第3章 线性系统的时域分析法
线性系统的时域分析法
1
即 100Kh
0.1
3,
得
K h 0.3
• 解题关键:化闭环传递函数为标准形式。
30
3-3 二阶系统的时域分析
• 本节主要内容:
• • 二阶系统的数学模型 • • 二阶系统的单位阶跃响应 • • 欠阻尼二阶系统的动态过程分析 • • 过阻尼二阶系统的动态过程分析 • • 二阶系统性能的改善
33
3-3–2 二阶系统的单位阶跃响应
- ξ>ζ 1>1
S1,2=
ξω ω√ ±j 1
1
n T2
T1
n ξ2
-
1ζ
=1
0
jj 00
= - hξ=(t)1
t
t
+ + 1 e = 过TTS阻211,尼21T1
ξωTe1 n=T12 -ωn T2
h(t)= 1临-(1界+阻ω尼nt)0je-ωnt
0<0<ξ<ζ 1<1 S1,2= -ξ ωn ±jj ωn√1-ξζ2 =0
来 一阶系统的参数与标准式的参数之间有 • 着对的应0.1的倍,关且保系证。原放求大出倍数标不准变,形试式确定的参动数 态Ko 和性K能H 的指取值。
标与其参数间的关系,便可求得任何一阶系 统的性能指标。
10KO
10KO
(s) KOG(S) 0.2s 1 1 K HG(s) 1 10K H
11
性能指标图解
超调量σp
延迟时
间td
上升时
间tr
峰值时
间tp
调整时
间ts
12
其它性能指标
• 振荡次数N:在0≤t≤ts时间内,过渡过程c(t) 穿越其稳态值c(∞)次数的一半。
线性系统的时域 分析法
证明:对负反馈控制,根据特征方程1+G(s)H(s)=0
m
Kr (s zi )
G(s)H (s)
i 1 n
1
(s pj)
j 1
n
m
(s p j ) Kr (s zi ) 0
4.1.1 根轨迹的定义
所谓根轨迹就是当开环系统的某个参数从0→+∞变化时,闭环系
统特征根(闭环极点)在s复平面上移动所形成的轨迹。
例4-1 控制系统结构如图所示,其开环传递函数为
试绘出当Kr 从0→+∞变化时的根轨迹。
G(s)H (s)
Kr
(s 1)(s 2)
R(s)
-
Kr
C(s)
(s 1)(s 2)
▪ 1948年,伊万斯(Evans)根据反馈控制系统中开、闭环传递 函数之间的关系,首先提出了一种根据开环传递函数的零、极 点分布,用图解方法来确定闭环传递函数极点随参数变化的运 动轨迹,这种方法被称为根轨迹法。
▪ 轨迹法是一种图解的方法,具有直观、形象的特点,且可以避 免繁琐的计算,故在控制工程领域中获得了广泛地应用。
jω
Kr=4.25
2
Kr=0.25 Kr=0
-2
Kr=1.25 Kr=0 -1
Kr=1.25
1
0
σ
-1
Kr=4.25
-2
4.1.2 根轨迹与系统性能
1. 稳定性
当Kr 从0→+∞变化时,显然,由上图可知,闭环系统的根轨迹均在s平 面的左半平面,故系统对所有大于0的Kr 值都是稳定的。如果系统根 轨迹越过了虚轴而进入右半s平面,则在相应Kr 值下系统是不稳定的, 其中根轨迹与虚轴交点处的Kr 值,一般称为临界根增益。
第三章线性系统的时域分析典型输入信号
T
c(t )
1
t2
Tt
T 2 (1
t
eT
)
2
§3 二阶系统的时域分析
二阶系统的定义:用二阶微分方程描述的系统 微分方程的标准形式:
d 2 c(t ) dt 2
2 n
dc(t) dt
n 2 c(t )
n 2 r (t )
—阻尼比,n —无阻尼自振频率。
传递函数及方框图
d 1 2
cos d t p )
0
- n (cos d t p
1 2
sin d t )
d (-sin d t p
d 1 2
cos d t p )
0
sin d t p 0, d t p 0, ,2 ,3 .......
