第13讲 二元一次方程组解决问题3

合集下载

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020年数学中考复习每日一练第十三讲《方程类应用题专项》1.为实施乡村振兴战略,解决某山区老百娃出行难的问题,当地政府决定修建一条高速公路,其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工,甲工程队独立工作2天后,乙工程队加入,两个工程队又联合工作了1天,这3天共掘进26米,已知甲工程队平均每天比乙工程队多掘进2米.(1)求甲、乙两个工程队平均每天分别掘进多少米?(2)若甲、乙两个工程队按此施工速度进行隧道贯穿工程,剩余工程由这两个工程队联合施工,求完成这项隧道贯穿工程一共需要多少天?2.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c 元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.51561210.3 4.791716水费(元)533.41225.621.529.418.439.436.4(1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.3.七年级学生小聪和小明完成了数学实验《钟面上的数学》后,制作了一个模拟钟面,如图所示,点O为模拟钟面的圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON出发绕点O转动,OA顺时针转动,OB逆时针转动,OA 运动速度为每秒转动15°,OB运动速度为每秒转动5°,设转动的时间为t 秒(t>0),请你试着解决他们提出的下列问题:(1)当t=3秒时,求∠AOB的度数;(2)当OA与OB第三次重合时,求∠BOM的度数;(3)在OA与OB第四次重合前,当t=时,直线MN平分∠AOB.4.为加快“智慧校园”建设,某市准备为试点学校采购一批A,B两种型号的一体机,经过市场调查发现,每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)列二元一次方程组解决问题:求每套A型和B型一体机的价格各是多少万元?(2)由于需要,决定再次采购A型和B型一体机共1100套,此时每套A型体机的价格比原来上涨25%,每套B型一体机的价格不变.设再次采购A型一体机m(m≤600)套,那么该市至少还需要投入多少万元?5.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)6.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态14个一次性纸杯平衡记录一6个乒乓球,1个10克的砝码平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码请算一算,一个乒乓球的质量是多少克一个这种一次性纸杯的质量是多少克解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.7.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的项上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,假设这列火车的长度为am.(1)设从车头经过灯下到车尾经过灯下火车所走的这段时间内火车的平均速度为Pm/s,从车头进入隧道到车尾离开隧道火车所走的这段时间内火车的平均速度为Qm/s,计算:5P﹣2Q(结果用含a的式子表示).(2)求式子:8a﹣380的值.8.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD9.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机.某自行车行销售A型,B型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:A自行车销售总额为8万元.每辆B型自行车的售价比每辆A型自行车的售价少200元,B型自行车销售数量是A自行车的1.25倍,B自行车销售总额比A型自行车销售总额多12.5%.(1)求每辆B型自行车的售价多少元.(2)若每辆A型自行车进价1400元,每辆B型自行车进价1300元,求此自行车行2019年销售A,B型自行车的总利润.10.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?11.列一元一次方程解应用题目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,甲型节灯进价25元/只,售价30元/只;乙型节能灯进价45元/只,售价60元/只.(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?12.在数轴上有三个点A,B,C,O为原点,点A表示数a,点B表示数b,点C表示数c.且a、c满足|a+6|+(c﹣3)2=0.(1)填空:a=;c=.(2)点O把线段AB分成两条线段,其中一条是另一条线段的3倍,则b的值为:.(3)若b为2,动点P从点A出发,以每秒2个单位长度速度沿数轴负方向运动,同时,动点Q从点C出发,以每秒3个单位长度速度沿数轴正方向运动,求运动多少秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍?13.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A 市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?14.2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕Led液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于30%(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕Led液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高(2m﹣12)%,再大幅降价150m元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到22400元,求m的值.(利润=售价﹣成本)15.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟无远途费0.8元千米(超过7千米部分)起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.16.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?17.某商场用25000元购进A、B两种新型护眼台灯共50盏,这两种台灯的进价、标价如下表所示:A型B型类型价格进价(元/盏)400650标价(元/盏)600m(1)A、B两种新型护眼台灯分别购进多少盏?(2)若A型护眼灯按标价的9折出售,B型护眼灯按标价的8折出售,那么这批台灯全部售完后,商场共获利7200元,请求出表格中m的值.18.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.19.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品补充新工人后20天内能完成总任务吗20.