角坐标中,将线段AB平移至线段CD的位置,使点A与C重合,若点A(﹣1,2),点B(﹣3,﹣2),点C(2,1),则点D的坐标是.三、解答题17.计算:|1﹣|+(﹣2)2.18.解下列二元一次方程组:(1)(2).19.解下列不等式(组),并把它们的解集表示在数轴上.(1)x﹣3(x﹣2)≥4(2).20.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?21.已知(3a+b﹣4)2+|a﹣2b+1|=0,求3a﹣2b的值.22.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?23.如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?25.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?2019-2019学年湖北省黄冈市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.的算术平方根是()A.B.C.± D.【考点】算术平方根.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故选:B.2.点A(﹣2,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣2,﹣3)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限.故选C.3.在﹣1,π,,﹣中,无理数的个数是()A.1个 B.2个 C.3个 D.4个【考点】无理数.【分析】根据无理数定义:无限不循环小数叫做无理数可得答案.【解答】解:π,是无理数,共2个,故选:B.4.若3x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A.0 B.1 C.2 D.3【考点】解二元一次方程组;同类项.【分析】利用同类项的定义列出方程组,求出方程组的解得到a与b的值,即可确定出a﹣b的值.【解答】解:∵3x2a+b y2与﹣4x3y3a﹣b是同类项,∴,①+②得:5a=5,即a=1,把a=1代入①得:b=1,则a﹣b=1﹣1=0,故选A5.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全面人口普查D.全市学生每天参加体育锻炼的时间【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批炮弹的杀伤力的情况,由于破坏性强,适合抽样调查,故选项错误;B、了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故选项错误;C、全面人口普查,适合全面调查,故选项正确;D、全市学生每天参加体育锻炼的时间,适合抽样调查,故选项错误.故选:C.6.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠2 B.∠3=∠4 C.∠C=∠CBE D.∠C+∠ABC=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项不正确;B、根据内错角相等,两直线平行可得AD∥BC,故此选项正确;C、根据内错角相等,两直线平行可得AB∥CD,故此选项错误;D、根据同旁内角互补,两直线平行可得AB∥CD,故此选项错误;故选:B.7.不等式组的正整数解的个数是()A.1 B.2 C.3 D.4【考点】一元一次不等式组的整数解.【分析】此题可先根据一元一次不等式组解出x的取值,根据x是正整数解得出x的可能取值.【解答】解:,由①得x>3;由②得x<5.5;由以上可得3<x<5.5,∵x为正整数,∴不等式组的正整数解是:4,5,个数是2.故选:B.8.小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设每副羽毛球拍为x元,每副乒乓球拍为y元,根据等量关系:①购买1副羽毛球拍和1副乒乓球拍共需50元;②用320元可买6副同样的羽毛球拍和10副同样的乒乓球拍;列方程组即可求解.【解答】解:设每副羽毛球拍为x元,每副乒乓球拍为y元,由题意得.故选:B.二、填空题(每小题3分,共24分)9.=﹣4.【考点】立方根.【分析】谁的立方等于﹣64,谁就是﹣64的立方根.【解答】解:∵(﹣4)3=﹣64,∴=﹣4,故答案为﹣4,10.已知x=1,y=8是方程3mx﹣y=﹣1的解,则m的值为.【考点】二元一次方程的解.【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把x=1,y=8代入方程得:3m﹣8=﹣1,解得:m=,故答案为:11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=42°.【考点】垂线;对顶角、邻补角.【分析】根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.【解答】解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.12.把命题“对顶角相等”写成“如果…,那么…”的形式为:如果两个角是对顶角,那么这两个角相等.【考点】命题与定理.【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.