2015中考数学复习活跃的一次函数
中考数学一次函数专题
一次函数知识点汇总● 知识点一 一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. ● 知识点二 一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+. ● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小. ●知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.知识点五 用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式. 考查一:点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;例1:若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
【中考数学复习】一次函数与反比例函数知识
【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。
2015届湘教版中考数学复习课件(第12课时_一次函数的应用)
第12课时┃ 一次函数的应用
(1)你能给出估算车费y(元)与行驶路程x(km)之间的函数表 达式吗? (2)画出这个函数的图象; (3)当行驶路程为30 km时,估算车费是多少?
考点聚焦
归类探究
回归教材
第12课时┃ 一次函数的应用
解
(1)函数表达式为 10(0<x<3), y=1.6x+5.2(3≤x<15), 2.4x-6.8(x≥15). (2)如图所示. (3)当行驶路程为30 km时,即x=30时,y=2.4×30- 6.8=65.2.所以估算车费为65.2元.
回归教材
第12课时┃ 一次函数的应用
A. 2小时
考点聚焦
B. 2.2小时
归类探究
C. 2.25小时
回归教材
D. 2.4小时
第12课时┃ 一次函数的应用
解 析
利用了待定系数法求函数表达式,利用函
数值求自变量的值.设直线 AB的函数表达式是y=kx+ b,图象过点A(1.5,90),B(2.5,170),
1.5k+b=90, k=80, ∴ 解得 2.5k+b=170, b=-30,
考点聚焦 归类探究
4.2Biblioteka …8.29.8
35.0 … 40.0 42.0
回归教材
第12课时┃ 一次函数的应用
(1)求y关于x的函数表达式(不需要写出自变量的取值范 围 ); (2)用该体温计测体温时,水银柱的长度为6.2 时体温计的读数. cm,求此
考点聚焦
归类探究
回归教材
第12课时┃ 一次函数的应用
考点聚焦
归类探究
回归教材
第12课时┃ 一次函数的应用
2015年河北中考数学总复习课件(第11课时_一次函数)
冀考解读
课前热身
考点聚焦
冀考探究
第11课时┃ 一次函数
3.在一次函数 y=kx+2 中,若 y 随 x 的增大而增大, 则它的图像不经过第________ 象限. 四 先根据函数的增减性判断出 k 的符号,再利 用一次函数的图像与系数的关系做出判断.
解 析
冀考解读
课前热身
考点聚焦
冀考探究
第11课时┃ 一次函数
冀考解读
课前热身
考点聚焦
冀考探究
第11课时┃ 一次函数
解:(1)∵y=(2m-1)x+1-3m 为正比例函数. 1 ∴1-3m=0,∴m= , 3 1 ∴当 m= 时,y=(2m-1)x+1-3m 为正比例函数. 3 (2)∵y=(2m-1)x+1-3m 为一次函数, 1 ∴2m-1≠0,∴m≠ , 2 1 ∴当 m≠ 时,y=(2m-1)x+1-3m 为一次函数. 2
第11课时 一次函数
第11课时┃ 一次函数
冀 考 解 读
考点梳理 常考题型 一次函数、 正比 选择、填空 例函数的概念 一次函数的 图像和性质 年份 2014 2015 热度预测 ☆ ☆☆☆☆☆
2012 选择、填空、 2013 解答 2014
待定系数法求 选择、填空、 一次函数的表 2013 解答 达式
冀考解读 课前热身 考点聚焦 冀考探究
解 析
第11课时┃ 一次函数
考 点 聚 焦
考点1 一次函数与正比例函数的概念
