九年级数学(上)单元测试(四)
北师大版九年级数学上册第一章特殊平行四边形单元测试
北师大版九年级数学上册第一章特殊平行四边形单元测试(4)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1BC.2D.2.正方形面积为36,则对角线的长为()A.6B.C.9D.3.如图,在矩形ABCD中,对角线BD=8cm,∠AOD=120°,则AB的长为()B.2cm C.D.4cmA4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是().A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB∠CD ,AB =CDB .AD∠BC ,∠A =∠C C .AO =BO =CO =DO ,AC∠BD D .AO =CO ,BO =DO ,AB =BC7.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3109.图,在∠ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =,则S 菱形ADEF =( )A .4B .C .D .10.如图,四边形ABCD 中,90BAD C ∠=∠=︒,AB AD =,AH BC ⊥于H ,若线段AH =ABCD 的面积是( ).A .3B .4C .D .6二、填空题11.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB=BC=16cm ,则∠1=_______°12.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,相交于点O ,CE 平分∠ACD 交BD 于点E ,则DE =_____.13.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_____________.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,CE ∠BD ,垂足为点E ,CE =5,EO =2DE ,则DE 的长为________.15.如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为_________.16.将五个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3、A 4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.17.图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点(不与B ,D 重合),PE∥CD 交BC 于点E ,PF ∥BC 交CD 于点F ,连接AP ,EF .给出下列结论:∠PD EC ;∠四边形PECF 的周长为8;∠∠APD 一定是等腰三角形;∠AP =EF .其中正确结论的序号为________.三、解答题18.如图,矩形ABCD 中,AC 与BD 交于点O BE AC CF BD ⊥⊥,,,垂足分别为.E F ,求证:BE CF =.19.如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1.(1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.如图,菱形ABCD的对角线AC,BD交于点O,AB=5,AC=6,DE∠BC的延长线于点E,求OE的长.21.如图,菱形ABCD的对角线AC,BD交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求EO的长.22.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使∠BPE的周长最小(作图说明);(2)求出∠BPE周长的最小值.23.如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.=;(1)求证:AF HG∠=∠;(2)求证:FAE GHC24.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∠BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.25.有一张矩形纸片ABCD,其中AB=10,AD=6,现将矩形纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形纸片的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图∠).∠当点P与点A重合时,∠DEF=________°,当点E与点A重合时,∠DEF=________°,当点F与点C重合时,AP=________;∠若点P为AB的中点,求AE的长;(2)若点P落在矩形ABCD的外部(如图∠),点F与点C重合,点E在AD上,BA与FP交于点M,当AM=DE时,请求出AE的长;(3)若点E为动点,点F为DC的中点,直接写出AP的最小值.参考答案:1.C【分析】利用菱形的性质以及等边三角形的判定方法得出∠DAB 是等边三角形,进而得出BD 的长,【详解】解:∠菱形ABCD 的边长为2,∠AD =AB =2,又∠∠DAB =60°,∠∠DAB 是等边三角形,∠AD =BD =AB =2,则对角线BD 的长是2.故选C .【点睛】此题主要考查了菱形的性质以及等边三角形的判定,得出∠DAB 是等边三角形是解题关键.2.B【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x .则有12x 2=36,解得:x故选B .【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3.D【分析】根据矩形的性质求出4AO BO cm ==,再根据等边三角形的判定可得AOB 是等边三角形,然后根据等边三角形的性质即可得.【详解】∠120AOD ∠=︒∠18060AOB AOD ∠=︒-∠=︒∠四边形ABCD 是矩形,8BD cm = ∠118,4,422AC BD cm AO AC cm BO BD cm ======∠4AO BO cm ==∠AOB 是等边三角形∠4AB AO cm ==故选:D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质等知识点,熟记矩形的性质是解题关键.4.D【分析】根据菱形的性质和勾股定理求解即可.【详解】解:∠菱形的对角线AC 与BD 相交于点O ,∠AO =OC ,BO =OD ,AC ∠BD ,AB =BC =CD =AD ,∠AC =6cm ,BD =8cm ,∠在Rt∠AOB 中,AO =3cm ,BO =4cm ,∠AOB =90°,由勾股定理得:AB ,∠菱形的周长为4×5=20cm ,故选:D .【点睛】本题考查菱形的性质、勾股定理,熟练掌握菱形的对角线互相垂直且平分是解答的关键.5.C【详解】解:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A ,不能,只能判定为矩形,不符合题意;B ,不能,只能判定为平行四边形,不符合题意;C ,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.7.D【分析】根据三角形的中位线定理得到EH∠FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∠E,F,G,H分别是边AD,AB,CB,DC的中点,∠EH=12AC,EH∠AC,FG=12AC,FG∠AC,EF=12BD,∠EH∠FG,EF=FG,∠四边形EFGH是平行四边形,假设AC=BD,∠EH=12AC,EF=12BD,则EF=EH,∠平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点睛】题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.8.B【分析】根据矩形的性质,得△EBO∠∠FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∠四边形为矩形,∠OB=OD=OA=OC,在△EBO与△FDO中,∠∠EOB=∠DOF,OB =OD ,∠EBO =∠FDO ,∠∠EBO ∠∠FDO (ASA ),∠阴影部分的面积=S △AEO +S △EBO =S △AOB ,∠∠AOB 与△ABC 同底且△AOB 的高是△ABC 高的12, ∠S △AOB =12S △ABC =14S 矩形ABCD . 故选B【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质9.C【分析】根据菱形的性质,结合AB =AC ,得出DF 为∠ABC 的中位线,DF∥BC ,12DF BC =,从而得出AE 为∠ABC 的高,得出BC AE ⨯=的面积.【详解】解:∠四边形ADEF 为菱形,∠EF∥AB ,DE∥AC ,AF =EF =DE =AD ,AE ∠DF ,∠CEF B ∠=∠,DEB C ∠=∠,AC AB =,B C ∴∠=∠,CEF B C DEB ===∴∠∠∠∠,∠CF =EF ,DE =DB ,CF AF ∴=,AD DB =,∠DF∥BC ,12DF BC =, 90AOD ∠=︒,90AEB AOD ==︒∴∠∠,AE BC ∴⊥,ABC S =∵12BC AE ⨯=∴即BC AE ⨯=1111=2224ADEF S DF AE BC AE ⨯=⨯⨯=⨯菱形∴C 正确. 故选:C .【点睛】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为∠ABC 的中位线,是解题的关键.10.D【详解】试题解析:过A 点作CD 的垂线,交CD 的延长线于F 点,如图,则四边形AECF 是矩形90,90DAE BAE DAE DAF ∠+∠=∠+∠=,BAE DAF ∴∠=∠,在∠ABE 和∠DAF 中,{AB ADBAE DAF AEB AFD =∠=∠∠=∠,则(AAS)ABE DAF ≌,,AE AF ∴=又∠四边形AECF 是矩形.∠四边形AECF 为正方形,而四边形ABCD 的面积是6,故选D.11.120【详解】由题意可得AB 与菱形的两邻边组成等边三角形,从而不难求得∠1的度数. 解:由题意可得AB 与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.此题主要考查菱形的性质和等边三角形的判定.12【分析】由正方形对角线相交于点O ,则DO CO ⊥,12DO BD ==,过点E 作EF CD ⊥于F ,设EO EF DF x ===,则DE =,列出方程x =解出x ,最后得出答案. 【详解】解:如图所示,过点E 作EF CD ⊥于F ,∠正方形ABCD 的边长为1,∠AC =BDDO CO ⊥,∠OA =OC =OB =OD =2, ∠CE 平分∠ACD 交BD 于点E ,∠EO =EF ,∠在正方形ABCD 中,∠ADB =∠CDB =45°,∠EF =DF ,设EO EF DF x ===,则DE =,∠OD =OE +DE =x =∠解得x =∠DE =OD -OE 1=,1.【点睛】本题主要考查了正方形的性质与角平分线的性质,解题的关键是根据角平线的性质作出辅助线.13.(4,4)【详解】解:连接AC 、BD 交于点E ,如图所示:∠四边形ABCD 是菱形,∠AC ∠BD ,AE =CE =12AC ,BE =DE =12BD ,∠点B的坐标为(8,2),点D的坐标为(0,2),∠OD=2,BD=8,∠AE=OD=2,DE=4,∠AC=4,∠点C的坐标为:(4,4)故答案为:(4,4)【点睛】本题考查菱形的性质;坐标与图形性质.14【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【详解】解:∠四边形ABCD是矩形,∠∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∠OC=OD,∠EO=2DE,∠设DE=x,OE=2x,∠OD=OC=3x,∠CE∠BD,∠∠DEC=∠OEC=90°,在Rt△OCE中,∠OE2+CE2=OC2,∠(2x)2+52=(3x)2,解得:x,∠DE【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.15.50 13【详解】试题分析:∠四边形ABCD是菱形,AC=24,BD=10,∠AO=12,OD=5,AC∠BD,=13,∠DH∠AB,∠AO×BD=DH×AB,∠12×10=13×DH,∠DH=12013,5013=.考点:1.菱形的性质;2.勾股定理.16.4【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF∠∠NAE,进而可得四边形AENF的面积等于∠NAP的面积,同理可得答案.【详解】如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∠∠PAF+∠FAN=∠FAN+∠NAE=90°,∠∠PAF=∠NAE,∠∠PAF∠∠NAE,∠四边形AENF的面积等于∠NAP的面积,而∠NAP 的面积是正方形的面积的14,而正方形的面积为4, ∠四边形AENF 的面积为1cm 2,四块阴影面积的和为4cm 2.故答案为4.【点睛】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:∠定点-旋转中心;∠旋转方向;∠旋转角度.17.∠∠∠【分析】∠证明PF EC =,PDF ∆是等腰直角三角形,即可说明PD =;∠先证明四边形PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC ,则四边形PECF 的周长为8;∠根据P 的任意性可以判断APD ∆不一定是等腰三角形;∠四边形PECF 为矩形,通过正方形的轴对称性,证明AP EF =.【详解】解:∠PE BC ⊥,PF CD ⊥,90PEC PFC ∴∠=∠=︒,又90C ∠=︒,∴四边形PECF 是矩形,EC PF ∴=.四边形ABCD 是正方形,45PDF ∴∠=︒,PDF ∴∆是等腰直角三角形,PD ∴==,故∠正确;∠PE BC ⊥,PF CD ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴四边形PECF 的周长222228CE PE CE BE BC =+=+==,故∠正确; ∠点P 是正方形ABCD 的对角线BD 上任意一点,45ADP ∠=︒,∴当45PAD ∠=︒或67.5︒或90︒时,APD ∆是等腰三角形,除此之外,APD ∆不是等腰三角形,故∠错误.∠四边形PECF为矩形,∠=∠,∴=,PFE ECPPC EF正方形为轴对称图形,∴=,AP PC∴=,AP EF故∠正确;故答案为∠∠∠.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理的运用等知识;熟练掌握正方形的性质和等腰三角形的性质是解题的关键.18.证明见解析【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【详解】证明:∠四边形ABCD为矩形,∠AC=BD,则BO=CO.∠BE∠AC于E,CF∠BD于F,∠∠BEO=∠CFO=90°.又∠∠BOE=∠COF,∠∠BOE∠∠COF.∠BE=CF.19.(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD即为所求(2)图1中AC =2,BD =6∠图1中菱形面积12662=⨯⨯=.图2中,AC22442,BD =∠图2中菱形面积182=⨯=.图3中,AC BD =∠图3菱形面积1102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.20.4【分析】由菱形的性质得出AC BD ⊥,OB OD =,112OA OC AC ===,在Rt AOD ∆中,由勾股定理得:4OD =,得出28BD OD ==,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∠四边形ABCD 是菱形,∠AD =AB =5,AC ∠BD ,AO =12AC =12×6=3,OB =OD . 在Rt∠AOD 中,由勾股定理得OD =4OD ==,∠BD =2OD =8.∠DE ∠BC ,∠∠DEB =90°.又∠OD =OB ,∠OE =12BD =12×8=4. 【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∠BE∠AC,AE∠BD,∠四边形AEBO是平行四边形.∠四边形ABCD是菱形,∠AC∠BD,即∠AOB=90°.∠四边形AEBO是矩形.(2)解:∠四边形AEBO是矩形,∠EO=AB,在菱形ABCD中,AB=CD,∠EO=CD=3.【点睛】本题考查菱形的性质、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的性质和矩形的判定与性质是解答的关键.22.(1)见解析(2)12【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:证明∠AB P′∠∠AD P′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∠AP′=AP′,∠∠ABP′∠∠ADP′,∠BP′=DP′,∠BP+PE= DP′+ P′E≥DE,即当点P位于PP′时,∠BPE的周长PB+EP+BE最小;(2)解:由(1)得:B P ′=DP ′,∠P ′B +P ′E =DE .∠BE =2,AE =3BE ,∠AE =6.∠AD =AB =8.∠DE10.∠PB +PE 的最小值是10.∠∠BPE 周长的最小值为10+BE =10+2=12.【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.23.(1)详见解析;(2)详见解析.【分析】(1)根据题意可先证明四边形AHCE 为平行四边形,再根据正方形的性质得到∠AH FG =,//AH FG ,故可证明四边形AHGF 是平行四边形,即可求解;(2)根据四边形AHGF 是平行四边形,得180FAH AHG ∠+∠=︒,根据四边形ABCD 是矩形,可得 DAH AHB ∠=∠,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∠四边形ABCD 是矩形,且E 、H 分别为AD 、BC 的中点, ∠AE HC =,//AE HC ,∠四边形AHCE 为平行四边形,∠AH EC =,//AH EC ,又∠四边形ECGF 为正方形,∠EC FG =,//EC FG ,∠AH FG =,//AH FG ,∠四边形AHGF 是平行四边形,∠AH FG =;(2)证明:∠四边形AHGF 是平行四边形,∠180FAH AHG ∠+∠=︒,∠四边形ABCD 是矩形,∠//AD BC ,∠DAH AHB ∠=∠,又∠180AHB AHG GHC ∠+∠+∠=︒,∠FAD GHC ∠=∠;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.24.(1)见解析;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.见解析;(3)△ABC 是直角三角形,理由见解析.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO =CO ,EO =FO 可得四边形AECF 平行四边形,再证明∠ECF =90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC ∠EN ,再利用平行线的性质得出∠BCA =90°,即可得出答案;【详解】证明:(1)∠MN 交∠ACB 的平分线于点 E ,交∠ACB 的外角平分线于点 F , ∠∠2=∠5,∠4=∠6,∠MN ∠BC ,∠∠1=∠5,∠3=∠6,∠∠1=∠2,∠3=∠4,∠EO =CO ,FO =CO ,∠OE =OF ;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.证明:当 O 为 AC 的中点时,AO =CO ,∠EO =FO ,∠四边形 AECF 是平行四边形,∠CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∠∠ECF =12(∠ACB +∠ACD )=90°,∠平行四边形 AECF 是矩形.(3)∠ABC 是直角三角形,理由:∠四边形AECF 是正方形,∠AC∠EN,故∠AOM=90°,∠MN∠BC,∠∠BCA=∠AOM,∠∠BCA=90°,∠∠ABC 是直角三角形.【点睛】此题考查了正方形的判断和矩形的判定,需要知道平行线的特征和角平分线的性质才能解答此题.25.(1)∠ 90,45,2;∠11 12(2)1275【分析】(1)∠分别画出三种情况下的图形即可得到解答;∠连接EP,设AE=x,可以得到关于x的方程,从而得到AE的值;(2)连接EM,设AE=y,根据题意可以得到关于y的方程,解方程即可得到问题解答;(3)画出图形后根据题意可以得到解答.(1)∠如图1所示,点P与点A重合,由题意可知,PD∠EF,所以∠DEF=90°,如图2所示,点E与点A重合,由题意可知,ED=EP,PD∠EF,所以∠DEF=45°,如图3所示,点F与点C重合,连结CP,由题意可知,CP=DF=10,BC=6,∠在RT∠CPB中,PB=8,∠AP=AB-PB=2,故答案为90;45;2;∠如图4所示,连接EP,∠点P为AB的中点,∠AP=BP=5,由折叠知DE=EP,设AE=x,则DE=EP=6-x,在Rt∠AEP中,AE2+AP2=EP2,即x2+52=(6-x)2,解得x=1112,即AE=1112.(2)如图5所示,连接EM,设AE=y,由折叠知PE=DE,∠CDE=∠EPM=90°,CD=CP=AB=10,∠AM=DE,∠AM=PE.在Rt∠AEM和Rt∠PME中,,, AM PE EM ME=⎧⎨=⎩∠Rt∠AEM∠Rt∠PME(HL),∠AE=PM=y,∠CM=10-y,BM=AB-AM=AB-DE=10-(6-y)=4+y.在Rt∠BCM中,BM2+BC2=CM2,∠(4+y)2+62=(10-y)2,解得y=127.∠AE=127.(3)如图6所示,连结AF,在Rt ADF中,∠D=90°,AD=6,DF=CF=5,∠AF∠PF=DF=5,∠5AP AF PF≥-=,∠AP5.【点睛】本题考查矩形的的折叠问题和最短距离问题,正确分类并画出图形是解题的关键.。
(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(答案解析)(2)
一、选择题1.如图,在Rt ABC 中,90ACB D ∠=︒,是AB 边的中点,AF CD ⊥于点E ,交BC 边于点F ,连接DF ,则图中与ACE △相似的三角形共有( )A .2个B .3个C .4个D .5个2.如图,在ABC 中,D ,E 分别是AB,AC 上的点,且DE// BC ,若AE : EC=1: 4,那么:ADE BEC S S △△的值为( )A .1∶16B .1∶18C .1∶20D .1∶24 3.如图,ABC 中,AD BC ⊥于点D ,下列条件中不.能判定ABC 是直角三角形的是( )A .B DAC ∠=∠B .90B DAC ∠+∠=︒ C .2AB BD BC =⋅D .2AC CD BC =⋅ 4.如图,在▱ABCD 中,E 是BC 的中点,DE ,AC 相交于点F ,S △CEF =1,则S △ADC =( )A .3B .4C .5D .6 5.如图,在平面直角坐标系中,矩形ABCD 的对角线//BD x 轴,若(1,0),(0,2)A D ,则点C 的坐标为( )A .(4,3)B .(4,4)C .(3,4)D .(2.5,4) 6.如图,4AB =,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,12BE DB =,作EF DE ⊥并截取EF DE =,连结AF 并延长交射线BM 于点C .设BE x =,BC y =,则y 关于x 的函数解析式是( )A .124x y x =--B .21x y x =--C .31x y x =--D .84x y x =-- 7.点B 是线段AC 的黄金分割点,且AB <BC .若AC=4,则BC 的长为( ) A .252+ B .252- C .51- D .51- 8.如图,ABC 中,90ABC ∠=︒,点E 在CB 的延长线上,13BE AB =,过点E 作ED AC ⊥于D .若AD ED =,6AC =,则CD 的长为( )A .1.5B .2C .2.5D .4 9.若275x y z ==,则2x y z x z +-+的值是( ) A .67 B .13 C .49 D .410.如图,点D 、E 、F 分别是ABC 的边AB 、AC 、BC 上的点,若//DE BC ,//EF AB ,则下列比例式一定成立的是( )A .EF FC AD BF =B .AD DE DB BC = C .BF EF BC AD = D .EF DE AB BC = 11.若ad=bc ,则下列不成立的是( )A .a c b d =B .a c a b d b -=-C .a b c d b d ++=D . 1 111a c b d ++=++ 12.如图,直线123////l l l ,直线a 、b 与1l 、2l 、3l 分别交于点A 、B 、C 和点D 、E 、F ,若:1:2AB BC =,6DF =,则EF 的长为( )A .2B .3C .4D .5二、填空题13.如图,点P 是ABC 的重心,过P 作AB 的平行线DE ,分别交AC 于点D 、交BC 于点E ;作//DF BC ,交AB 于点F ,若ABC 的面积为36,则四边形BEDF 的面积为________.14.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,3BC =.点D 是AB 上一动点,以DC 为斜边向右侧作等腰直角三角形CDE ,使90CED ∠=︒,连接BE . (1)若点E 恰好落在AB 上,则AD 的值为______;(2)线段BE 的最小值为______.15.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.8m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为_________m 2(结果保留)π.16.如图,已知在Rt ABC 中,C 90∠=︒,AC 3=,BC 4=,分别将Rt ABC 的三边向外平移2个单位并适当延长,得到111A B C △,则111A B C △的面积为______.17.如图,正方形ABCD 和正方形EFOG 是位似图形,其中点A 与点E 对应,点A 的坐标为()4,2-,点E 的坐标为()1,1-,则这两个正方形位似中心的坐标为______.18.在Rt △ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当△ADE ∽△ABC 时,AE =____.19.如图,有一个池塘,要测量池塘两端A 、B 的距离,可先在平地上取一点O ,从O 点不经过池塘可以直接到达点A 和点B ,连接AO 并延长到点C ,连接BO 并延长到点D ,使3AO BO CO DO==,测得36CD m =,则池塘两端AB 的距离为________m .20.如图,若ABC 与DEF 都是正方形网格中的格点三角形(顶点在格点上),则DEF 与ABC 的周长比为_________.三、解答题21.我国古代数学著作《九章算术》中有“井深几何”问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深儿何?”它的大意是:如图,已知四边形BCDE 是矩形,5CD =尺,5AB =尺,0.4BF =尺,求井深BC 为多少尺?22.如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,∠BEF =90°且CF =3FD .(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求 CG 的长.23.如图,点C ,B ,E 在同一条直线上,AC ⊥BC ,BD ⊥DE ,BC =ED =6,BE =10,∠BAC =∠DBE .(1)求证:△ABC ≌△BED ;(2)求△ABD 的面积.24.如图,在△ABC 中,∠C =∠ADE ,AB =3,AD =2,CE =5,求证:(1)△ADE ∽△ACB ;(2)求AE 的长.25.如图1,在等边ABC 中,点D 是BC 边上的动点(不与点B 、C 重合),点E 、F 分别在AB 和AC 边上,且EDF=60.(1)求证:BDE CFD △∽△;(2)若点D 移至BC 的中点,如图2,求证:FD 平分EFC ∠.26.已知::2:3:4a b c =,且2316a b c -+=,求232a b c +-的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用直角三角形斜边上的高线模型,可判断有2个三角形与ACE △相似,利用直角三角形斜边上的中线等于斜边的一半,传递一组等角,得到第3个三角形.【详解】∵∠EAC=∠CAF ,∠AEC=∠ACF ,∴△ACE ∽△AFC ;∵∠EAC+∠AFC=90°,∠ECF+∠AFC=90°,∴∠EAC=∠ECF ,∵∠AEC=∠CEF ,∴△ACE ∽△CFE ;∵90ACB D ∠=︒,是AB 边的中点,∴DC=DB ,∴∠ECF=∠EAC=∠B ,∵∠AEC=∠BCA ,∴△ACE ∽△BAC ;共有3个,故选B.【点睛】本题考查了直角三角形的相似,熟练运用三角形相似的判定定理是解题的关键. 2.C解析:C【分析】 由已知条件可求得ABE EBC S S ∆∆,又由平行线分线段成比例可求得ADE BDES S ∆∆,结合S △BDE =S △ABE -S △ADE 可求得答案.【详解】解:∵AE 1EC 4=, ∴14ABE EBC S S ∆∆=, ∴14ABE EBC S S ∆∆=, ∵DE ∥BC ,∴14AD AE DB EC ==, ∴14ADE BDE S S ∆∆=, ∴S △BDE =4S △ADE ,又∵S △BDE =S △ABE -S △ADE ,∴4S △ADE =14S △EBC -S △ADE , ∴120ADE EBC S S ∆∆=, 故选:C .【点睛】本题主要考查了平行线分线段成比例的性质及三角形的面积,掌握同高三角形的面积比即为底的比是解题的关键.3.B解析:B【分析】根据已知对各个条件进行分析,从而得到答案.【详解】解:A.能,∵AD ⊥BC ,∴∠B+∠BAD=90°,∵∠B=∠DAC ,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°;∴△ABC 是直角三角形;B.不能,∵AD ⊥BC ,∴∠B+∠BAD=90°,∵∠B+∠DAC=90°,∴∠BAD=∠DAC ,∴△ABD ≌△ACD (ASA ),∴AB=AC ,∴△ABC 是等腰三角形,∴无法证明△ABC 是直角三角形;C.能,∵2AB BD BC =⋅ ∴AB BC BD AB= ∵∠B=∠B∴△CBA ∽△ABD ,∴∠ADB=∠BAC ,∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∴∠BAC=90°∴△ABC 是直角三角形;D.能,∵2AC CD BC =⋅, ∴AC BC CD AC= ∵∠C=∠C ∴△CBA ∽△CAD ,∴∠ADC=∠BAC=90°∴△ABC 是直角三角形.