【解答】解:原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,命题“对顶角相等”写成“如果…,那么…”的形式为:“如果两个角是对顶角,那么这两个角相等”.故答案为:两个角是对顶角;这两个角相等.13.如图,已知a∥b,∠1=36°,则∠2=36°.【考点】平行线的性质.【分析】根据对顶角相等可得∠3=∠1,再根据两直线平行,同位角相等解答.【解答】解:由对顶角相等可得,∠3=∠1=36°,∵a∥b,∴∠2=∠3=36°.故答案为:36°.14.三河中学在全县中学生运动会上,共派出了30名运动员,占所有运动员总数的5%,则这次运动会全县共有600名运动员.【考点】频数与频率.【分析】设全县的运动员有x名,根据题意列出方程求出x的值即可.【解答】解:设全县的运动员有x名∴×100%=5%,∴解得:x=600故答案为:60015.已知整数k满足k<<k+1,则k的值为7.【考点】估算无理数的大小.【分析】依据被开方数越大,对应的算术平方根越大,可估算出的大致范围,从而可确定出k的值.【解答】解:∵49<56<64,∴7<<8.∵k为整数,∴k=7.故答案为:7.16.在平面直角坐标中,将线段AB平移至线段CD的位置,使点A与C重合,若点A(﹣1,2),点B(﹣3,﹣2),点C(2,1),则点D的坐标是(0,﹣3).【考点】坐标与图形变化﹣平移.【分析】先根据A(﹣1,2)与点C(2,1)是对应点,得到平移的方向与距离,再根据点B(﹣3,﹣2)得出对应点D的坐标.【解答】解:由题得,A(﹣1,2)与点C(2,1)是对应点,∴平移的情况是:向右平移3个单位,向下平移1个单位,∵点B(﹣3,﹣2)的对应点D的横坐标为﹣3+3=0,纵坐标为﹣2﹣1=﹣3,即D的坐标为(2,﹣3).故答案为:(0,﹣3)三、解答题17.计算:|1﹣|+(﹣2)2.【考点】实数的运算.【分析】原式利用绝对值的代数意义,以及乘方的意义计算即可得到结果.【解答】解:原式=﹣1+4=+3.18.解下列二元一次方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①×4+②得:11x=22,即x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②×2得:11x=22,即x=2,把x=2代入①得:y=3,则方程组的解为.19.解下列不等式(组),并把它们的解集表示在数轴上.(1)x﹣3(x﹣2)≥4(2).【考点】解一元一次不等式组;在数轴上表示不等式的解集;解一元一次不等式.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解(1)去括号,得:x﹣3x+6≥4,移项,得:x﹣3x≥4﹣6,合并同类项,得:﹣2x≥﹣2,系数化为1,得:x≤1.将解集表示在数轴上如下:(2)解不等式x﹣5<1+2x,得:x>﹣6,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为x≥2,将不等式解集表示在数轴上如下:20.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?【考点】二元一次方程组的应用.【分析】设甲、乙两个旅游团个有x人、y人,根据题意可得等量关系:甲团+乙团=55人;甲团人数=乙团人数×2﹣5,根据等量关系列出方程组,再解即可.【解答】解:设甲、乙两个旅游团各有x人、y人,由题意得:,解得,答:甲、乙两个旅游团各有35人、20人.21.已知(3a+b﹣4)2+|a﹣2b+1|=0,求3a﹣2b的值.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据完全平方式恒大于等于0,绝对值也恒大于等于0,且两者相加等于0,得到两个加数同时为0,得到关于a与b的方程组,求出方程组的解求出a与b的值,然后把a与b的值代入所求的式子中,化简可得值.【解答】解:∵(3a+b﹣4)2≥0,|a﹣2b+1|≥0.依题意得,解得:,∴3a﹣2b=3×1﹣2×1=1.22.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题?【考点】一元一次不等式的应用.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分>90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.23.如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.【考点】平行线的性质.【分析】先过点D作DG∥b,根据平行线的性质求得∠CDG和∠GDE的度数,再相加即可求得∠CDE的度数.【解答】解:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)首先由喜欢新闻的有20人,占10%,求得总人数;然后由扇形统计图,求得喜爱动画的学生人数所占比例,继而求得喜爱动画的学生人数;(2)由(1)可将条形统计图补充完整;(3)直接利用样本估计总体的方法求解即可求得答案.【解答】解(1)调查人数为20÷10%=200,喜欢动画的比例为(1﹣46%﹣24%﹣10%)=20%,喜欢动画的人数为200×20%=40人;(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).25.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.2019年3月3日。