一般地,如果 y=kx+b(k,b 是常数,k≠0), 一次函数 那么 y 叫做 x 的一次函数 特别地,当 b=0 时,一次函数 y=kx+b 变为 正比例 y=kx(k 为常数,k≠0),这时 y 叫做 x 的正比 函数 例函数
2015中考数学专题训练--一次函数
2015 年中考数学专题训练 一次函数一、选择题1已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( ) A.20y -<< B.40y -<<C.2y <-D.4y <-2一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的 表达式为( ) A .2y x =-+B .2y x =+C .2y x =-D .2y x =--3)已知直线y =kx +b ,若k +b =﹣5,kb =6,那么该直线不经过( ) A .第一象限B . 第二象限C . 第三象限D . 第四象限4如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( )≤4题图5已知点M (1,a )和点N (2,b )是一次函数y =﹣2x +1图象上的两点,则a 与b 的大小关系是( )6如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <2题图7如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 .8从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经过第四象限的概率是________9一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为 米.10小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y (米)与时间t (分)的函数图象,则小明回家的速度是每分钟步行 米.11在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 12抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。
2015年河北中考数学总复习课件(第12课时_一次函数的应用)
解 析
冀考解读
课前热身
考点聚焦
冀考探究
第12课时┃ 一次函数的应用
2. [2014· 保定二模] 如图 12-2, 直线 l1: y=x+3 与直线 l2: y=ax+b 相交于点 A(m,4),则关于 x 的不等式 x+3≤ax+b 的 解集是 ( D )
图 12-2 A.x≥4 B.x≤4 C.x≥m D.x≤1 解 析 首先利用待定系数法 m 的值,然后根据图像 写出不等式的解集,应选 D.
冀考解读 课前热身 考点聚焦 冀考探究
第12课时┃ 一次函数的应用
考 点 聚 焦
考点1 一次函数与方程(组)及不等式的关系
一次函数与 一次方程 一次函数与 一元一次不 等式
一次函数 y=kx+b(k,b 是常数,k≠0)的值为 0 时,相应的自变量的值为方程 kx+b=0 的根 一次函数 y=kx+b(k, b 是常数, k≠0)的值大 于(或小于 )0 时,相应的自变量的值为不等式 kx+b>0(或 kx+b<0) 的解集 两直线的交点坐标是两个一次函数表达式 y= 一次函数与 k1x+b1 和 y=k2x+b2 所组成的关于 x,y 的方 y=k1x+b1, 方程组 程组 的解 y=k2x+b2
冀考解读
课前热身
考点聚焦
冀考探究
第12课时┃ 一次函数的应用
课 前 热 身
1.[2013· 哈尔滨] 梅凯种子公司以一定价格销售“黄金 1 号”玉米种子,如果一次购买 10 千克以上(不含 10 千克)的种 子,超过 10 千克的那部分种子的价格将打折,并依此得到付 款金额 y(单位:元)与一次购买种子数量 x(单位:千克)之间的 函数关系如图 12-1 所示.下列四种说法: ①一次购买种子数量不超过 10 千克时,销售价格为 5 元/ 千克; ②一次购买 30 千克种子时,付款金额为 100 元; ③一次购买 10 千克以上种子时, 超过 10 千克的那部分种 子的价格打五折; ④一次购买 40 千克种子比分两次购买且每次购买 20 千克 种子少花 25 元钱.
