自动控制原理_线性系统时域响应分析

合集下载

自动控制原理(3-1)

自动控制原理(3-1)

动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;

自动控制原理-线性系统的时域分析----典型环节的时域响应

自动控制原理-线性系统的时域分析----典型环节的时域响应
PC 机一台,TD-ACC+( 或TD-ACS)实验系统一套。
四、线路示图
模拟电路构成:如图2. 1-2 所示。
系统的开环增益为K=500KΩ/R,开环传递函数为:
五、内容步骤
1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性能做出理论上的判断。并确定各种状态下系统开环增益K 的取值及相应的电阻值R 。
六、数据处理
1、根轨迹图,如图2.1-3所示:
2、按模拟电路图2.1-2 接线并对每个
环节整定后,用示波器观察输入端与输出端
的时域响应曲线:
(1)调节R值,当系统等幅振荡时(如图
2.1-4所示),测得R的值为157.6kΩ,此时系统达临界稳定。
(2)调节R值,当R小于157.6kΩ时,系统发散的振荡,不稳定(如图2.1-5所示,R=135kΩ)。
3 .按模拟电路图2.1-2 接线,并且要求对系统每个环节进行整定;将2中的方波信号加至输入端。
4 .改变对象的开环增益,即改变电阻R 的值,用示波器的“CH1”和“CH2”表笔分别测量输入端和输出端,观察对象的时域响应曲线,应该和理论分析吻合。
注意:此次实验中对象须严格整定,否则可能会导致和理论值相差较大。
实 验 报 告
实验名称线性系统的时域分析----典型环节的时域响应

专业

姓名
学号
授课老师
预定时间
实验时间
实验台号
一、目的要求
1、根据对象的开环传函,做出根轨迹图。
2、掌握用根轨迹法分析系统的稳定性。
3、通过实际实验,来验证根轨迹方法。
二、原理简述
实验对象的结构框图:如图2. 1-1 所示。
三、仪器设备

基于ELVIS的自动控制原理实验

基于ELVIS的自动控制原理实验

实验一 线性系统时域特性分析一、实验目的1.掌握测试系统响应曲线的模拟实验方法。

2.研究二阶系统的特征参量ζ阻尼比和n ω自然频率对阶跃响应瞬态指标的影响。

二、实验设备与器件计算机一台,NI ELVIS Ⅱ多功能虚拟仪器综合实验平台一套,万用表一个,通用型运算放大器4个,电阻若干,电容若干,导线若干。

三、实验原理典型二阶系统开环传递函数为:)2()1()(2n ns s Ts s K s G ζωω+=+= ,一种是时间常数表达式,一种是零极点表达式。

时间常数表达式中包含三个环节:比例、积分和一阶惯性环节。

其中,K 开环放大系数,T 为一阶惯性环节的时间常数。

零极点表达式中包含两个特征参数:ζ阻尼比和n ω自然频率。

二阶系统的瞬态性能就由特征参数ζ和n ω决定。

典型二阶系统方块图如图1-1所示,系统闭环传递函数为:)()1()(2)()(10112101222T T K s T s T T K s s s R s C n n n ++=++=ωζωω ,图1-1典型二阶系统方块图阻尼比与自然频率为:11010111212121K T T T T K T T n ===ωζ, 101T T K n =ω典型环节与模拟电路的阻容参数的关系如下: 积分环节ST 01:000C R T = 一阶惯性环节111+S T K :f f C R T =1,if R R K =1四、实验内容Cf图1-2二阶系统闭环模拟电路图1.已知系统的模拟电路如图1-2所示,在NI ELVIS Ⅱ教学实验板上,利用运算放大器、电阻、电容自行搭建二阶模拟闭环系统。

阶跃信号由实验板模拟量输出接口AO0输出,接到二阶系统的输入端。

将二阶系统的输入端与输出端分别接实验板模拟量输入接口AI0(+)与AI1(+),采样阶跃输入信号与二阶系统的阶跃响应信号。

搭建模拟电路时,应特别注意:运算放大器的Vcc 与Vee 分别接实验板的+15V 与-15V ,正输入端IN+应接实验板的Ground ,实验板模拟量输入接口AI0(-)与AI1(-)应接实验板的Ground ,电容负端接运放负端输入IN-。