故选:B【点睛】此题考查了相似三角形的判定与性质、直角三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意相似三角形的判定与性质的应用.4.D解析:D【分析】根据已知可得△CEF ∽△ADF ,及EF 和DF 的关系,从而根据相似三角形的性质和三角形的面积得到答案.【详解】解:∵四边形ABCD 是平行四边形∴AD=BC ,△CEF ∽△ADF , ∴EC EF AD DF= ∵E 是BC 的中点,∴EC=1122BC AD = ∴12EC EF AD DF == ∴2211()()24CEF ADF S EF S DF ∆∆=== ∵S △CEF =1,∴S △ADF =4, ∵12EF DF = ∴DF=2EF∴S △D CF =2 S △CEF =2,∴S △ADC =S △ADF + S △D CF =4+2=6故选:D .【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解答此题的关键.5.B解析:B【分析】过点B 作BF ⊥x 轴,垂足为F ,证明△ADO ∽△BAF ,确定点B 的坐标,利用中点坐标公式确定点E 的坐标,二次运用中点中点坐标公式即可确定点C 的坐标.【详解】如图,过点B 作BF ⊥x 轴,垂足为F ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAO+∠BAF=90°,∵∠DAO+∠ADO=90°,∴∠ADO=∠BAF ,∴△ADO ∽△BAF ,∴OA :BF=OD :FA ,∵//BD x 轴,若(1,0),(0,2)A D ,∴OA=1,OD=2,BF=2,∴1:2=2:FA ,∴FA=4,∴点B (5,2),∵四边形ABCD 是矩形,∴点E 是BD 的,AC 的中点,∴点E (52,2), 设点C 的坐标为(m ,n ), ∴150,2,222m n ++== ∴m=4,n=4, ∴点C 的坐标为(4,4),故选C .【点睛】本题考查了矩形的性质,三角形相似的判定与性质,中点坐标公式,平行x 轴直线上点的坐标特点,构造辅助线证明三角形的相似,灵活运用中点坐标公式是解题的关键. 6.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.7.B解析:B【分析】根据黄金分割的定义可得出较长的线段BC=512AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴BC=512AC,∵AC=4,∴BC=252.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中51-AB≈0.618AB,并且线段AB的黄金分割点有两个.8.B解析:B【分析】证明△ADF≌△EDC,得到DC=DF,设DC=x,再证明△EBF∽△ABC,求出x即可.【详解】解:∵∠ABC=90°,ED⊥AC,∴∠EBA=∠ADE=90°,又∠1=∠2,∴∠E=∠A,∵AD=ED,∴△ADF≌△EDC,∴DC=DF,设DC=x,∴DF=x,∴AD=ED=6-x ,∴EF=6-2x ,∵∠E=∠A ,∠FBE=∠ABC ,∴△EBF ∽△ABC , ∴BE EF AB AC =, ∵AC=6,BE=13AB , ∴163EF =, ∴EF=6-2x=2,∴x=2,∴CD=2,故选B .【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,解题的关键是掌握相应的判定方法,利用性质定理求出结果.9.C解析:C 【分析】 根据275x y z k ===,则x =2k ,y =7k ,z =5k ,代入2x y z x z+-+进行计算即可. 【详解】 解:275x y z k ===(k≠0), 则x =2k ,y =7k ,z =5k , ∴2x y z x z+-+=2754495k k k k k +-+=, 故选:C .【点睛】 本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.10.A解析:A 【分析】根据平行可得EC FCAE BF=,EC BDAE DA=,再根据平行四边形的性质得EF=BD即可.【详解】解:∵//EF AB,∴EC FCAE BF=∵//DE BC,∴EC BDAE DA=,∴FC BDBF DA=∵//DE BC,//EF AB,∴四边形BFED是平行四边形,∴EF=BD,∴EF FCAD BF=,故选:A.【点睛】本题考查了平行线分线段成比例定理,解题关键是根据平行线列出恰当的比例式,再结合平行四边形性质进行推理.11.D解析:D【分析】根据比例和分式的基本性质,进行各种演变即可得到结论.【详解】A 由a cb d=可以得到ad=bc,故本选项正确,不符合题意;B、由a c ab d b-=-可得:(a-c)b=(b-d)a,即ad=bc,故本选项正确,不符合题意;C、由a b c db d++=可得(a+b)d=(c+d)b,即ad=bc,故本选项正确,不符合题意;D、由1?111a cb d++=++,可得(a+1)(d+1)=(b+1)(c+1),即ad+a+d=bc+c,不能得到ad=bc,故本选项错误,符合题意;故选:D.【点睛】本题考查了比例线段,根据比例的性质能够灵活对一个比例式进行变形.12.C解析:C【分析】连接AF 交2l 于点G ,根据平行线分线段成比例,得出12AB AG BC GF ==和21FG FE GA ED ==,则23EF DF =,即可求出结果. 【详解】 解:如图,连接AF 交2l 于点G ,∵23//l l , ∴12AB AG BC GF ==, ∵12l l //, ∴21FG FE GA ED ==, ∵6DF =,∴243EF DF ==. 故选:C .【点睛】 本题考查平行线分线段成比例,解题的关键是熟练掌握平行线分线段成比例的性质.二、填空题13.16【分析】延长CP 交AB 于G 由CP :PG=2:1推出CE :BC=2:3AD :AC=1:3由△CED ∽△CBA △AFD ∽△ABC 推出S △CED=×S △ABC=16S △AFD=×S △ABC=4由此即可解析:16【分析】延长CP 交AB 于G .由CP :PG =2:1,推出CE :BC =2:3,AD :AC =1:3,由△CED ∽△CBA ,△AFD ∽△ABC ,推出S △CED =49×S △ABC =16,S △AFD =19×S △ABC =4,由此即可解决问题.【详解】解:如图,延长CP 交AB 于G .∵点P 是△ABC 的重心,∴CP :PG =2:1,∵DE ∥AB ,∴CE :BE =2:1,AD :CD =1:2,∴CE :CB =2:3,AD :AC =1:3,∵ED ∥AB ,DF ∥BC ,∴△CED ∽△CBA ,△AFD ∽△ABC ,∴S △CED =49×S △ABC =16,S △AFD =19×S △ABC =4, ∴S 平行四边形BEDF =S △ABC -S △CED -S △AFD =36-16-4=16,故答案为:16. 【点睛】本题考查了三角形重心的性质,平行线分线段成比例定理,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.14.【分析】(1)根据含30°的直角三角形的性质可得AB=6BE=CE=再根据等腰直角三角形的性质得出CE=DE=最后依据AD=AB-BE-ED 得出结果;(2)以BC 为直角边向左构造以∠CBH 为直角的等 933-324 【分析】(1)根据含30°的直角三角形的性质可得AB=6,BE=32,33,再根据等腰直角三角形的性质得出CE=DE=332,最后依据AD=AB-BE-ED 得出结果; (2)以BC 为直角边向左构造以∠CBH 为直角的等腰直角三角形BCH ,先证明△CDH ∽△CEB ,得出2DH BE=DH 取最小值时,BE 边为最小值,当DH ⊥AB 时,DH最小,即图中的D H ',根据含30°的直角三角形的性质可得出结论.【详解】(1)如图所示:∵∠ACB=90°,∠A=30°,BC=3,∴AB=6,BE=32,CE=332, ∵△CDE 为等腰直角三角形,∴CE=DE=332, ∴AD=6-32-332=933- (2)以BC 为直角边向左构造以∠CBH 为直角的等腰直角三角形BCH ,∵△CDE 为等腰直角三角形,∴∠DCE=∠HCB=45°,∠DCH=∠HCB , ∵2CD CH CE CB== ∴△CDH ∽△CEB , ∴2DH BE= ∴当DH 取最小值时,BE 边为最小值,当DH ⊥AB 时,DH 最小,即图中的D H ',∵∠A=30°,∠ACB=90°∴∠ABC=60°∵∠CBH=90°∴D BH '∠=30°∵BH=BC=3 ∴32D H '= ∴3242BE '=最小值,故答案为933-,324.【点睛】本题考查了相似三角形的判定和性质,含30°的直角三角形的性质,等腰三角形的性质,解题的关键是证明△CDH ∽△CEB .15.44π【分析】证明△OBQ ∽△OAP 根据相似三角形的性质求出AP 根据圆的面积公式计算得到答案【详解】解:如图由题意得OB=08mOQ=OP-PQ=3-1=2(m )BQ ∥AP ∴△OBQ ∽△OAP ∴即解解析:44π【分析】证明△OBQ ∽△OAP ,根据相似三角形的性质求出AP ,根据圆的面积公式计算,得到答案.【详解】解:如图,由题意得,OB=0.8m ,OQ=OP-PQ=3-1=2(m ),BQ ∥AP , ∴△OBQ ∽△OAP ,∴BQ OQ AP OP =,即0.823AP =, 解得,AP=1.2(m ), 则地面上阴影部分的面积=π×1.22=1.44π(m 2),故答案为:1.44π.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的判定定理和性质定理是解题的关键. 16.54【分析】作于点D 作于点E 作于点F 分别证明△和△求出和再根据三角形面积公式求解即可【详解】解:作于点D 作于点E 作于点F ∵三边向外平移个单位∴∵∴∠且∠∴△∴又∵∠且∠∴△∴∴∴又∵△∴∴∴【点睛】 解析:54【分析】作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,分别证明△ACB BFG ∆∽和△1GHB ACB ∆∽,求出11A C 和11B C ,再根据三角形面积公式求解即可.【详解】解:作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,∵Rt ABC ∆三边向外平移个单位,∴1=22,2,C D CD BE GH BF ====,∵11//AB A B∴∠ABC AGC =∠且∠90ACB BFG =∠=︒∴△ACB BFG ∆∽ ∴103BG = 又∵∠11B A GC ABC =∠=∠,且∠190GHB ACB =∠=︒∴△1GHB ACB ∆∽ ∴1AC GH BC B H= ∴183B H = ∴1111C B CD DE EH HB =+++ 1082433=+++ 12=又∵△111ABC A B C ∆∽ ∴1111AC B C AC BC= ∴119A C = ∴111111112A B C S AC B C ∆=⨯⨯ 11292=⨯⨯ 54=【点睛】此题主要考查了相似三角形的性质与判定,能正确作出辅助线证明三角形是解答此题的关键.17.【分析】连接AE 并延长交x 轴于H 求AE 解析式即可【详解】解:∵点与点对应∴点B 与点F 对应BF 都在x 轴上连接AE 并延长交x 轴于H 则点H 为位似中心∵点A 的坐标为(﹣42)点E 的坐标为(﹣11)设AE 的解解析:()2,0【分析】连接AE 并延长交x 轴于H ,求AE 解析式即可.【详解】解:∵点A 与点E 对应,∴点B 与点F 对应,B 、F 都在x 轴上,连接AE 并延长交x 轴于H ,则点H 为位似中心,∵点A 的坐标为(﹣4,2)点E 的坐标为(﹣1,1),设AE 的解析式为y=kx+b ,把(﹣4,2),(﹣1,1)代入得,421k b k b -+=⎧⎨-+=⎩, 解得,1323k b ⎧=-⎪⎪⎨⎪=⎪⎩AE 的解析式为1233y x =-+, 当y=0时,x=2,H 点坐标为(2,0),故答案为:(2,0)【点睛】本题考查的是位似变换的概念和性质、待定系数法求一次函数解析式,掌握位似图形的对应点连线的交点是位似中心是解题的关键.18.【分析】根据相似三角形的对应边成比例求解即可求得答案【详解】解:∵△ADE ∽△ABC ∴即解得:AE =;故答案为:【点睛】此题考查了相似三角形的性质掌握相似三角形的性质是解题的关键 解析:53【分析】根据相似三角形的对应边成比例求解,即可求得答案.【详解】解: ∵△ADE ∽△ABC , ∴AD AE AB AC =, 即265AE =, 解得:AE =53; 故答案为:53. 【点睛】此题考查了相似三角形的性质.掌握相似三角形的性质是解题的关键.19.108【分析】先证明△AOB ∽△COD 然后根据相似三角形的性质求解即可【详解】解:∵∠AOB=∠COD ∴△AOB ∽△COD ∴∵∴AB=36×3=108m 故答案为:108【点睛】本题考查了相似三角形的解析:108【分析】先证明△AOB ∽△COD ,然后根据相似三角形的性质求解即可.【详解】解:∵3AO BO CO DO==,∠AOB=∠COD , ∴△AOB ∽△COD ,∴3AO BO AB CO DO CD===, ∵36CD m =,∴AB=36×3=108m .故答案为:108.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形. 20.【分析】设正方形网格的边长为1根据勾股定理求出△EFD △ABC 的边长运用三边对应成比例则两个三角形相似这一判定定理证明△EDF ∽△BAC 即可解决问题【详解】解:设正方形网格的边长为1由勾股定理得:D【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF ∽△BAC ,即可解决问题.【详解】解:设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE =EF =同理可求:AC ,BC∵DF =2,AB =2,∴1EF DE DF BC AB AC === ∴△EDF ∽△BAC ,∴DEF 与ABC,.【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题21.井深BC 为57.5尺【分析】方法一:根据已知条件证明∽ABF ACD ,得到=AB BF AC CD,代入计算即可;方法二:根据已知条件证明ABF DEF ∽△△,得到AB BF DE EF =,代入计算即可 【详解】 解:方法一:四边形BCDE 是矩形,//BF CD ∴, ABF ACD ∴∽,AB BF AC CD∴=, 即5562.50.4AB CD AC BF ⋅⨯===. BC AC AB ∴=-62.55=-57.5=(尺).答:井深BC 为57.5尺.方法二:四边形BCDE 是矩形,//BF CD ∴,ABF DEF ∴∽,AB BF DE EF∴=, 即AB EF DE BF⋅= 5(50.4)57.50.4⨯-==. 57.5BC DE ∴==(尺). 答:井深BC 为57.5尺.【点睛】本题主要考查相似三角形的应用,准确计算是解题的关键.22.(1)见解析;(2)CG =6.【分析】(1)由正方形的性质得出∠A =∠D =90°,证出∠ABE =∠DEF ,即可得出△ABE ∽△DEF ; (2)求出DF =1,CF =3,由相似三角形的性质得出AE AB DF DE =,解得DE =2,证明△EDF ∽△GCF ,得出DE DF CG CF=,求出CG =6,即可得出答案. 【详解】(1)证明:∵四边形ABCD 为正方形,∴∠A =∠D =90°,∴∠ABE +∠AEB =90°,∵∠BEF =90°,∴∠DEF +∠AEB =90°,∴∠ABE =∠DEF ,∴△ABE ∽△DEF ;(2)解:∵AB =BC =CD =AD =4,CF =3FD ,∴DF =1,CF =3,∵△ABE ∽△DEF , ∴AE AB DF DE =,即441DE DE-=, 解得:DE =2,∵AD ∥BC ,∴△EDF ∽△GCF , ∴DE DF CG CF =,即213CG =, ∴CG =6.【点睛】 本题考查了相似三角形的判定与性质、正方形的性质、直角三角形的性质等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.23.(1)见解析,(2)ABD S40= 【分析】(1)由AC ⊥BC ,BD ⊥DE ,可得∠ACB=∠BDE=90°,可证△ACB ≌△BDE (AAS ); (2)由△ACB ≌△BDE ,可得AB=BE=10,,在Rt △BDE 中,由勾股定理8=,由∠CAB+∠ABC=90°可求∠ABD=180°-∠ABC-∠EBD=90°,可求S △ABD =1AB BD 2⋅即可. 【详解】解:(1)∵AC ⊥BC ,BD ⊥DE ,∴∠ACB=∠BDE=90°,在△ACB 和△BDE 中,ACB=BDE BAC=DBE BC=ED ∠∠⎧⎪∠∠⎨⎪⎩,∴△ACB ≌△BDE (AAS );(2)∵△ACB ≌△BDE ,∴AB=BE=10,在Rt △BDE 中,由勾股定理8==,又∵∠CAB+∠ABC=90°,∴∠ABC+∠EBD=90°,∴∠ABD=180°-∠ABC-∠EBD=90°,∴S △ABD =11AB BD=108=4022⋅⨯⨯. 【点睛】 本题考查三角形全等判定与性质,勾股定理,直角三角形面积,掌握三角形全等判定与性质,勾股定理应用方法,直角三角形面积的求法是解题关键.24.(1)见解析;(2)1【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度.【详解】解:(1)证明:∵∠C =∠ADE ,∠A =∠A ,∴△ADE ∽△ACB(2)解:由(1)知,△ADE ∽△ACB , 则AD AE AC AB= ∵AB =3,AD =2,CE =5, ∴253AE AE =+, 得:121,6AE AE ==-(舍去)∴AE 的长是1【点睛】本题考查了相似三角形的判定与性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.25.(1)见解析 (2)见解析【分析】(1)根据等腰三角形的性质得到∠B=∠C ,根据三角形的内角和定理和平角的定义得到∠BED=∠CDF ,于是得到△BDE ∽△CFD ;(2)根据相似三角形的性质得到对应边成比例,等量代换得到比例式,判定相似三角形,最后根据相似三角形的性质得出FD 平分∠EFC .【详解】解:(1)∵AB=AC=BC ,∴∠B=∠C=60°,∵∠BED=180°-∠B-∠BDE=120°-∠BDE ,∠CDF=180°-∠EDF-∠BDE=120°-∠BDE ,∴∠BED=∠CDF ,∴△BDE ∽△CFD ;(2)∵△BDE ∽△CFD , ∴BD DE CF DF=, ∵点D 是BC 的中点,∴BD=CD , ∴CD DE CF DF= ∵∠EDF=∠C=60°,∴△DEF ∽△CDF ,∴∠DFE=∠CFD ,∴FD 平分∠EFC .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.26.【分析】巧用未知数表示比值,转化为方程求解即可.【详解】::2:3:4a b c =,∴设2a k =,3b k =,4c k =,∵2316a b c -+=,261216k k k ∴-+=,解得2k =,4a ∴=, 6b =,8c =,2328181610a b c ∴+-=+-=.【点睛】本题考查了比例的性质,理解比例,合理引入未知数解题是解题的关键.。
九年级数学上第三四单元测试题
初三数学第三、四章综合测试班别____________姓名____________评分____________一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案“沉”到了位于它们前面那些矮一些的建筑物后面去了,这是因为()A 汽车开的很快B 盲区减小C 盲区增大D 无法确定2、在平行四边形ABCD中,∠A=50 ,则∠B和∠C的度数是()A 130 和50B 50 和130C 40 和50D 50 和403、圆锥体的主视图是()A 直角三角形B 正方形C 等腰三角形D 矩形4、如图,在平行四边形ABCD中,两对角线交于点O,若OB=4,则OD=()A 2B 4C 6D 85.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A. 上午12时B. 上午10时C. 上午9时30分D. 上午8时6、如图,△ABC中,D、E分别是AB、AC的中点,若BC=10,则DE 的长是()A 5B 10C 15D 207、在菱形ABCD中,AB=10,则它的周长是()A 20B 30C 40D 508、一个正方形的周长是4,则它的对角线的长是()A 2B 3C 5D 19、下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是().10.有一实物如图,那么它的主视图是()A B C DACDOABCDE二、填空题(每题3分,共30分)1、请写出三种视图都相同的几何体是2、等腰梯形ABCD 中,一条对角线AC 的长是2cm ,则另一条对角线BD 的长是 3 、在某时刻的阳光照耀下,身高160cm 的阿美的影长为80cm ,•她的身旁的旗杆影长10m ,则旗杆高为______m 4、如图,在Rt △ABC 中,D 为斜边AB 的中点,若AC=4cm ,BC=3cm ,则CD=_________5、一个对角线为4cm 的正方形,则它的面积是___________6、小华拿一个矩形木框在阳光下玩,•矩形木框在地面上形成的投影不可能是以下图形中的_______7、顺次连接任意四边形各边的中点,得到的四边形是__________________ 8、如图,在等腰梯形ABCD 中,∠A=120 ,则∠C 的度数是___________ 9、如图,在矩形ABCD 中,两对角线交于点O ,若OA=4cm ,则BD 的长是________10、由6个大小相同的正方体搭成的几何体如图所示,•则它的三种视图中,面积最大的是______(A 、主视图 B 、左视图 C 、俯视图)三、作图题(每小题3分,共6分)1、(1)请你确定并画出路灯灯泡所在的位置.(2)请你在图中画出想像中的小明.BACD A BCD 第8题图AB CD第9题图O第10题图四、证明题(共34分)1、在平行四边形ABCD 中,BE=DF ,求证:四边形AECF 是平行四边形。
鲁教版五四制九年级上册数学全册各个单元测试卷(及答案)
鲁教版五四制九年级上册数学全册试卷(四套单元测试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.下列函数中,表示y 是x 的反比例函数的是()A .x (y +1)=1B .y =111C .y =-2D .y =x 2xx -1k2.反比例函数y =x 的图象经过点(3,-2),下列各点在图象上的是()A .(-3,-2)B .(3,2)C .(-2,-3)D .(-2,3)33.已知反比例函数y =x ,下列结论中不正确的是()A .其图象经过点(3,1)B .其图象分别位于第一、第三象限C .当x >0时,y 随x 的增大而减小D .当x >1时,y >34.为了更好保护水资源,造福人类,某工厂计划建一个容积V (m 3)一定的污水处理池,池的底面积S (m 2)与其深度h(m)满足关系式V =Sh (V ≠0),则S 关于h 的函数图象大致是()k25.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =x 的图象无交点,则有()A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<03+m6.已知点A (-1,y 1),B (2,y 2)都在双曲线y =x 上,且y 1>y 2,则m 的取值范围是()A .m <0B .m >0C .m >-3D .m <-3a -b7.y =ax +b 与y =x ,其中ab <0,a ,b 为常数,它们在同一坐标系中的图象可以是()k8.如图所示,直线y =x +2与双曲线y =x 相交于点A ,点A 的纵坐标为3,则k的值为()A .1B .2C .3D .4k19.如图,A ,B 两点在反比例函数y =x 的图象上,C ,D 两点在反比例函数y =k 210的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =x 3,则k 2-k 1的值为()1416A .4B.3C.3D .6a 210.反比例函数y =x (a >0,a 为常数)和y =x 在第一象限内的图象如图所示,点a 2M 在y =x 的图象上,MC ⊥x 轴于点C ,交y =x 的图象于点A ;MD ⊥y 轴于点2aD ,交y =x 的图象于点B .当点M 在y =x (x >0)的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,点B 是MD 的中点.其中正确的结论有()A .0个B .1个C .2个D .3个二、填空题(每题3分,共24分)11.一个反比例函数的图象过点A (-2,-3),则这个反比例函数的表达式是________.212.若点(2,y 1),(3,y 2)在函数y =-x 的图象上,则y 1________y 2(填“>”“<”或“=”).k13.已知直线y =ax (a ≠0)与反比例函数y =x(k ≠0)的图象一个交点的坐标为(2,4),则它们另一个交点的坐标是________.14.某闭合电路,电源的电压为定值,电流I (A)与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间的函数关系的图象,当电阻R 为6 Ω时,电流I 为________A.15.如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,且△ABP 的面积为6,则这个反比例函数的表达式为________.16.如图,矩形ABCD 在第一象限,AB 在x 轴的正半轴上(点A 与点O 重合),AB =3,BC =1,连接AC ,BD ,交点为M .将矩形ABCD 沿x 轴向右平移,当1平移距离为________时,点M 在反比例函数y =x 的图象上.17.如图,过原点O 的直线与两反比例函数的图象在第一象限内分别交于点A ,1B ,且A 为OB 的中点,若函数y 1=x ,则y 2与x 的函数表达式是____________.18.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴,y 轴上,反比例函数的图象与正方形的两边AB ,BC 分别交于点M ,N ,ND ⊥x 轴,垂足为D ,连接OM ,ON ,MN.下列结论:①△O ≌△OAM ;②ON =MN ;③四边形DAMN 与△MON 面积相等;④若∠MON =45°,MN =2,则点C 的坐标为(0,2+1).其中正确结论的序号是____________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.已知y 与x -1成反比例,且当x =-5时,y =2.(1)求y 与x 的函数关系式;(2)当x =5时,求y 的值.820.如图,已知一次函数y =kx +b 的图象与反比例函数y =x 的图象交于A ,B 两点,点A 的横坐标是2,点B 的纵坐标是-2.(1)求一次函数的表达式;(2)求△AOB 的面积.421.已知反比例函数y =x .(1)若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值;4(2)如图,反比例函数y =x (1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移到C 2处所扫过的面积.8的22.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=-x 图象交于A(-2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后,与反比例函数的图象有且只有一个公共点,求m的值.23.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别1在y轴,x轴上,点B的坐标为(4,2),直线y=-x+3分别交AB,BC于点2k的图象经过点M,N.M,N,反比例函数y=x(1)求反比例函数的表达式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?k的图象交于A,B两点,25.如图,正比例函数y=2x的图象与反比例函数y=x过点A作AC⊥x轴于点C,连接BC,若△ABC的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.答案一、1.D 2.D 3.D4.C5.D :若k 1,k 2同正或同负其图象均有交点.6.D :由题意知,反比例函数图象在第二、四象限,所以3+m <0,即m <-3.7.C k8.C:把y =3代入y =x +2,得x =1.∴A (1,3).把点A 的坐标代入y =x ,得k =xy =3.k 1⎫k 1⎫k 2⎫⎛⎛⎛9.A :设A 点坐标为 m ,m ⎪,B 点坐标为 n ,n ⎪,则C 点坐标为 m ,m ⎪,D ⎝⎭⎝⎭⎝⎭⎧⎪k -k k ⎫⎛点坐标为 n ,n ⎪,由题意得⎨m =2,解得k -k =4.⎝⎭k -k ⎪⎩n=3,212212110n -m =3,2110.D :①由于A ,B 在同一反比例函数y =x 的图象上,则S △O DB =S △O CA =2×2=1,∴①正确;②由于矩形OCMD 、△ODB 、△OCA 的面积为定值,则四边形OAMB 的面积不会发生变化,∴②正确;③连接OM ,当点A 是MC 的中点时,S △O AM =S △O AC .a∵S △O D M =S △OCM =2,又S △O DB =S △O CA ,∴S △O B M =S △O A M ,∴S △O BD =S △O B M ,∴点B 是MD 的中点,∴③正确.6二、11.y =x12.<13.(-2,-4):∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(-2,-4).14.11215.y =x :连接O A ,则△ABP 与△AB O 的面积都等于6,所以反比例函数的12表达式是y =x.116.2:将矩形ABCD 沿x 轴向右平移后,过点M 作ME ⊥AB 于点E ,则AE =13113AB =,ME =BC =.设OA =m ,则OE =OA +AE =m +22222,∴M ⎛⎝m +312,2⎫⎪1⎭.∵点M 在反比例函数y =x 的图象上,∴1112=m +3,解得m =2.217.y 2=4x 18.①③④三、19.解:(1)设y 与x 的函数关系式为y =kx -1,由题意得2=k-5-1,解得k =-12.∴y 与x 的函数关系式为y =-12x -1.(2)当x =5时,y =-12x -1=-125-1=-3.20.解:(1)反比例函数y =8x 中x =2,则y =4,∴点A 的坐标为(2,4).反比例函数y =82,则-2=8x 中y =-x ,解得x =-4,∴点B 的坐标为(-4,-2).∵一次函数的图象过A 、B 两点,∴⎧⎨4=2k +b ,⎩-2=-4k +b ,⎧k =1,解得⎨⎩b =2,∴一次函数的表达式为y =x +2.(2)令y =x +2中x =0,则y =2,∴点C 的坐标为(0,2),11∴S △A O B =2OC ·(x A -x B )=2×2×[2-(-4)]=6.4⎧⎪y =,21.解:(1)联立方程组⎨x 得kx 2+4x -4=0.