某糕点厂生产大小两种月饼,下表是A型、B型、C型三种月饼礼盒中装有大小两种月饼数量和需要消耗的面粉总重量的统计表面粉总重量(g)大月饼数量(个)小月饼数量(个)A型月饼礼盒58086B型月饼礼盒48066C型月饼礼盒420a b(1)直接写出制作1个大月饼要用g面粉,制作1个小月饼要用g面粉;(2)直接写出a=,b=.(3)经市场调研,该糕点厂要制作一批C型月饼礼盒,现共有面粉63000g,问制作大小两种月各用多少面粉,才能生产最多的C型月饼礼盒?参考答案1.解:(1)设乙工程队平均每天掘进x米,则甲工程队平均每天掘进(x+2)米,依题意有2(x+2)+(x+x+2)×1=26解得:x=5,x+2=5+2=7.故甲工程队平均每天掘进7米,乙工程队平均每天掘进5米;(2)设完成这项隧道贯穿工程一共需要y天,依题意有(7+5)y=146﹣26,解得y=10.答:完成这项隧道贯穿工程一共需要10天.2.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.23.解:(1)当t=3秒时,∴∠AOM=15°×3=45°,∠BON=5°×3=15°,∴∠AOB=180°﹣45°﹣15°=120°;(2)设t秒后第三次重合,由题意得15t+5t=360×2+180,解得t=45,5×45°﹣180°=45°.答:∠BOM的度数为45°;(3)在OA与OB第一次重合前,直线MN不可能平分∠AOB;在OA与OB第一次重合后第二次重合前,∠BON=5t,∠AON=15t﹣180,依题意有5t=15t﹣180,解得t=18;在OA与OB第二次重合后第三次重合前,直线MN不可能平分∠AOB;在OA与OB第三次重合后第四次重合前,∠BON=360﹣5t,∠AON=15t﹣720,依题意有360﹣5t=15t﹣720,解得t=54.故当t=18或54秒时,直线MN平分∠AOB.故答案为:18或54秒.4.解:(1)设每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元.由题意可得:,解得:,答:每套A型一体机的价格是1.2万元,B型一体机的价格是1.8万元;(2)设该市还需要投入W万元,由题意得:W=1.2×(1+25%)m+1.8×(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小.∵m≤600,∴当m=600时,W有最小值,W最小=﹣0.3×600+1980=1800,答:该市至少还需要投入1800万元.5.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.6.解:(1)根据题意知,这种一次性纸杯的质量是或.故答案是:或;(2)根据题意得,6x+10=16x﹣206x﹣16x=﹣20﹣10﹣10x=﹣30x=3.当x=3时,(克).答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.7.解:(1)依题意,得:P=,Q=,∴5P﹣2Q=﹣=.(2)∵火车匀速行驶,∴P=Q,即=,∴a=300,∴8a﹣380=2020.8.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.9.解:(1)设每辆B型自行车的售价为x元,则每辆A型自行车的售价为(x+200)元.依题意,得方程两边乘x(x+200),得80000×1.25x=80000×(1+12.5%)(x+200)解得x=1800经检验,x=1800是原分式方程的解,且符合实际意义.答:每辆B型自行车的售价为1800元.(2)每辆A型自行车的售价为1800+200=2000元,销售数量为80000÷2000=40辆;B型自行车的总销售额为80000×(1+12.5%)=90000元,销售数量为40×1.25=50辆.总利润为(80000+90000)﹣(1400×40+1300×50)=49000元.答:此自行车行2019年销售A,B型自行车的总利润为.49000元10.解:(1)设购进乙x件,则购进甲1.5x件,,解得,x=100,经检验x=100是原方程的解,∴1.5x=1.5×100=150,答:甲购进150件,乙购进100件.(2)设甲每件售价m元,则150m+100(m+10)﹣7800﹣6000≥6700,解得:m≥78,答:甲每件售价至少78元.11.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.12.解:(1)∵|a+6|+(c﹣3)2=0,∴a+6=0,c﹣3=0,解得:a=﹣6,c=3.故答案为:﹣6;3;(2)由a=6可知OA=6,∴b=6×3=18或b=6÷3=2;故b=18或2;故答案为:18或2;(3)设运动t秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍,根据题意得2t+6+2=3(3t+1),解得t=.即运动秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍.13.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.14.解:(1)设降价x元,列不等式(6000×0.9﹣x)≥4000(1+30%)解得:x≤200答:最多降价200元,才能使得利润不低于30%;(2)根据题意得:整理得:3m2﹣8m﹣640=0解得:m1=16,m2=﹣(舍去)∴m=16答:m的值为16.15.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.2②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.2③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.2综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.16.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.17.解:(1)设A型台灯购进x盏,B型台灯购进(50﹣y)盏.根据题意得:400x+600(50﹣x)=25000.解得:x=25.则50﹣x=25,答:A型台灯购进25盏,B型台灯购进25盏;(2)25×(600×90%﹣400)+25×(m×80%﹣650)=7200.解得m=997.5.18.解:(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据题意得:4x+2(x+10)=200,解得:x=30,∴x+10=40.答:在网上平台购票单价为30元,在现场购票单价为40元.(2)根据题意得:500×a%×30+500×(1﹣a%)×40=17000,解得:a=60.答:a的值为60.19.解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H 型装置,依题意,得:,解得:x=32,∴=48.答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,依题意,得:,解得:y=72,∴=y=72.∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.20.解:(1)制作1个大月饼要用的面粉数量为:(580﹣480)÷(8﹣6)=50(g);制作1个小月饼要用的面粉数量为:(480﹣50×6)÷6=30(g),故答案为:50;30;(2)根据题意得50a+30b=420,∵a,b为整数,∴a=6,b=4.故答案为:6;4(3)设用xg面粉制作大月饼,则利用(63000﹣x)g制作小月饼,根据题意得出,解得:x=45000,则63000﹣4500=18000(g).答:用45000g面粉制作大月饼,18000g制作小月饼,才能生产最多的盒装月饼.。