中考数学专题复习5一次函数及其运用(原卷版)
一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。
特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213xC.y=34x D.y=12(x-1)【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k >0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限 y 随x 的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象 一次函数y =kx +b (k ≠0)的图象是经过点(0.b )和(-bk.0)的一条直线 图象关系一次函数y =kx +b (k ≠0)的图象可由正比例函数y =kx (k ≠0)的图象平移得到;b >0.向上平移b 个单位长度;b <0.向下平移|b |个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质 函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0.b >0一、二、三y 随x 的增大而增大k >0.b <0一、三、四y =kx +b (k ≠0)k <0.b >0一、二、四y 随x 的增大而减小k <0.b <0二、三、四(3)两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2.b 1≠b 2.两直线平行; ②当k 1=k 2.b 1=b 2.两直线重合; ③当k 1≠k 2.b 1=b 2.两直线交于y 轴上一点; ④当k 1·k 2=–1时.两直线垂直.【例3】已知正比例函数y =x 的图象如图所示.则一次函数y =mx +n 图象大致是mnA .B .C .D .【例4】已知一次函数3y kx =+的图象经过点A .且y 随x 的增大而减小.则点A 的坐标可以是( ) A .()1,2- B .()1,2-C .()2,3D .()3,4考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数.且k≠0)y=kx+b(k.b是常数.且k≠0)图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a ≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标. 【例7】已知直线y =mx +n (m .n 为常数)经过点(0.–2)和(3.0).则关于x 的方程mx +n =0的解为 A .x =0 B .x =1C .x =–2D .x =3【例8】如图为y =kx +b 的图象.则kx +b =0的解为x = ( )A .2B .–2C .0D .–1【例9】如图.正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m.2).一次函数的图象经过点B (−2.−1). (1)求一次函数的解析式;(2)请直接写出不等式组−1<kx +b <2x 的解集.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是 y kx by mx n=+=+⎧⎨⎩A .B .C .D .考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B .则△AOB 的面积为( ) A .2B .3C .4D .6考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等. (2)用一次函数解决实际问题的一般步骤为: ①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式; ③确定自变量的取值范围; ④利用函数性质解决问题; ⑤检验所求解是否符合实际意义; ⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4每吨所需运费(元/吨)120 160 100 (1)设装运食品的车辆数为x.装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费.第一部分选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数①y=﹣2x+1.②y=ax﹣b.③y=﹣6x.④y=x2+2中.是一次函数的有A.①②B.①C.②③D.①④2.一次函数y=–2x+b.b<0.则其大致图象正确的是A.B.C .D .3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–24. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是A .x >﹣2B .x >0C .x >1D .x <15. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0B .b <0C .a +b >0D .a ﹣b <08.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <29.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,210.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y =(m +2)是正比例函数.则m 的值是__________.12.把直线y =2x ﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____. 13.如图.直线542y x =+与x 轴、y 轴分别交于A 、B 两点.把AOB 绕点B 逆时针旋转90°后得到11AO B .则点1A 的坐标是_____.14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C..则点2020B 的坐标______.23mx-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6.(1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数;(2)若点(a .2)在这个函数的图象上.求a 的值. 19. 如图.直线l 1的函数解析式为y =2x–2.直线l 1与x 轴交于点D .直线l 2:y =kx+b 与x 轴交于点A .且经过点B (3.1).如图所示.直线l 1、l 2交于点C (m .2).(1)求点D 、点C 的坐标;(2)求直线l 2的函数解析式;(3)利用函数图象写出关于x 、y 的二元一次方程组的解.20.某文化用品商店出售书包和文具盒.书包每个定价40元.文具盒每个定价10元.该店制定了两种优惠方案:方案一.买一个书包赠送一个文具盒;方案二:按总价的九折付款.购买时.顾客只能选用其中的一种方案.某学校为给学生发奖品.需购买5个书包.文具盒若干(不少于5个).设文具盒个数为x (个).付款金额为y (元). 22y x y kx b =-=+⎧⎨⎩(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒.通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品.最多可以买到__________个文具盒(直接回答即可).21.张师傅开车到某地送货.汽车出发前油箱中有油50升.行驶一段时间.张师傅在加油站加油.然后继续向目的地行驶.已知加油前、后汽车都匀速行驶.汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.(1)张师傅开车行驶小时后开始加油.本次加油升.(2)求加油前Q与t之间的函数关系式.(3)如果加油站距目的地210千米.汽车行驶速度为70千米/时.张师傅要想到达目的地.油箱中的油是否够用?请通过计算说明理由.22.某乡A.B两村盛产大蒜.A村有大蒜200吨.B村有大蒜300吨.现将这些大蒜运到C.D两个冷藏仓库.已知C仓库可储存240吨.D仓库可储存260吨.从A村运往C.D两处的费用分别为每吨40元和45元;从B村运往C.D两处的费用分别为每吨25元和32元.设从A村运往C仓库的大蒜为x吨.A.B两村运大蒜往两仓库的运输费用分别为y A元.y B元.(1)请填写下表.并求出y A.y B与x之间的函数关系式;C D总计A x吨200吨B300吨总计240吨260吨500吨(2)当x为何值时.A村的运费较少?(3)请问怎样调运.才能使两村的运费之和最小?求出最小值.。
2015年河北省地区中考数学总复习课件 第11讲 一次函数及其图象
3.正比例函数y=kx的性质 (1)当k>0时,__y随x的增大而增大__; (2)当k<0时,__y随x的增大而减小__. 4.一次函数y=kx+b的图象
5.一次函数 y=kx+ b 的性质 b 过__(0,b),(- ,0)__的一条直线. k (1)__当 k>0 时 , y 随 x 的增大而增大__; (2)__当 k<0 时 , y 随 x 的增大而减小__.