浠水县初中2018-2019学年七年级下学期数学第一次月考试卷

浠水县初中2018-2019学年七年级下学期数学第一次月考试卷

是二元一次方程 ax+by=11 的一组解,
【分析】将二元一次方程的解代入方程,求出﹣2a+b 的值,再整体代入求值。
15.( 1 分 ) 若方程组 【答案】4
的解也是方程 2x-ay=18 的解,则 a=________.
【考点】二元一次方程×3﹣②得:8x=40, 解得:x=5, 把 x=5 代入①得:25+6y=13, 解得:y=﹣2, ∴方程组的解为: ,
B.
C.
D.
【解析】【解答】解:∵ 每个小正方形的边长为 1 个单位长度, ∴S 阴影部分=5×5-4× ×2×3=25-12=13 ∵图中阴影部分是正方形, ∴图中阴影部分的正方形的面积=13 ∴ 此正方形的边长为: 故答案为:C 【分析】观察图形,根据题意可知阴影部分的面积等于整个正方形的面积减去三个直角三角形的面积,再由图 中阴影部分是正方形,就可得出此正方形的面积,再开算术平方根,就可得出此正方形的边长。 2. ( 2 分 ) 若关于 x 的不等式(2﹣m)x<1 的解为 x> A. m>0 【答案】C 【考点】不等式及其性质,解一元一次不等式 【解析】【解答】解:∵关于 x 的不等式(2﹣m)x<1 的解为 x> ∴2-m<0 解得:m>2 故答案为:C 【分析】通过观察发现不等号方向发生了改变,根据不等式的性质,在不等式的两边除以同一个负数,不等号 B. m<0 C. m>2 ,则 m 的取值范围是( D. m<2 )
第 1 页,共 13 页
方向改变,从而得出 2-m<0,求解得出 m 的取值范围。 3. ( 2 分 ) a 是非负数的表达式是( A.a>0 B. ≥0 C.a≤0 D.a≥0 【答案】 D 【考点】不等式及其性质 【解析】【解答】解:非负数是指大于或等于 0 的数,所以 a≥0, 故答案为:D. 【分析】正数和 0 统称非负数,根据这个定义作出判断即可。 4. ( 2 分 ) 七年级学生在会议室开会,每排座位坐 12 人,则有 11 人没有座位;每排座位坐 14 人,则余 1 人独坐一排,则这间会议室的座位排数是( A. 14 B. 13 【答案】C 【考点】二元一次方程组的其他应用 【解析】【解答】解:设这间会议室的座位排数是 x 排,人数是 y 人. 根据题意,得 , 解得 . 故答案为:C. 【分析】本题中有两个等量关系:1、每排坐 12 人,则有 11 人没有座位;2、每排坐 14 人,则余 1 人独坐一 排. 这样设每排的座位数为 x ,总人数为 y,列出二元一次方程组即可. 5. ( 2 分 ) 若不等式(a+1)x>a+1 的解集是 x<1,则 a 必满足( A.a<-1 B.a>-1 C.a<1 D.a>1 【答案】 A 【考点】不等式的解及解集,解一元一次不等式 ) ) C. 12 D. 15 )

黄冈市数学七年级下学期期末考试试卷

黄冈市数学七年级下学期期末考试试卷

黄冈市数学七年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)解方程时,去分母、去括号后,正确结果是()A . 4x+1﹣10x+1=1B . 4x+2﹣10x﹣1=1C . 4x+2﹣10x﹣1=6D . 4x+2﹣10x+1=62. (2分)二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是是()A .B .C .D .3. (2分)四边形ABCD中,AB=2,BC=4,CD=7,求线段AD的取值范围是()A . 2<AD<7B . 2<AD<13C . 6<AD<13D . 1<AD<134. (2分)四边形ABCD的对角线相交于点O,且AO=BO=CO=DO,则这个四边形()A . 仅是轴对称图形B . 仅是中心对称图形C . 既是轴对称图形又是中心对称图形D . 既不是轴对称图形,又不是中心对称图形5. (2分)一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为()A . 正三角形B . 正方形C . 正五边形D . 正六边形6. (2分)(2019·徽县模拟) 如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠l=28°,则∠2的度数是()A . 108°B . 118°C . 128°D . 152°7. (2分) (2019八上·恩施期中) 已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A . 4B . 5C . 6D . 不能确定8. (2分)(2015·温州) 不等式组的解是()A . x<1B . x≥3C . 1≤x<3D . 1<x≤3二、填空题 (共16题;共78分)9. (2分)(2018·泰州) 已知,,若,则实数的值为________.10. (2分)(2017·仪征模拟) 如图,用若干个全等的正五边形可以拼成一个环状,如图是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是________.11. (1分)若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是________ 三角形.12. (1分) (2020八上·青山期末) 如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点C处,点D落在点H处若∠1=62°,则图中∠BEG的度数为________。

2018-2019学年人教版七年级下册期末数学试卷含答案

2018-2019学年人教版七年级下册期末数学试卷含答案

2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2B.﹣2C.±2D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在x轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=,b=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2B.﹣2C.±2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数x,y,z.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为5.【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.17.点A在x轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在x轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在x轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了x轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1.【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=12,b=8,C=20%,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x﹣1<5x+1,得:x>﹣2,解不等式x﹣2≤5﹣x,得:x≤,则不等式组的解集为﹣2<x≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B(两直线平行,内错角相等)又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行)【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.【分析】把k看做已知数表示出方程组的解,根据x比y的值大1,确定出k的值,进而求出方程组的解即可.【解答】解:,把x=y+1代入①得:2y+1=k③,代入②得:y+1﹣2y=3﹣k④,联立③④,解得:,把y=1代入①得:x=2,则方程组的解为,k的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是x元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是x元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。