七年级数学竞赛 第13讲 二元一次方程组

七年级数学竞赛 第13讲 二元一次方程组

阅读材料,善于思考的小军在解方程组
2x +5y 2x +11y
=3 =5

时,采用了一种“整体代换”的解法。

解:将方程②变形:4x+10y+y=5,即 2(2x+5y)+y=5。③
把方程①代入③得:2×3+y=5,∴ y=−1,

y=−1
代人①得,x=4。∴方程组的解为
x=4 y = −1

|
x |
− x
y +
|= x y |=
+ x
y +
− 2
2

(3)
xy
3x + 2y
xy
= =
1 8 1

2x + 3y 7
(《数学周报》杯全国竞赛题) (“五羊杯”竟赛题)
13.整体方法 整体思考方法是将问题看成一个整体,从大处着眼由整体入手,突出对问题的整体结构的分析与改造,
从整体上把握问题的特征和解题方向。
刻意练习
1.已知方程组
2a − 3b = 13 3a + 5b = 30.9
的解为
a b
= =
8.3 1.2
,则方程组
2(x + 2) − 3( y −1) = 13 3(x + 2) + 5( y −1) = 30.9
的解是

(山东省枣庄市中考题)
2.已知关于
x,y
的方程组
2x − ay = 6
例 8.能否找到 7 个整数,使得这 7 个整数沿圆周排成一圈后,任 3 个相邻数的和都等于 29?如果能,请举 一例;如果不能,请简述理由。 解题思路:假设存在 7 个整数 a1,a2,a3,a4,a5,a6,a7 排成一圈后满足题意,

二元一次方程组解决实际问题 优秀课特等奖 课件

二元一次方程组解决实际问题    优秀课特等奖 课件

由②得:3x+y=100 ③ ③- ①得:2x=60 ∴x=30
把x=30代入①得:y=10
x 30 y 10
即A型手机购买30部,B型手机购买10部。
选择A型和C型两种
解:设A型手机购进x部, C型手机购进y部, 由题意得: ① x y 40
1800 x 1200 y 60000
友情提示: 可要想清楚了,到底设的是什么?
解法一:设现在学校中男生有x人、女生有 y 人,则

x+y=1290 x y —————— + —————— 1+20% 1 –10% 解得
=
1290 —————— 1+7.5%

x=840 y=450
答:现在学校中男生有840人、 女生有450人。
解法二:设去年学校中男生有x人、女生有 y 人,则
想一想:列二元一次方程组解决
实际问题的主要步骤是什么?
(1)弄清题意,找到题目中表达的相 等关系,并设出未知数;
(2)列出表示题目全部意义的两个 方程,并组成方程组; (3)解这个方程组,求出未知数的 值; (4)审查未知数的值是否符合题意, 并做答(注意写明单位)。
例1、李巍喜欢集邮.她有中国邮票和外国邮
经检验,符合题意。 答:该队胜了6场,平了2场
• 4. 甲对乙说:“我若是你现在的年龄时, 你那时的年龄是我现在的年龄的一半,当 你到我现在的年龄时,那时我们的年龄之 和是63岁”。问甲、乙现在各多少岁? 分析:设甲现在X,乙现在Y。
甲 我Y时,你呢? 乙 我是Y的一半 我是X时,你呢?
我是(63-X)
设用x张制盒身,用y张制盒底。 ① 制盒身、盒底张数 = 150张 = 个数盒底(43y)