《自动控制原理》第三章自动控制系统的时域分析和性能指标

《自动控制原理》第三章自动控制系统的时域分析和性能指标

i1 n
]
epjt
j
(spj)
j1
j1
limc(t) 0的充要条件是 p j具有负实部
t
二.劳斯(Routh)稳定判据
闭环特征方程
a nsn a n 1 sn 1 a 1 s a 0 0
必要条件
ai0. ai0
劳斯表
sn s n1 s n2
| | |
a a n
n2
a a n 1
n3
b1 b2
或:系统的全部闭环极点都在复数平面的虚轴上左半部。
m
设闭环的传递函数:
(s)
c(s) R(s)
k (s zi )
i 1 n
(s p j )
P j 称为闭环特征方程的根或极点 j1
n
(s pj ) 0 称为闭环特征方程
j1
若R(s)=1,则C(s)= s m
k (szi)
n
c(t)L1[c(s)]L1[
t 3、峰值时间 p
误差带
4 、最大超调量
%
C C ( )
% max
100 %
C ( )
ts
5 、调节时间
ts
(
0 . 05
0
.
02
)
6、振荡次N数
e e 7、稳态误差 ss
1C()(对单位阶跃) 输入
ss
第三节 一阶系统的动态性能指标
一.一阶系统的瞬态响应
R(s) -
K0 T 0S 1
s5 | 1 3 2
s4 | 1 3 2
s3 | 4 6
s2
|
3 2
2
s1
|
2 3
s0 | 2

自动控制原理-第3章-时域分析法

自动控制原理-第3章-时域分析法
系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点

自动控制原理课后答案第3章

自动控制原理课后答案第3章

第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。

微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。

对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。

本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。

根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。

这里先引入时域分析法的基本概念。

所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。

由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。

当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。

3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。

下面先介绍常用的典型输入信号。

3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。

为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。

自动控制原理实验 控制系统稳定性分析和时域响应分析

自动控制原理实验 控制系统稳定性分析和时域响应分析

实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。

二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。

2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。

3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。

对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。

4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

自动控制原理实验二 线性系统时域响应

自动控制原理实验二  线性系统时域响应

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。

则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线xlabel('t/s'),ylabel('c(t)') %给坐标轴加上说明title('Unit-step Respinse of G(s)=25/(s^2+4s+25)') %给图形加上标题名则该单位阶跃响应曲线如图2-1所示:注意:在figure 中点鼠标右键,在右键菜单中选择“Characteristics”,其中包括四个系统性能指标:“Peak Response 峰值”、“Settling Time 调节时间”、“Rise Time”和“Steady State 稳态值”,选中其中的任何一个指标后,都会用大点点在图上标出指标对应的位置。

自动控制原理第3章

自动控制原理第3章

自动控制原理
17
调量越小, 响应的振荡 越弱,系统 的平稳性越 好,灵敏性?
越大,超
自动控制原理
18
3-3-2 二阶系统的单位阶跃响应
一定时 ,瞬态分 量衰减速 度取 n e 决于 n 故 衰减系数

自动控制原理
19
3-3-2 二阶系统的单位阶跃响应
(2)等幅振荡型
h(t ) 0 1 e nt 1
c (s)
自动控制原理
12
3-3-1 二阶系统的数学模型
开环传递函数
K G(s) s(Tm s 1)
c ( s) K ( s) r ( s ) Tm s 2 s K
R(S) C(S)
闭环传递函数
二阶系统微分方程 系统的闭环传递函数的标准形式:
2 n ( s) 2 2 s 2 n s n
自动控制原理
4
3-1 系统的时域性能指标
动态性能指标
在阶跃函数作用下测定或计算系统的动态性能指标 因为阶跃输入可以表征系统受到的最严峻的工作状态 (1)延迟时间
td
h ()
(2)上升时间
(3)峰值时间 (4)调节时间
tr
tp
0.9h() 0.5h() 0.1h()
td
ts
tr
ts
tp
5
误差带:±5%, ±2%
3-3-3 欠阻尼二阶系统的动态过程分析
(3)峰值时间 t p 的计算
dh(t ) n t e n p sin( d t p ) 0 dt t t p 1 2
则 sin( d t p ) 0
d t p 0, ,2 , d t p