最新-学年湖北省黄冈市浠水县七年级(下)期末数学试卷资料

最新-学年湖北省黄冈市浠水县七年级(下)期末数学试卷资料

2017-2018学年湖北省黄冈市浠水县七年级(下)期末数学试卷一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共24分)1.(3.00分)如果是二元一次方程mx+y=3的解,则m=()A.﹣2 B.2 C.﹣1 D.12.(3.00分)9的平方根是()A.±3 B.﹣3 C.3 D.3.(3.00分)在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.(3.00分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15°B.25°C.30°D.35°5.(3.00分)不等式的解集在数轴上表示正确的是()A.B.C.D.6.(3.00分)下列调查中,适宜采用全面调查方式的是()A.调查市场上矿泉水的质量情况B.了解全国中学生的身高情况C.调查某批次电视机的使用寿命D.调查乘坐动车的旅客是否携带了违禁物品7.(3.00分)如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°8.(3.00分)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a ﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c 的值为()A.12 B.15 C.17 D.20二、填空题(每小题3分,共24分)9.(3.00分)在实数﹣7,,π,﹣中,无理数的个数是.10.(3.00分)在平面直角坐标系中,若点P在x轴的下方,y轴的右方,到y 轴的距离都是3,到x轴的距离都是5,则点P的坐标为.11.(3.00分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有人.12.(3.00分)不等式﹣3≤5﹣2x≤3的正整数解是.13.(3.00分)如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE=.14.(3.00分)若则5x﹣y﹣z﹣1的立方根是.15.(3.00分)实数a、b在数轴上对应点的位置如图所示,化简:=.16.(3.00分)如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P的坐标为.三、解答题(共72分)17.(10.00分)解下列二元一次方程组或不等式组:(1)(2)18.(8.00分)如图,这是某城市部分简图,请建立适当的平面直角坐标系,并分别写出各地的坐标.19.(8.00分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?20.(8.00分)某城市出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2元(不足1千米按1千米).某人乘这种出租车从甲地到乙地共付车费19元,那么他乘此出租车从甲地到乙地行驶的距离不超过多少千米?21.(10.00分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.22.(8.00分)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.23.(10.00分)在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?24.(10.00分)已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组的解,求:(1)a、b的值.(2)过点E(6,0)作PE∥y轴,点Q(6,m)是直线PE上一动点,连QA、QB,试用含有m的式子表示△ABQ的面积.(3)在(2)的条件下.当△ABQ的面积是梯形OABC面积一半时,求Q点坐标.2017-2018学年湖北省黄冈市浠水县七年级(下)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共24分)1.(3.00分)如果是二元一次方程mx+y=3的解,则m=()A.﹣2 B.2 C.﹣1 D.1【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程得:﹣2m+1=3,解得:m=﹣1,故选:C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.(3.00分)9的平方根是()A.±3 B.﹣3 C.3 D.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.3.(3.00分)在平面直角坐标系中,点A(3,﹣5)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点A(3,﹣5)所在象限为第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3.00分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15°B.25°C.30°D.35°【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【解答】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.5.(3.00分)不等式的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:,解得,即:﹣1<x<3,在数轴上表示不等式的解集:.故选:A.【点评】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3.00分)下列调查中,适宜采用全面调查方式的是()A.调查市场上矿泉水的质量情况B.了解全国中学生的身高情况C.调查某批次电视机的使用寿命D.调查乘坐动车的旅客是否携带了违禁物品【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果较近似.【解答】解:A、数量较大,不易全面调查,适合抽查,故本选项错误;B、数量较大,不易全面调查,适合抽查,故本选项错误;C、数量较大,不易全面调查,适合抽查,故本选项错误;D、事关重大,必须进行全面调查,故本选项正确.故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.