二元一次方程组讲义

二元一次方程组讲义

二元一次方程组知识点1:解方程一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.5.整体思想解方程组.(1)整体代入.如解方程组3(1) 5 5(1)3(5) x y y x -=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y .然后求出方程组的解.(2)整体加减,如1+3y 19 313x+y 11 3x ⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x 、y 的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x -y=3④,可使③、④组成简单的方程组求得x ,y .二、经典考题剖析:【考题1-1】(2004、汉中)若x+y+4则 3x+2y =_______【考题1-2】(2004、北碚,5分)解方程组:x-y=42x+y=5⎧⎨⎩三、针对性训练:( 20分钟) (答案:242 )1、对方程组4x+7y=-19 4x-5y=17 ⎧⎨⎩①②,用加减法消去x ,得到的方程为( )A 、2y=-2 B.2y=-36C. 12y=-2D.12y=-362.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是( ) A .11x=x=2x=73 C. D.19y=8y=3y=3x=3 B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩ 3.若x=-2y=1⎧⎨⎩ 是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则() (a -b )的值为( ) A. -353 B. 353 C. -16 D.16 4.解方程组:⑴2x+5y=53x+2y=5 3x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵5.已知方程组ax+5y=15 4x-by=-2 ⎧⎨⎩①②由于甲看错了方程①中的a 得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b ,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a 、b 为计算,求原方程组的解x 与y 的差.6.若a+b 4b 与3a+b 是同类二次根式,求a 、b 的值.7.已知关于x ,y 的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k 的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y =-2,乙因把这个方程组中的第二个方程X 的系数抄错了,得到一个错误的解为x =-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.知识点2:方程组的实际应用一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性.二、经典考题剖析:【考题2-1】(2004、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品( )A .赚50%B .赔50%C .赔25%D .不赔不赚解:D 点拨:利润=销售价-进价.【考题2-2】(2004、南山区正题3分)如图1-7-1,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A .9015x y x y +=⎧⎨=-⎩ B .90215x y x y +=⎧⎨=-⎩ C .90152x y x y +=⎧⎨=-⎩ D .290215x x y =⎧⎨=-⎩【考题2-3】(2004、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。

初一10.5用二元一次方程组解决问题(3)_教案

初一10.5用二元一次方程组解决问题(3)_教案

课题:10.5 用二元一次方程组解决问题(3)【学习目标】1.会利用示意图分析实际问题的数量关系,列出二元一次方程组解决问题;2.会将实际问题中的条件用示意图直观地表示出来,从而找出问题中所蕴 含的数量关系,最终解决问题;3.在探讨解决问题的过程中,敢于发表自己的见解,学会与他人合作交流.【学习重点】会利用示意图分析实际问题的数量关系,列出二元一次方程组解决问题.【学习难点】会将实际问题中的条件用示意图直观地表示出来,从而找出问题中所蕴含的数量关系,最终解决问题.【任务探究】任务活动一、课前热身如图所示,长方形的纸片分成8块同样大小的长方形,求小长方形的长和宽分别是多少?(学习目标:尝试从简单示意图中寻找相等关系.)任务活动二、合作交流用正方形和长方形两种硬纸片制作甲、乙两种无盖的长方形纸盒(如图),如果长方形的宽与正方形的边长相等,150张正方形硬纸片和300张长方形硬纸片可以制作甲、乙两种纸盒各多少个?(学习目标:会利用示意图分析实际问题的数量关系,列出二元一次方程组解决问题.)变式:上题中如果改为库存正方形纸板500张,长方形纸板1001张,那么能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?任务活动三、思维拓展某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥甲种纸盒 乙种纸盒 硬纸片共用了1min ,整列火车完全在桥上的时间共40s ,求火车的速度和长度.(学习目标:会将实际问题中的条件用示意图直观地表示出来,从而找出问题中所蕴含的数量关系,最终解决问题.)变式:甲、乙两人分手后,沿着铁轨旁边与铁轨平行的小路以相同的速度反向而行,此时,一列长255米的列车匀速地向甲迎面驶来,列车从甲身旁开过,用了15秒;然后在乙身旁开过,用了17秒,求两人的步行速度和列车速度.【课堂小结】这节课你有哪些收获?还有哪些困惑?【达标检测】1.已知梯形的高是cm 4,面积是218cm ,梯形的上底比下底的31多cm 1.求梯形上、下底的长度.2.甲、乙两人沿m 400的环形跑道同时同地出发跑步(甲的速度比乙的速度快).如果同向而行,那么经过s 200相遇;如果背向而行,那么经过s 40两人相遇,求两人的跑步速度.。

用二元一次方程组解决 问题

用二元一次方程组解决 问题
知识整合,体会把实际问题转化为数学方程组的过程,感受方程组是刻画现实世界的有效数学模型,进一步体会数学建模思想,问题转化思想。
小结:
通过今天的学习,您学会了什么?您会正确运用不?通过这节课的学习,您有什么感受呢,说出来告诉大伙儿、
各抒己见,谈出自己本节课的收获、感想、
答:基本水价为2元/m3,超过6m3部分的价格为5元/m3。
引导学生主动地参与教学活动,发扬数学民主,让学生在独立考虑、合作交流等数学活动中,培养学生合作互助意识,提高数学交流与数学表达能力,发展学生多角度思维能力,培养学生严谨的思维方式和良好的学习氛围,在学习活动中获得成功感,树立自信心,并进一步形成对数学知识的理解,培养数学应用意识,体会将实际问题转化为数学问题的过程、
大丰区万盈镇沈灶初级中学备课用纸
授课教师:_______________上课时间:_______________
年级班级
学科
课 题
10。5用二元一次方程组解决问题(2)
第_______________课时
教学目标
1。借助“表格”分析复杂问题中的数量关系,从而建立方程解决实际问题;
2、能用二元一次方程组解决简单的实际问题,包括列方程、解方程,并依照实际问题的意义检验所得结果是否合理;
问题3某厂生产甲、乙两种型号的产品,生产一个甲种产品需要时间8s、铜8g;生产一种乙种产品的型号需要时间6s、铜16g、假如生产甲、乙两种产品共用1h,用铜6、4kg,甲、乙两种产品各生产多少个?
师:这个问题中的数量关系比较复杂,这节课我们就尝试借助“表格"分析、
学生独立考虑,发表自己的见解、
情境创设,引发学生注意力,营造学习气氛,激发探究热情、