∵反比例函数的图象与直线⎪⎩y =kx +4,y =kx +4(k ≠0)只有一个公共点,∴Δ=16+16k =0,∴k =-1.(2)如图所示,C 1平移至C 2处所扫过的面积为2×3=6.22.解:(1)根据题意,把A (-2,b )的坐标分别代入一次函数和反比例函数表达b =4,⎧b =-2k +5,⎧⎪1⎨式,得⎨解得-81所以一次函数的表达式为y =2x +5.b =.k =.⎪⎩2⎩-2(2)将直线AB 向下平移m(m >0)个单位长度后,直线AB 对应的函数表达式8y =-,⎧⎪x 11为y =2x +5-m .由⎨得2x 2+(5-m )x +8=0.易知Δ=(5-m )2-1y =⎪⎩2x +5-m 14×8=0,解得m =1或m =9.2×23.解:(1)由题意易得点M 的纵坐标为2.1将y =2代入y =-2x +3,得x =2.k ∴M (2,2).把点M 的坐标代入y =x ,得k =4,4∴反比例函数的表达式是y =x .1(2)由题意得S △OPM =2OP·AM ,S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-2-2=4,∵S △OPM =S 四边形BMON ,1∴OP·AM =4.2又易知AM =2,∴OP =4.∴点P 的坐标是(0,4)或(0,-4).24.解:(1)当0≤x ≤8时,设y =k 1x +b ,将(0,20),(8,100)的坐标分别代入y =k 1x +b ,可求得k 1=10,b =20.∴当0≤x ≤8时,y =10x +20.k 2当8<x ≤a 时,设y =x ,k 2将(8,100)的坐标代入y =,x得k 2=800.800∴当8<x ≤a 时,y =x .综上,当0≤x ≤8时,y =10x +20;800当8<x ≤a 时,y =x .800(2)将y =20代入y =x,解得x =40,即a =40.800(3)当y =40时,x =40=20.∴要想喝到不低于40℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.25.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,1∴S △AOC =S △BOC =2S △ABC =1.又∵AC⊥x轴,∴k=2.(2)假设存在这样的点D,设点D的坐标为(m,0).y=2x,⎧⎪⎧x1=1,⎧x2=-1,⎨由⎨2解得⎨y=2,y=-2.y=⎩⎩12⎪⎩x∴A(1,2),B(-1,-2).∴AD=(1-m)2+22,BD=(m+1)2+22,AB=(1+1)2+(2+2)2=2 5.当D为直角顶点时,1∵AB=25,∴O D=2AB= 5.∴D的坐标为(5,0)或(-5,0).当A为直角顶点时,由AB2+AD2=BD2,得(25)2+(1-m)2+22=(m+1)2+22,解得m=5,即D(5,0).当B为直角顶点时,由BD2+AB2=AD2,得(m+1)2+22+(25)2=(1-m)2+22,解得m=-5,即D(-5,0).∴存在这样的点D,使△ABD为直角三角形,点D的坐标为(5,0)或(-5,0)或(5,0)或(-5,0).第二章达标测试卷一、选择题(每题3分,共30分)1.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()110310A.3 B. C. D.310102.在Rt△ABC中,∠C=90°,t A n B=A.3B.4C.43,BC=223,则AC等于()3D.63.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()3310A. B. C.D.15454 4.如图,在四边形ABCD中,AD∥BC,AC⊥AB,AD=CD,cos∠DCA=,5 BC=10,则AB的长是()A.3B.6C.8D.95.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示的图形,其中AB⊥BE,EF⊥BE,AF交BE于点D,C在BD上.有四位同学分别测量出以下4组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B两点之间距离的有() A.1组B.2组C.3组D.4组6.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边上的点F处.已知AB =8,BC=10,则tan∠EFC的值为()3434A. B. C. D.43557.如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则tan C等于()3434A. B. C. D.43558.如图,某地修建高速公路,要从B地向C地修一条隧道(B,C在同一水平面上).为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地之间的距离为()A.1003m B.502m C.501003m D.33m9.等腰三角形一腰上的高与腰长之比是1()A.30°B.50°C.60°或120°D.30°或150°10.如图,某海监船以20 n m il E/h的速度在某海域执行巡航任务,当海监船由:2,则等腰三角形顶角的度数为西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1 h到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2 h到达C 处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40 n mile B.60 n mileC.203n mile D.403n mile二、填空题(每题3分,共24分)11.在△ABC中,∠C=90°,AB=13,BC=5,则sin B=________.⎛1⎫-112.计算: ⎪-|-2+3tan45°|+(2-1.41)0=________.⎝3⎭13.如图,在点B处测得塔顶A的仰角为30°,点B到塔底C的水平距离BC 是30 m,那么塔AC的高度为________m(结果保留根号).14.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC所在的直线对称,若DM=1,则tan∠ADN=________.15.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.16.如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则tan∠A′BC′=________.17.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′=________.18.若一次函数的图象经过点(tan 45°,tan 60°)和(-cos 60°,-6tan 30°),则此一次函数的表达式为________.三、解答题(19,20题每题12分,其余每题14分,共66分)19.计算:24(1)2(2cos 45°-sin 60°)+;4(2)sin 60°·cos 60°-tan 30°·tan 60°+sin245°+cos245°.20.在△ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .(1)已知c =8(2)已知a =3321.如图,已知△ABC 中,AB =BC =5,tan∠ABC =.4(1)求边AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为D ,求3,∠A =60°,求∠B ,a ,b ;6,∠A =45°,求∠B ,b ,c .AD 的值.BD22.如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.23.小红家的阳台上放置了一个晒衣架(如图①),图②是晒衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32 cm(参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan28.1°≈0.534).(1)求证:AC∥BD.(2)求扣链EF与立杆AB的夹角∠OEF的度数(结果精确到0.1°).(3)小红的连衣裙穿在衣架上的总长度达到122 cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.答案一、1.AAC2.A点评:由tan B=知AC=BC·tan B=2BC3.B33×=3.24.B点评:因为AD=CD,所以∠DAC=∠DCA.又因为AD∥BC,所以∠DAC4=∠ACB.所以∠DCA=∠ACB.在Rt△ACB中,AC=BC·cos∠BCA=10×5=8,则AB=BC2-AC2=6.5.C点评:对于①,可由AB=BC·tan∠ACB求出A,B两点间的距离;对于②,由BC=,BD=,BD-BC=CD,tan∠ACB tan∠ADBAB ABDE BD 可求出AB的长;对于③,易知△DEF∽△DBA,则=,可求出ABEF AB 的长;对于④无法求得AB的长,故有①②③共3组,故选C.6.A7.B点评:如图,连接BD,由三角形中位线定理得BD=2EF=2×2=4.又BC =5,CD=3,∴CD2+BD2=BC2.∴△BDC是直角三角形,且∠BDC=90°.BD4∴tan C==.CD38.A19.D点评:有两种情况:当顶角为锐角时,如图①,sin A=,21∴∠A=30°;当顶角为钝角时,如图②,sin (180°-∠BAC)=,∴180°-2∠BAC=30°.∴∠BAC=150°.10.D点评:在R t△PAB中,∵∠APB=30°,∴PB=2AB,由题意得BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB·tan60°,∴PC=2×20×3=4012二、11.1312.2+3点评:原式=3-|-2+3|+1=4-2+3=2+ 3.13.1041314.15.323(n mile).116.点评:如图,过A′作A′D⊥BC′于点D,设A′D=x,则B′D=x,3A′D x1BC=2x,BD=3x.所以tan∠A′BC′===.BD3x317.2点评:由题意知BD′=BD=2 2.BD′22在Rt△ABD′中,tan∠BAD′=== 2.AB218.y=21 3x-3点评:tan 45°=1,tan 60°=3,-cos 60°=-,-6tan2⎛1⎫3.设y=kx+b的图象经过点(1,3), -,-23⎪,则用待⎝2⎭3,b=- 3.30°=-2定系数法可求出k=2⎛66623⎫三、19.解:(1)原式=2× 2×-⎪+=2-+=2.2222⎭2⎝⎛2⎫2⎛2⎫23133113(2)原式=×-×3+ ⎪+ ⎪=-1++=.2234224⎝2⎭⎝2⎭20.解:(1)∠B=30°,a=12,b=4(2)∠B=45°,b=36,c=6 3.3.AE 21.解:(1)如图,过A作AE⊥BC,交BC于点E.在Rt△ABE中,tan∠ABC=BE3=,AB=5,∴AE=3,BE=4,∴CE=BC-BE=5-4=1,在Rt△AEC 4中,根据勾股定理得:AC=32+12=10.(2)如图,BC的垂直平分线交AB于点D,交BC于点F.∵DF垂直平分BC,5∴BD=CD,BF=CF=,2DF3∵tan∠DBF==,BF415∴DF=,8在Rt△BFD中,根据勾股定理得:BD=⎛5⎫2⎛15⎫225⎪+ ⎪=,8⎝2⎭⎝8⎭2515AD3∴AD=5-=,则=.88BD522.解:由题意得BG=3.2 m,MN=EF=3.2+2=5.2(m),ME=NF=BC=6 m.在EF1Rt△DEF中,易知=,∴FD=2EF=2×5.2=10.4(m).FD2MN1在Rt△HMN中,=,HN 2.5∴HN=2.5MN=13(m).∴HD=HN+NF+FD=13+6+10.4=29.4(m).∴加高后的坝底HD的长为29.4 m.23.(1)证明:方法一∵AB,CD相交于点O,∴∠A O C=∠B O D.1∵OA=OC,∴∠OAC=∠OCA=(180°-∠AOC).21同理∠OBD=∠ODB=(180°-∠BOD).2∴∠OAC=∠OBD.∴AC∥BD.方法二∵AB=CD=136 cm,OA=OC=51 cm,∴OB=OD=85 cm.OA OC3∴==.OB OD5又∵∠AOC=∠BOD,∴△AOC∽△BOD.∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm,EF =32 cm.如图,作OM ⊥EF 于点M ,则EM =16 cm.E M 16∴cos∠OEF ==≈0.471.O E 34∴∠OEF ≈61.9°.(3)解:方法一小红的连衣裙垂挂在晒衣架上会拖落到地面.理由如下:如图,过A 作A H⊥BD 于点H .在R t △O E M 中,OM =OE 2-EM 2=342-162=30(cm).易证∠ABD =∠OE M.∵∠OME =∠AHB =90°,∴△OEM ∽△ABH .∴OE OM =.AB AHOM·AB 30×136∴AH ===120(cm).OE 34∵小红的连衣裙挂在晒衣架上的总长度122 cm 大于晒衣架的高度120 cm,∴小红的连衣裙垂挂在晒衣架上会拖落到地面.方法二小红的连衣裙垂挂在晒衣架上会拖落到地面.理由如下:易得∠ABD =∠OEF ≈61.9°.如图,过点A 作A H⊥BD 于点H.AH在Rt△ABH中,∵sin∠ABD=,AB∴AH=AB·sin∠ABD≈136×sin 61.9°≈136×0.882≈120(cm).∵小红的连衣裙挂在晒衣架上的总长度大于晒衣架的高度,∴小红的连衣裙垂挂在晒衣架上会拖落到地面.解题策略:这是一道几何应用题,体现了新课标理念:数学来源于生活,并服务于生活.背景情境的设置具有普遍性和公平性.涉及的知识点有:平行线的判定、等腰三角形的性质、三角形相似、锐角三角函数等.题目设置由易到难,体现了对数学建模的考查,以及由理论到实践的原则,比较全面地考查了对几何基础知识的掌握情况和对知识的应用能力.题目新颖,综合性强.第三章测试卷一、选择题(每题3分,共30分)1.下列各选项中表示y 是x 的函数的是()2.下列函数中是二次函数的是()A .y =3x -1B .y =3x 2-1C .y =(x +1)2-x 2D .y =x 2-13.将抛物线y =x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A .y =(x +2)2-5B .y =(x +2)2+5C .y =(x -2)2-5D .y =(x -2)2+54.下列对二次函数y =x 2-x 的图象的描述,正确的是()A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的⎛3⎫⎛5⎫⎛1⎫,y -,y 5.若A 41⎪,B 42⎪,C 4,y 3⎪为抛物线y =x 2+4x -5上的三点,则y 1,⎝⎭⎝⎭⎝⎭y 2,y 3的大小关系是()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 26.函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图象可能是()7.已知函数y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是() A.-1<x<4B.-1<x<3C.x<-1或x>4D.x<-1或x>38.如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是()A.6 s B.4 s C.3 s D.2 s9.如图,老师出示了小黑板上的题后,小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x轴截得的线段长为2.你认为四人的说法中,正确的有()A.1个B.2个C.3个D.4个10.如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD =x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()二、填空题(每题3分,共24分)11.抛物线y=-x2+15有最________点,其坐标是________.12.函数y=x2+2x+1,当y=0时,x=______;当1<x<2时,y随x的增大而________.(填“增大”或“减小”)13.如图,二次函数y=x2-x-6的图象交x轴于A,B两点,交y轴于C点,则△ABC的面积为________.14.已知抛物线y=ax2-2ax+c与x轴的一个交点的坐标为(-1,0),则一元二次方程ax2-2ax+c=0的根为________.15.如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),则能使y1>y2成立的x的取值范围是________.16.抛物线y=x2-2x+3关于x轴对称的抛物线对应的函数表达式为__________________.17.如图是一个横断面为抛物线形的拱桥,当水面宽4 m时,拱顶(拱桥洞的最高点)离水面2 m,当水面下降 1 m时,水面的宽度为________.18.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,下列结论中:①abc<0;②9a-3b+c<0;③b2-4ac>0;④a>b,正确的结论是________.(只填序号)三、解答题(19题10分,20题12分,21,22题每题14分,23题16分,共66分)19.如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.(1)求该二次函数的表达式,写出该抛物线的对称轴及顶点坐标;(2)若点P(m,m)在该函数的图象上,求m的值.20.如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P,Q分别从A,B 同时出发,点P在边AB上沿AB方向以2 cm/s的速度匀速运动,点Q在边BC上沿BC方向以1 cm/s的速度匀速运动(点P,Q中有一点到达矩形顶点,则运动停止).设运动时间为x s,△PBQ的面积为y cm2.(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的最大面积.21.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20 m,如果水位上升3 m,那么水面CD的宽是10 m.(1)建立如图所示的直角坐标系,求此抛物线对应的函数表达式;(2)当水位在正常水位时,有一艘宽为6 m的货船经过这里,船舱上有高出水面3.6 m的长方体货物(货物与货船同宽),此船能否顺利通过这座拱桥?22.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y (个)与每个商品的售价x (元)满足一次函数关系,其部分数据如下表所示:每个商品的售价x (元)每天的销售量y (个)(1)求y 与x 之间的函数表达式;(2)设商场每天获得的总利润为w (元),求w 与x 之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?23.如图,在平面直角坐标系中,O 为原点,直线y =-2x -1与y 轴交于点A ,与直线y =-x 交于点B ,点B 关于原点的对称点为点C .(1)求过A ,B ,C 三点的抛物线对应的函数表达式.(2)P 为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC 为菱形时,求点P 的坐标.②若点P 的横坐标为t (-1<t <1),当t 为何值时,四边形PBQC 的面积最大?请说明理由.…3010040805060……答案一、1.D 2.B 3.A4.C5.D 6.C 7.B 8.A 9.C 10.A二、11.高;(0,15)12.-1;增大13.1514.x 1=-1,x 2=315.x <-2或x >816.y =-x 2+2x -317.26m18.②③④:∵抛物线开口向下,∴a <0,∵对称轴为x =-1,∴b =-1,-2a∴b =2a <0.∵抛物线与y 轴的交点在y 轴正半轴,∴c >0,∴abc >0,故①错误;由图象得x =-3时,y <0,∴9a -3b +c <0,故②正确;∵图象与x 轴有两个交点,∴b 2-4ac >0,故③正确;∵a -b =a -2a =-a >0,∴a >b ,故④正确.故答案为②③④.⎧a +4+c =-1,三、19.解:(1)将A (-1,-1),B (3,-9)的坐标分别代入,得⎨9a -12+c =-9.⎩⎧a =1,解得⎨⎩c =-6.∴该二次函数的表达式为y =x 2-4x -6.∵y =x 2-4x -6=(x -2)2-10,∴该抛物线的对称轴为直线x =2,顶点坐标为(2,-10).(2)∵点P (m ,m )在该函数的图象上,∴m 2-4m -6=m .∴m 1=6,m 2=-1.∴m 的值为6或-1.120.解:(1)∵S △PBQ =2PB ·BQ ,PB =AB -AP =(18-2x )cm ,BQ =x cm ,1∴y =2(18-2x )x .即y =-x 2+9x (0<x ≤4).(2)由(1)知y =-x 2+9x ,⎛9⎫281∴y =- x -2⎪+4.⎝⎭9∵当0<x ≤2时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,即△PBQ 的最大面积是20 cm 2.21.解:(1)设抛物线对应的函数表达式为y =ax 2.∵抛物线关于y 轴对称,AB =20 m ,CD =10 m ,∴点B 的横坐标为10,点D 的横坐标为5.设点B (10,n ),则点D (5,n +3).将B ,D 两点的坐标分别代入表达式,n =-4,⎧⎪⎧n =100a ,得⎨解得⎨1a =-25.⎩n +3=25a .⎪⎩1∴y =-25x 2.19(2)当x =3时,y =-25×9=-25.⎪9⎪∵点B 的纵坐标为-4,|-4|-⎪-25⎪=3.64>3.6,⎪⎪∴在正常水位时,此船能顺利通过这座拱桥.22.解:(1)设y 与x 之间的函数表达式为y =kx +b ,⎧40k +b =80,⎧k =-2,则⎨解得⎨⎩50k +b =60,⎩b =160,即y 与x 之间的函数表达式是y =-2x +160.(2)由题意可得,w =(x -20)·(-2x +160)=-2x 2+200x -3 200,即w 与x 之间的函数表达式是w =-2x 2+200x -3 200.(3)∵w =-2x 2+200x -3 200=-2(x -50)2+1 800(20≤x ≤60),∴当20≤x ≤50时,w 随x 的增大而增大,当50≤x ≤60时,w 随x 的增大而减小,当x =50时,w 取得最大值,此时w =1 800元.即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1 800元.⎧y =-x ,23.解:(1)联立⎨⎩y =-2x -1,⎧x =-1,解得⎨y =1.⎩∴B 点坐标为(-1,1).又C 点为B 点关于原点的对称点,∴C 点坐标为(1,-1).∵直线y =-2x -1与y 轴交于点A ,∴A 点坐标为(0,-1).设抛物线对应的函数表达式为y =ax 2+bx +c ,⎧-1=c ,⎧a =1,把A ,B ,C 三点的坐标分别代入,得⎨1=a -b +c ,解得⎨b =-1,⎩-1=a +b +c ,⎩c =-1.∴抛物线对应的函数表达式为y =x 2-x -1.(2)①连接PQ .由题易知PQ 与BC 交于原点O .当四边形PBQC 为菱形时,PQ ⊥BC ,∵直线BC 对应的函数表达式为y =-x ,∴直线PQ 对应的函数表达式为y =x .⎧x =1-2,⎧x =1+2,⎧y =x ,联立⎨解得⎨或⎨2⎩y =x -x -1,y =1-2,y =1+ 2.⎩⎩∴P 点坐标为(1-2,1-2)或(1+2,1+2).②当t =0时,四边形PBQC 的面积最大.理由如下:如图,过P 作PD ⊥BC ,垂足为D ,过P 作x 轴的垂线,交直线BC 于点E ,1则S 四边形P BQC =2S △PBC =2×PD =BC ·PD .∵线段BC 的长固定不变,2BC ·∴当PD 最大时,四边形PBQC 的面积最大.又∠PED =∠A O C (固定不变),∴当PE最大时,PD也最大.∵P点在抛物线上,E点在直线BC上,∴P点坐标为(t,t2-t-1),E点坐标为(t,-t).∴PE=-t-(t2-t-1)=-t2+1.∴当t=0时,PE有最大值1,此时PD有最大值,即四边形PBQC的面积最大.第四章测试卷一、选择题(每题3分,共30分)1.下列几何体中,俯视图为矩形的是()2.如果在同一时刻的阳光下,小莉的影子比小玉的影子长,那么在同一路灯下()A.小莉的影子比小玉的影子长B.小莉的影子比小玉的影子短C.小莉的影子与小玉的影子一样长D.无法判断谁的影子长3.如图是一个几何体的三视图,则此几何体为()4.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为2∶5,且三角尺一边长为8 cm,则投影三角形的对应边长为()A.8 cm B.20 cm C.3.2 cm D.10 cm5.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是图中的()6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7.如图是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个8.如图(1)、(2)、(3)、(4)是一天中四个不同时刻木杆在地面上的影子的示意图,将它们按时间先后顺序排列正确的一项是()A.(4)、(3)、(1)、(2)B.(1)、(2)、(3)、(4)C.(2)、(3)、(1)、(4)D.(3)、(1)、(4)、(2)9.某学校小卖部货架上摆放着某品牌的方便面,它们的三视图如图所示,则货架上的方便面至少有()A.7盒B.8盒C.9盒D.10盒10.某数学课外活动小组想利用树影测量树高,他们在同一时刻测得一身高为1.5 m的同学的影长为1.35 m,由于大树靠近一幢建筑物,因此树影的一部分落在建筑物上,如图,他们测得地面部分的影长为3.6 m,建筑物上的影长为1.8 m,则树的高度为()A.5.4 m B.5.8 m C.5.22 m D.6.4 m二、填空题(每题3分,共24分)11.写出一个在三视图中俯视图与主视图完全相同的几何体:______________. 12.在同一时刻,个子低的小颖比个子高的小明身影长,那么他们此刻是站在______光下.(填“灯”或“太阳”)13.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是____________.14.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多有________个.15.对于下列说法:①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体投影的长短在任何情况下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④看书时人们之所以使用台灯,是因为台灯发出的光线是平行光线.其中正确的是________(把所有正确结论的序号都填上).16.如图,这是圆桌正上方的灯泡(看成一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2 m,桌面距地面1 m,灯泡距地面3 m,则地面上阴影部分的面积是________.17.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为________.18.如图,一根直立于水平地面上的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5 m,在旋转过程中,影长的最大值为5 m,最小值为3 m,且影长最大时,木杆与光线垂直,则路灯EF的高度为________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图是一支架(一种小零件),支架的两个台阶的高度和宽度都为同一长度,试画出它的三视图.20.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.21.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).22.如图,小美利用所学的数学知识测量旗杆AB的高度.(1)请你根据小美在阳光下的投影,画出此时旗杆AB在阳光下的投影;(2)已知小美的身高为1.54 m,在同一时刻测得小美和旗杆AB的投影长分别为0.77 m和6 m,求旗杆AB的高.23.如图是一个几何体的三视图.(单位:cm)(1)组成该几何体的两部分分别是什么几何体?(2)求该几何体的体积.(结果保留π)24.为加快新农村建设,某市投入资金建设新型农村社区.图为住宅区内的两幢楼,它们的高AB=CD=30 m,现需了解甲楼对乙楼采光情况的影响.当太阳光线与水平线的夹角为30°时.试求:(1)若两楼间的距离AC=24 m,那么甲楼的影子落在乙楼上有多高.(结果保留根号)(2)若甲楼的影子刚好不影响乙楼,那么两楼之间的距离应当有多远.(结果保留根号)答案一、1.C 2.D 3.B284.B:设所求投影三角形的对应边长为x cm,则有5=x,解得x=20.5.D6.D:移走之前,主视图为,俯视图为,左视图为,移走之后,主视图为有左视图不变.,俯视图为,左视图为,故只7.C:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4(个).8.A9.A:当货架上的方便面盒数最少时,如图所示,数字表示该位置叠放的方便面盒数,因此至少有7盒.10.B:如图,分别延长AC,BD交于点E.∵BD=3.6 m,CD=1.8 m,且同一时刻测得一身高为1.5 m的同学的影长为CD 1.5 1.8 1.51.35 m,∴DE=1.35,即DE=1.35.∴DE=1.62 m.∵CD∥AB,∴∠ABD=∠CD DE 1.8 1.62 CDE,∠BAC=∠DCE.∴△ABE∽△CDE.∴AB=BE,即AB=.解得1.62+3.6AB=5.8 m.。
【精品试卷】人教版数学九年级上册《第二十五章 概率初步》单元测试 (4)
(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共10吨生
活垃圾,数据统计如下(单位:吨):
3
0.8
1.2
0.24 0.3 2.46
0.32 0.28 1.4
试估计“可回收垃圾”投放正确的概率.
(3)该小区所在城市每天大约产生500吨生活垃圾,根据以上信息,试估算其中“可
3,5的三个完全相同的小球.先转动一次转盘,停止后记下指针指向的数字(若指针指
在分界线上则重转),再从瓶子中随机取出一个小球,记下小球上的数字.若得到的两
数字之和大于6,则小雪参赛;若得到的两数字之和小于6,则小英参赛.
(1)请用列表或画树状图的方法表示出所有可能出现的结果;
(2)此游戏公平吗?请说明理由.
40 70 108 144
命中次数/次 9
0.9 0.8 0.7 0.72 0.72
命中率
根据上表,你估计该队员一次投篮命中的概率大约是( )
A. 0.9
B. 0.8
C. 0.7
D. 0.72
12.某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的
频率.表格如下,则符合这一结果的试验最有可能的是( )
3
+
6
7,
【解析】解:搅匀后任意摸出一个球,是白球的概率为
故选:.
直接利用概率公式计算可得.
此题主要考查概率公式,解答该题的关键是掌握随机事件的概率() = 事件可能出
现的结果数 ÷ 所有可能出现的结果数.