R(s) Ts 1
1 TS 1
一.单 位 阶 跃 响 应
r(t) 1(t) R(s) 1 s
C(s) (s)R(s) 1 1 1 T Ts 1 s s Ts 1
t
c(t) 1 e T
说明:
1.可以用时间常数去度量系统输出量的数值
t t
T时, c(t) 1 e1 0.632 3T时, c(t) 0.95 95%
好 等 于c(), 令N m , 得 2
n
N
1 2 t s arctg
1 2
2
将t s
1
n
ln
1 代入,并取整数得
1- 2
N N(
1- 2 2
ln
1
自动控制原理(3-1)
动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;
信号与线性系统第3章
由于激励加入系统前,系统未储能,所以有y(j)(0-)=0。
但是由于在t=0时刻激励的加入,可能使得yf(j)(0+)不为 零。 因此需要根据激励来确定yf(j)(0+),从而确定零状态响应中 齐次解系数的值。
用δ(t)函数匹配法求0+初始值
若激励f(t)在t=0时刻接入系统,则确定待定系数Ci时用 t=0+ 时刻的值,y(j)(0+)(j=0,1,2,……n-1).
激励为0,因此令方程右端为0:
y(n) (t) + an−1y(n−1) (t) +L+ a1y′(t) + a0 y(t) = 0
可知,零输入响应与经典解法中的齐次解形式相 同。 由于对yx(t)而言,t ≥0时,f(t)=0
所以: { yx(k)(0+) }= { yx(k)(0-) } 因此:零输入响应的系数Ci(i=1,2,…,n)可以由系统的起
y(t) = yx (t) + yf (t)
其中: yx (t) = T[x1(0− ), x2 (0− ),L xn (0− ),0] = T[{x(0− )},0] yf (t) = T[0, f1(t), f2 (t),L, fn (t)] = T[0,{ f (t)}]
求解零输入响应yx(t)
¾ 在每次平衡低阶冲激函数项时,若方程左端所有同阶次δ(t) 函数项不能和右端平衡,则应返回到y(t)的最高阶次项进行补 偿,但已平衡好的高阶次δ(t)函数项系数不变。
系统全响应 y(t) = yx (t) + yf (t)
yf’(0+) = 2+ yf’(0-) = 2 代入初始值求得: yf(t) = -7e-t+4e-2t+3, t>0
线性系统的时域分析法二阶系统
04
二阶系统的稳定性分析稳定性定义平衡状态
线性系统在平衡状态下的输出称为平衡状态输出。
稳定性
如果一个系统的平衡状态输出对于所有初始条件和输入都是稳定的,则称该系统是稳定 的。
稳定性判据
劳斯-赫尔维茨判据
数值法
数值法是通过数值计算来求解二阶系 统的方法。它通过将时间轴离散化, 将微分方程转化为差分方程,然后使 用迭代或直接计算的方法求解。
数值法具有简单易行和适用性广的优 点,适用于各种类型的二阶系统。但 是,对于某些特殊类型的系统,数值 法可能存在精度和稳定性问题。
实验法
实验法是通过实际实验来测试二阶系统的方法。它通过在系统中输入激励信号,然后测量系统的输出 响应,从而得到系统的性能参数。
线性系统的时域分析 法二阶系统
目录
CONTENTS
• 线性系统的时域分析法概述 • 二阶系统的基本概念 • 二阶系统的时域分析方法 • 二阶系统的稳定性分析 • 二阶系统的性能指标分析 • 二阶系统的应用实例
01
线性系统的时域分
析法概述
定义与特点
定义
时域分析法是一种通过在时间域 内对系统进行直接分析的方法, 用于研究系统的动态性能和响应 特性。
通过计算系统特征方程的根来判断系统 的稳定性。如果所有根都位于复平面的 左半部分,则系统稳定;如果有根位于 右半部分,则系统不稳定。
VS
Nyquist稳定判据
通过绘制系统的开环传递函数的Nyquist 曲线,判断曲线是否不穿越复平面的右半 部分,从而判断系统的稳定性。
稳定性分析方法
直接法
线性系统的时域分析法
三、动态性Leabharlann 和稳态性能动态性能:通常在阶跃函数作用下,测定或计算系统的动
态性能。一般认为阶跃输入对系统来说是最严峻的工作状态。
描述稳定的系统在阶跃函数作用下,动态过程随时间的
变化状况的指标称为动态性能指标。通常包括:
延迟时间 td :指响应曲线第一次到达稳态值一半所需的时间。
上升时间 tr :指响应第一次 h(t) % 误差带
洛比特法则
lim lim
(s pi )N (s)
(s pi )N (s) N (s) N ( pi )
s pi
D(s)
s pi
D(s)
D( pi )
f (t) L1
F (s)
L1
n i1
Ai s pi
n i 1
Aie pi t
② 具有多重极点的有理函数的反变换
F (s)
误差平方积分(ISE,Integral of Square Error)
ISE e2 (t)dt 0
( e(t)是输入输出之间存在的误差)
时间乘误差平方积分(ITSE,Integral of Timed Square Error)
ITSE te2 (t)dt 0
误差绝对值积分(IAE,Integral of Absoluted Error)
(s a
j)F (s) sa j
N (s) D(s)
sa j
k1
e j
思考:为何 k1,k2 必为共轭复数?