【点评】 (1)一次函数y=kx+b,当k>0时,y随x的 增大而增大,当k<0时,y随x的增大而减小.(2)一次 函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0 ,图象经过第一、三象限,y随x的增大而增大;当k< 0,图象经过第二、四象限,y随x的增大而减小;图象 与y轴的交点坐标为(0,b).
交于点D.直线l2经过点A,B,直线l1,l2交于点C.
(1)求点D的坐标; (2)求直线l2的解析式; (3)求△ADC的面积; (4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等 ,请直接写出点P的坐标.
( 1 ) D( 1 , y= x- 2 (4)P(6,3)
4.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成 正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元 时,边长为( A ) A.6厘米 B.12厘米 C.24厘米 D.36厘米
5 .(2008·河北 )如图, 直线 l1 的解析表达式为 y=-3x +3, 且l1与x 轴
2.(2013·河北)如图,A(0,1),M(3 ,2) , N(4,4) .动点P从点 A出发, 沿 y 轴以每秒 1 个单位长的速度向上 移动 , 且过点 P 的直线 l : y =- x + b 也随之移动,设移动时间为t秒. (1)当t=3时,求l的解析式; (2)若点M,N位于l的异侧,确定t的 取值范围; (1)直线y=-x+b交y轴于点P(0,b),由题意得b>0,t≥0, b=1+t,当t=3时,b=4,∴y=-x+4 (2)当直线y=-x +b过M(3,2)时,2=-3+b,解得b=5,5=1+t,∴t=4 ,当直线y=-x+b过N(4,4)时,4=-4+b,解得b=8,8 =1+t,∴t=7,∴4<t<7
2015届湘教版中考数学复习课件(第11课时_一次函数)
图11-1
考点聚焦
归类探究
回归教材
第11课时┃ 一次函数
A. 小明看报用时8分钟 B. 公共阅报栏距小明家200米 C. 小明离家最远的距离为400米 D. 小明从出发到回家共用时16分钟
解 析
A项,从4分钟到8分钟时间增加而离家的距离
考点聚焦 归类探究 回归教材
第11课时┃ 一次函数
考点2
1. 2.
函数表示法及函数的图象与画法
函数的表示法:(1)公式法(数学解析式);(2)列表法(表格); (3)图象法. 函数的图象:建立平面直角坐标系,以自变量取的每一个值 为横坐标,以相应的函数值(即因变量的对应值)为纵坐标, 描出每一个点,由所有这些点组成的图形称为这个函数的 图象. 防错提醒: 画函数图象时要注意自变量的取值范围,当图象有端点 时,要注意端点处是否取等号,取等号时画实心点,不取 等号时画空心圆圈.