3.【答案】D;
【解析】解:.某个数的绝对值大于0,是随机事件,故选项不符合题意;
湘教版九年级上册数学《第4章锐角三角函数》单元测试题含答案
第4章锐角三角函数一、选择题1.tan60°的值等于()A. B. C. D.2.在Rt△ABC中,∠C=90o,AC=4,AB=5,则sinB的值是 ( )A. B. C. D.3.如果∠α是等腰直角三角形的一个锐角,则cosα的值是()A. B. C. 1 D.4.如图,某水渠的横断面是等腰梯形,已知其斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,现测得放水前的水面宽EF为3.8米,当水闸放水后,水渠内水面宽GH为6米.则放水后水面上升的高度是()米.A. 1.2B. 1.1C. 0.8D. 2.25.在△ABC中,∠C=90°,AB=15,sinA=,则BC等于()A. 45B. 5C.D.6.王芳同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王芳同学离A地()A. 50mB. 100mC. 150mD. 100m7.计算sin45°的结果是( )A. B. 1 C. D.8.某地下车库出口处安装了“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计.参考数据:≈1.4)()A. B. C. D.9.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A. B. 1 C. D.10.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30度,则坝底AD的长度为()A. 56米B. 66米C. (56+20)米D. (50+20)米二、填空题11.若,则锐角α=________.12.一条斜坡长4米,高度为2米,那么这条斜坡坡比i=________ .13.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,CD=4,cosA=,那么BC=________14.如图,河堤横断面如图所示,迎水坡AB的坡比为1:,则坡角∠A的度数为________15.在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)16.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度为200米,点A、B、C在同一直线上,则AB两点间的距离是________米(结果保留根号).17.在Rt 中,,,则的值为________.18.在正方形网格中,△ABC的位置如图所示,则tanB的值为________.19.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横截面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.则垂直支架CD的长度为________厘米(结果保留根号).三、解答题20.如图,已知∠B=90°,AB=2cm,BC=2cm,CD=3cm,AD=5cm,求四边形ABCD的面积.21.马航MH370 客机“失联”,我国“海巡01号”前往搜寻。
北师大版九年级数学上册《特殊平行四边形》单元测试题及答案
北师⼤版九年级数学上册《特殊平⾏四边形》单元测试题及答案北师⼤版九年级数学上册《特殊平⾏四边形》单元检测试卷⼀、单选题(共10题;共30分)1.如图,在菱形ABCD中,对⾓线AC、BD交于点O.若∠ABC=60°,OA=1,则CD的长为()A. 1B. √3C. 2D. 2√32.下列给出的条件中,能识别⼀个四边形是菱形的是()A. 有⼀组对边平⾏且相等,有⼀个⾓是直⾓B. 两组对边分别相等,且有⼀组邻⾓相等C. 有⼀组对边平⾏,另⼀组对边相等,且对⾓线互相垂直D. 有⼀组对边平⾏且相等,且有⼀条对⾓线平分⼀个内⾓3.顺次连结矩形四边的中点所得的四边形是()A. 矩形B. 正⽅形C. 平⾏四边形D. 菱形4.下列说法中,正确的是().A. 相等的⾓⼀定是对顶⾓B. 四个⾓都相等的四边形⼀定是正⽅形C. 平⾏四边形的对⾓线互相平分D. 矩形的对⾓线⼀定垂直5.在菱形ABCD中,对⾓线AC、BD相交于点O,AC=8,BD=6,则菱形ABCD的周长是( )6.如图,在正⽅形ABCD的内部作等边△ADE,则∠AEB度数为()A. 80°B. 75°C. 70°D. 60°7.如图,在菱形ABCD中,对⾓线AC与BD交于点O,OE⊥AB,垂⾜为E,若∠ADC=130°,则∠AOE的⼤⼩为()A. 75°B. 65°C. 55°D. 50°8.如图,矩形ABCD的对⾓线AC=8cm,∠AOD=120°,则AB的长为()A. √3cmB. 2cmC. 2 √3 cmD. 4cm9.在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直⾓三⾓形;②四边形CDFE不可能为正⽅形;③四边形CDFE的⾯积保持不变;④△CDE⾯积的最⼤值为8.其中正确的结论有()个.10.(2017?德州)如图放置的两个正⽅形,⼤正⽅形ABCD边长为a,⼩正⽅形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转⾄△ADN,将△MEF绕;③△ABM≌△NGF;④S四边点F旋转⾄△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣b2a=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()形AMFNA. 2B. 3C. 4D. 5⼆、填空题(共10题;共30分)11.矩形⼀个⾓的平分线分矩形⼀边为1cm和3cm两部分,则这个矩形的⾯积为________cm2.12.如图,要使平⾏四边形ABCD是矩形,则应添加的条件是________(只填⼀个).13.菱形ABCD的⼀条对⾓线长为6,边AB的长是⽅程的解,则菱形ABCD的周长为________.14.(2017?包头)如图,在矩形ABCD中,点E是CD的中点,点F是BC上⼀点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是________.15.如图,菱形ABCD的边长为4,∠ABC=60°,在菱形ABCD内部有⼀点P,当PA+PB+PC值最⼩时,PB的长为________.16.如图所⽰:点M、G、D在半圆O上,四边形OEDF、HMNO均为矩形,EF=b,NH=c,则b与c之间的⼤⼩关系是b________c(填<、=、>)17.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的⾯积是18,则DP的长是________.18.如图,在ΔABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD 的平⾏线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若AF=8,CF=6,则四边形BDFG的周长为________.19.如图,在边长为4的正⽅形ABCD中,E是AB边上的⼀点,且AE=3,点Q为对⾓线AC上的动点,则△BEQ周长的最⼩值为________.20.在平⾯直⾓坐标系中,正⽅形ABCD的位置如右图所⽰,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正⽅形A1B1C1C;延长C1B1交x轴于点A2,作正⽅形A2B2C2C1,…按这样的规律进⾏下去,第2017个正⽅形的⾯积为________.三、解答题(共9题;共60分)21.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.22.已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.23.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平⾏四边形,求证:四边形ADCE是矩形.24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点C作CE//AB,过点B作BE//CD,CE、BE25.如图,在矩形ABCD中,点E在边AD上,EF⊥CE且与AB相交于点F,若DE=2,AD+DC=8,且CE=EF,求AE的长。
(人教版)南京市九年级数学上册第四单元《圆》测试(包含答案解析)
一、选择题1.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .2452.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60° 3.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2 B .2:1:1 C .2:1:1 D .2:2:4 4.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A .3B .3C .3π6-D .3π6- 5.如图,AB 为O 的直径,C 为O 上一点,其中6AB =,120AOC ∠=︒,P 为O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )A .37B .3272+C .237+D .33722+ 6.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 7.给出下列说法:①圆是轴对称图形,对称轴是圆的每一条直径;②三角形的外心到三角形各顶点的距离相等;③经过三个点一定可以画一个圆;④平分弦的直径垂直于弦;⑤垂直于弦的直径平分弦,并且平分弦所对的两条弧.正确的有( )A .4B .3C .2D .18.如图,不等边ABC 内接于O ,下列结论不成立的是( )A .12∠=∠B .14∠=∠C .2AOB ACB ∠=∠D .23ACB ∠=∠+∠9.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .10210.如图,O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 可取的整数值有( )个A .1B .2C .3D .4 11.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒12.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>二、填空题13.如图,A 、B 、C 是O 上顺次三点,若AC 、AB 、BC 分别是O 内接正三角形、正方形、正n 边形的一边,则n =______.14.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.15.如图,已知O 是以数轴上原点O 为圆心,半径为2的圆,45AOB ∠=︒,点P 在x正半轴上运动,若过点P 与OA 平行的直线与O 有公共点,设P 点对应的数为x ,则x 的取值范围是______.16.如图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =_____度.17.已知一个圆锥形纸帽的底面半径为5cm ,母线长为10cm ,则该圆锥的侧面积为_____cm 2(结果保留π)18.如图,若∠BOD =140°,则∠BCD=___________ .19.如图,直线33y x =+x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;20.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.三、解答题21.如图,四边形ABCD 内接于⊙O ,AC 是⊙O 的直径,E 是AB 上一点,30AEO DAC ∠=∠=︒,连接BD .(1)求证:OAE CDB △≌△;(2)连接DE ,若DE AB ⊥,2OA =,求BC 的长.22.如图,已知AB 是O 的一条弦,DE 是O 的直径且DE AB ⊥于点C . (1)若3,5OC OA ==,求AB 的长;(2)求证:EAO BAD ∠=∠.23.在O 中,弦CD 与直径AB 相交于点,62P ABC ∠=︒.(1)如图1,若100APC ∠=︒,求BAD ∠和CDB ∠的大小;(2)如图2,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E∠的大小.24.如图,点E 为O 弦CD 的中点,过点O ,E 作直径()AB AE BE >,连接BD ,过点C 的弦//CF BD 交AB 于G .求证:AGF F ∠=∠.25.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.26.已知:△ABC .(1)求作:△ABC 的外接圆⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)若已知△ABC的外接圆的圆心O到BC边的距离OD=8,BC=12,求⊙O的半径.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD的长.【详解】解:∵AB为直径,∴∠ACB=90°,∴22221086BC AB AC=-=-=,∵OD⊥AC,∴CD=AD=12AC=4,在Rt△CBD中,222246213BD BC CD=++=故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.C解析:C【分析】根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.【详解】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】 本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键.3.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a22a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.4.C解析:C【分析】首先求出∠AOB ,OB ,然后利用S 阴=S △ABO −S 扇形OBD 计算即可.【详解】连接OB .∵AB 是⊙O 切线,∴OB ⊥AB ,∵OC =OB ,∠C =30°,∴∠C =∠OBC =30°,∴∠AOB =∠C +∠OBC =60°,在Rt △ABO 中,∵∠ABO =90°,AB =3,∠A =30°,∴OB =ABtan30°=1,∴S 阴=S △ABO −S 扇形OBD =12×1×3−2601360π⋅=3π26-. 故选:C .【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理,直角三角形30度角性质,解题的关键是学会分割法求面积,记住扇形面积公式,属于中考常考题型.5.D解析:D【分析】如图,连接OQ ,作CH ⊥AB 于H .首先证明点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,利用勾股定理求出CK 即可解决问题;【详解】如图,连接OQ ,作CH ⊥AB 于H .∵AQ =QP ,∴OQ ⊥PA ,∴∠AQO =90°,∴点Q 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点Q 在CK 的延长线上时,CQ 的值最大,∵120AOC ∠=︒∴∠COH =60°在Rt △OCH 中,∵∠COH =60°,OC=12AB=3, ∴OH =12OC =32,CH 2233OC OH +=, 在Rt △CKH 中,CK 223332⎛⎫+= ⎪ ⎪⎝⎭372∴CQ 的最大值为32 故选:D .【点睛】 本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点Q 的运动轨迹,学会构造辅助圆解决问题,属于中考填空题中的压轴题. 6.D解析:D【分析】分别根据平行线的判定与性质,以及圆周角定理对各选项进行逐一判断即可.【详解】B. ∵CE CB =,2BAE BAC ∴∠=∠, 又2BOC BAC ∠=∠,BAE BOC ∴∠=∠,//OC AE ∴,正确;A. AB 是O 的直径,∴∠AEB=90°,∵//OC AE ,OC BE ⊥,正确;C. ∵EC 所对的圆心角为COE ∠,EC 所对的圆周角为CAE ∠,2COE CAE ∴∠=∠,正确;D. 只有AE EC =时,才可证得OD AC ⊥,故不一定正确;故选D .【点睛】本题考查了圆周角定理,平行线的判定与性质,熟知圆周角定理及其推论是解答此题的关键.7.C解析:C【分析】根据对称轴是一条直线,即可判断①;根据外心的性质即可判断②;利用确定圆的条件即可判断③;根据弦不是直径时,平分弦的直径才垂直于弦,即可判断④;根据垂径定理的推论,即可判断⑤.【详解】∵圆是轴对称图形,直径所在直线是它的对称轴,∴①错误;∵三角形的外心到三角形的三个顶点的距离相等,∴②正确;∵经过不在同一直线上的三点确定一个圆,∴③错误;∵平分弦(弦不是直径)的直径垂直于弦,∴④错误;∵垂直于弦的直径平分弦,且平分弦所对的弧,∴⑤正确;综上,正确的是②⑤,共2个,故选:C .【点睛】本题考查了垂径定理及其推论,三角形的外接圆与外心等知识点的应用,正确把握相关定义是解题关键.8.B解析:B【分析】利用OB=OC可对A选项的结论进行判断;由于AB≠BC,则∠BOC≠∠AOB,而∠BOC=180°-2∠1,∠AOB=180°-2∠4,则∠1≠∠4,于是可对B选项的结论进行判断;根据圆周角定理可对C选项的结论进行判断;利用∠OCA=∠3,∠1=∠2可对D选项的结论进行判断.【详解】解:∵OB=OC,∴∠1=∠2,所以A选项的结论成立;∵OA=OB,∴∠4=∠OBA,∴∠AOB=180°-∠4-∠OBA=180°-2∠4,∵△ABC为不等边三角形,∴AB≠BC,∴∠BOC≠∠AOB,而∠BOC=180°-∠1-∠2=180°-2∠1,∴∠1≠∠4,所以B选项的结论不成立;∵∠AOB与∠ACB都对弧AB,∴∠AOB=2∠ACB,所以C选项的结论成立;∵OA=OC,∴∠OCA=∠3,∴∠ACB=∠1+∠OCA=∠2+∠3,所以D选项的结论成立.故选:B.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和等腰三角形的性质.9.C解析:C【分析】根据圆周角定理得出∠D=∠B,得出△ABC是等腰直角三角形,进而解答即可.【详解】∵AC=AC,∴∠D=∠B,∵∠BAC=∠D,∴∠B=∠BAC,∴△ABC是等腰三角形,∵AB是直径,∴△ABC是等腰直角三角形,∵AC=5,∴AB=52,故选:C.【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B.10.C解析:C【分析】当M与A或B重合时,达到最大值;当OM⊥AB时,为最小,从而确定OM的取值范围即可解决问题.【详解】解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=1×8=4,2∴在Rt△OAM′中,2222-'=3,54OA AM=-∴线段OM长的最小值为3,最大值为5.所以,OM的取值范围是:3≤OM≤5,故线段OM长的整数值为3,4,5,共3个.故选:C.【点睛】本题考查的是勾股定理和最值.本题容易出现错误的地方是对点M的运动状态不清楚,无法判断什么时候会为最大值,什么时候为最小值.11.B解析:B【分析】=,再根据等边三角形的判定与性质可得如图(见解析),先根据圆的性质可得OC OB∠=︒,然后根据圆周角定理即可得.BOC60【详解】如图,连接OC,=,由同圆半径相等得:OC OB7OB BC ==,OC OB BC ∴==, BOC ∴是等边三角形,60BOC ∴∠=︒, 由圆周角定理得:1230BOC BDC ∠=︒=∠, 故选:B .【点睛】本题考查了等边三角形的判定与性质、同圆半径相等、圆周角定理,熟练掌握等边三角形的判定与性质是解题关键.12.A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大.二、填空题13.12【分析】如图连接OAOCOB 根据角的转换求出中心角即可解决问题【详解】如图连接OAOCOB ∵若ACAB 分别是内接正三角形正方形的一边∴∴由题意得:∴12故答案为:12【点睛】本题考查了正多边形与解析:12【分析】如图,连接OA 、OC 、OB ,根据角的转换求出中心角BOC ∠即可解决问题.【详解】如图,连接OA 、OC 、OB .∵若AC 、AB 分别是O 内接正三角形、正方形的一边,∴120AOC ∠=︒,90AOB ∠=︒,∴30BOC AOC AOB ∠=∠-∠=︒, 由题意得:36030n︒︒=, ∴n =12,故答案为:12.【点睛】本题考查了正多边形与圆:把一个圆分成n (n 是大于2的自然数)等份,一次连接各分点所得到的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆,熟练的掌握正多边形的有关概念是解答本题的关键. 14.36°【分析】根据圆周角定理可得再利用等腰三角形的性质即可求解【详解】解:∵∴∵∴故答案为:36°【点睛】本题考查圆周角定理掌握圆周角定理是解题的关键解析:36°【分析】根据圆周角定理可得2108AOB ACB ∠=∠=︒,再利用等腰三角形的性质即可求解.【详解】解:∵54ACB ∠=︒,∴2108AOB ACB ∠=∠=︒,∵OA OB =, ∴()1180362ABO BAO AOB ∠=∠=︒-∠=︒, 故答案为:36°.【点睛】本题考查圆周角定理,掌握圆周角定理是解题的关键. 15.【分析】根据题意知直线和圆有公共点则相切或相交相切时设切点为C 连接OC 根据等腰直角三角形的直角边是圆的半径2求得斜边是2所以x 的取值范围是0<x≤2【详解】解:设切点为C 连接OC 则圆的半径OC=2O解析:022x <≤【分析】根据题意,知直线和圆有公共点,则相切或相交.相切时,设切点为C ,连接OC .根据等腰直角三角形的直角边是圆的半径2,求得斜边是22.所以x 的取值范围是0<x≤22.【详解】解:设切点为C ,连接OC ,则圆的半径OC=2,OC ⊥PC ,∵∠AOB=45°,OA//PC ,∴∠OPC=45°,∴PC=OC=2,∴OP=2222+=22,所以x 的取值范围是0<x≤22,故答案为0<x≤22.【点睛】此题主要考查了直线与圆的位置关系,勾股定理,作出切线找出直线与圆有交点的分界点是解决问题的关键.16.36【分析】连接OCOD 求出∠COD 的度数再根据圆周角定理即可解决问题【详解】如图连接OCOD ∵五边形ABCDE 是正五边形∴∠COD==72°∴∠CFD=∠COD=36°故答案为:36【点睛】本题考解析:36.【分析】连接OC ,OD .求出∠COD 的度数,再根据圆周角定理即可解决问题.【详解】如图,连接OC ,OD .∵五边形ABCDE 是正五边形,∴∠COD =3605︒=72°, ∴∠CFD =12∠COD =36°, 故答案为:36.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识. 17.50π【分析】首先求得圆锥的底面周长然后利用扇形的面积公式即可求解【详解】解:圆锥的底面周长是:2×5π=10π则圆锥的侧面积是:×10π×10=50π(cm2)故答案是:50π【点睛】本题主要考查解析:50π【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解.【详解】解:圆锥的底面周长是:2×5π=10π, 则圆锥的侧面积是:12×10π×10=50π(cm 2). 故答案是:50π.【点睛】本题主要考查了圆锥侧面积的求法,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 18.【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌 解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得.【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒, 1702BED BOD ∠∴∠==︒, 由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒,故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键. 19.(2n ﹣10)【分析】根据题意先求出点AB 的坐标再利用勾股定理求出AA1AA2AA3……AAn 的长可得到点A1A2A3……An 的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n ﹣1,0)【分析】根据题意,先求出点A 、B 的坐标,再利用勾股定理求出AA 1、AA 2、AA 3……AA n 的长,可得到点A 1、A 2、A 3……A n 的坐标,找到规律即可解答.【详解】 解:当x=0时,3y=0时,x=﹣1, ∴A(﹣1,0),B(03,∴AA 122(01)(3)2++=,则点A 1(1,0),B 1(1,3,∴AA 2=AB 122(11)(23)4++=,则点A 2(3,0),B 2(3,3,∴AA 3=AB 222(31)(43)8++=,则点A 3(7,0),B 3(7,3,……∴可以得到A n 的坐标为(2n ﹣1,0),故答案为:(2n ﹣1,0).【点睛】本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA 1、AA 2、AA 3……AA n 的长,进而得到A 1、A 2、A 3……A n 的坐标的变化规律.20.【分析】(1)根据直径所对的圆周角是可得到再根据弧的中点定义同弧所对的圆周角相等角平分线定义可推导出最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上结合已知条件添加辅助线连接从而构造出等 解析:13542【分析】(1)根据直径所对的圆周角是90︒可得到90CAB CBA ∠+∠=︒,再根据弧的中点定义、同弧所对的圆周角相等、角平分线定义可推导出45DAB DBA ∠+∠=︒,最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上,结合已知条件添加辅助线“连接AM ”,从而构造出等腰Rt ADM △,利用勾股定理解Rt ABM 即可求得答案.【详解】解:(1)∵AB 是直径∴90ACB ∠=︒∴90CAB CBA ∠+∠=︒∵点M 是弧AC 的中点∴AM CM =∴CBM ABM ∠=∠∵AD 平分CAB ∠∴CAD BAD ∠=∠∴()1452DAB DBA CAB CBA ∠+∠=∠+∠=︒ ∴()180135ADB DAB DBA ∠=︒-∠+∠=︒.(2)连接AM ,如图:∵AB 是直径∴90AMB ∠=︒∵18045ADM ADB ∠=︒-∠=︒∴AM DM =∵点D 为BM 的中点∴DM DB =∴2BM AM =∴设AM x =,则2BM x =∵10∴210AB =∵在Rt ABM 中,222AM BM AB +=∴22440x x +=∴1x =2x =- ∴AM =∴BM =.【点睛】本题考查了直径所对的圆周角是90︒、弧的中点定义、同弧所对的圆周角相等、角平分线定义、三角形的内角和定理、线段的中点定义、利用勾股定理解直角三角形、解一元二次方程等知识点,通过添加辅助线构造直角三角形解决问题的关键,难度中等,属于中考常考题型.三、解答题21.(1)见解析;(2. 【分析】(1)借助同圆中,同弧上的圆周角相等,利用AAS 证明全等;(2) 过O 作OH AB ⊥,利用三角形全等,勾股定理,建立一元二次方程求解即可.【详解】解:(1)证明:∵AC 是O 的直径, ∴90ADC ∠=︒.∵30CAD ∠=︒,∴2AC CD =.∵2AC OA =,∴OA CD =.∵BC BC =,CD CD =,∴EAO CDB ∠=∠,CAD CBD ∠=∠.∵AEO DAC ∠=∠,∴AEO CBD ∠=∠.∴OAE CDB △≌△;(2)解:连接DE ,过O 作OH AB ⊥于H ,∴AH HB =.∵AO OC =,∴2BC OH =.设OH x =,∵30OEA CAD ∠=∠=︒, ∴3HE x =.由(1)知OAE CDB △≌△,∴AE DB =.∵AD AD =,∴60ABD ACD ∠=∠=︒.∵DE AB ⊥,∴30BDE ∠=︒.∴2DB BE =,AE DB =.∴2AE BE =.设AH HB y ==, 则3AE y x =+,3BE y x =-. ∴()323y x y x =. ∴33y x =.在Rt OAH 中,2OA =,33AH x =,OH x =, 222OH AH OA +=,()222332x x +=. 解得177x =,277x =-(舍去). ∴77OH =.∴27BC OH ==. 【点睛】本题考查了圆周角的性质,垂径定理,勾股定理,方程思想,熟练运用圆周角定理,作辅助线,构造垂径定理是解题的关键.22.(1)8AB =;(2)见解析【分析】(1)由DE ⊥AB ,得∠OCA =90°,OC =3,OA =5,通过勾股定理即可求出AC ;由DE 是⊙O 的直径,所以DE 平分AB ,得到AB =2AC ,即可得到AB ;(2)由OA =OE ,得∠EAO =∠E ,而直径DE ⊥AB ,则AD BD =,所以∠E =∠BAD ,由此得到∠EAO =∠BAD .【详解】(1)∵DE ⊥AB∴∠OCA=90°,则OC 2+AC 2=OA 2又∵OC =3,OA =5,∴AC=4,∵DE 是⊙O 的直径,且DE ⊥AB ,∴AB =2AC=8(2)证明∵ EO=AO ,∴∠E=∠EAO又∵DE 是⊙O 的直径,且DE ⊥AB ,∴AD BD =,∴∠E=∠BAD∴∠EAO =∠BAD .【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了垂径定理以及勾股定理.23.(1)3828BAD CDB ∠=∠=,;(2)34E ∠=.【分析】(1)首先利用三角形外角的性质即可求出∠BAD 的度数,然后利用圆周角定理及其推论即可求出∠CDB 的度数;(2)首先根据直角三角形两锐角互余得出∠PCB 的度数,然后根据切线的性质及圆周角定理即可得出答案.【详解】(1)如图1,,APC ABC BCP ∠=∠+∠又100,62APC ABC ∠=︒∠=︒,38,BCD ∴∠=︒38,BAD BCD ∴∠=∠=︒ AB 是O 的直径,90,ADB ∴∠=︒62,ADC ABC ∠=∠=︒28CDB ∴∠=.(2)如图2,连接,OD AD ,则,A ADO ∠=∠,CD AB ⊥90,BPC APD ∴∠=∠=︒62,ABC ∠=︒28BCP DAP ∴∠=∠=.56,DOP ∴∠=︒34,ODP ∴∠=︒ DE 是O 的切线,90,ODE ∴∠=︒34E ODP ∴∠=∠=.【点睛】本题主要考查圆的综合问题,掌握切线的性质,圆周角定理及其推论是解题的关键. 24.证明见解析.【分析】如图(见解析),先根据圆周角定理可得90ADC BDC ∠+∠=︒,再根据垂径定理可得AB CD ⊥,从而可得90B BDC ∠+∠=︒,然后根据等量代换可得ADC B ∠=∠,又根据平行线的性质可得AGF B ∠=∠,从而可得AGF ADC ∠=∠,最后根据圆周角定理可得ADC F ∠=∠,由此即可得证.【详解】如图,连接AD , AB 是O 的直径,90ADB ∴∠=︒,即90ADC BDC ∠+∠=︒,点E 为O 弦CD 的中点,AB 是过点E 的直径,AB CD ∴⊥,90B BDC ∴∠+∠=︒,ADC B ∴∠=∠,//CF BD ,AGF B ∴∠=∠,AGF ADC ∴∠=∠,由圆周角定理得:ADC F ∠=∠,AGF F ∴∠=∠..【点睛】本题考查了圆周角定理、垂径定理、平行线的性质等知识点,熟练掌握圆周角定理和垂径定理是解题关键.25.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC=.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化.26.(1)作图见解析;(2)10.【分析】(1)分别做AB、BC的垂直平分线且交于O,然后以O为圆心、OA为半径画圆即可;(2)如图:连接OB,然后根据垂径定理求得BD,最后根据勾股定理解答即可.【详解】解:(1)如图所示∴⊙O即为所求作的外接圆;(2)如图:连接OB∵已知△ABC的外接圆的圆心O到BC边的距离OD=8∵线段BC的垂直平分线交BC于点D,∴BD=CD=1BC=6,2在Rt△BOD中,OB=22+=10,86∴⊙O的半径长10.【点睛】本题考查了三角形的外接圆的作法和垂径定理的应用,灵活应用相关知识成为解答本题的关键.。
上海莘城学校九年级数学上册第四单元《圆》测试(包含答案解析)