f
(t)
L1 F (s)
L1
s
A1 p1
k1 sa
j
k2 sa
j
A1e p1t
k1e(a j)t
自动控制原理-第3章-时域分析法
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
第三章信号的时域分解线性系统分析...
第三章信号的时域分解§3-1 引言●线性系统分析方法,是将复杂信号分解为简单信号之和(或积分),通过系统对简单信号的响应求解系统对复杂信号的响应。
●在时域中,近代时域法将信号分解为冲激信号的积分,根据系统的冲激响应通过卷积计算出系统对信号的响应。
●而在频域法中,我们将信号分解为一系列正弦函数的和(或积分),通过系统对正弦信号的响应求解系统对信号的响应。
●频域在工程中也有很重要的意义。
很多信号的特性与频域都有很重要的关系。
研究频域可以得到很多具有实用价值的结论。
如上章所述,通过信号分解的方法求解响应要研究下面几个问题:1)如何将任意信号分解为一系列正弦信号之和(或积分)。
2)如何求系统对各个正弦子信号的响应,这个内容在电路分析课程中已经有详细介绍;3) 如何将各子信号的响应相叠加,从而合成系统对激励信号的响应。
本章将要研究的就是如何对信号进行分解和合成。
§3-2 信号在正交函数集中的分解为了形象地说明信号的分解,首先我们讨论矢量的分解。
一、矢量的分解 1、矢量的定义2、矢量运算:加,标量乘法,矢量乘法3、矢量的分解:1) 矢量的单矢量基的分解:11A c 近似矢量A ——误差尽可能小。
ε+=11A A c从几何或者解析角度,都可以得到使误差最小的系数为:1111A A A A =c其中的1c 称为矢量A 和1A 的相似系数。
如果01=c (或01=A A ),则表明A 和1A 相垂直(又称为正交)。
2) 矢量的多矢量基分解:将矢量表示成为一系列标准矢量(基)的线性组合:∑==+++=ni i i n n c c c c 12211...A A A A A✧ 显然,如果知道了标准矢量i A 和相应的系数i c ,就可以确定任意矢量。
✧ 如何确定最佳的系数i c 情况比较复杂,对于特定的i 而言,i c 不仅与特定的i A 有关,与其它的标准矢量也有关系。
但是如果矢量i A 两两正交,可以证明:ii i i c A A AA =4、标准矢量基的几个限制条件:1)归一化:标准矢量的模等于1——方便计算 2)正交化:标准矢量两两正交3)完备性:可以不失真地组合出任意矢量二、信号的分解与矢量分解相似,我们也可以推导出信号分解。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
线性系统的时域分析法
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 系统时间响应的性能指标1. 典型输入2. 性能指标∙稳→基本要求 ∙准→稳态要求↓ss e :∙快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=s p t h h t h %)()()(%σ§3.2 一阶系统的时域分析设系统结构图如右所示 开环传递函数sK s G =)(闭环传递函数)1(11111)(T Ts T s T Ks K s K s Ks -=+=+=+=+=Φλ:)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c e t c tTTc eT t c tT 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-st T s e t h05.095.011=-=-st T e305.0ln 1-==-s t TT t s 3=∴一阶系统特征根1s T=-分布与时域响应的关系:21110 ()().(). ()s C s s R s h t t s s s∙==Φ===时 11 () ()1()ata s a C s h t e s s a ss a∙===-+=-+--时例1 已知系统结构图如右 其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