k>0, b>0 k>0, b<0 k<0, b>0
第一、二、 ________ 三象限 y随x增 ________
大而增 大 第一、三、 ________
y=kx+b (k,b为常 数,k≠0)
四象限 ________ 第一、二、 ________ 四象限 ________ y随x增
中考数学复习:专题3-4 一次函数考点分析及典型试题
一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
初中数学中考复习(5):一次函数
【例题讲解】知识点一:函数的概念1. 函数: 一般地,在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。
2. 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),①分式(分母不为0)、②二次根式(被开方数为非负数)、③实际意义几方面考虑3. 常量:在某变化过程中不发生改变的量。
变量:在某变化过程中发生改变的量。
4. 函数的表示方法:①列表法;②关系式(解析)法;③图像法。
题型一:函数概念例1:根据函数图象的定义,下列几个图象表示函数的是( )A .B .C .D .例2:下列等式中,是x 的函数的有( )个(1)123=-y x ;(2)122=+y x ;(3)1=xy ;(4)x y =. A .1个 B .2个 C .3个 D .4个 题型二:函数自变量取值范围 例1:(2013•湛江)函数3+=x y 中,自变量x 的取值范围是( )A .3->xB .3-≥xC .3-≠xD .3-≤x例2:(2013•包头)在函数131y x =-中,自变量x 的取值范围是( ) A.13x < B. 13x ≠- C. 13x ≠ D. 13x >例3:(2012•自贡) 函数112-+-=x x y 中,自变量x 的取值范围是 .举一反三:1. (2012•怀化)在函数23y x =-中,自变量x 的取值范围是( )A .x >32B .32x ≤C .32x ≠D .32x ≥2. (2013•眉山)函数12y x =-中自变量x 的取值范围是( )A .2=xB .2≠xC .2>xD .2<x3. (2013•南通)函数21x y x +=-的自变量x 的取值范围是( ) A .1>x B .2-≥x C .1≠x D .1<x 4. (2013•内江)函数112-+=x x y 中自变量x 的取值范围是 。
2015年广西中考数学总复习课件第14课时 一次函数及其应用(共92张PPT)
图象
性质
增大 y随x的增大而________
减小 y随x的增大而________
第14课时
一次函数及其应用
考点3
一次函数解析式的确定
(1)设出一次函数解析式的一般形式; (2)把已知条件(自变量与函数的对应值)代入解析式得到关
半轴相交.
第14课时
一次函数及其应用
变式题1
[2013·眉山] 若实数a,b,c满足a+b+c=0,
且a<b<c,则函数y=cx+a的图象可能是( C )
图3-14-5
第14课时
一次函数及其应用
变式题2
[2013•娄底] 一次函数y=kx+b(k≠0)的图象如
图3-14-6所示,当y>0时,x的取值范围是( C ) A.x<0 C.x<2 B .x>0 D .x>2
图3-14-6 第14课时 一次函数及其应用
►
例2
类型之二
一次函数解析式的确定
[2013 •常州 ] 已知一次函数 y = kx + b(k , b 为常数且
k≠0)的图象经过点 A(0,-2)和点B(1,0),则k=________ ,b =________. [答案] 2 -2
第14课时
一次函数及其应用
第14课时
一次函数及其应用
[ 点评 ] 本题主要考查了待定系数法求一次函数解析式,待
定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运
用.
第14课时
一次函数及其应用
变式题3
[2013•鞍山] 在一次函数y=kx+2中,若y随x的
2015中考数学冲刺复习课件 第35课时 一次函数与反比例函数综合题
∴反比例函数的解析式为
;
第35课时 一次函数与反比例函数综合题
【答案】 (2)如图,过点C作CE⊥y轴于点E, 设点C的坐标为 ,则CE=x,OE= ,
过点B作BG⊥x轴于G,作BF⊥y轴于F, 则OF=BG=2,BF=4, ∵直线y=x-2与x轴交于点A ∴点A的坐标为(0,-2),即OA=2 ∴
8.正比例函数y=6x的图象与反比例函数
9.将一次函数y=3x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函
数关系式为 y=3x+2
.