一、选择题1.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等 2.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2 B .2:1:1 C .2:1:1 D .2:2:4 3.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°4.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 5.如图,不等边ABC 内接于O ,下列结论不成立的是( )A .12∠=∠B .14∠=∠C .2AOB ACB ∠=∠D .23ACB ∠=∠+∠6.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .1027.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°8.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为BD 的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒ 9.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒ 10.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70° 11.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 12.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .1213C .4D .5二、填空题13.如图,在扇形AOB 中,90AOB ∠=︒正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,阴影部分的面积为_______.14.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.15.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.16.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.17.在矩形ABCD 中,43AB =,6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.18.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.19.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.20.如图所示,在⊙O 中,AB 为弦,交AB 于AB 点D ,且OD=DC ,P 为⊙O 上任意一点,连接PA ,PB ,若⊙O 的半径为1,则S △PAB 的最大值为_____.三、解答题21.如图,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且AD CE =.(1)求证:BE =CE ;(2)若∠B =50°,求∠AOC 的度数.22.如图,AB 为O 的弦,,C D 是直线AB 上两点,且AC BD =,求证:C D ∠=∠.23.如图,已知A 、B 、C 、D 四点都在⊙O 上.(1)若∠ABC=120°,求∠AOC 的度数;(2)在(1)的条件下,若点B 是弧AC 的中点,求证:四边形OABC 为菱形.24.如图,AC 为O 的直径,4AC =,B 、D 分别在AC 两侧的圆上,60BAD ∠=︒,BD 与AC 的交点为E .(1)求点O 到BD 的距离及OBD ∠的度数;(2)若2DE BE =,求cos OED ∠的值和CD 的长.25.如图,O 的直径AB 为10,弦BC 为6,D 是AC 的中点,弦BD 和CE 交于点F ,且DF DC =.;(1)求证:EB EF(2)求CE的长.26.如图,AB是O的直径,AM和BN是它的两条切线,DE切O于点E,交AM 于点D,交BN于点C,F是CD的中点,连接OF.OD BE;(1)求证://(2)猜想:OF与CD有何数量关系?并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据确定圆的条件对A进行判断;根据垂径定理的推论对C进行判断;根据圆周角定理及其推论对B、D进行判断.【详解】解:A.不在同一直线上的三点确定一个圆,说法正确;B. 90°的圆周角所对的弦是直径,说法正确;C. 平分弦(非直径)的直径垂直于弦,所以B选项错误;D. 等弧所对的圆周角相等,说法正确;故选:C【点睛】此题主要考查了圆的相关知识的掌握.解答此题的关键是要熟悉课本中的性质定理.2.A解析:A【分析】经过圆心O 作正方形一边AB 的垂线OC ,垂足是C .连接OA ,则在直角△OAC 中,∠AOC=45°.OC 是边心距r ,OA 即半径R ,进而即可求解【详解】如图:作出正方形的边心距,连接正方形的一个顶点和中心可得到一直角三角形 在中心的直角三角形的角为360°÷4÷2=45°,∴内切圆的半径为2a ,外接圆的半径为22a , ∴::R r a2a :2a :a=2:1:2 故选A【点睛】本题主要考查正多边形的外接圆与内切圆的半径,掌握相关概念,作出图形,是解题的关键.3.C解析:C【分析】连接BC ,求出∠B =65°,根据翻折的性质,得到∠ADC+∠B =180°,进而得到∠BDC=∠B =65°.【详解】解:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°﹣∠BAC =90°﹣25°=65°,根据翻折的性质,AC 所对的圆周角为∠B ,ABC 所对的圆周角为∠ADC ,∴∠ADC+∠B =180°,∴∠BDC=∠B =65°,故选:C .【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.4.A解析:A【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可.【详解】A、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C、戴了口罩一定不会感染新冠肺炎,不确定事件;D、物体不受任何力的时候保持静止状态或匀速运动,不确定事件.故选A.【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.5.B解析:B【分析】利用OB=OC可对A选项的结论进行判断;由于AB≠BC,则∠BOC≠∠AOB,而∠BOC=180°-2∠1,∠AOB=180°-2∠4,则∠1≠∠4,于是可对B选项的结论进行判断;根据圆周角定理可对C选项的结论进行判断;利用∠OCA=∠3,∠1=∠2可对D选项的结论进行判断.【详解】解:∵OB=OC,∴∠1=∠2,所以A选项的结论成立;∵OA=OB,∴∠4=∠OBA,∴∠AOB=180°-∠4-∠OBA=180°-2∠4,∵△ABC为不等边三角形,∴AB≠BC,∴∠BOC≠∠AOB,而∠BOC=180°-∠1-∠2=180°-2∠1,∴∠1≠∠4,所以B选项的结论不成立;∵∠AOB与∠ACB都对弧AB,∴∠AOB=2∠ACB ,所以C 选项的结论成立;∵OA=OC ,∴∠OCA=∠3,∴∠ACB=∠1+∠OCA=∠2+∠3,所以D 选项的结论成立.故选:B .【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和等腰三角形的性质.6.C解析:C【分析】根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .7.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.8.D解析:D【分析】连接AC ,根据圆心角、弧、弦的关系求出∠BAC ,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.9.B解析:B【分析】如图(见解析),先根据圆的性质可得OC OB =,再根据等边三角形的判定与性质可得60BOC∠=︒,然后根据圆周角定理即可得.【详解】如图,连接OC,由同圆半径相等得:OC OB=,7OB BC==,OC OB BC∴==,BOC∴是等边三角形,60BOC∴∠=︒,由圆周角定理得:1230BOCBDC∠=︒=∠,故选:B.【点睛】本题考查了等边三角形的判定与性质、同圆半径相等、圆周角定理,熟练掌握等边三角形的判定与性质是解题关键.10.D解析:D【分析】连结BC,则由已知可以求得∠BCD与∠CBD的度数,最后由三角形的内角和定理可以得到∠D的度数.【详解】解:如图,连结BC,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB与⊙O相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.11.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键. 12.A解析:A【分析】易证∠APB =90°,则P 点的运动轨迹是以AB 为直径,在AB 上方的半圆,取AB 的中点为O ,连接OD ,OD 与半圆的交点P′就是DP 的长的最小值时的位置,OP′=OA =12AB =3,OD =5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN ⊥AM ,∴∠APB =90°,∵AB =6为定长,则P 点的运动轨迹是以AB 为直径,在AB 上方的半圆,取AB 的中点为O ,连接OD ,OD 与半圆的交点P′就是DP 长的最小值时的位置,如图所示:∵AB =6,AD =4,∴OP′=OA=12AB=3,OD=22AD+OA=224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A.【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P点的运动轨迹,找出DP长的最小值时的位置是解题的关键.二、填空题13.π﹣2【分析】连结OC根据勾股定理可求OC的长根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积依此列式计算即可求解【详解】解:连接OC∵在扇形AOB中∠AOB=90°正方形CDEF解析:π﹣2【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【详解】解:连接OC,∵在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,∴∠COD=45°,∴OC=2CD=22,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=245(22)π⨯⨯﹣12×22=π﹣2.故答案为:π﹣2..【点睛】本题考查了扇形面积的计算以及正方形的性质,解题的关键是得到扇形半径的长度.14.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB ,先证明四边形ABCD 是菱形,然后再说明△AOB 、△OBC 为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A ,B ,C 在O 上∴OA=OC=OB∵四边形ABCO 为平行四边形∴四边形ABCO 是菱形∴OA=OC=OB=AB=BC∴△AOB 、△OBC 为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方 解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE +=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=,故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键. 16.3或5【分析】分类讨论:当点P 在当点P 在射线OA 时⊙P 与CD 相切过P 作PE ⊥CD 与E 根据切线的性质得到PE=1cm 再利用含30°的直角三角形三边的关系得到OP=2PE=2cm 则⊙P 的圆心在直线AB 上解析:3或5【分析】分类讨论:当点P 在当点P 在射线OA 时⊙P 与CD 相切,过P 作PE ⊥CD 与E ,根据切线的性质得到PE=1cm ,再利用含30°的直角三角形三边的关系得到OP=2PE=2cm ,则⊙P 的圆心在直线AB 上向右移动了(8-2)cm 后与CD 相切,即可得到⊙P 移动所用的时间;当点P 在射线OB 时⊙P 与CD 相切,过P 作PE ⊥CD 与F ,同前面一样易得到此时⊙P 移动所用的时间.【详解】当点P 在射线OA 时⊙P 与CD 相切,如图,过P 作PE ⊥CD 与E ,∴PE=1cm ,∵∠AOC=30°,∴OP=2PE=2cm ,∴⊙P 的圆心在直线AB 上向右移动了(8-2)cm 后与CD 相切,∴⊙P 移动所用的时间=822-=3(秒); 当点P 在射线OB 时⊙P 与CD 相切,如图,过P 作PE ⊥CD 与F ,∴PF=1cm ,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm ,∴⊙P 的圆心在直线AB 上向右移动了(8+2)cm 后与CD 相切,∴⊙P 移动所用的时间=822+=5(秒). 故答案为3或5.【点睛】本题考查直线与圆的位置关系:直线与有三种位置关系(相切、相交、相离).也考查了切线的性质.解题关键是熟练掌握以上性质.17.或4或8【分析】取CD 中点P1连接AP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B 是等边三角形可得∠AP1B =60°过点A 点P1点B 作圆与ADBC 各有一个交点即这样的P 点一共3个再运用勾 解析:43或4或8. 【分析】取CD 中点P 1,连接AP 1,BP 1,由勾股定理可求AP 1=BP 1=43,即可证△AP 1B 是等边三角形,可得∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形, ∴43,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A = 在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:34或8.故答案为:34或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.18.6【分析】在线段BD 上取一点E 使得BE=CD 连接AE 由四点共圆得∠再证明△是等边三角形得再由线段的和差关系可得结论【详解】解:在线段BD 上取一点E 使得BE=CD 连接AE ∵∴四点共圆∴∠∴∠∵△是等边解析:6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得∠ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,∵180BAD BCD ∠+∠=︒∴,,,A B C D 四点共圆,∴∠ABD ACD =∠∴∠ABE ACD =∠∵△ABC 是等边三角形,∴AB AC BC ==,60DAE ∠=︒,∴△ABE ACD ≅∆,∠60BAE CAF +∠=︒,∴,BAE CAD BAF CAD ∠=∠∠=∠,∴∠60CAD CAE +∠=︒,即60DAE ∠=︒,∴△ADE 是等边三角形,∴AD DE AE ==,∵=8BD ,2CD =,∴6DE BD BE BD CD =-=-=,∴6AD DE ==.【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠ABE ACD =∠是解答此题的关键.19.30【分析】结合题意根据弧长计算公式计算得弧长对应圆心角;再结合扇形面积公式计算即可得到答案【详解】∵扇形的半径为6cm 弧长为10cm ∴弧长对应的圆心角n 为:∴扇形面积为:故答案为:30【点睛】本题 解析:302cm【分析】结合题意,根据弧长计算公式,计算得弧长对应圆心角;再结合扇形面积公式计算,即可得到答案.【详解】∵扇形的半径为6cm ,弧长为10cm∴弧长对应的圆心角n 为:101803006ππ⨯=⨯ ∴扇形面积为:263003630360360n πππ⨯⨯=⨯=2cm 故答案为:302cm .【点睛】本题考查了弧长、扇形面积计算的知识;解题的关键是熟练掌握弧长、扇形的性质,从而完成求解.20.【分析】作直径CE 连OAAEBE 利用垂经定理的AD=BD 在利用勾股定理计算出AD 则AB=2AD 当点P 与点E 重合时P 点到AB 的距离最大然后根据三角形面积公式求解即可【详解】延长CD 交⊙O 于点E 连接OA【分析】作直径CE ,连OA 、AE 、BE ,利用垂经定理的AD=BD ,在利用勾股定理计算出AD ,则AB=2AD ,当点P 与点E 重合时,P 点到AB 的距离最大,然后根据三角形面积公式求解即可.【详解】延长CD 交⊙O 于点E ,连接OA ,AE ,BE 如图,∵OA=OC=1,OD=CD ,∴OD=CD=12OC=12, ∵OC ⊥AB ,∴=, AD=BD=12AB ,,∴sin ∠OAD=12OD OA =, ∴∠OAD=30º, ∴∠AOD =90º-∠OAD =60º,∵OA =OE ,∴∠OAE=∠OEA ,∵∠AOD=∠OAE+∠OEA ,∴∠OAE=∠OEA=30º,∴AE=BE,∴∠OEB=∠OEA=30º,∴∠AEB=∠OEB+∠OEA=60º,∴△ABE是等边三角形,∴AE=AB=3,DE=223 2AE AD-=,S△ABE=133 24AB DE=,∵在△ABP中,当点P与点E重合时,AB边上的高取最大值,此时△ABP的面积最大,∴S△ABP的最大值=33.故答案为:33.【点睛】本题考查三角形面积,掌握垂经定理,勾股定理,和引辅助线构造图形,找到当点P与点E重合时,P点到AB的距离最大,然后根据三角形面积公式求解是解题关键.三、解答题21.(1)见解析;(2)20°【分析】(1)根据∠AOD=∠BOE可知AD BE,再由AD CE=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【详解】解:(1)证明:∵∠AOD=∠BOE,∴AD BE.∵AD CE=,∴BE CE=,(2)∵∠B=50°,OB=OE,∴∠BOE=180°-50°-50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°-80°-80°=20°.【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.见解析【分析】过O作OH⊥AB于H,则AH=BH;再根据线段的和差关系可得:CH=DH,即OH是CD的线段垂直平分线,所以OC=OD,继而即可求证结论.【详解】证明:如图过点O作OH⊥AB,于点H.∵AB为O的弦,∴AH=BH又∵AC=BD∴AC+AH=BD+BH,即CH DH又OH⊥AB,∴OC=OD,∴∠C=∠D.【点睛】本题考查了垂径定理,解答本题的关键是作辅助线,利用垂径定理和线段垂直平分线的性质证明OC=OD.23.(1)∠AOC=120°;(2)见解析【分析】(1)先由圆内接四边形的性质得∠ADC=60°,再由圆周角定理即可得出答案;(2)证△OAB和△OBC都是等边三角形,则AB=OA=OC=BC,根据菱形的判定方法即可得到结论.【详解】(1)∵A、B、C、D四点都在⊙O上∴∠ABC+∠ADC=180°,∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=2∠ADC=120°;(2)连接OB,如图所示:∵点B是弧AC的中点,∠AOC=l20°,∴∠AOB=∠BOC=60°,又∵OA=OC=OB,∴△OAB和△OBC都是等边三角形,∴AB=OA=OC=BC,∴四边形OABC是菱形.【点睛】本题考查了圆内接四边形的性质,圆周角定理,圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定.24.(1)1,30º;(2)12,2【分析】(1)作OF⊥BD于点F,连接OD,根据圆周角定理可得出∠DOB=120º,再由OB=OD=12AC=2,可得出∠OBD的度数,也可以得出OF的长度,(2)设BF=2x,则可表示出DF、EF的长度,从而可解出x的值,在Rt△OEF中,利用三角函数值的知识可求出∠OED的度数,也可得出cos∠OED的值,判断出DO⊥AC,然后利用等腰直角三角形的性质可得出CD的长度.【详解】(1)作OF⊥BD于点F,连接OD,∵∠BAD=60º,∴∠BOD=2∠BAD=120º,又∵OB=OD,∴∠OBD=30º,∵AC为⊙O的直径,AC=4,∴OB=OC=2,在Rt△BOF中,∵∠OFB=90º,OB=2,∠OBF=30º,∴OF=12OB=1, 即点O 到BD 的距离等于1,(2)∵OB=OD ,OF ⊥BD 于点F ,∴BF=DF ,由DE=2BE ,设BE=2x ,则DE=4x ,BD=6x,EF =x,BF=3x ,∵3∴3333x EF ==, 在Rt △OEF 中,∠OFE=90º,∵tan ∠OED=OF =3EF∴∠OED=60º,cos ∠OED=12, ∴∠BOC=∠OED-∠OBD=30º,∴∠DOC=∠DOE-∠BOE=90º,∴∠C=45º,∴2OC=22【点睛】本题考查属于圆的综合题,涉及等腰三角形的性质,三角函数值,及勾股定理等知识,解答此类综合性题目,要求我们熟悉掌握一些小知识,做到将所学的知识融会贯通,难度较大.25.(1)见解析;(2)72CE =【分析】(1)运用圆周角定理证明DBE EFB ∠=∠即可得到结论;(2)连接OE ,AE ,AC ,在CB 延长线上截取BG AC =,连EG ,可得A 、E 、B 、C 四点为共圆,可证明CAE GBE ∆∆≌,△CEG 为等腰直角三角形,运用勾股定理即可求得结论.【详解】(1)证明:∵DF DC =∴DCF DFC ∠=∠又∵DCF DBE ∠=∠,DFC EFB ∠=∠∴DBE EFB ∠=∠∴EB EF =(2)连接OE ,AE ,AC ,∵AB 为O 的直径∴90ACB ∠=︒,90AEB =︒∠ 在Rt ACB ∆中,2222AC AB BC 1068=-=-= ∵D 是弧AC 的中点∴AD CD =∴DBA DBC ∠=∠又∵DBE EFB ∠=∠∴DBE DBA EFB DBC ∠-∠=∠-∠,即ABE ECB ∠=∠∴AOE BOE ∠=∠∴AE BE =,AE BE =∴45ACE BCE ∠=∠=︒在CB 延长线上截取BG AC =,连EG在圆内接四边形ACBE 中,180CAE CBE ∠+∠=︒又∵180GBE CBE ∠+∠=︒∴CAE GBE ∠=∠∴()CAE GBE SAS ∆∆≌∴EC EG =∴45BCE BGE ∠=∠=︒∴在等腰Rt CEG ∆中,222()()72222CE CG CB BG CB AC ==+=+=【点睛】本题考查了圆周角定理,圆内接四边形的性质.解答此题的关键是作出辅助线,构造全等三角形.26.(1)见解析;(2)(2)12OF CD =,理由见解析 【分析】(1)连接OE ,利用直角三角形HL 判定Rt AOD Rt EOD ∆∆≌,根据全等三角形的性质可知AOD ABE ∠=∠,根据平行线的判定即可求证结论;(2)根据切线长定理可知DA=DE ,CB=CE ,根据切线的性质可知AB ⊥AD ,BC ⊥AB ,证得四边形ABCD 是梯形,根据梯形的中位线定理并代换即可求证.【详解】(1)证明:连接OE ,∵AM ,DE 是O 的切线,OA 、OE 是O 的半径,∴OA OE =,90DAO DEO ∠=∠=︒,又∵OD 为公共边∴Rt AOD Rt EOD ∆∆≌(HL ) ∴12AOD EOD AOE ∠=∠=∠, ∵12ABE AOE ∠=∠, ∴AOD ABE ∠=∠,∴OD BE(2)12OF CD =, 理由:∵AM 、DE 是圆的切线,∴DA=DE ,AB ⊥AD ,同理可得:CB=CE ,BC ⊥AB ,证得四边形ABCD 是梯形,∵F 是CD 的中点、O 是AB 的中点,∴OF =()12AD BC + =()12DE CE +, ∴12OF CD =. 【点睛】 本题主要考查与圆有关的位置关系、切线长定理、全等三角形的判定与其性质、梯形,解题的关键是综合运用所学知识.。
浙教版数学九年级上册第四章相似三角形 单元测试(含答案)
浙教版数学九年级上册第四章相似三角形一、选择题1.已知c 是a 和b 的比例中项,a =2,b =18,则c =( )A .±6B .6C .4D .±32.如图,DE ∥BC ,在下列比例式中,不能成立的是()A .AD DB =AEECB .DE BC =AEEC C .AB AD =AC AED .DB EC =ABAC3.如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为( )A .5:7B .7:5C .25:49D .49:254.如图,已知AB ∥CD ∥EF ,AE =9,AC =6,BD =4,则BF 的长是( )A .5B .6C .7D .85.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( )A .10米B .12米C .15米D .22.5米6.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A .B .C.D.7.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为( ).A.1:2B.1:3C.1:4D.1:58.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为5,则下列结论中正确的是( )A.m=5B.m=45C.m=35D.m=109.如图,已知AB=AC,∠B<30°,BC上一点D满足∠BAD=120°,BDCD =73,则ADAC的值为( )A.12B.33C.13D.3210.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为( )A .B .C .D .二、填空题11.如图,线段AC 、BD 交于点O ,请你添加一个条件: ,使△AOB ∽△COD .12.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC = .13.在某市建设规划图上,城区南北长为120cm ,该市城区南北实际长为36km ,则该规划图的比例尺是 .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图, EB 为驾驶员的盲区,驾驶员的眼睛点 P 处与地面 BE 的距离为1.6米,车头 FACD 近似看成一个矩形,且满足 3FD =2FA ,若盲区 EB 的长度是6米,则车宽 FA 的长度为 米.16.如图,在△ABC中,点D是AC边上一点,将△ABD沿BD翻折得到△EBD,BE与AC交于点F,设AF=x,EF=y.(1)当BE⊥AC,x=9,y=3时,AD的长是 ;(2)当BD=BF,2x=7y时,△DEF与△ABD的面积之比是 .三、解答题17.如图,已知D、E分别是△ABC的边AB、AC上的点,DE∥BC,ADBD =32,求DEBC的值.18.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.19.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的(全身)的高度比,可以增加视觉美感,按比例,如果雕像的高为2m,那么它的下部设计为多高?(结果保留小数点后两位)参考数据:2=1.414,3=1.732,5=2.23620.如图,在矩形ABCD中,AB=6,BC=4,E是边BC上的一点(不与B、C重合),DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;S△ABE,求BE的长.(2)若S△DFA=1321.如图,在△ABC中,AD是BC上的高,且BC=3,AD=2,矩形EFGH的顶点F、G在边BC上,顶点E、H分别在边AB、AC上.(1)设EF=x(0<x<2),矩形EFGH的周长为y,求y关于x的函数解析式;(2)当EFGH为正方形时,求正方形EFGH的面积.22.如图,矩形ABCD中,点M在对角线BD上,过点A、B、M的圆与BC交于点E.(1)若AM=4,EB=EM=3,求BM.(2)若AB=6,BC=8,①求AM:ME.②若BM=7,求BE.23.如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长交BC于点E,过点Q作QF//AC,交BD于点F,设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(c m2),试确定S与t的函数关系式;(3)在运动过程中,当S五边形OECQF:S△ACD=9:16时.直接写出t的值.答案解析部分1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】A7.【答案】C8.【答案】B9.【答案】A10.【答案】C11.【答案】AB∥CD(答案不唯一)12.【答案】6.13.【答案】1:3000014.【答案】9415.【答案】12716.【答案】5;1417.【答案】3518.【答案】(1)证明:∵∠BAD=∠C,∠B=∠B,∴△ABD∽△CBA(2)解:设DC=x,∵△ABD∽△CBA,∴ABBD=BCAB,∴63=2+x6,解得,x=9;即CD=719.【答案】1.24米.20.【答案】(1)证明:∵四边形ABCD是矩形,AB=6,BC=4,∴∠B=90°,AD∥BC,AD=BC=4,∴∠AEB=∠DAF,∵DF⊥AE,∴∠DFA=90°,∴∠B=∠DFA,∴△ABE∽△DFA;(2)解:∵△ABE∽△DFA,S△DFA=13S△ABE,∴(AEAD )2=S△ABES△DFA=3,∴AEAD=3或AEAD=−3(负数不符合题意,舍去),∴AE=3AD=43,∴BE=AE2−AB2=(43)2−62=12=23,∴BE的长为23.21.【答案】(1)解:设AD,EH交于点M,∵矩形EFGH,∴EH∥BC,AM⊥EH,∴△ABC∼△AEH,∴EHBC=AMAD∵EF=DM=x,AD=2∴AM=2−x∴EH3=2−x2∴EH=32(2−x)∴y=2(EH+EF)=2(3−32x+x)=−x+6(0<x<2)∴y关于x的函数解析式为∴y=−x+6(0<x<2)(2)解:当EFGH为正方形时,∴EF=EH,由(1)得:EF =x ,EH =32(2−x),∵EF =EH ,∴x =3(2−x)2,∴x =65,即EF =65.正方形EFGH 的面积=65×65=3625.22.【答案】(1)245(2)①43,②17423.【答案】(1)解:在矩形ABCD 中,AB =6cm ,BC =8cm ,∴AC =10,①当AP =PO =t ,如图1,过P 作PM ⊥AO 于点M ,∴AM =12AO =52,∵∠PMA =∠ADC =90°,∠PAM =∠CAD ,∴△APM∽△ACD ,∴AP AC =AM AD,∴AP =t =258,②当AP =AO =t =5,∴当t 为258或5时,△AOP 是等腰三角形;(2)解:如图2,过点O 作OH ⊥BC 交BC 于点H ,则OH =12CD =12AB =3cm ,由矩形的性质可知∠PDO =∠EBO ,DO =BO ,又得∠DOP =∠BOE ,∴△DOP≌BOE(ASA),∴BE =PD =8−t ,则S △BOE =12BE ⋅OH =12×3(8−t)=12−32t.∵FQ//AC ,∴△DFQ∽△DOC ,相似比为DQ DC =t6,∴S △DFQ S △DOC =t 236,∵S △DOC =14S 矩形ABCD =14×6×8=12c m 2,∴S △DFQ =12×t 236=t 23,∴S 五边形OECQF =S △DBC −S △BOE −S △DFQ =12×6×8−(12−32t)−t 23=−13t 2+32t +12;∴S 与t 的函数关系式为S =−13t 2+32t +12;(3)t =3或32。
九年级上册数学单元测试卷-第4章 相似三角形-浙教版(含答案)
九年级上册数学单元测试卷-第4章相似三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF 的值为()A. B.2 C. D.12、如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()A.4B.3.5C.3D.2.83、如图,四边形ABCD中,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=6,AD=4,则该四边形的面积为()A.9B.12C.8D.84、已知直角坐标系中四点A(-2,4)、B(-2,0)、C(2,-3)、D(2,0).若点P在x轴上,且PA、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,则所有符合上述条件的点P的个数是()A.3个B.4个C.5个D.6个5、如图,将平行四边形AEFG变换到平行四边形ABCD,其中E,G分别是AB,AD的中点,下列叙述不正确的是()A.这种变换是相似变换B.对应边扩大到原来的2倍C.各对应角度数不变D.面积扩大到原来的2倍6、如图,在正方形中,是等边三角形,、的延长线分别交于点、,连接、,与相交于点,给出下列结论:①;②;③;④.其中正确的个数是()A.1B.2C.3D.47、如图,,,那么下列比例式中正确的是()A. B. C. D.8、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A.1对B.2对C.3对D.4对9、如图,AB为半圆O的直径,AD、BC分别切⊙O于A,B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:OE,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个10、如图,小伟在打网球时,击球点距离球网的水平距离是8米.已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击打的高度h为()A.1.0B.1.6 C.2.0D.2.411、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.对于两人的观点,下列说法正确的是()A.甲对,乙不对B.甲不对,乙对C.两人都对D.两人都不对12、如图,的直径AB=8,AM,BN是它的两条切线,DE与相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是A. B. C. D.13、若= ,则的值为()A.5B.C.3D.14、如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=5,则S△A′B′C′等于()A. B. C. D.15、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG AE,垂足为G,BG=,则△CEF的周长为()A.8B.9.5C.10D.11.5二、填空题(共10题,共计30分)16、如图,AC∥EF∥DB,若AC=8,BD=12,则EF=________.17、如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE=________.18、如图,在等边△ABC中,D为BC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为________.19、如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4;则①PA+PB+PC+PD 的最小值为________;②若△PAB∽△PDA,则PA=________.20、如图,小明用2m长的标杆测量一棵树的高度.根据图示条件,树高为________m.21、若△ABC∽△DEF,且相似比k=,当S△ABC=6cm2时,则S△DEF=________ cm222、在矩形ABCD中,AB=9cm,E是直线CD上一点,连接AC,BE,若AC与BE交于点F且DE=3cm,则EF:BE的值是________.23、如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西________ 度方向上,杭州到嘉兴的图上距离约2cm,则杭州到嘉兴的实际距离约为________ .24、如果两个相似三角形对应边上的中线之比为5:4.那么这两个三角形的周长之比为________.25、如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.将△ABC翻折,使点C落在AB 边上的点D处,折痕EF交边AC于点E,交边BC于点F,如果DE∥BC,则线段EF 的长为________.三、解答题(共5题,共计25分)26、已知a:b:c=2:4:5,且2a﹣b+3c=15,求3a+b﹣2c的值.27、如图,四边形EFGH是△ABC的内接矩形,EF∶EH=5∶9,若BC=36,高AD=12,求矩形EFGH 的周长。
北师大版初中数学九年级上册第四章综合测试试卷-含答案03