11012.0)101(10 1012.01012.010112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s K s K s G K s G K HH HH H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H 例2 已知某单位反馈系统的单位阶跃响应为atet h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理-胡寿松-第三章-线性系统时域分析法
课前提问
3-3 二阶系统的时域分析(非常重点、难点)
二阶系统定义:能够用二阶微分方程描述的系统称为二阶系统。 本节内容
0. 预备知识 1. 二阶系统的数学模型 2. 二阶系统的单位阶跃响应 3. 欠阻尼二阶系统的动态过程分析 4. 过阻尼二阶系统的动态过程分析 5. 二阶系统的单位斜坡响应 6. 二阶系统性能的改善 7. 非零初始条件下二阶系统的响应过程
超调量 % :
显然 h(tp) hmax
若 h(tp) h() 则响应无超调
实际中,常用的动态性能指标
tr
tp
评价系统起始段的响应速度;
ts
评价系统整个过渡过程的响应速度,是响应速度和阻尼程度的综合指标。
%
评价系统的阻尼程度;
思考:稳态误差从图中怎么看?
3-2 一阶系统的时域分析
一阶系统定义:能够用一阶微分方程描述的系统称为一阶系统。
第三章 线性系统的时域分析法
系统的数序模型确定后,便可以用多种不同的方 法去分析控制系统的动态性能和稳态性能。
在经典控制理论中
时域分析的一般思路:
时域分析法 根轨迹法 频域分析法
数数数数
数数数数数数数 求解微分方程
数数数数
数数数数
优点:直接在时间域对系统进行分析,具有直观、准确的 优点,并可以提供系统时间响应的全部信息。
本章内容
▪ 3-1 系统时间响应的性能指标 ▪ 3-2 一阶系统的时域分析 ▪ 3-3 二阶系统的时域分析 ▪ 3-4 高阶系统的时域分析 ▪ 3-5 线性系统的稳定性分析 ▪ 3-6 线性系统的稳态误差计算 ▪ 3-7 控制系统时域设计
第三章-线性系统的时域分析法(简)
劳斯表出现全零行:
系统在s平面有对称分布的根:
①大小相等符号相反的实根
j
0
②共轭虚根
j
③对称于实轴的两对共轭复根
j
0
0
• 特殊情况3:多行元素全为零
Routh表出现多个全零行,系统在s平面有重共轭虚根, 则系统不稳定。
参看:《现代控制系统》第八版 Richard C.Dorf Robert H.Bishop著
名称
时域表达式 复数域表达式
单位阶跃信号 1(t) , t 0
1 s
单位斜坡信号 t , t 0
1 s2
单位加速度信号 1 t 2 , t 0
2
1 s3
单位脉冲信号 (t) , t 0
1
正弦信号
A
As
Asint Acost s2 2 s2 2
二、 动态过程与稳态过程 P78
➢ 动态过程(过渡过程、瞬态过程): 在典型输入信号作用下,系统输出量从初始状
s5
1
5
6 解决方法:
s4
1
由全0行的上一行元素构
5
6 成辅助方程F(s)=0,并
s3 0 4 0 10 0 对其求导后,用所得系数
s2 5/2
6
代替全0行的元素。
s1 2/ 5
例如:F(s) s4 5s2 6 0
s0
6
求导得: F(s) 4s3 10s1 0
s1,2 j 2 s3,4 j 3 s5 1
第三章 线性系统的时域分析法
本章主要内容: 3.I 系统时间响应的性能指标 3.2 一阶系统的时域分析 3.3 二阶系统的时域分析 3.4 高阶系统的时域分析 3.5 线性系统的稳定性分析 3.6 线性系统的稳态误差计算
线性系统的时域分析法
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 系统时间响应的性能指标1. 典型输入2. 性能指标•稳→基本要求 •准→稳态要求↓ss e :•快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域分析设系统结构图如右所示 开环传递函数sK s G =)(闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c e t c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根1s T=-分布与时域响应的关系:21110 ()().(). ()s C s s R s h t t s s s •==Φ===时11() ()1()at a s a C s h t e s s a s s a•===-+=-+--时例1已知系统结构图如右其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