二元一次方程组解决实际问题

二元一次方程组解决实际问题

二元一次方程组解决实际问题二元一次方程组是我们在数学学习中经常遇到的问题之一。

它是由两个一次方程组成的方程组,其中每个方程都包含两个未知数。

通过解决这个方程组,我们可以找到未知数的值,从而解决一些实际问题。

想象一下,你正在计划参加一次旅行。

你计划租一辆汽车,但是汽车租赁公司将一天收取固定的基本费用和每公里的费用。

你希望计算出最终租车的总费用。

这个问题就可以通过二元一次方程组来解决。

设基本费用为x元,每公里费用为y元。

你知道如果你不开车,你也需要支付基本费用作为租车费用,所以你可以得到方程1:x = 基本费用。

此外,你知道如果你开车d公里,则你还需要支付d乘以每公里费用,所以你可以得到方程2:y = 每公里费用。

现在我们有了一个二元一次方程组:方程1:x = 基本费用方程2:y = 每公里费用解这个方程组,我们可以计算出基本费用和每公里费用的具体值。

这将帮助你确定你最终租车的总费用。

另一个例子是关于购买水果。

假设你去市场买了几个苹果和几个橙子,你知道每个苹果的价格和每个橙子的价格。

你想计算你购买所有水果的总费用。

同样,这个问题可以通过二元一次方程组来解决。

设苹果的个数为x,橙子的个数为y。

每个苹果的价格为a元,每个橙子的价格为b元。

你可以得到方程1:x = 苹果的个数。

同样,你可以得到方程2:y = 橙子的个数。

现在我们有了一个二元一次方程组:方程1:x = 苹果的个数方程2:y = 橙子的个数通过解决这个方程组,你可以计算出苹果的个数和橙子的个数,并进一步计算出购买所有水果的总费用。

这只是二元一次方程组应用的两个简单例子。

在现实生活中,我们可以遇到更复杂的问题,例如计算两个不同列车的速度,或者计算不同产品的成本和利润。

通过学习解决二元一次方程组的方法,我们可以在实际问题中找到准确的答案。

不仅可以提高我们的数学能力,还可以帮助我们在日常生活中做出更好的决策。

总结起来,二元一次方程组是数学中常见的一个概念,通过解决这个方程组,我们可以解决一些实际问题。

二元一次方程(组)应用题专题讲解及练习(附答案)

二元一次方程(组)应用题专题讲解及练习(附答案)

实际问题与二元一次方程组(一) 要点一.常见的一些等量关系 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二.实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案.例题讲解题型一.和差倍分问题例1.电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【跟踪训练】根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元题型二.配套问题例2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【跟踪训练】某家具厂生产一种方桌,设计时13m的木材可做50个桌面或300条桌腿.现有103m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 题型三.工程问题例3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件?题型4.利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【跟踪训练】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗专题练习(一)一、选择题1.有一些苹果箱,若每只装苹果25 kg,则剩余40 kg无处装;若每只装30 kg,则还有20个空箱,这些苹果箱有( ) .A.12只 B.6只 C.112只 D.128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组 ( ) .A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?()A.300元 B.310元 C.320元 D.330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( ) .A.赔了10元 B.赚了10元C.赔了约7元 D.赚了约7元5.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺帽和生产螺栓的数分别为()A.50人,40人 B.30人,60人C.40人,50人 D.60人,30人6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( ) .A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩二、填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则100个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票张儿童票张。

二元一次方程组解决实际问题

二元一次方程组解决实际问题

解:方案一:获利140×4500=630000(元) 方案二:获利15×6×7500+(14015×6)×1000=725000(元) 方案三:设精加工x吨,则粗加工y吨.依题 意得 x/6+y/16=15 解得x=60 获利60×7500+ (140-60)×4500=810000(元) 因为第三种获利最多,所以应选择方案三
3 男生人数= (女生人数-1) 5
解:设男生有x人,女生有y人,根据题意有 y=2(x-1) 3 x= (y-1) 5 解这个方程组,得: x=9 y=16 经检验,符合题意
答:男生有9人,女生有16人。
练习1:一批蔬菜要运往某批发市场,菜农准备 用汽车公司的甲乙两种货车,已知过去两次租 用这两种货车的记录如下表所示。
{
x+y=68
(100x+y)-(100y+x)=2178
解得
{ y=23
x=45
练习:一个两位数,十位上的数字比个位上的数字大5, 如果把十位上的数字与个位上的数字交换位置,那么得 到的新两位数比原来的两位数的一半还少9,求这个两 位数? 解:设这个两位数十位数是x,个位数是y,则: x-5=y x=7
解:设甲单独做一周工钱为x万元,乙单独做一周为y万元,由题意得:
{
6(x+y)=5.2
4x+9y=4.8
解得
{
x=3/5
y=5/14
设甲单独做a周完成 乙单独做b周完成 6(1/a+1/b)=1 a=10 解得 4×1/a+9×1/b=1 b=15
{
{
甲单独做花费:10×0.6=6万元 乙单独做花费:15×5/14≈5.36万元
解得 x+y=50 y=15 ③当购B,C两种电视机时,同理可得知结果不为整数不合题意 由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台, C种电视机15台 (2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元) 若 选择(1)中的方案②,可获利 150×35+250×15=9000(元) 9000>8750 故为了获利最多,选择第二种方案.