(3.00分)如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析即可.【解答】解:A、根据内错角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;B、∠2=∠3,不能判断直线l1∥l2,故此选项符合题意;C、根据同位角相等,两直线平行可判断直线l1∥l2,故此选项不合题意;D、根据同旁内角互补,两直线平行可判断直线l1∥l2,故此选项不合题意;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.8.(3.00分)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a ﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c 的值为()A.12 B.15 C.17 D.20【分析】有非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7﹣3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【解答】解:∵且|a﹣c|+=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7﹣3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选:C.【点评】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.二、填空题(每小题3分,共24分)9.(3.00分)在实数﹣7,,π,﹣中,无理数的个数是2.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:﹣7,﹣是有理数,,π中是无理数,故答案为:2.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.10.(3.00分)在平面直角坐标系中,若点P在x轴的下方,y轴的右方,到y 轴的距离都是3,到x轴的距离都是5,则点P的坐标为(3,﹣5).【分析】直接利用点P所在象限位置,再结合距离坐标轴的距离进而得出答案.【解答】解:∵点P在x轴的下方,y轴的右方,∴P点在第四象限,∵到y轴的距离都是3,到x轴的距离都是5,∴点P的坐标为:(3,﹣5).故答案为:(3,﹣5).【点评】此题主要考查了点的坐标,正确得出P点所在象限是解题关键.11.(3.00分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.【分析】先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.【解答】解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280(人).故答案为:280.【点评】本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.12.(3.00分)不等式﹣3≤5﹣2x≤3的正整数解是1、2、3、4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5﹣2x≥﹣3,得:x≤4,解不等式5﹣2x≤3,得:x≥1,则不等式组的解集为1≤x≤4,所以不等式组的正整数解为1、2、3、4,故答案为:1、2、3、4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3.00分)如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE=20°.【分析】由AB∥CD∥EF,可得∠ABC=∠BCD,∠CEF+∠ECD=180°,即可求解.【解答】解:∵AB∥CD∥EF,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°;∴∠ECD=180°﹣∠CEF=30°,∴∠BCE=∠BCD﹣∠ECD=20°.故答案为:20°.【点评】本题主要考查了平行线的性质,此类题解答的关键是熟练应用平行线的性质.14.(3.00分)若则5x﹣y﹣z﹣1的立方根是3.【分析】先根据方程组解出x、y、z,然后代入5x﹣y﹣z﹣1后即可求出答案.【解答】解:由③可得:z=3x+2y﹣18④把④代入①中得,17x+4y=85⑤把④代入②得,7x﹣y=35⑥联立⑤⑥可得:x=5,y=0,将x=5,y=0代入④得,z=﹣3∴5x﹣y﹣z﹣1=5×5﹣0+3﹣1=27∴27的立方根是3,故答案为:3【点评】本题考查方程组的解法,解题的关键是熟练运用方程组的解法以及正确理解立方根的定义,本题属于基础题型.15.(3.00分)实数a、b在数轴上对应点的位置如图所示,化简:=a.【分析】由数轴可知a<0<b,|a|<|b|,根据二次根式的性质得出|a|+|a+b|﹣|a﹣b|,去掉绝对值符号求出即可.【解答】解:∵由数轴可知:a<0<b,|a|<|b|,∴+﹣|a﹣b|=|a|+|a+b|﹣|a﹣b|=﹣a+(a+b|﹣(b﹣a)=﹣a+a+b﹣b+a=a.故答案为:a.【点评】本题考查了数轴,二次根式的性质,绝对值等知识点,注意:当a≥0时,=|a|=a,当a≤0时,=|a|=﹣a.16.(3.00分)如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2017次运动后,动点P的坐标为(2017,1).【分析】观察可知这些点分为三类:①横坐标为偶数的点,纵坐标为0,②横坐标为4n+1的点的纵坐标为1(n≥0),③横坐标为4n+3的点的纵坐标为2(n≥0),由此不难找到答案.【解答】解:这些点分为三类:①横坐标为偶数的点,纵坐标为0,②横坐标为4n+1的点的纵坐标为1(n≥0),③横坐标为4n+3的点的纵坐标为2(n≥0),∵2017=4×504+1,∴经过第2017次运动后的点属于第二类,∴经过第2017次运动后,动点P的坐标(2017,1),故答案为(2017,1).【点评】本题考查点与坐标的关系,解题的关键是要发现这些点的坐标有什么规律,本题发现这些点的坐标分为三类,是解决问题的突破口.三、解答题(共72分)17.(10.00分)解下列二元一次方程组或不等式组:(1)(2)【分析】(1)①×2+②得到x=,把x=代入②得到y=1即可;(2)分别求解两个不等式,再寻找公共部分即可;【解答】(1)解:①×2+②得到x=,把x=代入②得到y=1,∴.(2)由①得到x>1,由②得到x<4,∴1<x<4.【点评】本题考查二元一次方程组,二元一次不等式组等知识,解题的关键是熟练掌握解方程组和不等式组的方法,属于中考常考题型.18.