11012.0)101(10 1012.01012.010112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s K s K s G K s G K HH H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H 例2已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理复习资料——卢京潮版第三章
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 概述 1. 典型输入 2. 性能指标∙稳→基本要求 ∙准→稳态要求↓ss e :∙快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域响应及动态性能 设系统结构图如右所示开环传递函数sKs G =)(闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c et c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根T1-=λ分布与时域响应的关系:t t h s s s s R s s C ===Φ==∙)( 11.1)().()( 02时λat e t h as s a s s a s C a +-=-+-=-==∙1)( 11)()( 时λ 例1 已知系统结构图如右其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
1101)101(10 1012.01012.0112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s s K s G K s G K H H H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H例2 已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理-03-01
td
稳态误差(t→∞)
tr tp
t ts
6
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标 延迟时间td:响应曲线第一次达到其 终值一半所需时间。 上升时间tr:响应从终值10%上升到 终值90%所需时间; 对有振荡系统亦可定义为响应从零 第一次上升到终值所需时间。上升时间 是响应速度的度量。
3-2 一阶系统的时域分析
小结
一阶系统的典型响应与时间常数T密 切相关。只要时间常数T小,单位阶跃响 应调节时间小,单位斜坡响应稳态值滞后 时间也小。但一阶系统不能跟踪加速度函 数。 线性系统对输入信号导数的响应,等 于系统对输入信号响应的导数。
17
例: 某一阶系统如图,(1) Kh=0.1, 求调节时间ts, (2)若要求ts=0.1s,求反馈系数 Kh . R(s) E(s) (- )
ur (t )
C
uc (t )
结构图 :
R(s)
E(s) (- )
1/Ts
C(s)
10
3-2 一阶系统的时域分析
2. 一阶系统的单位阶跃响应
设一阶系统的输入信号为单位阶跃函数 r(t)=1(t) ,可得一阶系统的单位阶跃响应为
h(t ) 1 e
S平面 j
1 t T
(t 0)
P=-1/T
7
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标
峰值时间tp:响应超过其终值到达第一个峰 值所需时间。 调节时间ts:响应到达并保持在终值 ±5% 内 所需时间。 超调量%:响应的最大偏离量h(tp)与终值 h(∞)之差的百分比,即
%
h( t p ) h() h()
第三章线性系统的时域分析法
s
1 T2
1
T1s 1T2s 1
1
T1
n
2 1 ,
1 T2
n
2 1
【注】过阻尼二阶系统看作两个时间常数不同的一阶系统 的串联。
当系统的输入信号为单位阶跃函数时 R(s) 1 s
系统输出
c t L1 C s 1
T1
t
e T1
T2
t
e T2
T2 T1
T1 T2
c(t)