列二元一次方程组解实际问题(教案)

列二元一次方程组解实际问题(教案)
4.培养学生的合作交流意识,通过小组讨论、互动交流等方式,提高学生在团队协作中解决问题的能力,培养学生的团队精神和沟通能力。
三、教学难点与重点
1.教学重点
-核心内容:本节课的教学重点是使学生掌握如何从实际问题中抽象出二元一次方程组,并运用代入法和加减法解方程组。
-举例解释:
*通过购物问题和行程问题,让学生学会如何根据问题情境找出等量关系,从而列出方程组。
实践活动环节,分组讨论和实验操作让课堂氛围变得更加活跃。学生们在讨论中积极思考,互相交流,这对于提高他们的问题分析和解决能力有很大帮助。但在成果展示环节,我发现有些小组的展示不够清晰,可能是因为他们在讨论过程中没有做好记录。这一点我需要在以后的教学中加以引导。
学生小组讨论部分,我尝试扮演了一个引导者的角色,通过提出开放性问题,启发学生思考。从成果分享来看,学生们对于二元一次方程组在实际生活中的应用有了更深入的理解。但同时我也注意到,有些学生在讨论中较为沉默,可能是因为他们对自己的观点不够自信。我需要在以后的教学中,多鼓励这些学生表达自己的观点。
在教学过程中,教师需针对以上重点和难点进行有针对性的讲解和指导,通过实际例题、练习和小组讨论等方式,帮助学生透彻理解核心知识,突破学习难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《列二元一次方程组解实际问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时考虑两个未知数的问题?”(例如:购物时,两个人分别买了不同数量的物品,总价固定。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何用二元一次方程组解决实际问题。
本节课将围绕以下实际问题展开教学:

用二元一次方程组解决问题

用二元一次方程组解决问题

用二元一次方程组解决问题二元一次方程组是指由两个未知数和两个一次项构成的方程组,通常的形式为:ax + by = cdx + ey = f其中,a、b、c、d、e、f都是已知数,x和y都是未知数。

二元一次方程组可以用代数解法、消元法、图解法等多种方法来解决问题。

在本篇文章中,我们将为大家介绍如何运用二元一次方程组来解决实际问题。

1.用二元一次方程组解决线性方程问题线性方程是指未知数只出现一次且指数为1的方程,即:ax + b = 0其中,a和b都是已知数,x是未知数。

要解决线性方程,可以使用二元一次方程组的代数解法。

假设我们有两个线性方程:ax + by = cdx + ey = f我们可以根据第一个方程得出:y = (c - ax)/b然后将y的值代入第二个方程,即得:dx + e(c - ax)/b = f化简后得:(bd - ae)x = bf - ec于是我们就可以得出x的值了:x = (bf - ec)/(bd - ae)再将x的值代入第一个方程,即可得到y的值:y = (c - ax)/b例如,假设我们要解决以下两个线性方程:3x + 2y = 74x - y = 2这两个方程可以用二元一次方程组来表示:3x + 2y = 74x - y = 2我们可以根据第二个式子得到:y = 4x - 2然后把y的值代入第一个式子,得到:3x + 2(4x - 2) = 7化简后得到:11x = 11x的值为1,再把x的值代入y的式子,得到:y = 4(1) - 2 = 2因此,这两个线性方程的解是x = 1,y = 2。

2.用二元一次方程组解决实际问题二元一次方程组可以用来解决实际问题,例如:例1:计算两个数的和与积假设有两个数x和y,它们的和是9,积是20,求x和y的值。

设x和y的值分别为a和b,则可得出以下两个方程:a +b = 9ab = 20我们可以通过消元法来解决这个问题。

将第一个式子两边同时乘以a,得到:a^2 + ab = 9a将第二个式子代入上面的式子,得到:a^2 + 20 = 9a化简后得到:a^2 - 9a + 20 = 0这是一个二次方程,我们可以使用求根公式来求解,得出:a1 = 4,a2 = 5因此,x和y的值可以为4和5,也可以为5和4。