自动控制原理第五章-1

自动控制原理第五章-1

积分环节:G(s)=1/s
微分环节:G(s)=s 惯性环节:G(s)=1/(Ts+1) 一阶微分环节:G(s)=Ts+1 振荡环节 1/(s 2 / n2 2s / n 1)
二阶微分环节 s 2 / 2 2s / 1 n n
比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(1-Ts)
系统开环传函由多个典型环节相串联 :
G(s) H (s) G1 (s)G2 (s)Gr (s)
那么,系统幅相特性为:
G ( jw) H ( jw) G1 ( jw)G2 ( jw) Gr ( jw) A1 ( w)e
j1 ( w )
A2 ( w)e k ( w )
k 1 r
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) ( s j )(s j ) 2j s2 2
a G( s)
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) s2 2 ( s j )(s j ) 2j
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号, 其输出与输入的幅值比为 输出与输入的相位差
A() G( j)
( )
G ( j )
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的 频率响应, 记为css(t)
(2)、频率特性
幅频特性A(): 稳态输出信号的幅值与输入信号的幅值之比: Ac A( ) G ( j ) A 相频特性(): 稳态输出信号的相角与输入信号相角之差: ( ) G ( j ) 幅相频率特性G(j) : G(j) 的幅值和相位均随输入正弦信 号角频率的变化而变化。 G( j ) A(w)e j ( ) 在系统闭环传递函数G(s)中,令s= j,即可得到系统的频率 特性。

自动控制原理第5章

自动控制原理第5章

jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。

自控原理(3)

自控原理(3)
前 页 后 页
2003-09/10
<自动控制原理>(3-17)
3.4 高阶系统的时域分析 1、定义:能用三阶或三阶以上的微分方程描述的控 制系统。 2、分析方法:
1)定性分析; 2)主导极点法; 3)计算机分析 3 主导极点与偶极子问题 ① 主导极点: 在所有的闭环极点中,那些离虚轴最近、 且附近又没有其它零、极点,对系统动态性能影响起主 导的决定性作用的闭环极点,称之为主导极点。 主导极点法: 利用主导极点代替系统全部闭环极点来 估算系统性能的方法,称为主导极点法。 一般要求:
t
td tr tp ts b 单位阶跃信号作用下 反馈系统的过渡过程曲线
误差带△一般取0.02或0.05 ⑵ 动态性能指标: 延迟时间 td :指响应从0到第一次达到终值(稳态值)的一半 时所需要的时间;
上升时间 tr :指响应从0到第一次达到终值(稳态值)时所需要 的时间;
前 页 后 页
2003-09/10
j
S1 S2
j
0
0
t
② ξ = 1时,(临界阻尼) S1 ,S2 为一对相等的负实数根。
③ 0<ξ<1时,(欠阻尼) S1 ,S2 为一对具有负实部的共轭复根。
前 页 后 页
2003-09/10
<自动控制原理>(3-08)
④ 当ξ=0时,(无阻尼,零阻尼) S1 ,S2 为一对幅值相等的虚根。
⑤ 当ξ<0时,(负阻尼) S1 ,S2 为一对不等的负实数根。
结论分析: a) tr 、tp 、ts 、td 与ωn 的关系(反比关系);
b)
tp 、td与ξ的关系(正比关系);
ts与ξ的关系(反比关 系);
前 页 后 页