n 86.2, 0.2; t p 0.037, ts 0.174, % 52.7%, N 2.34
由此可见,KA越大, ξ越小, 越大n ,tp越小,б%越大, 而调节时间ts无多大变化。
3 KA 13.5
n 8.22, 2.1
系统工作在过阻尼状态,峰值时间,超调量和振荡 次数不存在,而调节时间可将二阶系统近似为大 时间常数T的一阶系统来估计或在响应曲线上求 得。
0.02 10
10KO (s) KOG(S) 0.2s 1 10KO
1 KHG(s) 1 10KH 0.2s 110KH 0.2s 1
0.2
110K 10KO
H
T* 0.02 K* 10
110KH
K H 0.9
KO
10
10KO 1 10K H
0.2 s 1 1 10K H
瞬态响应可以提供关于系统稳定性、响应速度及阻尼情 况等信息。
4. 稳态响应
指系统在典型输入信号作用下,当时间t趋于无穷时,系 统输出量的表现方式。稳态响应又称稳态过程。 稳态响应可以提供系统有关稳态误差的信息。
5. 稳定性
若控制系统在初始条件或扰动影响下,其瞬态响应随
着时间的推移而逐渐衰减并趋于零,则称系统稳定;反之, 不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c(t) 1
ent
1 2
sin(n
1 2t )
, arctan 1 2
系统动态过程为发散,不稳定
二、二阶系统的单位阶跃响应
(s)
s2
n2 2 n
n2
s1,2 n n 2 1
讨论 (1) 1 0 ; (2) 0 ; (3)0 1; (4) 1; (5) 1
欠阻尼、临界阻尼、过阻尼单位阶跃响应曲线
c(t)
0.1
r(t)=1(t)
-
n2
c(t)
s(s 2n )
0.3 0.5 0.7
1 2
0
nt
1)在过阻尼和临界阻尼响应中,临界阻尼响应具有最短的上升时间,
响应速度最快;
2)在欠阻尼响应中,阻尼比越小,超调量越大,上升时间越短,通 常取ζ=0.4~0.8为宜,ζ=0.707时为最佳阻尼比,此时超调量适度,调 节时间较短;
—————————————————————————————————
(1) 2 1 0 1或 -1 , s1,2 为实数根
(a) 1 ,s1,2 0
(b) 1 ,s1,2 0 , 系统不稳定
(2) 2 1 0 1 1 , s1,2 为共轭复数根
r(t)
Φ(s)
1
c(t)
Ts+1
分析动态过程和稳态过程: 瞬态分量:衰减的指数函数Te-t/T 稳态分量:t-T e(t) r(t) c(t) T Te t /T 在位置上存在稳态跟踪误差T
r(t)=t
c(t) T
0
T
t
图3-5 一阶系统的单位斜坡响应
五、单位加速度响应
r(t)
—————————————————————————————————
(2) 0 , s1,2 jn 一对纯虚根
c(t)
C(s) R(s)(s) c(t) 1 cos(nt)
单位阶跃响应为平均值等于1
1
的等幅振荡。
无阻尼响应
o
t
(3) 0 1 s1,2 n jn 1 2 一对具有负实部的共轭复根
(2)线性系统对输入信号积分的响应,就等于系统对该输入信号响 应的积分。
3.3 二阶系统的时域分析
一、二阶系统的数学模型
微分方程: T d 2c(t) dc(t) Kc(t) Kr(t)
dt dt
传递函数:
(s)
C(s) R(s)
Ts 2
K s
K
G(s)=?
闭环结构图: R(s)
Φ(s)
1
c(t)
Ts+1
C(s) R(s)(s) 1 1 1 1 s Ts 1 s s 1/T
R(s)
-
1
C(s)
Ts
c(t) L1[C(s)] 1 et /T
根据c(t)分析动态过程和稳态过程:
(1)按动态性能指标的定义可求得:
tr 2.2T
1 斜率 1 T
0.632
2)稳态过程(稳态响应)指在典型输入信号作用下,当时间t→∞时, 系统输出量c(t)的表现方式,表征系统输出量复现输入量的程度,用 稳态性能指标描述。
三、动态性能指标定义
ch(t()t)
AA
超超调调量量σσ%%==
AA BB
×10100%0%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttr r
1 2
t2
,
R( s)
1 s3
C(s)
R(s)(s)
1 s3
1 Ts 1
r(t)
c(t)
L1 [C ( s) ]
1
t2
Tt
T
2 (1
et / T
)
2