第35课时
一次函数与反比例函数综合题课时作业
10.次越野跑中,当小明跑了1600米时,小刚跑了1400米 ,小明、小刚在此后所跑的路程y(米)与时间t(秒)之 间的函数关系如图,则这次越野跑的全程为 2200 米. 解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得 , 解得:a=2,b=4, ∴这次越野跑的全程为:1600+300×2=2200米.
3.在同一平面直角坐标系中,函数y=mx+m与
(m≠0)的图象可能是( A )
第35课时
像大致是( B )
一次函数与反比例函数综合题课时作业
的图像,则一次函数 的图
4.左下图是反比例函数
5.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以 100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t( 时)的函数关系的大致图象是( C )
,解得k=-2,b=-3,∴一次函数的解析式为y=-2x-3, 的图象过点A(-2,1),∴ ; 或 , ,解得m=-2,
∴反比例函数的解析式为 (2)解方程组 ∴点B的坐标为 ,得:
由图象可知,当-2<x<0或x> 时,一次函数的函数值小于反比例函 数的函数值.
2015年中考数学考点专项三:函数一次函数
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:正比例函数表达式
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:待定系数法求一次函数表达式
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:一次函数的性质
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:图像法解二元一次方程组
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:待定系数法求正比例函数
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:正比例函数的定义
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:一次函数与一元一次不等式
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:截距
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:一次函数定义
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:正比例函数的图像
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:一次函数的图像
专项三
函数
2015年考点:一次函数
【难易度】
□已掌握
知识点:一次函数与二元一次方程
专项三
函数
2015年考点:一次函数
【难易度】
【中考复习方案】2015中考数学总复习 第11课时 一次函数的图象及性质课件(考点聚焦+京考探究+热考京讲)
例 1 对于一次函数 y=-2x+4, 下列结论错误的 是( D ) A.函数值随自变量的增大而减小 B.函数的图象不经过第三象限 C. 函数的图象向下平移 4 个单位长度得 y=-2x 的图象 D.函数的图象与 x 轴的交点坐标是(0,4)
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
[解析] ∵一次函数 y=-2x+4 中 k=-2<0, ∴函数 值 y 随 x 的增大而减小,故 A 正确;∵一次函数 y=-2x +4 中 k=-2<0,b=4>0,∴此函数的图象经过第一、 二、 四象限, 不经过第三象限, 故 B 正确; 由“上加下减” 的原则可知,函数的图象向下平移 4 个单位长度得 y=- 2x 的图象,故 C 正确;∵令 y=0,则 x=2,∴函数的图 象与 x 轴的交点坐标是(2,0),故 D 错误.故选 D.
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
方法点析
一般来说,使用待定系数法求函数解析式有“四部曲”: (1)设——按照所求函数类型,设出解析式,其系数是待定的; (2)列——把题目中提供的坐标代入所设解析式中,列出关于待定系 数的方程或方程组; (3)解——解这个方程或方程组,得到待定系数的值; (4)代——将第(3)步中求出的结果,代入第(1)步所设的解析式中,从 而得到完整的函数解析式. 通常情况下,有几个待定的系数,就要列几个方程,也就需要几个 点的坐标.
考点2 一次函数的图象和性质
第一、三象限
第二、四象限
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
第一、二、三象限
第一、三、四象限
第一、二、四象限
第二、三、四象限
考点聚焦
京考探究
2015届中考数学自主复习课件【第10讲】一次函数(47页)
第10讲┃ 一次函数
【归纳总结】
用待定系数法确定一次函数的解析式,通常先设函数 解析式为 y=kx+b(k≠0),把已知点的坐标代入函数解析 式,可得方程(组),求出未知系数,从而可得这个函数的 解析式.
第10讲┃ 一次函数
考点3
一次函数与方程(组)、不等式的关系
1.一次函数 y=kx+b(k,b 为常数,且 k≠0)的图象如图 10 -1 所示,根据图象信息可求得关于 x 的方程 kx+b=0 的解为 ________ x=-1 ,不等式 kx+b>0 的解集为________ x>-1 .