(8.00分)如图,这是某城市部分简图,请建立适当的平面直角坐标系,并分别写出各地的坐标.【分析】直接建立平面直角坐标系进而得出各点坐标.【解答】解:如图所示:火车站(0,0),宾馆(2,2),市场(4,3),文化馆(﹣3,1),体育场(﹣4,3),医院(﹣2,﹣2),超市(2,﹣3)答案不唯一.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.19.(8.00分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?【分析】设该兴趣小组男生有x人,女生有y人,根据题意的两个等量关系得出方程组,解出即可得出答案.【解答】解:设该兴趣小组男生有x人,女生有y人,依题意得:,解得:.答:该兴趣小组男生有12人,女生有21人.【点评】本题考查了二元一次方程的应用,属于基础题,解答本题的关键是仔细审题,得出方程组.20.(8.00分)某城市出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2元(不足1千米按1千米).某人乘这种出租车从甲地到乙地共付车费19元,那么他乘此出租车从甲地到乙地行驶的距离不超过多少千米?【分析】已知从甲地到乙地共需支付车费19元,从甲地到乙地经过的路程为x 千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.【解答】解:设他乘此出租车从甲地到乙地行驶的路程是x千米,依题意:7+2.4(x﹣3)≤19,解得:x≤8.答:他乘此出租车从甲地到乙地行驶路程不超过8千米.【点评】此题主要考查了一元一次不等式的应用,根据题意明确其收费标准分两部分是完成本题的关键.21.(10.00分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.【分析】(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.【解答】解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.【点评】本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22.(8.00分)如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.【分析】(1)求出∠A=∠D,根据平行线的判定得出即可;(2)求出∠CGD=∠1,根据平行线的判定得出CE∥BF,根据平行线的性质得出∠B+∠CEB=180°,求出∠B=50°,∠BEC=130°,根据平行线的性质得出∠BEC+∠C=180°,代入求出即可.【解答】(1)证明:∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)解:∵∠1+∠2=180°,∠2+∠CGD=180°,∴∠CGD=∠1,∴CE∥BF,∴∠B+∠CEB=180°,∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°,∴∠BEC=130°,∵AB∥CD,∴∠BEC+∠C=180°,∴∠C=50°.【点评】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.23.(10.00分)在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?【分析】(1)设租甲种客车x辆,则租乙种客车(8﹣x)辆,依题意关系式为:45x+30(8﹣x)≥318+8,(2)分别算出各个方案的租金,比较即可;(3)根据设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7﹣x ﹣y)辆,得出等式方程求出即可.【解答】解:(1)设租甲种客车x辆,则租乙种客车(8﹣x)辆,依题意,得45x+30(8﹣x)≥318+8,解得x≥5,∵打算同时租甲、乙两种客车,∴x<8,即5≤x<8,x=6,7,有两种租车方案:租甲种客车6辆,则租乙种客车2辆,租甲种客车7辆,则租乙种客车1辆;(2)∵6×800+2×600=6000元,7×800+1×600=6200元,∴租甲种客车6辆;租乙种客车2辆,所需付费最少为6000(元);(3)设同时租65座、45座和30座的大小三种客车各x辆,y辆,(7﹣x﹣y)辆,根据题意得出:65x+45y+30(7﹣x﹣y)=318+7,整理得出:7x+3y=23,1≤x<7,1≤y<7,1≤7﹣x﹣y<7,故符合题意的有:x=2,y=3,7﹣x﹣y=2,租车方案为:租65座的客车2辆,45座的客车3辆,30座的2辆.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程的解等知识,找到相应的关系式是解决问题的关键.24.(10.00分)已知,平面直角坐标系内,点A(a,0),B(b,2),C(0,2),且a、b是方程组的解,求:(1)a、b的值.(2)过点E(6,0)作PE∥y轴,点Q(6,m)是直线PE上一动点,连QA、QB,试用含有m的式子表示△ABQ的面积.(3)在(2)的条件下.当△ABQ的面积是梯形OABC面积一半时,求Q点坐标.【分析】(1)解方程组可直接求出a、b的值;=S梯形BDEQ﹣S△ABD﹣S△AQE;(2)当m>0时过B点作BD⊥x轴,垂足为D,则S△ABQ=S△BMQ﹣S△AEQ﹣S梯形AEMB,求出当m<0时,过点B作BM⊥EQ于点M,则S△ABQ用含有m的式子表示△ABQ的面积;,根据△ABQ的面积是梯形OABC面积一半列出方程求m的(3)计算S梯形OABC值即可.【解答】解:(1)由方程组两式相加,得a+b=8,再与方程组中两式分别相减,得;(2)由(1)可知,A(5,0),B(3,2),∴直线AB的解析式为y=﹣x+5,当点Q在AB上时,m=﹣1,如图1,当m>﹣1时,过B点作BD⊥x轴,垂足为D,=S梯形BDEQ﹣S△ABD﹣S△AQE则S△ABQ=(2+m)×(6﹣3)﹣×2×(5﹣3)﹣×(6﹣5)×m=m+1;当m<﹣1时,如图2所示,过点B作BM⊥EQ于点M,=S△BMQ﹣S△AEQ﹣S梯形AEMB则S△ABQ=×(2﹣m)×(6﹣3)﹣×(6﹣5)×(﹣m)﹣×(6﹣3+6﹣5)×2 =3﹣m+m﹣4=﹣m﹣1.综上所述,△ABQ的面积为|m+1|;=×(3+5)×2=8,(3)∵S梯形OABC依题意,得|m+1|=×8,解得m=3或m=﹣5;∴Q(6,3)或(6,﹣5).【点评】本题考查了解二元一次方程组,坐标与图形的性质,三角形、梯形的面积计算.关键是根据题意画出图形,结合图形上点的坐标表示相应的线段长.。