第四章单元测试一、选择题(共10小题)1.如图,ABC △中,ABD C ∠=∠,若4AB =,2AD =,则CD 边的长是( )A .2B .4C .6D .82.要制作两个形状相同的三角形框架,已知其中一个三角形的三边长分别为3 cm ,4 cm ,6 cm ,另一个三角形的最短边长为4 cm ,则它的最长边长为( )A .9cm 2B .8 cmC .16cm 3D .12 cm3.已知:3:2x y =,则下列各式中正确的是( ) A .52x y y += B .13x y y −= C .23x y = D .1413x y +=+ 4.如图ABC △中,点D 、E 、F 分别在AB 、AC 上,且DE BC ∥,EF BC ∥,若2AD BD =,则CEAE的值为( )A .14B .13C .12D .235.小强带着足够的钱到鱼店去买鱼,鱼店里有一种“竹篓鱼”,个个都长得非常相似.现有大小两种不同价钱,如图所示,鱼长10 cm 的每条10元,鱼长13 cm 的每条17元,小强不知道哪种更好些,请帮小强出主意,该怎么买?( )A .买大的B .两种一样划算,随便选一种C .买小的D .无法比较哪种划算,随便选一种6.如图,ABC △和ADE △都是等腰直角三角形,90BAC DAE ∠=∠=︒,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于G ,连结BE .下列结论中:①2CE BD ==;②ADC △是等腰直角三角形;③ADB AEB ∠=∠;④••CD AE EF CG =.一定正确的是( )A .1个B .2个C .3个D .4个7.如图,有一块直角三角形余料ABC ,90BAC ∠=︒,G ,D 分别是AB 、AC 边上的一点,现从中切出一条矩形纸条DEFG ,其中E 、F 在BC 上,若 4.5 cm BF =, 2 cm CE =,则GF 的长为( )A .3 cmB .C .2.5 cmD .3.5 cm8.若ABC △与111A B C △相似且对应中线之比为2:5,则周长之比和面积比分别是( ) A .2:5,4:5B .2:5,4:25C .4:25,4:25D .4:25,2:59.如图,线段BC 的两端点的坐标分别为()3,8B ,()6,3C ,以点()1,0A 为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A .()1,4B .()2,4C .3,42⎛⎫ ⎪⎝⎭D .()2,210.如图,D 是ABC △一边BC 上一点,连接AD ,使ABC DBA △∽△的条件是( )A .::AC BC AD BD =B .::AC BC AB AD = C .2•AB CD BC =D .2•AB BD BC =二、填空题(共8小题)11.比例尺为1:4 000 000的地图上,杭州到嘉兴的图上距离约是3 cm ,则杭州到嘉兴的实际距离是________km .12.一个矩形剪去一个以宽为边长的正方形后,所剩下的矩形与原矩形相似,则原矩形的宽与长的比是________.13.如图,AB CD ∥,AD 与BC 相交于点O ,若3AO =,6DO =,4BO =,则CO =________.14.已知两个相似三角形的面积之比是1:16,那么这两个三角形的周长之比是________.15.如图,矩形EFGO 的两边在坐标轴上,点O 为平面直角坐标系的原点,以y 轴上的某一点为位似中心,作位似图形ABCD ,且点B ,F 的坐标分别为()4,4−、()2,1,则位似中心的坐标为________.16.如图,123l l l ∥∥,2AM =,3MB =,4CD =,则ND =________.17.如图,A 、B 两点被池塘隔开,在AB 外取一点C ,连结AC 、BC ,在AC 上取点E ,使3AE EC =,作EF AB ∥交BC 于点F ,量得 6 m EF =,则AB 的长为________.18.如图,D 、E 是ABC △的边AB 、AC 上的点,DE 与BC 不平行,请填上一个你认为合适的条件________,使得ADE ACB △∽△.三、解答题(共8小题) 19.若0234x y z ==≠,求代数式x y zx y z+−++的值.20.如图,AD 是ABC △的中线,E 是AD 上一点,:1:4AE AD =,BE 的延长线交AC 于F ,求:AF CF 的值.21.已知:四边形ABCD 的两条对角线相交于点P ,ADB BCA ∠=∠,AD ,BC 延长线交于点Q ,求证:ACQ BDQ △∽△.22.如图,在ABC △中,90C ∠=︒, 6 cm AC =,8 cm BC =,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1 cm/s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2 cm/s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (04t <<)s .解答下列问题:(1)当t 为何值时,以点E 、P 、Q 为顶点的三角形与ADE △相似? (2)当t 为何值时,EPQ △为等腰三角形?(直接写出答案即可).23.如图所示,三个边长为1个单位长度的正方形ABCD 、ABEF 、EFGH 拼在一起. (1)请找岀中相似的两个三角形,并证明; (2)直接写出1∠、2∠、3∠这三个角度数之和.24.如图,ABC △中,点P 在边AB 上,请用尺规在边AC 上作一点Q ,使AQ APAB AC=.(保留作图痕迹,不写作法).25.如图,在平面直角坐标系中,已知ABC △三个顶点的坐标分别是()2,2A ,()4,0B ,()4,4C −.以点O 为位似中心,将ABC △缩小为原来的12,得到111A B C △, (1)请在y 轴左侧画出111A B C △;(2)点(),P a b 为ABC △内的一点,则点P 在(1)中111A B C △内部的对应点1P 的坐标为________.26.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC ,6AC =,8BC =,10AB =,将ABC △按图3的方式向外扩张,得到DEF △,它们对应的边间距都为1,求DEF △的面积.答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
(人教版)天津市九年级数学上册第四单元《圆》测试卷(有答案解析)
一、选择题1.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 2.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 3.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°5.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,∠POB =40°,则∠CBD 的度数是( )A .50°B .45°C .35°D .40° 6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 7.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .48.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( )A .点P 在O 内B .点P 在O 上C .点P 在O 外D .无法判断9.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线10.如图△ABC 中,∠C =90°,∠B =28°,以C 为圆心,CA 为半径的圆交AB 于点D ,则AD 的度数为( )A .28°B .56 °C .62°D .112° 11.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .1213C .4D .512.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°二、填空题13.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.14.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.15.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)16.如图,⊙O 的直径16AB =,半径OC AB ⊥,E 为OC 的中点, DE OC ⊥,交⊙O 于点D ,过点D 作DF AB ⊥于点F .若 P 为直径AB 上一动点,则PC PD +的最小值为 ________ .17.将面积为3πcm 2的扇形围成一个圆锥的侧面,若扇形的圆心角是120°,则该圆锥底面圆的半径为_____cm .18.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.19.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米.三、解答题 21.如图,已知AB 为O 的直径,点C 、D 在O 上,CD BD =,E 、F 是线段AC 、AB 的延长线上的点,并且EF 与O 相切于点D .(1)求证:2A BDF ∠=∠;(2)若3AC =,5AB =,求CE 的长.22.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==,求图中阴影部分的面积.23.如图,AB 是⊙O 的直径,弦CD AB ⊥于点H ,30A ∠=︒,43CD =,求⊙O 的半径的长.24.如图,在平面直角坐标系中,点A 的坐标为()3,2-,点B 的坐标为()0,2. (1)画出将绕点O 顺时针旋转90后的图形,记为A OB ''△;(2)在题(1)旋转过程中线段OA 扫过的面积为_______(直接写出答案)25.如图,长方形ABCD 的长是a ,宽是b ,分别以A 、C 为圆心作扇形,用代数式表示阴影部分的周长L 和面积S (结果中保留π).26.如图,在33⨯的网格中有一个圆,请仅用无刻度直尺作图(保留画图痕迹).(1)在图1中,圆过格点A,B,请作出圆心O;,请作一个45圆周角.(2)在图2中,⊙O的两条弦AB CD【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr 2=85π,故选:B .【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.2.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.3.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,∴∠=︒-∠=︒,D B180110故选:C.【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.4.C解析:C【分析】连接BC,求出∠B=65°,根据翻折的性质,得到∠ADC+∠B=180°,进而得到∠BDC=∠B =65°.【详解】解:连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,AC所对的圆周角为∠B,ABC所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠BDC=∠B=65°,故选:C.【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.5.D解析:D【分析】根据切线的性质得到∠OPB=90°,证出OP//BC,根据平行线的性质得到∠POB=∠CBD,于是得到结果.【详解】∵AB是⊙O的切线,∴∠OPB=90°,∵∠ABC=90°,∴OP//BC,∴∠CBD=∠POB=40°,故选D .【点睛】本题考查了切线的性质,平行线的判定和性质,熟练掌握切线的判定和性质是解题的关键.6.C解析:C【分析】利用圆周角定理求出∠BOC 即可解决问题.【详解】解:∵∠BOC=2∠BDC ,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C .【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型. 7.A解析:A【分析】如图,连接OD ,设半径为r ,则OM=6-r;再由垂径定理求出MD 的长,然后根据勾股定理解答即可.【详解】解:如图,连接OD ,设半径为r ,则OM=6-r∵EM CD ⊥∴MD=12CD=2 在Rt △MOD 中,OD=r ,OM=6-r ,MD=2 ∴222OM MD OD +=,即()22262r r -+=,解得r=103. 故答案为A .【点睛】本题考查了圆的垂径定理和勾股定理,根据垂径定理求得MD 的长是解答本题的关键. 8.A解析:A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.9.B解析:B【分析】根据在一条直线上的三点就不能确定一个圆可以判断A,再利用圆周角定理得出B正确;由不同三角形判断C项,以及利用切线的判定对D进行判定.【详解】A.平面上不共线的三个点确定一个圆,所以A选项错误;B.等弧所对的圆周角相等,所以B选项正确;C.钝角三角形的外心在三角形的外面,锐角三角形的外心在三角形内部,直角三角形的外心为斜边的中点,所以C选项错误;D.过半径的外端与半径垂直的直线为圆的切线,所以D选项错误.故选:B.【点睛】此题主要考查了切线的判断和圆的确定、圆周角定理以及外心等知识,熟练掌握定义是解题关键.10.B解析:B【分析】连接CD,如图,利用互余计算出∠A=62°,则∠A=∠ADC=62°,再根据三角形内角和定理计算出∠ACD=56°,然后根据圆心角的度数等于它所对弧的度数求解.【详解】解:连接CD,如图,∵∠C=90°,∠B=28°,∴∠A=90°-28°=62°,∵CA=CD,∴∠A=∠ADC=62°,∴∠ACD=180°-2×62°=56°∴AD的度数为56°;故选:B.【点睛】本题考查了同圆的半径相等、直角三角形的两锐角互余、等腰三角形的性质,熟练进行逻辑推理是解题关键.11.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB =6,AD =4,∴OP′=OA =12AB =3, OD =22AD +OA =224+3=5,∴DP′=OD−OP′=5−3=2,∴DP 的长的最小值为2,故选:A .【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P 点的运动轨迹,找出DP 长的最小值时的位置是解题的关键.12.C解析:C【分析】延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题13.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解 解析:13,122⎛⎫+⎪ ⎪⎝⎭33,22⎛⎫ ⎪ ⎪⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M 的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH =、12CJ =,再根据勾股定理求得63JM =,再根据正六边形的性质、线段的和差即可求得32JF =,即可得解.【详解】解:经历六次旋转后点M 落在点6M 处,过M 作MH x ⊥于点H ,过6M 作6M J x ⊥于点J ,连接6IM ,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒ ∴1122FH AF ==∵已知点M 的纵坐标是11MH =∴点M 的坐标是:1,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,62JM == ∵点I 是正六边形的中心∴1IC IF == ∴32JF IF IC CJ =+-=∴点6M 的坐标是:3,22⎛⎫ ⎪ ⎪⎝⎭.故答案是:1,12⎛⎝⎭;32⎛ ⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想. 14.12π60π【分析】首先根据底面半径求得圆锥的底面的周长从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm 做成的圆锥形帽子的高为8cm ∴圆锥的底面半径为∴底面周长为∴这张扇形纸板的弧长是扇形的解析:12π 60π【分析】首先根据底面半径求得圆锥的底面的周长,从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴6=,∴底面周长为2612cm ππ⨯=,∴这张扇形纸板的弧长是12cm π, 扇形的面积为21110126022lr cm ππ=⨯⨯=. 故答案是:12π;60π.【点睛】本题主要考查了扇形弧长计算和面积计算,准确分析计算是解题的关键.15.【分析】连接OAODOM则OA=OD=OM由矩形的性质得出OA=BC=aOD=EF=bOM=NH=c即可得出a=b=c【详解】解:连接OMODOA根据矩形的对角线相等得BC=OAEF=ODNH=OM==解析:a b c【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的性质得出OA=BC=a,OD=EF=b,OM=NH=c,即可得出a=b=c.【详解】解:连接OM、OD、OA、根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c.故答案是:a=b=c.【点睛】此题主要能够根据矩形的对角线相等把线段进行转换,根据同圆的半径相等即本题考查了矩形的性质、同圆的半径相等的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.16.【分析】延长CO交⊙O于G连接GD交AB于P根据两点之间线段最短可知PC+PD的最小值为GD由勾股定理分别求得DEDG即可解答【详解】解:延长CO交⊙O于G连接GD交AB于P则PC+PD的最小值为G解析:3【分析】延长CO交⊙O于G,连接GD交AB于P,根据两点之间线段最短可知PC+PD的最小值为GD,由勾股定理分别求得DE、DG即可解答.【详解】解:延长CO交⊙O于G,连接GD交AB于P,则PC+PD的最小值为GD,连接OD,则OD=OG=OC= 12AB=8, ∵E 为OC 的中点,∴OE=12OC=4, ∴EG=4+8=12,∵DE OC ⊥,∴在Rt △OED 中,22228443OD OE -=-=,在Rt △GED 中,2222(43)1283ED EG +=+= 故答案为:3【点睛】本题考查勾股定理、最短路径问题、圆的有关概念与性质,熟练掌握勾股定理和圆的性质是解答的关键.17.1【分析】直接利用已知得出圆锥的母线长再利用圆锥侧面展开图与各部分对应情况得出答案【详解】解:设圆锥的母线长为Rcm 底面圆的半径为rcm ∵面积为3πcm2的扇形围成一个圆锥的侧面扇形的圆心角是120解析:1【分析】直接利用已知得出圆锥的母线长,再利用圆锥侧面展开图与各部分对应情况得出答案.【详解】解:设圆锥的母线长为Rcm ,底面圆的半径为rcm ,∵面积为3πcm 2的扇形围成一个圆锥的侧面,扇形的圆心角是120°, ∴2120360R π⨯=3π, 解得:R =3,由题意可得:2πr =1203180π⨯, 解得:r =1.故答案为:1.【点睛】此题主要考查了圆锥的计算,正确得出母线长是解题关键.18.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心,1190906012022BOC A , 故答案是:120. 【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 19.【分析】连结OC 根据勾股定理可求OC 的长根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面解析:24π-【分析】连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC ,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒,22OD CD ∴==22(22)(22)4OC ∴=+=,224541(22)243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】 考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 20.65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.(1)见解析;(2)1【分析】(1)如图连接AD ,,先证明CD BD =可得∠1=∠2,根据圆周角定理得到∠ADB=90°,再根据切线的性质得到OD EF ⊥即3490∠+∠=°,最后证明∠1=∠4即可;(2)如图,连接BC 交OD 于,由圆周角定理得到∠ACB=90°,由CD BD =得到OD BC ⊥,则CF=BF ,进而求得OF 、DF ,然后证明四边形CEDH 为矩形即可解答.【详解】(1)证明:连接AD ,如图,CD BD =,∴CD BD =,12∠∠∴=,∵AB 为直径,90ADB ∴∠=︒,190ABD ∴∠+∠=︒,∵EF 为切线,∴OD EF ⊥,∴3490∠+∠=°,∵OD OB =,3OBD ∴∠=∠,14∴∠=∠,2A BDF ∴∠=∠;(2)解:连接BC 交OD 于F ,如图,∵AB 为直径,90ACB ∴∠=︒,∵CD BD =,∴OD BC ⊥,∴CF BF =, ∴1322OF AC ==, ∴53122DF =-=, ∵ACB 90∠=︒,OD BC ⊥,OD EF ⊥∴四边形CEDF 为矩形,∴1CE DF ==.【点睛】本题主要考查了切线的性质、圆周角定理以及矩形的判定与性质,灵活应用相关知识点成为解答本题的关键.22.(1)证明见解析;(2)36π-(1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT 与⊙O 相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1, ∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 13312AOT S ∴=⨯=. ∴阴影部分的面积2Δ 601333606AOT AOTS S ππ⨯=-==-扇形.本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.23.4【分析】连接OC, 根据垂径定理可得∠CHO=90°,CD=2CH ,求出CH 的长,根据30°的直角三角形的特征以及勾股定理求出OC=2OH 即可.【详解】连接OC ,则OA =OC .∴∠A =∠ACO =30°.∴∠COH =60°.∵AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∴∠CHO=90°,CD=2CH∴∠OCH=30°,∴2OC OH =,∵CD 3∴CH =23∴在Rt OCH 中,222OH HC OC +=∴OH =2.∴OC =4.【点睛】本题考查了垂径定理及30度的直角三角形的性质以及勾股定理得应用,解题的关键是掌握垂径定理及30度的直角三角形的性质.24.(1)答案见解析;(2)134π. 【分析】(1)根据旋转要求找出A′,B′ 点连接即可.(2)根据旋转知道OA 扫过的面积即为以OA 为半径的圆的面积的四分之一,计算即可.【详解】(1)(2)∵OA 扫过的面积即为以OA 为半径的圆的面积的四分之一,∴根据点A 的坐标为 (−3,2) ,点B 的坐标为 (0,2) ,求得OA 2=13,则以OA 为半径的圆的面积为13π,∴OA 扫过的面积为:134π. 【点睛】此题考查了旋转过程中图形及坐标的变化,难度一般.25.22L b a b π=+-;212S ab b π=-.【分析】 由已知图知,阴影部分的周长是()12πb 22a b ⨯+-; 阴影部分的面积为,长方形的面积减去两个14圆的面积(半圆的面积). 【详解】 阴影部分的周长()122222L b a b b a b ππ=⨯+-=+-; 阴影部分的面积221=1242S ab b ab b ππ=-⨯-. 【点睛】此题考查的是列代数式,用到的知识点是半圆的周长和面积的计算方法.26.(1)见解析;(2)见解析.【分析】(1)如图3,连接AN 、BM ,通过圆内接三角形是直角三角形时,斜边就是直径来确定圆心位置;(2)连接BC 、AD 、BD ,通过同(等)弧所对圆周角相等推出ABD CDB ∠=∠,进而推出45BDC ∠=︒.【详解】(1)如图3,连接AN 、BM 交点O 即为圆心∵9090ABN BAM ∠=︒∠=︒,,∴AN 、BM 是直径,∴直径交点O 就是圆心.(2)如图4,连接BC 、AD 、BD∵AB=CD ,∴AB CD =,∴ADB CBD ∠=∠,又∵AC CA =,∴ABC CDA ∠=∠,∴ABD CDB ∠=∠,又∵90BED ∠=︒,∴45ABD CDB ∠=∠=︒,故连接BD ,则45BDC ∠=︒.【点睛】本题考查确定圆心和确定圆弧圆周角等问题,解题的关键是圆内接三角形是直角三角形时,斜边就是直径以及同(等)弧所对圆周角相等.。
九年级上册数学单元测试卷-第4章 相似三角形-浙教版(含答案)
九年级上册数学单元测试卷-第4章相似三角形-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,中,平分,于点,为的中点,交于点,若,,则的长为()A.10B.8C.6D.42、如图,△ABC中,∠ACB=90°,CA=CB,AD为△ABC的角平分线,CE是△ABC的中线,AD 、CE相交于点F,则的值为()A. B. C. D.23、已知,则下列比例式成立的是()A. B. C. D.4、如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A. B. C. D.5、如果△ABC∽△A′B′C′,BC=3,B′C′=1.8,则△A′B′C′与△ABC的相似比为()A.5:3B.3:2C.2:3D.3:56、两个相似三角形的相似比为1:2,若较小三角形的面积为1,则较大三角形的面积为()A.8B.4C.2D.7、如图,在中,, 是的中点,以点为圆心,大于点E到的距离为半径画弧,两弧相交于点F,射线分别与BD,交于点G,H,若,,则的长为()A. B.5 C. D.108、用一个2倍的放大镜照一个ΔABC,下列命题中正确的是()A.ΔABC放大后角是原来的2倍B.ΔABC放大后周长是原来的2倍 C.ΔABC放大后面积是原来的2倍 D.以上的命题都不对9、宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称美感.我们可以用这样的方法画出黄金矩形:作正方形,分别取的中点,连接,以点F为圆心,以为半径画弧,交的延长线于点G;作,交的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABEFB.矩形EFCDC.矩形EFGHD.矩形ABGH10、在平面直角坐标系中,已知点A(﹣6,9)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,3)B.(﹣18,27)C.(﹣18,27)或(18,﹣27) D.(﹣2,3)或(2,﹣3)11、如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是( )A. B. C. D.12、己知x:y=2:3,下列等式中正确的是( )A.(x-y):y=1:3B.(x-y):y=2:1C.(x-y):y=-1:3D.(x-y):y=-1:213、位似于,它们的周长比为,已知位似中心O 到A的距离为3,那么O到D的距离为()A.4B.4.5C.6D.914、如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD 于点F,已知S△AEF=4,则下列结论:①:②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A.①②③④B.①④C.②③④D.①②③15、下列各组图形中不一定相似的是( )A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形二、填空题(共10题,共计30分)16、在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm,她身旁的旗杆影长5m,则旗杆高为________ m.17、如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为________18、点C把线段AB分成两条线段AC和BC,如果________,那么称线段AB被点C黄金分割.19、如图,在矩形ABCD中,AB=12,BC=16,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为________20、如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是________.21、如图,在△ABC中,DE∥BC,DE过重心G,且分别与AB、AC交与点D、E,如果△ADE的面积为16cm2,那么四边形BCED的面积为________cm2.22、已知:如图ΔABC中,D、E、F分别是AB、AC、BC的中点.(1)若AB=10cm,AC=6cm,则四边形ADFE的周长为________ cm,(2)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是________ cm,面积是________ cm2.23、如图,已知点C是线段AB的黄金分割点,若AB=2cm,则AC=________cm.24、如图,在Rt△ABC中,∠BAC=90°,点A的坐标(0,2),顶点C在反比例函数y=(x>0)的图象上.若AB=2AC,且OA=OB,则k=________25、如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC 上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________.三、解答题(共5题,共计25分)26、在学完分式后进行的测试中,王老师出了这样一道题:已知==≠0,求的值.小娟给出了下列解答过程:设===k(k≠0),则x=2k,y=3k,z=4k,所以==.请聪明的你参照小娟的解法解答下面的问题:已知==≠0,求的值.27、如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB 的高度(精确到0.1米).28、如图:已知△ABC∽△DEC,∠D=45°,∠ACB=60°,AC=3cm,BC=4cm,CE=6cm.求:(1)∠B的度数;(2)求AD的长.29、如图,在直角三角形中,,作的内接矩形.设,求x取何值时矩形的面积最大?30、如图,已知在△ABC中,AB=AC,D为 CB延长线上一点,E为 BC延长线上一点,且满足AB2=DB•CE.求证:△ADB∽△EAC.参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、D5、D6、B7、C8、B9、D10、D11、D12、C13、B14、D15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第四章(单元测试)含答案-2022年北师版数学九年级上册
第四章测试一、选择题(每小题3分,共30分) 1.如果a b =23,那么a -2b b 的结果是( )A .-12B .-43C.43D.122.如图,直线l 1∥l 2∥l 3,直线AC ,DF 与l 1,l 2,l 3的交点分别为A ,B ,C ,D ,E ,F .已知AB =6,BC =4,DF =9,则DE =( ) A .5.4B .5C .4D .3.6(第2题) (第4题)3.一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为5 cm ,则最大边长为( ) A .10 cm B .15 cm C .20 cmD .25 cm4.如图,P 为线段AB 上一点,AD 与BC 交于点E ,∠CPD =∠A =∠B ,BC 交PD 于点F ,AD 交PC 于点G ,则下列结论中错误的是( ) A .△CGE ∽△CBP B .△APD ∽△PGD C .△APG ∽△BFPD .△PCF ∽△BCP5.如图,D ,E 分别是AB ,AC 边上的点,在下列条件中:①∠AED =∠B ;②DE BC =AD AC ;③AD AC =AE AB ,能独立判断△ADE 与△ACB 相似的有( )A .①B .①③C .①②D .①②③6.如图,AB ∥CD ,AE ∥FD ,AE ,FD 分别交BC 于点G ,H ,则图中共有相似三角形()A.4对B.5对C.6对D.7对(第6题)(第7题)7.如图,△ABC与△A1B1C1位似,位似中心是点O,若OA∶OA1=1∶2,则△ABC 与△A1B1C1的周长比是()A.1∶2 B.1∶3 C.1∶4 D.1∶ 2 8.将三角形纸片(△ABC)按如图所示的方式折叠,使点C落在AB边上的点D 处,折痕为EF.已知AB=AC=3,BC=4,若以点B,D,F为顶点的三角形与△ABC相似,那么CF的长度是()A.2 B.127或2 C.127 D.125或2(第8题) (第9题)(第10题)9.如图,铁道口的栏杆短臂长1 m,长臂长10 m.当短臂端点下降0.5 m时,长臂端点升高()A.5 m B.6 m C.7 m D.8 m 10.如图,在平面直角坐标系中,AB∥DC,AC⊥BC,CD=AD=5,AC=6,将四边形ABCD向左平移m个单位后,点B恰好和原点O重合,则m的值是()A.11.4 B.11.6 C.12.4 D.12.6二、填空题(每小题4分,共28分)11.若ab=cd=ef=2,且b+d+f=4,则a+c+e=________.12.已知△ABC∽△A′B′C′,AD和A′D′是它们的对应中线,若AD=10,A′D′=6,则△ABC与△A′B′C′的周长比是________.13.在某一时刻,测得一根高为1.2 m的竹竿的影长为2 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为________m.14.如图,线段AB=1,点C和点D均为线段AB的黄金分割点,那么CD=________.(第14题)(第15题)15.如图,把△DEF沿DE平移到△ABC的位置,它们重合部分的面积是△DEF面积的49,若AB=6,则△DEF移动的距离AD=________.16.如图,矩形ABCD中,AB=2,BC=2,E为CD的中点,连接AE,BD 交于点P,过点P作PQ⊥BC于点Q,则PQ=________.(第16题)(第17题)17.如图,在边长为2个单位长度的正方形ABCD中,E是AB的中点,点P从点D出发沿射线DC以每秒1个单位长度的速度运动,过点P作PF⊥DE于点F,当运动时间为______秒时,以P,F,E为顶点的三角形与△AED相似.三、解答题(一)(每小题6分,共18分)18.如图,四边形ABCD∽四边形A′B′C′D′.(1)α=________,它们的相似比是________;(2)求边x的长度.19.如图,已知△ABC∽△ACD,AC=6,AD=4,CD=2AD,求BD和BC的长.20.如图,已知在▱ABCD中,E为AB上一点,AE∶EB=1∶2,DE与AC交于点F.(1)求△AEF与△CDF的周长之比;(2)若S△AEF=6 cm2,求S△CDF.四、解答题(二)(每小题8分,共24分)21.如图,在正方形ABCD中,点E为BC的中点,连接DE,过点E作EF⊥ED,交AB于点G,交DA的延长线于点F.(1)求证:△ECD∽△GAF;(2)若AB=4,求EF的长.22.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,E是AC的中点,DE的延长线与BC的延长线交于点F.求证:(1)△FDC∽△FBD;(2)AC·BF=BC·DF.23.如图,已知△ABC的三个顶点的坐标分别为A(0,-3),B(3,-2),C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位长度得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的相似比为21,并直接写出点A2的坐标.五、解答题(三)(每小题10分,共20分)24.如图,某校数学兴趣小组利用自制的直角三角形硬纸板(△DEF)来测量操场上的旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶端A在同一直线上.已知DE=0.5 m,EF=0.25 m,点D到地面的距离DG=1.5 m,到旗杆的水平距离DC=20 m,求旗杆的高度.25.一块材料的形状是锐角三角形ABC,边BC=120 mm,高AD=80 mm,把它加工成正方形零件,如图①,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)如果把它加工成矩形零件,如图②,当EG为多少时,矩形EGHF有最大面积?最大面积是多少?答案一、1.B 2.A 3.C 4.A 5.B 6.C 7.A 8.B 9.A 10.A二、11.8 12.5∶3 13.54 14.5-2 15.2 16.43 17.1或52三、18.解:(1)81°;3∶2(2)∵四边形ABCD ∽四边形A ′B ′C ′D ′,∴x 11=96, 解得x =332.19.解:∵AD =4,CD =2AD ,∴CD =8.∵△ABC ∽△ACD ,∴AD AC =AC AB =CD BC ,即46=6AB =8BC , 解得AB =9,BC =12,∴BD =AB -AD =5. 20.解:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,CD ∥AB .∴∠CAB =∠DCA ,∠DEA =∠CDE . ∴△AEF ∽△CDF .∵AE ∶EB =1∶2,∴AE ∶AB =AE ∶CD =1∶3. ∴△AEF 与△CDF 的周长之比为1∶3. (2)∵△AEF ∽△CDF ,AE ∶CD =1∶3, ∴S △AEF ∶S △CDF =1∶9.∵S △AEF =6 cm 2,∴S △CDF =54 cm 2. 四、21.(1)证明:∵四边形ABCD 为正方形,∴∠C =∠BAD =∠B =90°, ∴∠F AG =90°,∴∠F AG =∠C . ∵EF ⊥ED ,∴∠BEG +∠CED =90°. ∵∠BGE +∠BEG =90°,∴∠BGE =∠CED . ∵∠BGE =∠FGA ,∴∠FGA =∠CED , ∴△ECD ∽△GAF .(2)解:∵四边形ABCD 为正方形,∴BC =CD =AB =4. ∵点E 为BC 的中点,∴BE =EC =12BC =2, ∴DE =EC 2+CD 2=22+42=2 5. 由(1)知,△ECD ∽△GAF ,∴∠F =∠CDE . ∵EF ⊥ED ,∴∠FED =90°,∴∠FED =∠C =90°, ∴△EFD ∽△CDE ,∴EF DE =CD CE ,∴EF 2 5=42,∴EF =4 5.22.证明:(1)∵CD ⊥AB ,∴∠ADC =90°.又∵E 是AC 的中点,∴DE =EC .∴∠EDC =∠ECD . ∵∠ACB =90°,∠BDC =90°,∴∠ECD +∠DCB =90°,∠DCB +∠B =90°. ∴∠ECD =∠B .∴∠EDC =∠B . 又∵∠F =∠F ,∴△FDC ∽△FBD . (2)∵△FDC ∽△FBD ,∴DF BF =DCBD . ∵∠BDC =∠BCA =90°,∠B =∠B , ∴△CBD ∽△ABC .∴BD BC =DC AC ,即DC BD =AC BC . ∴DF BF =ACBC .∴AC ·BF =BC ·DF .23.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求,A 2的坐标为(-2,-2).五、24.解:∵∠DEF =∠DCA =90°,∠EDF =∠CDA ,∴△DEF ∽△DCA .∴DE DC =EF CA .∵DE =0.5 m ,EF =0.25 m ,DC =20 m ,∴0.520=0.25CA .∴AC =10 m. 又∵CB =DG =1.5 m ,∴AB =AC +CB =10+1.5=11.5(m). 答:旗杆的高度为11.5 m.25.(1)证明:∵四边形EGHF 为正方形,∴EF ∥BC ,∴△AEF ∽△ABC . (2)解:设EG =a mm , ∵四边形EGHF 为矩形, ∴EF ∥BC ,∴△AEF ∽△ABC .∵AK 与AD 是对应边上的高,∴EF BC =AK AD ,∴EF 120=80-a80, ∴EF =⎝ ⎛⎭⎪⎫120-32a mm ,∴S 矩形EGHF =a ⎝ ⎛⎭⎪⎫120-32a =-32a 2+120a =-32(a -40)2+2 400(mm 2), 当a =40时,矩形EGHF 的面积最大,最大面积是2 400 mm 2,即当EG =40 mm 时,矩形EGHF 的面积最大,最大面积是2 400 mm 2.。