第10讲┃ 一次函数
解:(1)∵当 0≤x≤25 时,货车从 H 到 A 往返 1 次的路程为 2x km, 货车从 H 到 B 往返 1 次的路程为 2(5+25-x)=(60-2x)(km), 货车从 H 到 C 往返 2 次的路程为 4(25-x+10)=(140-4x)(km), 这辆货车每天行驶的路程 y=2x+60-2x+140-4x=-4x+200; 当 25<x≤35 时,货车从 H 到 A 往返 1 次的路程为 2x km, 货车从 H 到 B 往返 1 次的路程为 2(5+x-25)=(2x-40)(km), 货车从 H 到 C 往返 2 次的路程为 4[10-(x-25)]=(140-4x)(km), 故这辆货车每天行驶的路程 y=2x+2x-40+140-4x=100. 故答案为:(60-2x) (140-4x) (-4x+200) 100
图 10-6 A.汽车在高速公路上的行驶速度为 100 km/h B.乡村公路总长为 90 km C.汽车在乡村公路上的行驶速度为 60 km/h D.该记者在出发后 4.5 h 到达采访地 第10讲┃ 一次函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活跃的一次函数
一次函数似乎无处不在.它活跃在各类试题中,兹举例说明如下.
一、一次函数在平面几何图形中
例1 如图1,平面直角坐标系中,正△ABC 的顶点B ,C 的坐标分别为B (1,0),C (3,0),过坐标原点O 的一条直线MN 分别与边AB ,AC 交于点M ,N ,若OM =MN ,求点M 的坐标.
分析与思考 本题看似简单,但具体做起来却又似乎无从下手.
如图1,尝试过点M 作MP 与AC 平行,交x 轴于点P .我们的整体思路是,若能求出直线AB 的解析式以及直线MP 的解析式,进而再求出直线MP 和直线AB 的交点M 的坐标,那么即可顺利解决问题.
由于已知OM =MN ,我们又过点M 作MP 与AC 平行,
所以OP =PC .但OC =3,所以点P 的坐标为P (32
,0). 由于点B ,C 的坐标已知,且△ABC 为等边三角形,容易求
得点A 的坐标为A (2.又点C 的坐标为C (3,0),
所以,可得直线AB 的解析式为
y ①
直线AC 的解析式为:y +
而直线MP 与直线AC 平行,所以可以设出直线MP 的解析式为y +b .但直
线M 过点P ,所以将点P 的坐标代入y +b 中即可求出b 的值来,由于点P 的坐
标为P (32,0),即把x =32
,y =0代入y +b 中,求出b 的值为b .这样,我们又求得直线MP 的解析式为
y . ②
最后要求点M 的坐标,只要求出直线AB 和直线MP 的交点即可.这样,我们由上述
的讨论过程中所得的①②联立方程组,即可解得点M 的坐标为M (54). 注 本例较为经典,解决本例的过程中涉及到的诸多方面的数学知识的综合应用. 例2 如图2,直线y =-43
x +8与x 轴,y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿着AM 折叠,点B 恰好落在x 轴上的点N 处,则直线AM 的解析式是什么?
分析与思考 仔细分析条件可知,直线AM 就是∠OAB
的平分线所在的直线,因此只要求出点M 的坐标即可,因为
点A ,B 的坐标易于求出来,依据题意可以求得它们分别为
A (6,0),
B (0,8),所以OA =6,OB =8,AB =10,这样,
依据题意和折叠性质,得
AN =AB =10.MN =MB .
设OM =x ,则BM =MN =8-x ,
ON =AN -AO =10-6=4.
在Rt △MON 中,由勾股定理,得
OM 2+ON 2=MN 2.
即得x 2+42=(8-x )2,解之得x =3.
所以OM =3,点M 坐标为M (0,3),又A 点的坐标为A (6,0),到此直线AM 的解析式就不难求出来了.