湖北省黄冈市七年级下学期期末考试数学试题

湖北省黄冈市七年级下学期期末考试数学试题

湖北省黄冈市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列各组图形中,一定是全等图形的是()A . 两个周长相等的等腰三角形B . 两个面积相等的长方形C . 两个斜边相等的直角三角形D . 两个直角边相等的等腰直角三角形2. (2分)对于解不等式->,正确的结果是()A . x<﹣B . x>﹣C . x>﹣1D . x<﹣13. (2分)下列各式中,不能分解因式的是()A . 4x2+2xy+ y2B . 4x2-2xy+ y2C . 4x2- y2D . -4x2- y24. (2分) (2017九上·浙江月考) 下列命题中:①直径是弦;②圆上任意两点都能将圆分成一条优弧和一条劣弧;③三个点确定一个圆;④外心是三角形三条高线的交点;⑤等腰三角形的外心一定在它的内部;正确的是()A . ①B . ②④C . ②D . ①③⑤5. (2分)如图,∠3=∠4,则从下列条件中不能推出AB∥CD的是()A . ∠1与∠2互余B . ∠1=∠2C . ∠ABC=∠DCBD . BM∥CN6. (2分) 7x+1是不小于﹣3的负数,表示为()A . ﹣3≤7x+1≤0B . ﹣3<7x+1<0C . ﹣3≤7x+1<0D . ﹣3<7x+1≤0二、填空题 (共10题;共12分)7. (1分)科学记数法表示:0.000 000 234=________.8. (2分)含有________未知数,未知数的次数是1且不等号两边都是________的不等式,叫做一元一次不等式.9. (1分) (2019八上·温州开学考) 把命题“同位角相等,两直线平行”改写成“如果…那么…”的形式__________.10. (2分)不等式3(x+2)≥4+2x的解集为________;负整数解为________.11. (1分)计算:(﹣a2)•a3=________12. (1分)如图,已知△ABC≌△BAD,A和B、C和D是对应顶点.如果AB=6,BD=5,AD=4,那么BC的长度是________13. (1分)(2017·虎丘模拟) 如图,直线l1∥l2 ,CD⊥AB于点D,若∠1=50°,则∠BCD的度数为________°.14. (1分) (2019九上·贵阳期末) 在Rt△ABC中,∠BAC=90,AB=AC,AD⊥BC于点D,P是线段AD上的一个动点,以点P为直角的顶点,向上作等腰直角三角形PBE,连接DE,若在点P的运动过程中,DE的最小值为3,则AD的长为________.15. (1分) (2016八上·萧山月考) 若关于的不等式的解如图所示,则的值是________。