第1课时 利用二元一次方程组解决实际问题

第1课时 利用二元一次方程组解决实际问题

第1课时 利用二元一次方程组解决实际问题知识要点基础练知识点1 利用二元一次方程组解决文字叙述类实际问题1.植树节学校买杨树苗和柳树苗共100棵,已知杨树苗每棵0.7元,柳树苗每棵0.2元,买两种树苗共用430元,求这两种树苗各买了多少棵?若设买杨树苗x 棵,买柳树苗y 棵,根据题意可得 (D )A .{x +y =1007x +2y =430 B .{x +y =1002x +7y =430 C .{x +y =1000.2x +0.7y =430D .{x +y =1000.7x +0.2y =430 2.小丽购买了6支水笔和3本练习本,共用21元;小明购买了12支水笔和5本练习本,共用39元.求水笔与练习本的单价.解:设水笔与练习本的单价分别为x 元、y 元,由题意得{6x +3y =21,12x +5y =39,解得{x =2,y =3. 答:水笔与练习本的单价分别是2元与3元.知识点2 利用二元一次方程组解决图表描述类实际问题3.根据如图提供的信息,可知一个热水瓶的价格是 (C )A .7元B .35元C .45元D .50元4.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 21 .综合能力提升练5.夏季来临,某超市试销A,B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A,B两种型号的风扇分别销售了多少台?若设A 型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为(C)A.{x+y=5300200x+150y=30 B.{x+y=5300150x+200y=30C.{x+y=30200x+150y=5300 D.{x+y=3150x+200y=53006.某次知识竞赛共计25道题,评分标准如下:答对1题加4分,答错1题扣1分.一名女选手的总分为75分,则她答对了(C)A.18题B.19题C.20题D.21题7.甲、乙两人年收入之比为4∶3,支出之比为8∶5,一年间两人各存5000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为(C) A.15000元,12000元B.12000元,15000元C.15000元,11250元D.11250元,15000元8. 5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施,6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为{x+y=200(1-15%)x+(1-10%)y=174.【变式拓展】有男、女学生若干人,如果女生走了15人,那么余下男、女生比例为2∶1.在此之后,男生又走了45人,于是男、女同学的比例为1∶5,则男生原来人数为(C)A.40B.45C.50D.559.牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃5天.10.小光和小王玩“石头、剪刀、布”游戏,规定一局比赛后,胜者得3分,负者得-1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪刀、布、石头、剪刀、布、…小王的策略是:剪刀、随机、剪刀、随机、…(说明:随机指石头、剪刀、布中任意一个) 例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表:已知在另一次游戏中,50局比赛后,小光总得分为-6分,则小王总得分为 90 分.11.某商场新进一种服装,每套服装售价100元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少? 解:设裤子原来的单价是x 元,上衣原来的单价是y 元,依题意得{x +y =100,x (1-10%)+y (1+5%)=100(1+2%),解得{x =20,y =80.答:这套服装原来裤子的单价为20元,上衣的单价是80元.12.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果放入大球、小球共10个并使水面上升到50 cm,应放入大球、小球各多少个? 解:(2)设应放入大球m 个,小球n 个.由题意得{m +n =10,3m +2n =50-26,解得{m =4,n =6.答:应放入大球4个,小球6个.拓展探究突破练13.八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A ,B ,C ,D ,E 五位同学对照评分标准回忆并记录了自己的答题情况(E 同学只记得有7道题未答),具体如下表.(1)根据以上信息,求A ,B ,C ,D 四位同学成绩的平均分;(2)最后获知A ,B ,C ,D ,E 五位同学的成绩分别是95分、81分、64分、83分、58分. ①求E 同学的答对题数和答错题数;②经计算,A ,B ,C ,D 四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况.(直接写出答案即可)解:(1)[(19+17+15+17)×5+(2+2+1)×(-2)]÷4=82.5(分).(2)①设E 同学答对x 题,答错y 题,由题意得{5x -2y =58,x +y =13,解得{x =12,y =1. 答:E 同学答对12题,答错1题.②C 同学,他实际答对14题,答错3题,未答3题.。