二、一次函数在格点中
例3 若直线y =-2x +k (k 为正整数)与坐标轴围成的三角形内的整点(含有边界)有100个,则k 的值为( )
(A )9 (B )16 (C )18 (D )22
分析与思考 由于求整数解,所以对于k 分奇数与偶数两种情况讨论:
(1)当k 为偶数时,令k =2m ,则三角形中所包含的整点的个数为:
当横坐标x =0时,三角形内的整点的纵坐标分别为:
y=0,1,2,3,…2m,共(2m+1)个;
当横坐标x=1时,三角形内的整点的纵坐标为:
y=0,1,2,3,…(2m-2),共(2m-1)个;
当横坐标x=2时,三角形内的整点的纵坐标为:
y=0,1,2,3,…(2m-4),共(2m-3)个;
…
当横坐标x=m时,三角形内的整点的纵坐标为:
y=0,共1个,
所以整点坐标的总个数为:
1+3+5+…+(2m-1)+(2m+1)=(m+1)2.
依据题意有(m+1)2=100,
所以m=9,或m=-11(舍去),
此时k=18;
(2)当k为奇数时,设k=2m+1,同理可得整点的总个数为m2+3m+2,但此时方程m2+3m+2=100无整数解.
故本例正确的答案应选C.
例4 各边长都是整数,且三边长度的和为50的三角形共有多少个?
分析与思考设三角形的三边长分别为x,y,z,由于对称性,不妨设x≤y≤z.
依据题意可得x+y+z=50,
所以x=50-x-y,
于是我们有y≥x;①
由三角形的构成条件,得
x+y>z,即x+y>25;②
又由y≤z得x+2y≤50.③
这样问题转化为:求在上述①②③的条件下
的整数解的组数共有多少组?
进一步可转化为:求在上述①②③的条件下的
所确定的平面区域中的整点的个数.于是在图3所
示的平面直角坐标系中,画出一次函数y=x,x+y=25,x+2y=50这三条直线所围成的平面区域.显而易见,由直观可以得到问题的解应为52种.即若各边长都是
整数,且三边长度的和为50的这样的三角形共有52个.
三、一次函数在实际生活中
例5 某制衣车间有A、B、C、D共四个组,各组的生产能力如表格所示.现在上衣及裤子要配套生产(一件上衣及一件裤子为一套),问在一周内内(七天)这四个组最多能生产多少套?
分析与思考乍一看,似乎无从下手,条
件有点不明朗.
但我们仔细观察上述表格,我们可以看出A,B,C,D四个组的每天生产上衣与裤子的数量之比分别为:
8 10,
9
12
,
7
11
,
6
7
并且有6
7
>
8
10
>
9
12
>
7
11
.
这样我们可以看出D组做上衣的效率最高,C组做裤子的效率最高,于是,只有让每天生产上衣效率最高的D组做上衣,生产裤子效率最高的C组做裤子才能使得所做的衣服的套数最多,也就是说,D组7天里面一直都做上衣,C组7天里面一直都做裤子.而对于A,B两个组,我们可以分别设出A组7天里面做了x天上衣,其余的(7-x)天做裤子,B组做了y天上衣,其余的(7-y)天做裤子.
这样,A,B,C,-D四个组7天总共生产上衣的件数是:
6×7+8×+9y(件);
生产裤子的总条数是:
11×7+10(7-x)+12(7-y)(条).
依据题意,上衣与裤子要配套,所以有以下关系式成立,即有42+8x+9y
=77+10(7-x)+12(7-y),
于是我们由此可得
y=9-6
7
x(0≤x≤7).①
设W=42+8x+9y
=42+8x+9(9-6
7 x)
=123+2
7
x.②
即问题转化为在①的条件下,求②中W的最大值.显然当x=7时,对应的y=3,此时W可以取得的最大值为W=125.
综上所述,安排A,D两个组7天都做上衣,C组7天做裤子,B组做3天上衣,4天做裤子,这样安排做的衣服套数最多,共为125套.。