湘教版初三上册数学全册单元测试卷
湘教版九年级上册初中数学全册试卷(5套单元试卷+1套期末试卷)第1章测试卷1.下列函数中,表示y 是x 的反比例函数的是( )A .y =2x -13B .y =1x -1C .y =-1x 2D .y =12x 2.如果点(3,-4)在反比例函数y =k x 的图象上,那么下列各点中,在此图象上的是( )A .(3,4)B .(-2,-6)C .(-2,6)D .(-3,-4)3.某闭合电路中,电源的电压为定值,电流I (A)与电阻R (Ω)成反比例函数关系.如图所示的是该电路中电流I 与电阻R 之间的函数关系的图象,当电阻R 为5Ω时,电流I 为( )A .6 AB .5 AC .1.2 AD .1 A4.已知反比例函数y =3x ,下列结论中不正确的是( )A .图象经过点(-1,-3)B .图象在第一、三象限C .当x >1时,0<y <3D .当x <0时,y 随着x 的增大而增大5.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =k 2x 的图象无交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<06.已知点A (-1,y 1),B (2,y 2)都在双曲线y =3+m x 上,且y 1>y 2,则m 的取值范围是()A.m<0 B.m>0 C.m>-3 D.m<-37.在同一平面直角坐标系中,正比例函数y=kx与反比例函数y=k-1x的图象不可能是()8.如图,分别过反比例函数y=2x(x>0)图象上任意两点A,B作x轴的垂线,垂足分别为点C,D,连接OA,OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1,S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.S1,S2的大小关系不能确定9.如图,A,B两点在反比例函数y=k1x的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥x轴于点E,BD⊥x轴于点F,AC=2,BD=3,EF=10 3,则k2-k1的值为()A.4 B.143 C.163D.610.如图①,在矩形ABCD 中,BC =x ,CD =y ,y 与x 满足的反比例函数关系如图②所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( )A .当x =3时,EC <EMB .当y =9时,EC >EMC .当x 增大时,EC ·CF 的值增大D .当y 增大时,BE ·DF 的值不变二、填空题(每题3分,共24分)11.已知反比例函数y =k -1x (k 是常数,k ≠1)的图象有一支在第二象限,那么k的取值范围是________.12.若点(2,y 1),(3,y 2)在函数y =-2x 的图象上,则y 1________y 2(填“>”“<”或“=”).13.若反比例函数y =k x 的图象与一次函数y =mx 的图象的一个交点的坐标为(1,2),则它们另一个交点的坐标为____________.14.某气球内充满了一定质量的气体,当温度不变时,气球内气体的压强p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示,则当气球内气体体积V (m 3)的范围是0.8<V <2时,气体的压强p (kPa)的范围是________.15.如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,且△ABP的面积为6,则这个反比例函数的表达式为________.16.如图,矩形ABCD在第一象限,AB在x轴的正半轴上(点A与点O重合),AB=3,BC=1,连接AC,BD,交点为M.将矩形ABCD沿x轴向右平移,当平移距离为________时,点M在反比例函数y=1x的图象上.17.如图,过原点O的直线与两个反比例函数的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=1x,则y2与x的函数表达式是____________.18.如图,在平面直角坐标系中,正方形OABC的顶点O与原点重合,顶点A,C分别在x轴、y轴上,反比例函数的图象与正方形的两边AB,BC分别交于点M,N,ND⊥x轴,垂足为D,连接OM,ON,MN.下列结论:①△O≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的序号是____________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数表达式;(2)当x=5时,求y的值.20.如图,已知一次函数与反比例函数的图象交于点A(-4,-2)和B(a,4).(1)求反比例函数的表达式和点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值?21.如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求y的取值范围.22.如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在y轴,x轴上,点B的坐标为(4,2),直线y=-12x+3分别交AB,BC于点M,N,反比例函数y=kx的图象经过点M,N.(1)求反比例函数的表达式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.23.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数表达式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?24.如图,正比例函数y=2x的图象与反比例函数y=kx的图象交于A,B两点,过点A作AC⊥x轴于点C,连接BC,若△ABC的面积为2.(1)求k的值.(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.答案一、1.D 2.C 3.C 4.D 5.D6.D :由题意知,反比例函数图象在第二、四象限,所以3+m <0,即m <-3.7.D8.C :∵点A ,B 均在反比例函数y =2x (x >0)的图象上,∴S △AOC =S △BOD =1.由题图可知,△AOC 与△BOD 有一个公共部分△COE ,因此△AOE 与梯形ECDB 的面积相等,即S 1=S 2,故选C.9.A :设A 点坐标为⎝ ⎛⎭⎪⎫m ,k 1m ,B 点坐标为⎝ ⎛⎭⎪⎫n ,k 1n ,则C 点坐标为⎝ ⎛⎭⎪⎫m ,k 2m ,D 点坐标为⎝ ⎛⎭⎪⎫n ,k 2n ,由题意得 ⎩⎪⎨⎪⎧n -m =103,k 1-k 2m =2,解得k 2-k 1=4.k 2-k 1n =3,10.D二、11.k <1 12.<13.(-1,-2) :∵反比例函数y =k x 的图象关于原点成中心对称,一次函数y=mx 的图象经过原点,且关于原点成中心对称,∴它们的交点也关于原点成中心对称.∵点(1,2)关于原点成中心对称的点为(-1,-2),∴它们另一个交点的坐标为(-1,-2).14.48<p <12015.y =12x :连接OA ,则△ABP 与△ABO 的面积相等,都等于6,∴反比例函数的表达式是y =12x .16.12 :将矩形ABCD 沿x 轴向右平移后,过点M 作ME ⊥AB 于点E ,则AE =12AB =32,ME =12BC =12.设OA =m ,则OE =OA +AE =m +32,∴M ⎝ ⎛⎭⎪⎫m +32,12. ∵点M 在反比例函数y =1x 的图象上,∴12=1m +32,解得m =12.17.y 2=4x 18.①③④三、19.解:(1)设y 与x 的函数表达式为y =k x -1, 由题意得2=k -5-1,解得k =-12. ∴y 与x 的函数表达式为y =-12x -1. (2)当x =5时,y =-12x -1=-125-1=-3. 20.解:(1)设反比例函数表达式为y =k x (k ≠0),∵反比例函数图象经过点A (-4,-2),∴-2=k -4, ∴k =8.∴反比例函数表达式是y =8x. ∵点B (a ,4)在函数y =8x 的图象上,∴4=8a ,∴a =2.∴点B 的坐标为(2,4).(2)根据图象得当x >2或-4<x <0时,一次函数的值大于反比例函数的值.21.解:(1)∵△AOB 的面积为2,且反比例函数的图象在第一、三象限,∴k =4,∴反比例函数表达式为y =4x .∵A (4,m ),∴m =44=1.(2)∵当x =-3时,y =-43;当x =-1时,y =-4.又∵反比例函数y =4x 在x <0时,y 随x 的增大而减小,∴当-3≤x ≤-1时,y 的取值范围为-4≤y ≤-43.22.解:(1)由题意易得点M 的纵坐标为2.将y =2代入y =-12x +3,得x =2.∴M (2,2).把点M 的坐标代入y =kx ,得k =4, ∴反比例函数的表达式是y =4x . (2)由题意得S △OPM =12OP ·AM ,∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-2-2=4,S △OPM =S 四边形BMON , ∴12OP ·AM =4.又易知AM =2,∴OP =4.∴点P 的坐标是(0,4)或(0,-4). 23.解:(1)当0≤x ≤8时,设y =k 1x +b ,将(0,20),(8,100)分别代入y =k 1x +b ,可求得k 1=10,b =20. ∴当0≤x ≤8时,y =10x +20. 当8<x ≤a 时,设y =k 2x , 将(8,100)代入y =k 2x , 得k 2=800. ∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20; 当8<x ≤a 时,y =800x .(2)将y =20代入y =800x , 解得x =40,即a =40. (3)当y =40时,x =80040=20.∴要想喝到不低于40 ℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.24.解:(1)∵正比例函数图象与反比例函数图象的两个交点关于原点对称,∴S △AOC =S △BOC =12S △ABC =1. ∵AC ⊥x 轴,∴k =2.(2)假设存在这样的点D ,设点D 的坐标为(m ,0).由⎩⎪⎨⎪⎧y =2x ,y =2x ,解得⎩⎨⎧x 1=1,y 1=2,⎩⎨⎧x 2=-1,y 2=-2.∴A (1,2),B (-1,-2). ∴AD =(1-m )2+22, BD =(m +1)2+22,AB =(1+1)2+(2+2)2=2 5. 当D 为直角顶点时,∵AB =2 5,∴OD =12AB = 5. ∴点D 的坐标为(5,0)或(-5,0). 当A 为直角顶点时,由AB 2+AD 2=BD 2,得(2 5)2+(1-m )2+22=(m +1)2+22, 解得m =5,即D (5,0). 当B 为直角顶点时,由BD 2+AB 2=AD 2,得(m +1)2+22+(2 5)2=(1-m )2+22, 解得m =-5,即D (-5,0).∴存在这样的点D ,使△ABD 为直角三角形,点D 的坐标为(5,0)或(-5,0)或(5,0)或(-5,0).第2章测试卷一、选择题(每题3分,共30分) 1.下列方程是一元二次方程的是( )A .9x +2=0B .z 2+x =1C .3x 2-8=0 D.1x +x 2=02.一元二次方程x 2-8x -1=0配方后为( )A .(x -4)2=17B .(x +4)2=15C .(x +4)2=17D .(x -4)2=15 3.将方程x (x -1)=4(x +1)化为一般形式后,二次项系数、一次项系数与常数项之和为( )A .0B .10C .4D .-84.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一个实数根及m的值分别为()A.4,-2 B.-4,-2 C.4,2 D.-4,25.下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0 C.2x2-4x+3=0 D.3x2=5x-2 6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人7.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是() A.-1或5 B.1 C.5 D.-18.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13 C.13 D.以上选项都不正确9.若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第()象限.A.四B.三C.二D.一(第10题)10.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于()A.0.5 cm B.1 cmC.1.5 cm D.2 cm二、填空题(每题3分,共24分)11.若方程(a -2)x |a |+3ax +1=0是关于x 的一元二次方程,则a 的值是________. 12.已知关于x 的一元二次方程mx 2+5x +m 2-2m =0有一个根为0,则m =________.13.某市加大了对雾霾的治理力度,2019年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x ,根据题意可列方程为________________________. 14.关于x 的两个方程x 2-4x +3=0与1x -1=2x +a有一个解相同,则a =________. 15.已知a ,b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a+b -2)+ab =________.16.如图,一个矩形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5cm ,容积是500 cm 3的无盖长方体容器,那么这块铁皮的长为__________,宽为__________.(铁皮厚度忽略不计)17.对于实数a ,b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4⊗2,因为4>2,所以4⊗2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1⊗x 2=________.18.如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,动点P 从点A 出发,沿A →D 方向以 2 cm/s 的速度向点D 运动.设△AB P 的面积为S 1,矩形PDFE 的面积为S 2,运动时间为t s(0<t <8),则t =________时,S 1=2S 2.三、解答题(19~22题每题10分,23题12分,24题14分,共66分) 19.用适当的方法解下列方程.(1)x2-4x-1=0; (2)x2-1=2(x+1);(3)x2+3x+1=0; (4)(y+1)(y-1)=2y-1.20.已知关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根.(1)求k的值;(2)求此时方程的根.21.已知关于x的一元二次方程(x-3)(x-2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2满足x12+x22-x1x2=3p2+1,求p的值.22.某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件.批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需化简):(2)如果批发商希望通过销售这批T恤获利9 000元.那么第二个月的单价应是多少元?23.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB 边向点B以1 cm/s的速度移动,点Q从点B沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8 cm2?(2)出发几秒后,线段PQ的长为4 2 cm?(3)△PBQ的面积能否为10 cm2若能,求出时间;若不能,请说明理由.24.某中学九年级准备组织学生去方特梦幻王国进行春游活动.方特梦幻王国给出了学生团体门票的优惠价格:如果学生人数不超过30名,那么门票为每张240元;如果人数超过了30名,则每超过1名,每张门票就降低2元,但每张门票最低不能少于200元.(1)若一班共有40名学生参加了春游活动,则需要交门票费多少元?(2)若二班共有52名学生参加了春游活动,则需要交门票费多少元?(3)若三班交了门票费9 450元,请问该班参加春游的学生有多少名?答案一、1.C 2.A 3.D 4.D 5.C6.C:设参加酒会的人数为x人,根据题意得12x(x-1)=55,整理,得x2-x-110=0,解得x1=11,x2=-10(不合题意,舍去).所以参加酒会的人数为11人.7.D8.C9.D10.B:设AC交A′B′于H.∵∠DAC=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1,即AA′=1 cm.故选B.二、11.-212.213.100(1+x)+100(1+x)2=260:根据题意知,第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元.∴100(1+x)+100(1+x)2=260.14.1:由方程x2-4x+3=0,得(x-1)(x-3)=0,∴x-1=0或x-3=0.解得x1=1,x2=3.当x=1时,分式方程1x-1=2x+a无意义;当x=3时,13-1=23+a,解得a=1.经检验,a=1是方程13-1=23+a的解.15.-116.30 cm;15 cm17.3或-3:x2-5x+6=0的两个根为x1=2,x2=3或x1=3,x 2=2.当x 1=2,x 2=3时,x 1⊗x 2=2×3-32=-3; 当x 1=3,x 2=2时,x 1⊗x 2=32-2×3=3. 18.6 :∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm , AD 为BC 边上的高, ∴AD =BD =CD =8 2 cm. 又∵AP =2t cm ,∴S 1=12AP ·BD =12×2t ×8 2=8t (cm 2),PD =(8 2-2t )cm. 易知PE =AP =2t cm ,∴S 2=PD ·PE =(8 2-2t )·2t cm 2. ∵S 1=2S 2,∴8t =2(8 2-2t )·2t . 解得t 1=0(舍去),t 2=6. 三、19.解:(1)(配方法)移项,得x 2-4x =1,配方,得x 2-4x +(-2)2=1+(-2)2, 因此(x -2)2=5,所以x -2=5或x -2=-5, 解得x 1=5+2,x 2=2- 5.(2)(因式分解法)移项,得x 2-1-2(x +1)=0,因式分解,得(x +1)(x -1-2)=0,解得x 1=-1,x 2=3.(3)(公式法 )a =1,b =3,c =1,所以b 2-4ac =32-4×1×1=5>0,所以x =-3±52,所以x 1=-3+52,x 2=-3-52. (4)(因式分解法)原方程可变形为y 2-2y =0,y (y -2)=0,所以y 1=0,y 2=2.20.解:(1)由题意得Δ=(k +2)2-4×4×(k -1)=k 2+4k +4-16k +16=k 2-12k +20=0,解得k =2或k =10.(2)当k =2时,原方程变为4x 2-4x +1=0,(2x -1)2=0,即x 1=x 2=12;当k =10时,原方程为4x 2-12x +9=0,(2x -3)2=0,即x 1=x 2=32.21.(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵Δ=(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值此方程总有两个实数根.(2)解:∵原方程的两根为x 1, x 2,∴x 1+x 2=5,x 1x 2=6-p 2-p .∵x 21+x 22-x 1x 2=3p 2+1,∴(x 1+x 2)2-3x 1x 2=3p 2+1,∴52-3(6-p 2-p )=3p 2+1,∴25-18+3p 2+3p =3p 2+1,∴3p =-6,∴p =-2.22.解:(1)第一行填80-x ;第二行依次填200+10x ;800-200-(200+10x ).(2)根据题意,得80×200+(80-x )(200+10x )+40[800-200-(200+10x )]-50×800=9 000.整理,得x 2-20x +100=0.解这个方程,得x 1=x 2=10.当x =10时,80-x =70>50.所以第二个月的单价应是70元.23.解:(1)设t s 后,△PBQ 的面积为8 cm 2,则PB =(6-t )cm ,BQ =2t cm ,∵∠B =90°,∴12(6-t )×2t =8,解得t 1=2,t 2=4,∴2 s 或4 s 后,△PBQ 的面积为8 cm 2.(2)设出发x s 后,PQ =4 2 cm ,由题意,得(6-x )2+(2x )2=(4 2)2,解得x 1=25,x 2=2,故出发25 s 或2 s 后,线段PQ 的长为4 2 cm.(3)不能.理由:设经过y s ,△PBQ 的面积等于10 cm 2,则12×(6-y )×2y =10,即y 2-6y +10=0,∵Δ=b 2-4ac =36-4×10=-4<0,∴△PBQ 的面积不能等于10 cm 2.24.解:(1)240-(40-30)×2=220(元),220×40=8 800(元).答:若一班共有40名学生参加了春游活动,则需要交门票费8 800元.(2)240-(52-30)×2=196(元),∵196<200,∴每张门票200元.200×52=10 400(元).答:若二班共有52名学生参加了春游活动,则需要交门票费10 400元.(3)∵9 450不是200的整数倍,且240×30=7 200(元)<9 450元,∴每张门票的价格高于200元且低于240元.设三班参加春游的学生有x 名,则每张门票的价格为[240-2(x -30)]元, 根据题意,得[240-2(x -30)]x =9 450,整理,得x 2-150x +4 725=0,解得x 1=45,x 2=105,∵240-2(x -30)>200,∴x <50.∴x =45.答:若三班交了门票费9 450元,则该班参加春游的学生有45名.第3章测试卷一、选择题(每题3分,共30分)1.若△ABC∽△A′B′C′,∠A=40°,∠B=60°,则∠C′等于() A.20°B.40°C.60°D.80°2.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若ABBC=12,则DEEF等于()A.13 B.12 C.23D.13.下列四组线段中,不是成比例线段的为()A.3,6,2,4 B.4,6,5,10C.1,2,3, 6 D.2,5,2 3,15 4.下列各组图形中有可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形5.如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,位似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1)6.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81.其中正确的有()A.1个B.2个C.3个D.4个7.如图,为计算河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一直线上,若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB为()A.60 m B.40 m C.30 m D.20 m8.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0) B.(6,3) C.(6,5) D.(4,2)9.如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使OC=13FO,连接AB,AC,BC,则在△ABC中,S△ABO:S△AOC:S△BOC等于()A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:210.已知△ABC的三边长分别为20 cm,50 cm,60 cm,现要利用长度分别为30 cm和60 cm的细木条各一根,做一个与△ABC相似的三角形木架,要求以其中一根为一边,将另一根截下两段(允许有余料)作为另外两边,那么另两边的长度分别为()A.10 cm,25 cm B.10 cm,36 cm或12 cm,36 cmC.12 cm,36 cm D.10 cm,25 cm或12 cm,36 cm二、填空题(每题3分,共24分)11.已知c4=b5=a6≠0,则b+ca=________.12.如图,∠1=∠2,添加一个条件____________使得△ADE ∽△ACB .13.如图,已知点C 是线段AB 的黄金分割点,且BC >AC .若S 1表示以BC 为边的正方形的面积,S 2表示长为AD (AD =AB )、宽为AC 的矩形的面积,则S 1与S 2的大小关系为____________.14.如图,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上一点,DF 平分CE 于点G ,CF =1,则BC =______,△ADE 与△ABC 的周长之比为________,△CFG 与△BFD 的面积之比为________.15.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且OE EA =43,则F G BC =________.16.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形(如图),勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是________步.17.矩形ABCD中,AB=6,BC=8,点P在矩形ABCD的内部,点E在边BC 上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为____________.18.如图,正三角形ABC的边长为2,以BC边上的高AB1为边作正三角形AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正三角形AB1C1的边B1C1上的高AB2为边作正三角形AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2,……,以此类推,则S n=______________(用含n的式子表示,n为正整数).三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,四边形ABCD∽四边形EFGH,试求出x及∠α的大小.20.如图,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O 为位似中心,将△ABC放大为原来的2倍得△A′B′C′.(1)在图中第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)计算△A′B′C′的面积.21.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD;(2)若AB=13,BC=10,求线段DE的长.22.如图,竖立在B处的标杆AB=2.4米,在F处的观测者从E处看到标杆顶端A、树顶C在同一条直线上(点F,B,D也在同一条直线上).已知BD=8米,FB=2.5米,EF=1.5米,求树高CD.23.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上的某一点D处,折痕为EF(点E,F分别在边AC,BC上).(1)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为________.②当AC=3,BC=4时,AD的长为__________.(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.24.如图①,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)当α=0°和α=180°时,求AEBD的值.(2)试判断当0°≤α<360°时,AEBD的大小有无变化?请仅就图②的情况给出证明.(3)当△EDC旋转至A,D,E三点共线时,求线段BD的长.答案一、1.D 2.B 3.B 4.A 5.A 6.B7.B :∵AB ⊥BC ,CD ⊥BC ,∴∠ABE =∠DCE =90°. ∵∠AEB =∠DEC , ∴△ABE ∽△DCE . ∴AB DC =BE CE ,即AB 20=2010. ∴AB =40 m. 8.B9.B :设AB 与OF 相交于点M , ∵AF ∥OB , ∴△F AM ∽△OBM , ∴OM FM =BM AM =BO AF =12.设S △BOM =S ,则S △AOM =2S , ∵OC =13FO ,OM =12FM , ∴OM =OC .∴S △AOC =S △AOM =2S , S △BOC =S △BOM =S .∴S △ABO :S △AOC :S △BOC =3:2:1.10.D :如果从30 cm 长的一根中截,那么60 cm 长的一根只能作为最长边,而△ABC 的最长边也为60 cm ,且另两边长之和大于30 cm ,所以不符合题意.如果从60 cm 长的一根中截,设截得的短边和长边的长分别为x cm ,y cm ,那么有三种情况,即20:30=50:x =60:y 或20:x =50:30=60:y 或20:x =50:y =60:30,解得x =75,y =90(x +y >60,不符合题意,舍去)或x =12,y =36或x =10,y =25.故选D. 二、11.3212.∠D =∠C (答案不唯一)13.S 1=S 2 :∵点C 是线段AB 的黄金分割点,且BC >AC , ∴BC 2=AC ·AB .又∵S 1=BC 2, S 2=AC ·AD =AC ·AB , ∴S 1=S 2.14.2;1:2;1:6 15.4716.6017 :∵四边形CDEF 是正方形, ∴CD =ED ,DE ∥CF ,设ED =x 步,则CD =x 步,AD =(12-x )步, ∵DE ∥CF , ∴△ADE ∽△ACB , ∴ED BC =AD AC , ∴x 5=12-x 12,∴x =6017.∴该直角三角形能容纳的正方形边长最大是6017步. 17.65或3 :如图. ∵四边形ABCD 为矩形,∴∠BAD =90°,∴BD =AB 2+AD 2=10,当PD =AD =8时,BP =BD -PD =2, ∵△PBE ∽△DBC , ∴BP BD =PE CD ,即210=PE 6,解得PE =65,当P ′D =P ′A 时,点P ′为BD 的中点,∴P ′E ′=12CD =3, 当P A =AD 时,显然不成立.故答案为65或3.18.32×⎝ ⎛⎭⎪⎫34n :在正三角形ABC 中,AB 1⊥BC ,∴BB 1=12BC =1. 在Rt △ABB 1中,AB 1=AB 2-BB 21=22-12=3, 根据题意可得△AB 2B 1∽△AB 1B ,记△AB 1B 的面积为S , ∴S 1S =⎝ ⎛⎭⎪⎫322.∴S 1=34S .同理可得S 2=34S 1,S 3=34S 2,S 4=34S 3,…. ∵S =12×1×3=32,∴S 1=34S =32×34,S 2=34S 1=32×⎝ ⎛⎭⎪⎫342,S 3=34S 2=32×⎝ ⎛⎭⎪⎫343,S 4=34S 3=32×⎝ ⎛⎭⎪⎫344,…,Sn =32×⎝ ⎛⎭⎪⎫34n.三、19.解:∵四边形ABCD ∽四边形EFGH ,∴∠H =∠D =95°. ∴∠α=360°-95°-118°-67°=80°. ∵四边形ABCD ∽四边形EFGH , ∴BC FG =ABEF ,∴x ∶7=12∶6,解得x =14. 20.解:(1)如图.(2)S △A ′B ′C ′=4×4-12×2×2-12×2×4-12×2×4=6. 21.(1)证明:∵AB =AC ,∴∠B =∠C , 又∵AD 为BC 边上的中线, ∴AD ⊥BC . ∵DE ⊥AB ,∴∠BED =∠ADC =90°. ∴△BDE ∽△CAD .(2)解:∵BC =10,AD 为BC 边上的中线, ∴BD =CD =5. ∵AC =AB =13, ∴由勾股定理可知 AD =AC 2-CD 2=12.由(1)中△BDE ∽△CAD 可知DE AD =BD AC ,得DE 12=513,故DE =6013. 22.解:过点E 作EH ⊥CD 交CD 于点H ,交AB 于点G ,如图所示.由题意得,EF ⊥FD ,AB ⊥FD , CD ⊥FD .∵EH ⊥CD ,EH ⊥AB , ∴四边形EFDH 为矩形,∴EF =GB =DH =1.5米,EG =FB =2.5米,GH =BD =8米, ∴AG =AB -GB =2.4-1.5=0.9(米). ∵EH ⊥CD ,EH ⊥AB ,∴AG ∥CH , ∴△AEG ∽△CEH ,∴AG CH =EGEH , ∴0.9CH = 2.52.5+8,解得CH=3.78米,∴CD=CH+DH=3.78+1.5=5.28(米).答:树高CD为5.28米.23.解:(1)①2②95或52(2)相似.理由:连接CD交EF于点O. ∵CD是Rt△ABC的中线,∴CD=DB=12AB,∴∠DCB=∠B,由折叠知∠COF=∠DOF=90°,∴∠DCB+∠CFE=90°,∴∠B+∠CFE=90°.∵∠CEF+∠CFE=90°,∴∠B=∠CEF.在△CEF和△CBA中,∠ECF=∠BCA,∠CEF=∠B,∴△CEF∽△CBA.24.解:(1)当α=0°时,∵BC=2AB=8,∴AB=4.∵点D,E分别是边BC,AC的中点,∴BD=4,AE=EC=12AC.∵∠B=90°,∴AC=82+42=4 5,∴AE=CE=2 5,∴AEBD=2 54=52.当α=180°时,如图①,易得AC=4 5,CE=2 5,CD=4,∴AEBD=AC+CEBC+CD=4 5+2 58+4=52.(2)无变化.证明:在题图①中,∵DE 是△ABC 的中位线, ∴DE ∥AB ,∴CE CA =CDCB ,∠EDC =∠B =90°.在题图②中,∵△EDC 在旋转过程中形状大小不变, ∴CE CA =CDCB 仍然成立.∵∠ACE =∠BCD =α,∴△ACE ∽△BCD .∴AE BD =ACBC . 由(1)可知AC =4 5.∴AC BC =4 58=52.∴AE BD =52. ∴AEBD 的大小不变.