朱玉华自动控制原理第3章 时域分析3-1,2,3

朱玉华自动控制原理第3章 时域分析3-1,2,3

1
1
ቤተ መጻሕፍቲ ባይዱ
s4 3s3 s2 3s 1 0 s3 3 3
试判别该系统的稳定性。 s2 0 1
当 0时,3 3 0,
s1 3 3 0
s0
1
有2个特征根在s平面第右3章边控. 制系系统统的是时域不分析稳定的
10 0 0
(2) 劳斯表中某一行的元素全为零。
——这时系统在s平面上存在一些大小相等符号相反的
61
s0 6
劳斯表中第一列元素大于零,所以该系统是稳定的。 这时,系统所有的特征根均处于s平面的左半平面。
第3章 控制系统的时域分析
课程回顾(1)
1、 稳态性能指标 2、 动态性能指标
ess
lim[r(t)
t
cr (t)]
(1)延迟时间td (2)上升时间tr
(3)峰值时间tp
(4)调整时间ts
负可化为全为正) (2)劳斯表中第一列所有元素均大于零。
第3章 控制系统的时域分析
例3-1 已知三阶系统特征方程为 a0s3 a1s2 a2s a3 0
试写出系统稳定的充要条件
解:列写劳斯表 s3
a0
a2
0
s2
a1
a3
0
s1 a1a2 a0a3 0
a1
s0
a3
0
故得出三阶系统稳定的充要条件为:
0
9
s0 5
s1 32
0
s0 5
所得结论不变
第3章 控制系统的时域分析
2、劳斯稳定判据的特殊情况
(1) 劳斯表中某一行的第一个元素(系数)为零,而该 行其它元不为零。
——计算下一行第一个元素时将出现无穷大,以至劳斯 表的计算无法进行。

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。

2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。

3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。

二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。

三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。

LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。

2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。

针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。

四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。

搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。

2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。

其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。

下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。

自动控制原理-03-01

自动控制原理-03-01

td
稳态误差(t→∞)
tr tp
t ts
6
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标 延迟时间td:响应曲线第一次达到其 终值一半所需时间。 上升时间tr:响应从终值10%上升到 终值90%所需时间; 对有振荡系统亦可定义为响应从零 第一次上升到终值所需时间。上升时间 是响应速度的度量。
3-2 一阶系统的时域分析
小结
一阶系统的典型响应与时间常数T密 切相关。只要时间常数T小,单位阶跃响 应调节时间小,单位斜坡响应稳态值滞后 时间也小。但一阶系统不能跟踪加速度函 数。 线性系统对输入信号导数的响应,等 于系统对输入信号响应的导数。
17
例: 某一阶系统如图,(1) Kh=0.1, 求调节时间ts, (2)若要求ts=0.1s,求反馈系数 Kh . R(s) E(s) (- )
ur (t )
C
uc (t )
结构图 :
R(s)
E(s) (- )
1/Ts
C(s)
10
3-2 一阶系统的时域分析
2. 一阶系统的单位阶跃响应
设一阶系统的输入信号为单位阶跃函数 r(t)=1(t) ,可得一阶系统的单位阶跃响应为
h(t ) 1 e
S平面 j
1 t T
(t 0)
P=-1/T
7
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标
峰值时间tp:响应超过其终值到达第一个峰 值所需时间。 调节时间ts:响应到达并保持在终值 ±5% 内 所需时间。 超调量%:响应的最大偏离量h(tp)与终值 h(∞)之差的百分比,即
%
h( t p ) h() h()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉工程大学 实验报告
专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析
一、实验目的
1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、实验内容
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
1
4647
3)(2
342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。

2.对典型二阶系统
2
22
2)(n
n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。

2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。

3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。

4.单位负反馈系统的开环模型为
)
256)(4)(2()(2++++=
s s s s K
s G
试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、实验结果及分析
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
14647
3)(2342++++++=s s s s s s s G
可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。

方法一:用step( )函数绘制系统阶跃响应曲线。

程序如下:
num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10;
step(num,den) grid
xlabel('t/s'),ylabel('c(t)')
title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)')
Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1)
t/s (sec)
c (t )
方法二:用impulse( )函数绘制系统阶跃响应曲线。

程序如下:
num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10;
impulse(num,den) grid
xlabel('t/s'),ylabel('c(t)')
title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')
Unit-im pulse Response of G(s)/s=s 2+3s+7/(s 5+4s 4+6s 3+4s 2+s)
t/s (sec)
c (t )
2.对典型二阶系统
2
22
2)(n
n n s s s G ωζωω++= 1) 分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标
ss s p r p e t t t ,,,,σ。