湖北省黄冈市七年级下学期期末数学试卷

湖北省黄冈市七年级下学期期末数学试卷

湖北省黄冈市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·东莞期中) 下列图形是中心对称图形,但不是轴对称图形的是()A .B .C .D .2. (2分) (2019七下·洪江期末) 下列说法错误的是()A . 平移不改变图形的形状和大小B . 对顶角相等C . 两个直角一定互补D . 同位角相等3. (2分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A . 0B . 2a2C . ﹣6a2D . ﹣4a24. (2分)计算3a•2b的结果是()A . 3abB . 5abC . 6aD . 6ab5. (2分) (2017七下·泗阳期末) 下列各式正确的是()A . a2·a3=a6B . a3÷a2=aC . (a3)2=a5D . a2+a2=2a46. (2分) (2019八上·浏阳期中) 给出下列命题:①等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;②有两边和其中一边的对角分别相等的两个三角形全等;③三角形的三条高不一定有交点.其中属于真命题的是()A . ①②B . ②③C . ①③D . ①②③7. (2分)甲、乙两人各自掷一个普通的正方体骰子,如果两者之积为偶数,甲得1分;如果两者之积为奇数,乙得1分,此游戏()A . 对甲有利B . 对乙有利C . 是公平的D . 以上都有不对8. (2分)下列各式中能用平方差公式计算的是()A . (﹣5+a)(﹣5﹣a)B . (a﹣b)(a+c)C . (a+b)(﹣a﹣b)D . (x+1)(2﹣x)9. (2分)(2018·福田模拟) 下列运算正确的是()A . a+b=abB . a2·a3=a6C . a2+2ab-b2= (a+b)2D . 3a-2a=a10. (2分)如图,△ABC中,AB=AC,BD=CD,下列说法不正确的是()A . ∠BAD= ∠BACB . AD=BCC . ∠B=∠CD . AD⊥BC二、填空题 (共6题;共7分)11. (1分) (2017八上·北部湾期中) 已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是________.12. (1分) (2017八下·万盛开学考) 计算: =________.13. (1分) (2016九上·济宁期中) 如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为________.14. (1分) (2015八下·蓟县期中) 如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是________.15. (2分) (2017七下·东港期中) 一个圆柱的高为8cm,则圆柱体的体积Vcm3与底面直径Rcm的关系式为________,当R为5cm时,V=________cm3 .16. (1分) (2018八上·龙湖期中) 如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=________三、解答题(一) (共3题;共30分)17. (10分) (2019八上·叙州期中) 已知x+y=4,xy=2.试求(1) x2+y2(2)(x-y)2+2x+2y18. (5分)已知x2+4x﹣1=0,求代数式(x+2)2﹣(x+2)(x﹣2)+x2的值19. (15分) (2020八上·文水期末) 综合与实践问题情境在中,,,于点,点是射线上一点,连接,过点作于点,且交直线于点 .(1)如图1,当点在线段上时,求证: .自主探究(2)如图2,当点在线段上时,其它条件不变,请猜想与之间的数量关系,并说明理由.拓展延伸(3)如图3,当点在线段的延长线上时,其它条件不变,请直接写出与之间的数量关系.四、解答题(二) (共3题;共18分)20. (6分) (2020九上·南山期末) 深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为________ .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.21. (2分)38°41′的角的余角等于________,27°14′24″=________度.22. (10分)(2017·蓝田模拟) 如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.五、解答题(三) (共3题;共40分)23. (15分)小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:(1)小明家离超市的距离是多少千米;(2)小明在超市买东西时间为多少小时;(3)小明去超市时的速度是多少千米/小时.24. (15分) (2016七上·德州期末) 化简,求值(1) 5x2y+{xy﹣[5x2y﹣(7xy2+ xy)]﹣(4x2y+xy)}﹣7xy2 ,其中x=﹣,y=﹣16.(2) A=4x2﹣2xy+4y2 , B=3x2﹣6xy+3y2 ,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.25. (10分) (2015八上·哈尔滨期中) 已知:如图1,点D是△ABC的边BC的中点,DE⊥A C,DF⊥AB,垂足分别为E,F,且BF=CE.(1)求证:AE=AF;(2)如图2,若∠BAC=60°,△ABD的面积为4,连接AD交EF于M,连接BM、CM,在不添加任何辅助线的情况下,请直接写出图中所有面积为1的三角形.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(一) (共3题;共30分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:四、解答题(二) (共3题;共18分)答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:五、解答题(三) (共3题;共40分)答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年湖北省黄冈市浠水县七年级
(下)期末数学试卷
参考答案与试题解析
一、选择题
1.(4分)如图,若m∥n,∠1=105°,则∠2=()
3.(4分)(2004•深圳)在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~
先对进行估算,再确定是在哪两个相邻的整数之间,然后计算


2
根据题意得到三元一次方程组得,再解方程组得
解:根据题意得
解方程组得,
数学试卷


本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定的范围,是解决本题的二、填空题
7.(4分)x的与5的差不小于3,用不等式表示为x≥3.
解:根据题意得:x
故答案为:x
8.(4分)点A(a2+1,﹣1﹣b2)在第四象限.
9.(4分)一组数据共有50个,分别落在5个小组内,第一、二、三、四小组的频数分别为3、8、21、13,则第五小组的频数为5.
10.(4分)=4,=5,的平方根是±.
解:=的平方根是
±±±
±.
11.(4分)一只船在A、B两码头间航行,从A到B顺流航行需2小时,从B到A逆流航行需3小时,那么一只救生圈从A顺流漂到B需要12小时.
解得:
数学试卷
12.(4分)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示,点A4n的坐标(n是正整数)是:A4n(2n﹣1,0)
三、解答下列各题(共75分)
13.(12分)(1)解方程组:
(2)解不等式组:.
解:
x=
x=代入,
所以方程组的解为
14.(6分)请根据证明过程,在括号内填写相应理由,
如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D,求证:∠A=∠F.
证明:因为∠1=∠2(已知)
所以BD∥CE(内错角相等,两直线平行)
所以∠C=∠ABD(两直线平行,同位角相等)
因为∠C=∠D(已知)
所以∠D=∠ABD (等量代换)
所以DF∥AC(内错角相等,两直线平行)
所以∠A=∠F(两直线平行,内错角相等)
15.(6分)已知和互为相反数,且x﹣y+4的平方根是它本身,求x、y的值.解:∵
数学试卷,
16.(8分)(2007•福州)李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极
a元,营业员月基本工资为b元.
(1)求a,b的值;
(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件?
17.(10分)已知方程组的解x、y满足:x为非正数,y为负数.
(1)求a的取值范围;
(2)在a的取值范围中,当a为何整数时,关于x的不等式2ax+x>2a+1的解集为x<1.

<﹣
18.(10分)(2019•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?
根据题意得:
解得:
根据题意得:
数学试卷。

相关文档
最新文档