(3)当△EDC 在BC 上方,且A ,D ,E 三点共线时,四边形ABCD 为矩形,如图②,∴BD =AC =4 5;当△EDC 在BC 下方,且A ,E ,D 三点共线时,△ADC 为直角三角形,如图③,由勾股定理可得AD =AC 2-CD 2=8.又知DE =2,∴AE =6.∵AE BD =52,∴BD =12 55.综上,BD 的长为4 5或12 55.第4章测试卷一、选择题(每题3分,共30分)1.2cos 60°的值是()A.1 B. 3 C. 2 D.1 22.在Rt△ABC中,∠C=90°,AB=10,AC=6,则sin A的值是()A.45 B.35 C.34 D.133.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点A,B,C均在网格的格点上,则tan∠ABC的值为()A.35 B.34 C.105D.14.已知α为锐角,且sin(90°-α)=32,则α的度数为()A.30°B.60°C.45°D.75°5.如图,长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2 3 m B.2 6 m C.(2 3-2)m D.(2 6-2)m6.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边上的点F处.已知AB =8,BC=10,则cos∠EFC的值是()A.34 B.43 C.35 D.457.如图,某地修建高速公路,要从B地向C地修一条隧道(B,C在同一水平面上).为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100 m到达A处,在A处观察B地的俯角为30°,则B,C两地之间的距离为()A.100 3 m B.50 2 m C.50 3 m D.1003 3 m8.如图,在四边形ABCD中,E,F分别是边AB,AD的中点,若EF=2,BC =5,CD=3,则tan C的值为()A.34 B.43 C.35 D.459.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为( ) A .30°B .50°C .60°或120°D .30°或150°10.如图,AB 是一垂直于水平面的建筑物.某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i =10.75,坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为( )(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45) A .21.7米B .22.4米C .27.4米D .28.8米二、填空题(每题3分,共24分)11.在△ABC 中,∠C =90°,AB =13,BC =5,则cos B =________.12.如图,点A (3,t)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t的值是________.13.如图,在Rt △ABC 中,∠C =90°,AM 是直角边BC 上的中线,若sin ∠CAM=35,则tan B 的值为________.14.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.15.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′=________.16.如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则tan∠A′BC′=________.17.一次函数的图象经过点(tan 45°,tan 60°)和(-cos 60°,-6tan 30°),则此一次函数的表达式为________________.18.如图,在一笔直的海岸线l上有相距2 km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是________km.三、解答题(19~22题每题10分,23题12分,24题14分,共66分) 19.计算:(1)2(2cos 45°-sin 60°)+24 4;(2)sin 60°·cos 60°-tan 30°·tan 60°+sin245°+cos245°.20.在△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.(1)已知c=8 3,∠A=60°,求∠B,a,b;(2)已知a=3 6,∠A=45°,求∠B,b,c.21.如图,已知▱ABCD,点E是BC边上的一点,将边AD延长至点F,使∠AFC =∠DEC.(1)求证:四边形DECF是平行四边形;(2)若AB=13,DF=14,tan A=125,求CF的长.22.如图,甲建筑物AD和乙建筑物BC的水平距离AB为90 m,且乙建筑物的高度是甲建筑物高度的6倍,从E(A,E,B在同一水平线上)点测得D点的仰角为30°,测得C点的仰角为60°.求这两座建筑物顶端C,D间的距离.(计算结果用根号表示,不取近似值)23.如图,在夕阳西下的傍晚,某人看见高压电线的铁塔在阳光的照射下,铁塔的影子的一部分落在小山的斜坡上,为了测得铁塔的高度,他测得铁塔底部B到小山坡脚D的距离为2米,铁塔在小山斜坡上的影长DC为3.4米,斜坡的坡度i=1∶1.875,同时他测得自己的影长NH=336厘米,而他的身高MN为168厘米,求铁塔的高度.24.如图,在南北方向的海岸线MN上,有A,B两艘巡逻船,现均收到故障船C的求救信号.已知A,B两船相距100(3+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,海岸线MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离(结果保留根号).(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁危险?(参考数据:2≈1.41,3≈1.73)答案一、1.A 2.A 3.B 4.A5.B:在Rt△ABD中,AD=AB·sin 60°=4×32=2 3(m),在Rt△ACD中,AC=ADsin 45°=2 322=2 6(m),故选B.6.D7.A8.B:如图,连接BD,由三角形中位线定理得BD=2EF=2×2=4.又BC=5,CD=3,∴CD2+BD2=BC2.∴△BDC是直角三角形,且∠BDC=90°.∴tan C=BDCD=4 3.9.D:有两种情况:当顶角为锐角时,如图①,sin A=12,∴∠A=30°;当顶角为钝角时,如图②,sin (180°-∠BAC)=1 2,∴180°-∠BAC=30°. ∴∠BAC=150°.10.A :如图,过点C 作⊥DE ,交ED 的延长线于点N ,延长AB 交ED 的延长线于点M ,则BM ⊥DE ,则MN =BC =20米.∵斜坡CD 的坡比i =1:0.75,∴令=x 米,则DN =0.75x 米.在Rt △CDN 中,由勾股定理,得x 2+(0.75x )2=102,解得x =8(负值已舍去),则=8米,DN =6米.∵DE =40米,∴ME =MN +DN +DE =66米,AM =(AB +8)米.在Rt △AME 中,t an E =AM ME , 即tan 24°=AB +866,从而0.45≈AB +866,解得AB ≈21.7米.二、11.51312.92 :如图,过点A 作AB ⊥x 轴于B ,∵点A (3,t)在第一象限,∴AB =t ,OB =3,∴tan α=AB OB =t 3=32,∴t =92.13.23 14.1215.2 :由题意知BD ′=BD =2 2.在Rt △ABD ′中,tan ∠BAD ′=BD ′AB =2 22=2.16.13 :如图,过A ′作A ′D ⊥BC ′于点D ,设A ′D =x ,则B ′D =x ,BC =2x ,BD =3x .所以tan ∠A ′BC ′=A ′D BD =x 3x =13.17.y =2 3x - 3:tan 45°=1,tan 60°=3,-cos 60°=-12,-6tan 30°=-2 3.设函数y =kx+b 的图象经过点(1,3),(-12,-2 3),则用待定系数法可求出k =2 3,b =- 3. 18.3 :如图,过点C 作CH ⊥l ,垂足为点H .由题意得∠ACH =60°,∠BCH =30°.设CH =x km ,在Rt △ACH 中,AH =CH ·tan ∠ACH =x ·tan 60°=3x km.在Rt △BCH 中,BH =CH ·tan ∠BCH =x ·tan 30°=33x km.因为AH -BH =AB ,所以3x -33x =2,解得x =3,即船C 到海岸线l 的距离是 3 km.三、19.解:(1)原式=2×(2×22-32)+62=2-62+62=2.(2)原式=32×12-33×3+⎝⎛⎭⎪⎫222+⎝⎛⎭⎪⎫222=34-1+12+12=34.20.解:(1)∠B=30°,a=12,b=4 3. (2)∠B=45°,b=3 6,c=6 3. 21.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠ADE=∠DEC.又∵∠AFC=∠DEC,∴∠AFC=∠ADE,∴DE∥FC.∴四边形DECF是平行四边形.(2)解:过点D作DH⊥BC于点H,如图.∵四边形ABCD是平行四边形,∴∠BCD=∠A,AB=CD=13.又∵tan A=125=tan ∠DCH=DHCH,∴DH=12,CH=5.∵DF=14,∴CE=14.∴EH=9.∴DE=92+122=15.∴CF=DE=15.22.解:设AD=x m,则BC=6x m. 在Rt△ADE中,∵∠AED=30°,∴AE=ADtan 30°=x33=3x(m),DE=2AD=2x m.在Rt△BCE中,∵∠BEC=60°,∴BE =BC tan 60°=6x 3=2 3x (m), EC =2BE =4 3x m.∵AE +BE =AB ,∴3x +2 3x =90,解得x =10 3.∴DE =20 3 m ,EC =120 m.在△DEC 中,∠DEC =180°-30°-60°=90°,根据勾股定理,得CD =()2032+1202=20 39(m).答:这两座建筑物顶端C ,D 间的距离为20 39 m.23.解:如图,过点C 作CE ⊥BD 于点E ,延长AC ,交BD 的延长线于点F ,在Rt △CDE 中,i =1∶1.875,∴CE DE =11.875=815,设CE =8x 米,DE =15x 米,则DC =17x 米,∵DC =3.4米,∴CE =1.6米,DE =3米, 在Rt △MNH 中,tan ∠MHN =MN NH =168336=12,∴在Rt △CEF 中,tan F =CE EF =1.6EF =tan ∠MHN =12, ∴EF =3.2米,即BF =2+3+3.2=8.2(米),∴在Rt △ABF 中,tan F =AB BF =12,∴AB =4.1米.答:铁塔的高度是4.1米.24.解:(1)如图,过点C 作CE ⊥AB 于点E .设AE=a海里,则BE=AB-AE=100(3+1)-a(海里).在Rt△ACE中,∠AEC=90°,∠EAC=60°,∴AC=AEc os 60°=a12=2a(海里),CE=AE·tan 60°=3a(海里).在Rt△BCE中,∠EBC=45°,∴∠BCE=90°-∠EBC=45°.∴∠EBC=∠ECB,BE=CE.∴100(3+1)-a=3a,解得a=100.∴AC=200海里.在△ACD和△ABC中,∠ACB=180°-45°-60°=75°=∠ADC,∠CAD=∠BAC,∴△ACD∽△ABC,∴ADAC=ACAB,即AD200=200100(3+1),∴AD=200(3-1)海里.答:A与C之间的距离为200海里,A与D之间的距离为200(3-1)海里.(2)如图,过点D作DF⊥AC于点F.在Rt△ADF中,∠DAF=60°,∴DF=AD·sin 60°=200(3-1)×32=100(3-3)≈127(海里).∵127>100,∴若巡逻船A沿直线AC去营救船C,在去营救的途中无触礁危险.第5章测试卷一、选择题(每题3分,共30分)1.样本方差的作用是()A.估计总体的平均水平B.表示样本的平均水平C.表示总体的波动大小D.表示样本的波动大小,从而估计总体的波动大小2.要了解九年级学生中身高在某一个范围内的学生人数占九年级学生总人数的比例,需知道相应样本的()A.平均数B.频数分布 C.众数D.方差3.甲、乙两组秧苗的平均高度一样,方差分别是3.5,10.9,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙秧苗出苗一样整齐 D.无法确定甲、乙秧苗出苗谁更整齐4.为保障人民群众身体健康,在流感流行期间有关部门加强对市场的监管力度.在对某商店的检查中抽检了5包口罩(每包10只),5包口罩中合格口罩的只数分别是9,10,9,10,10,则估计该商店出售的这批口罩的合格率为()A.95% B.96% C.97% D.98%5.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林.一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量为()A.1 000只B.10 000只C.5 000只D.50 000只6.某商店对自己销售的三个品牌的奶粉进行了跟踪调查,两周内三个品牌奶粉a,b,c的销售量的比为4:3:1,现在该商店购进一批奶粉,共计2 400箱,采购员是根据商店的销售情况购进的,则b品牌奶粉约购进了()A.900箱B.1 600箱C.300箱D.2 100箱。
苏科版九年级数学上册第4章《等可能条件下的概率》单元测试卷【含答案】
苏科版九年级数学上册第4章《等可能条件下的概率》单元测试卷一.选择题1.桌上倒扣着背同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大2.一个袋子中装有4只白球和若干只红球,这些球除颜色外其余均相同,搅匀后,从袋子中随机摸出一个球是红球的概率是,则袋中有红球( )A.3只B.6只C.8只D.12只3.口袋中有9个红球和3个白球,则摸出一个球是白球的机会为( )A.B.C.D.4.“扬州是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为( )A.B.C.D.5.从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是( )A.B.C.D.6.王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红域的概率为,如果他将转盘等分成12份,则红域应占的份数是( )A.3份B.4份C.6份D.9份7.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑域,获得笔记本一个;若落在白域,获得钢笔一支.选手获得笔记本的概率为( )A.B.C.D.8.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为( )A.500B.800C.1000D.12009.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是( )A.大于4的点数B.小于4的点数C.大于5的点数D.小于5的点数10.标号为A、B、C、D的四个盒子中所装有的白球和黑球数如下,则下列盒子最易摸到黑球的是( )A.12个黑球和4个白球B.10个黑球和10个白球C.4个黑球和2个白球D.10个黑球和5个白球二.填空题11.袋子里有5只红球,3只白球,每只球除颜色以外都相同,从中任意摸出1只球,是红球的可能性 (选填“大于”“小于”或“等于”)是白球的可能性.12.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 .13.如图,转动如图所示的一些可以自由转动的转盘,当转盘停止时,猜想指针落在黑域内的可能性大小,将转盘的序号按可能性从小到大的顺序排列为 .14.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到 球的可能性最大.15.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组牌中抽取一张,数字和是6的概率是 .16.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的整数倍的概率是 .17.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列: .18.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐 (填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.19.如图,点O为正方形的中心,点E、F分别在正方形的边上,且∠EOF=90°,随机地往图中投一粒米,则米粒落在图中阴影部分的概率是 .20.如图,在两个同心圆中,三条直径把大,小圆都分成相等的六个部分,若随意向圆中投球,球落在黑域的概率是 .三.解答题21.A、B两人去茅山风景区游玩,已知每天某一时段开往风景区有三辆舒适程度不同的车,开过来的顺序也不确定.两人采取了不同的乘车方案:A无论如何总是上开来的第一辆车;B先观察后上车,当第一辆车开来时他不上车,而是仔细观察车的舒适度,如果第二辆车的状况比第一辆车好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请解决下列问题:(1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为A、B两人采用的方案,哪种方案使自己乘上等车的可能性大?为什么?22.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?23.某学校初二年级进行“垃圾分类,从我做起”的垃圾分类知识竞赛活动,并对测试成绩进行了分组整理,各分数段的人数如图所示(满分100分).请观察统计图,填空并回答下列问题:(1)这个学校初二年级共有 名学生;(2)成绩在 分数段的人数最多、最集中,占全年级总人数的比值是 .(3)若从该年级随意找出一名学生,他的测试成绩在 分数段的可能性最小,可能性是 .24.商店促销,设了有两种摇奖方式:方式一:如图(1),有一枚均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这个骰子掷出后,“6”朝上的则获奖;方式二:如图(2),一个均匀的转盘被等分成12份,分别标有1,2,3,4,5,6,7,8,9,10,11,12这12个数字.转动转盘,当转盘停止后,指针指向的数字为3的倍数则获奖.小明想增加获奖机会,应选择哪种摇奖方式?请通过计算,应用概率相关知识说明理由.25.某路口南北方向红绿灯的设置时间为:红灯40s、绿灯60s、黄灯3s.司机A随机地由南往北开车到达该路口,问:(1)他遇到红灯的概率大还是遇到绿灯的概率大?(2)他遇到绿灯的概率是多少?26.某商人制成了一个如图所示的转盘游戏,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖3元;若指针指向字母“C”,则奖1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?27.如图为一个封闭的圆形装置,整个装置内部为A、B、C三个区域(A、B两区域为圆环,C 区域为小圆),具体数据如图.(1)求出A、B、C三个区域三个区域的面积:S A= ,S B= ,S C= ;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B区域的概率P B为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A区域?答案与试题解析一.选择题1.解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.故选:B.2.解:从袋子中随机摸出一个球是红球的概率是,从袋子中随机摸出一个球是白球的概率就是,设袋中有x个红球,据题意得=,解得x=12∴袋中有红球12个.故选:D.3.解:摸出一个球是白球的机会为3÷(9+3)=.故选B.4.解:∵他在该路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率是:1﹣﹣=.故选:D.5.解:∵在,0,π,,6中,只有0、和6是有理数,∴抽到有理数的概率是;故选:C.6.解:∵他将转盘等分成12份,指针最后落在红域的概率为,设红域应占的份数是x,∴=,解得x=4,故选:B.7.解:∵整个正方形被分成了9个小正方形,黑色正方形有5个,∴落在黑域即获得笔记本的概率为,故选:D.8.解:抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选:C.9.解:A、P1==;B、P2==;C、P3=;D、P4==.骰子停止运动后出现点数可能性大的是出现小于5的点.故选:D.10.解:A、摸到黑球的概率为=0.75,B、摸到黑球的概率为=0.5,C、摸到黑球的概率为=,D、摸到黑球的概率为=,故选:A.二.填空题11.解:∵袋子里有5只红球,3只白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故大于.12.解:∵一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,∴从中随机摸出一个小球,恰好是黄球的概率为:=.故.13.解:自由转动下列转盘,指针落在黑色部分多的可能性大,按从小到大的顺序排列,序号依次是④①②③,故④①②③.14.解:∵袋中装有6个红球,5个黄球,3个白球,∴总球数是:6+5+3=14个,∴摸到红球的概率是==;摸到黄球的概率是;摸到白球的概率是;∴摸出红球的可能性最大.故红.15.解:每组各有3张牌,那么共有3×3=9种情况,数字之和等于6的有(2,4)(3,3),(4,2)3种情况,那么数字和是6的概率是.16.解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故.17.解:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球,是不可能事件,发生的概率为0;②随意调查1位青年,他接受过九年制义务教育,发生的概率接近1;③花2元买一张体育,喜中500万大奖,发生的概率接近0;④抛掷1个小石块,石块会下落,是必然事件,发生的概率为1,根据这些事件的可能性大小,它们的序号按从小到大排列:①③②④.故①③②④.18.解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故C.19.解:设正方形为ABCD,故点O作OH⊥BC于点H,作OG⊥AB于点G,∵∠EOG+∠GOF=90°,∠GOF+∠FOH=90°,∴∠EOG=∠HOF,∵∠OGE=∠OHF=90°,OH=OG,∴△OGE≌△OHF(AAS),∴S△OGE=S△OHF,∴S阴影=S正方形OGBH=S正方形ABCD,在正方形中,满足点E、F分别在正方形的边上(此处采用极限思想),且∠EOF=90°的图形如图所示:因此EOF的面积是正方形总面积的,因此米粒落在图中阴影部分的概率是.20.解:由图可知黑域与白域的面积相等,故球落在黑域的概率是=.三.解答题21.解:(1)列表:三辆车按出现的先后顺序共有6种不同的可能;(2)A采用的方案使自己乘上等车的概率==;B采用的方案使自己乘上等车的概率==,因为<,所以B人采用的方案使自己乘上等车的可能性大.22..解:因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.23.解:(1)6+8+32+48+26=120(人),故120;(2)从统计图中可以看出,80~90这一组出现人数最多,共出现48次,因此占全年级人数的48÷120=0.40,故80~90,0.40;(3)从统计图中可以看出,50~60这一组出现人数最少,出现6次,因此占全年级人数的6÷120=5%,故50~60,5%.24.解:选择摇奖方式二.理由如下:选择摇奖方式一获奖的概率为=,选择摇奖方式二获奖的概率为=,因为>,所以摇奖方式二获奖的机会大,选择摇奖方式二.25.解:(1)∵红灯40s、绿灯60s、黄灯3s.∴他遇到绿灯的概率大;(2)遇到绿灯的概率=,故遇到绿灯的概率是.26.解:商人盈利的可能性大P A=80×=40(次);P B=80×=10(次);P C=80×=30(次);理由:商人盈利:(元)商人亏损:=60(元)因为80>60所以商人盈利的可能性大.27.解:(1)S C=π•22=4π,S B=π•42﹣π•22=12π,S A=π•62﹣π•42=20π;故20π,12π,4π;(2)豆子落在B区域的概率P B为:=;(3)根据题意得:180×=100(粒),答:大约有100粒豆子落在A区域.。
【易错题】浙教版九年级数学上册《第四章相似三角形》单元测试卷含答案解析.doc
【易错题解析】浙教版九年级数学上册第四章相似三角形单元测试卷一、单选题(共10题;共30分)1•已知「夕,则?的值是()3 4 y2. 如图1, A ABC和4GAF是两个全等的等腰直角三角形,图屮相似三角形(不包括全等)共有()A. 1对B. 2对C. 3对D. 4对3. 图中的两个三角形是位似图形,它们的位似中心是()A.点PB.点OC.点MD.点N4. 在ZiABC 和△ DEF 屮,ZA=40°, ZD=60°, ZE=80°,字=器,那么ZB 的度数是()AC FEA.40°B.60°C.80°D.100°5. 如图,锐角AABC的高CD和BE相交于点0,图中与△ ODB相似的三角形有()6. 如图,在平行四边形ABCD中,AE: AD=2: 3,连接BE交AC于点F,若△ ABF和四边形CDEF的面积分别记为Si , S2 ,贝iJSi: S2% ()A. 2: 3B.4: 9C. 6: 11D. 6: 137. 如图,在AABC中,点D, E分别是AB, C的中点,则S AADE:S A ABC=()A. 1: 2B. 1: 3C. 1: 4D. 1: 58. (2017*淄惮)如图,在RtA ABC 中,ZABC=90°, AB=6, BC=8, ZBAC, ZACB 的平分线相交于点E,过点E作EF〃BC交AC于点F,则EF的长为()9.如图,点D是AABC的边AC的上一点,且ZABD=ZC;如果= |,那么譽=()CD 3 D LF八…! f►•10.如图,RtA ABC 中,BC=2V3 ,ZACB=90°, ZA=30°, 6 是斜边 AB 的中点,过 6 作 DiEi 丄AC 于 Ei二、填空题(共10题;共30分)AB=4, CD=3, OD=2,那么线段OA 的长为22.如果两个相似三角形周长的比是2:3 ,那么它们面积的比是 ____________ •13. 如图,已知直线 I] || l 2 II $,分别交直线 m 、n 于点 A^ C^ D 、E 、F, AB = 5cm, AC=15cm, DE = 3cm,则EF 的长为 ________ cm.14. ________________________________________________________________________________ 已知AABCsADEF,相似比为3:5, A ABC 的周长为6,则△ DEF 的周长为 ___________________________________ .15. ________________________________________________________________________________________________ 已知△ ABC^ADEF, △ ABC 的周长为1, △ DEF 的周长为3,则厶ABC 与氐DEF 的面积之比为 _________________ .16. 若两个相似三角形的周长之比为2:3,较小三角形的面积为8crY?,则较大三角形面积是 ____________ cm 2 . 17. 如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线4C 于点F ,若AB = 4 f18. 如图,已知ZAOB=60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(上)单元测试(四)(解直角三角形)一、选择题 (20分)1、 在△ABC 中,∠A=105°,∠B=45°,tan C ∠的值是( )A.B. C. 1D.2、 在△ABC 中,若,,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 3、 如图,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( )A.B.C.D.4、王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m(B )100 m(C )150m (D )3100m 5、化简2)130(tan - =( )。
A 、331-B 、13-C 、133-D 、13-6、如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米7、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ). (A )30海里 (B )40海里 (C )50海里 (D )60海里 8、利用计算器求sin30°时,依次按键则计算器上显示的结果是( )A .0.5B .0.707C .0.866D .19、王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) (A )150m (B )350m(C )100 m(D )3100m10、一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米1.732≈ 1.414≈供计算时选用)二、填空题(30分)11、计算45tan 30cos 60sin -的值是 。
12、计算:2sin60°= .13、 如图P 是∠α的边OA 点上的一点,且P 的坐标为(3,4),则sin α=______,cos α=_____.14、计算=_________。
15、△ABC中,∠A=300, tanB=, BC=, 则AB= ______。
16、已知0°<α<90°,当α=__________时,,当α=__________时,。
17、若,则锐角α=__________。
18、在Rt△ABC中,∠C=90°,,则a=__________,b=__________,c=__________19、若一个等腰三角形的两边长分别为2cm和6cm,则底边上的高为__________cm,底角的余弦值为__________。
20、酒店在装修时,在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买地毯至少需要__________元。
三、解答题(共50分)21、(6分)如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为︒30,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为︒60,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)22、(7分)一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25,sin63.5°≈910,tan63.5°≈2)C东23、(7分)如图所示,一辆吊车的吊臂以63°的倾角倾斜于水 平面,如果这辆吊车支点A 距地面的高度AB 为2m ,且点A 到铅 垂线ED 的距离为AC =15m ,求吊臂的最高点E 到地面的高度ED 的长(精确到0.1 m )。
24、(7分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.25、(7分)如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈,1.732.P 北403026、(8分)如图,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,解答下列问题:(1)火箭到达B 点时距离发射点有多远(精确到0.01km )?(4分)(2)火箭从A 点到B 点的平均速度是多少(精确到0.1km/s )?(6分)27、(8分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2.AB O C参考答案一、BCCDA ABADB二、11、0; 1213、4/5, 3/5 ;14、1; 15、216、 30°,30°;17、 60°;18、 a=9,b=12,c=15; 19、20、 504。
三、21.解: ∵∠BFC =︒30,∠BEC =︒60,∠BCF =︒90 ∴∠EBF =∠EBC =︒30 ∴BE = EF = 20 在Rt ⊿BCE 中, )(3.17232060sin m BE BC ≈⨯=︒⋅= 答:宣传条幅BC 的长是17.3米。
22. 解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD . 设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CD BD,∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD,∴CD =( 60+x ) ·tan21.3°. ∴x·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近23. 答案:31.4m ;24.解:CD FB ⊥,AB FB ⊥,CD AB ∴∥ CGE AHE ∴△∽△CG EG AH EH ∴=,即:CD EF FDAH FD BD -=+ 3 1.62215AH -∴=+,11.9AH ∴= 11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+= BCDAAH25. 解:过B 点作BE AP ⊥,垂足为点E ;过C 点分别作CD AP ⊥, CF BE ⊥,垂足分别为点D F ,,则四边形CDEF 为矩形. CD EF DE CF ∴==,,…………………………3分30QBC ∠=,60CBF ∴∠=.2040AB BAD =∠=,,cos 40200.766015.3AE AB ∴=⨯≈≈;sin 40200.642812.85612.9BE AB =⨯=≈≈. 1060BC CBF =∠=,,sin 60100.8668.668.7CF BC ∴=⨯=≈≈;cos60100.55BF BC ==⨯=. 12.957.9CD EF BE BF ∴==-=-=. 8.7DE CF =≈,15.38.724.0AD DE AE ∴=++=≈.∴由勾股定理,得25AC .即此时小船距港口A 约25海里 26. (1)在Rt OCB △中,sin 45.54OBCB=················· 1分 6.13sin 45.54 4.375OB =⨯≈(km ) ························· 3分火箭到达B 点时距发射点约4.38km ···················································································· 4分 (2)在Rt OCA △中,sin 43OACA=·················································································· 1分 6sin 43 4.09(km)OA =⨯= ································································································ 3分 ()(4.38 4.09)10.3(km /s)v OB OA t =-÷=-÷≈ ··························································· 5分答:火箭从A 点到B 点的平均速度约为0.3km /s 27. 解:(1)在BAC Rt ∆中,68=∠ACB ,∴24848.210068tan =⨯≈⋅=AC AB (米)答:所测之处江的宽度约为248米……………………………………………………(3分) (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识 来解决问题的,只要正确即可得分FP 北4030。