程序如下:
num= [0 0 4]; den1=[1 0 4]; den2=[1 1 4]; den3=[1 2 4]; den4=[1 4 4]; den5=[1 8 4]; t=0::10; step(num,den1,t)
xlabel('t/s'),ylabel('c(t)') grid
text,,'Zeta=0'); hold
step(num,den2,t) text ,,'')
step(num,den3,t) text ,,'')
step(num,den4,t) text ,,'')
step(num,den5,t) text ,,'')
title('Step-Response Curves for G(s)=4/[s^2+4(zeta)s+4]')
0.20.40.60.81
1.2
1.41.6
1.82Step-R esponse C urves f or G(s)=4/[s 2+4(zeta)s+4]
t/s (sec)
c (t )
s
w w t n d r 94.025
.01225
.0arccos 1arccos 2
2
≈-----=
=
=πζζπβπ
s
w w t n d
p 62.125
.01212
2
≈-=
-=
=
π
ζ
π
π
()05.075
.05
.35.35.3=∆====
s w t n s σζ 2.05
.02
1121111=+=+=+=
ζn ss w K e 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω 对系
统的影响。

程序如下:
num1=[0 0 1]; den1=[1 1];
num2=[0 0 4]; den2=[1 1 4]; num3=[0 0 16]; den3=[1 2 16]; num4=[0 0 36]; den4=[1 3 36]; t=0::10;
step(num1,den1,t); hold on grid;
text,,'wn=1')
step(num2,den2,t); hold on text,,'wn=2')
step(num3,den3,t); hold on text,,'wn=4')
step(num4,den4,t); hold on text,,'wn=6')
xlabel('t/s'), ylabel('c(t)')
title('Step-Response Curves for G(s)=Wn^2/[s^2+(Wn)s+Wn^2]')
012345678910
0.5
1
1.5
Step-Response Curves for G(s)=Wn 2/[s 2+0.5(Wn)s+Wn 2]
t/s (sec)
c (t )
分析:根据图像可知,在ζ一定时,自然频率n
ω越大,则上升时间r t ,峰值时间p t ,
调节时间s t 将会越小,但峰值不变。

3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。

方法一:直接求根判稳roots( ) >> roots([2,1,3,5,10]) ans = + - + -
特征方程的根不都具有负实部,因而系统不稳定。

方法二:劳斯稳定判据routh () r =
0 0
0 0 0 0 info =
所判定系统有 2 个不稳定根!
4.单位负反馈系统的开环模型为
)
256)(4)(2()(2++++=
s s s s K
s G
试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

闭环特征方程020*********
34=+++++k s s s s ,按劳斯表稳定判据的要
求,列出劳斯表:
4s 1 69 200+k 3s 12 198 0 2s 200+k 0 1s
5
.52)200(121985.52k +⨯-⨯
0s 200+k
根据劳斯表稳定判据,令劳斯表第一列各元为正则
52.519812(200)
52.5
200k 0k ⨯-⨯+>+>
解得 -200<k<
所以当 -200<k<时,闭环系统稳定
总结:判断闭环系统稳定有两种方法。

方法一:直接将闭环特征方程的根直接求出来,如果闭环特征方程所有根都有负实部,则可判断闭环系统稳定。

方法二:可以使用劳斯稳定判据列劳斯表,然后根据劳斯表第一列是否全部为正来确定系统是否稳定。

开环增益ζ2n
w
K=
,因为开环增益与n w和ζ都有关,则通过改变n w和ζ适当选择开环增益K,便可更好的改善系统稳态性能指标。

心得体会:通过本次实验,我初步了解了step( )函数和impulse( )函数的使用方法,通过在MATLAB中编程作出一阶系统、二阶系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应曲线。

通过观测响应曲线明显看出特征参量ζ和n
ω对二阶系统性能的影响。

并用Roots函数和劳斯判据方便直观的判断系统的稳定性。

这让我感觉到MATLAB的强大功能,虽然在实验中遇到很多问题,但主要是对软件不熟练,如果能灵活运用,则在以后便能很快捷的解决各种复杂的传递函数。

相关文档
最新文档