e(t) r(t) c(t) Tt T 2 (1 et /T )
Φ(s)
1
c(t)
—————————————————————————————————
(1) 1 0 s1,2 n jn 1 2 两个正实部的共轭复数根
C(s) R(s)(s) 1
n 2
1
n 2
s s 2 2 n s n 2 s (s s1 )(s s2 )
C(t) 0.95
ts 3T ( 5%)或ts 4T ( 2%)
惯性时间常数T越小,响应速度越快。
T
3T
(2)稳态值=1
图3-3 一阶系统的单位阶跃响应
三、单位脉冲响应
r(t) (t)
C ( s)
R(s)(s)
1 Ts 1
s
1/T 1/T
c(t)
其中
T1
n (
1
2
1)
T2
n (
1
2
1)
c(t) 1
0
t
过阻尼响应
单位阶跃响应的稳态分量为1,瞬态分量包含两个单调衰减指数项, 其代数和不会超过稳态值1;随着时间的增加,指数项衰减为零,响 应曲线单调上升。响应速度比临界阻尼慢,属于过阻尼响应。
二阶系统单位阶跃响应小结:
对于稳定的控制系统,响应c(t)含有瞬态分量和稳态分量。 c(t) = 瞬态分量+稳态分量
= 瞬态分量1 + 瞬态分量2 + 稳态分量
瞬态分量:由初始条件和外部输入引起的,随时间的推移趋向 消失的响应部分,它提供了系统在过渡过程中的各项动态性能 的信息。
稳态分量:过渡过程结束后,系统达到平衡状态,输入输出间 的关系不再变化的响应部分,它反映了系统的稳态性能。
L1[C
(s)]
1 T
et
/T
分析动态过程和稳态过程:
r(t)
Φ(s)
1
c(t)
Ts+1
c(t)
1 T
1 0.368 T
斜率
1 T2
c(t)
t T 2T 3T
四、单位斜坡响应
r(t)
t
,
R( s)
1 s2
C(s) R(s)(s)
c(t) L1[C(s)] t T Tet /T
3)若二阶系统具有相同的ζ和不同的ωn,则其振荡特性相同,但响应 速度不同, ωn越大,响应速度越快(即ts越小)。
三、欠阻尼二阶系统的动态过程分析
(s)
s2
n2 2 n
n2
R(s) E(s)
n2
C(s)
-
s(s 2n )
s1,2 n jn 1 2 jd
第3章 线性系统的时域分析法
3.1 系统的时域性能指标 3.2 一阶系统的时域分析 3.3 二阶系统的时域分析 3.4 高阶系统的时域分析 3.5 线性系统的稳定性分析 3.6 线性系统的稳态误差计算
时域分析法:在时域内研究系统在典型输入信号作用下,
其输出响应随时间的变化规律。
r(t)
c(t)
系统
二、动态过程与稳态过程
r(t)
c(t)
系统
r(t) 1(t)
c(t) 1
ent
1 2
sin(d t
)
1)动态过程(也称过渡过程、瞬态过程)指在典型输入信号作用下, 系统输出量从初始状态到最终状态的响应过程。表现为:衰减、发 散、等幅振荡。用动态性能指标描述。
s1,2 n jn 1 2
讨论 (1) 1 0 ; (2) 0 ; (3)0 1; (4) 1; (5) 1
二、二阶系统的单位阶跃响应
(s)
s2
n2 2 n
n2
s1,2 n n 2 1
讨论 (1) 1 0 ; (2) 0 ; (3)0 1; (4) 1; (5) 1
c(t) 1
e nt
1 2
s in(d t
)
, arctan
1 2
j
n 1 2
n
n o
(n )2 (n 1 2 )2 n
cos n n
arccos
阻尼角
s2
三、欠阻尼二阶系统的动态过程分析
调调节节时时间间tts s tt
三、动态性能指标定义
动态性能指标:稳定的系统在单位阶跃函数作用下,动态过 程随时间变化的指标,包括上升时间、峰值时间、超调量和 调节时间。
上升时间tr:响应从终值10%上升到终值90%所需的时间;对于 有振荡的系统,可定义为响应从零到第一次上升到终值所需的 时间。
峰值时间tp:响应超过其终值到达第一个峰值所需的时间。
调节时间ts:响应到达并保持在终值±5%或±2%误差内所需的 最短时间。
超调量σ%:响应的最大偏移量与终值的差值与终值比的百分数。
% c(t p ) c() 100 %
c()
3.2 一阶系统的时域分析
一、一阶系统的数学模型
微分方程: T d c(t) c(t) r(t)
dt
3.1 系统的时域性能指标
一、典型输入信号(复习“常用函数的拉氏变换”)
r(t) (t)
1
r(t) 1(t)
1 s
r(t) t
1
s2
r(t) 1 t 2 2
1 s3