七年级数学二元一次方程组解决实际问题(PPT)3-2

七年级数学二元一次方程组解决实际问题(PPT)3-2
40 吨,准备加工后上市销售,该公司的 加工能力是:每天精加工6吨或者粗 加工16吨,现计划用15天完成加工任 务,该公司应安排几天精加工,几天 精加工,才能按期完成任务?如果每 吨蔬菜精加工后的利润为1000元,精 加工后为2000元,那么该公司出售这 些加工后的蔬菜共可获得多少元?
P31
我们已学习了列一元一次方程解决实际 问题,大家回忆列方程解应用题的步骤, 其中关键步骤是什么?
审题;设未知数;列方程;解 方程;检验并作答。
关键是审题,寻找出等量关系。
的负半周(ωt=π~π),D反偏截止,D正偏导通,RL上也有自上而下的电流流过,RL上的电压与u相同。可画出整流波形如图Z所示。可见,负载凡上得到的 也是一单向脉动电流和脉动电压。其平均值分别为: 流过二极管D的平均电流(即正向电流)为加在二极管两端的最高反向电压为选择整流二极管时,应以 此二参数; 股票知识:https:// ;为极限参数。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需要中心抽头、 制造麻烦,整流二极管需承受的反向电压高,故一般适用于要求输出电压不太高的场合。 变压器次级中心抽头的全波整流电路。从图的电路很容易看出,它
是两个半波整流电路结合而成的,所以也称为双半波整流电路。变压器的中心抽头为地电位,把交流电压正、负半周分成两部分。正弦交流电正半周时二极 管DA导通,电流通过DA到负载;负半周时二极管DB导通,电流通过DB也到负载。和半波整流电路相比,在交流电压的正、负半周上都有电流通过负载。虽 然每个时刻流到负载的电流并未增加,但平均输出电流比半波整流加倍,流过每个管的电流为负载电流的/。有载时平均输出电压是变压器次级半个绕组电压 有效值的.倍 [] 。 经常使用的整流电路是桥式全波整流电路。它的变压器次级只有一个绕组,接在由四只二极管组成的电桥上。四只管又分成两对,没对串 联起来工作。当正弦交流电的正半周到来时,即变压器次级上端为正时,二极管DA和DC导通而二极管DB和DD截止,如图b所示。当正弦交流电压的下半周 到来时,即变压器上端相对于下端为负时,二极管DB和DD导通而二极管DA和DC截止,如图c所示。可以看出,不论是DA和DC导通,或是DB和DD导通,流 过负载的电流方向都是一致的,在负载上产生的电压都是上正下负。输出波形与变压器具有中心抽头的全波整流器的整流波形相同,如图d。每一个脉冲波形 对应两个导通管 [] 。 另外,当DA和DC管导通时,可近似将它们看作短路,变压器次级的反向峰值电压是加到截止管DB和DD上的(两管并联),所以每只 管承受的反向峰值电压为√Erms。加到电阻性或电感性负载上的输出电压为变压器次级有效值电压的.倍;加到电容性负载的输出电压是变压器次级有效值电 压的√倍。一般估算认为,带负载时输出电压为.Erms。两对二极管交替工作,输出电流比半波整流器加大了一倍,每只管流过的电流ID仅为负载电流Id的一 半,即ID=/Id [] 。 单相半波电阻性负载整流电路:由于半导体二极管D的单向导电特性,只有当变

二元一次方程组应用题解题方法及归类总结(全面实用)

二元一次方程组应用题解题方法及归类总结(全面实用)

二元一次方程组应用题解题方法及归类总结(全面实用)二元一次方程组应用题解题方法及归类总结(全面实用)【解题思路】列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩.故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b =甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c ==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨. 点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩.点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.【跟踪练习】(含答案可直接删除)练习1(2012年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x 解得,⎩⎨⎧==.35,15y x 故中型汽车有15辆,小型汽车有35辆.练习2(2012年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x天进行精加工,y天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x 解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.练习3为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13讲运用二元一次方程组解决问题(三)
第一部分知识梳理
1、列方程组解应用题的基本思想
关键是找等量关系,有几个未知数就必须列出几个方程,所列方程必须满足:
(1)方程两边表示的是同类量
(2)同类量的单位要统一
(3)方程两边的数值要相等
2、列方程组解应用题的一般步骤
(1)审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)
(2)考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)
(3)列出方程组并求解,得到答案.(解方程组)
(4)检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)
第二部分精讲点拨
例1.甲、乙两人分别从甲、乙两地同时相向出发,在甲超过中点50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即返身往回走,结果甲、乙两人在距甲地100米处第二次相遇,求甲、乙两地的路程。

2.某工程车从仓库装上水泥电线杆运送到离仓库恰为1000米处的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆。

已知工程车每次至多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库。

若工程车行驶每千米耗油m升(耗油量只考虑与行驶的路程有关),每升汽油n元,求完成此项任务最低的耗油费用。

3.某家庭前年结余5000元,去年结余9500元,已知去年的收入比前年增加了15%,而支出比前年减少了10%,这个家庭去年的收入和支出各是多少?
小结:
第三部分过关强化
1.一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?
2.某厂买进甲、乙两种材料共56吨,用去9860元。

若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?
3.若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?
4.某运输公司有大小两种货车,2辆大车和3辆小车可运货1
5.5吨,5辆大车和6 辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大、小货车各多少辆?
5.通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。

求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?
6.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?
7.有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?
8. 种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

3种包装的饮料每瓶各多少元?
9.某班同学去18千米的北山郊游。

只有一辆汽车,需分两组,甲组先乘车、乙组步行。

车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。

已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。

10.一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.
11.两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.
12.购买甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵15元,问甲、乙两种图书每本各买多少元?
13.某人装修房屋,原预算25000元。

装修时因材料费下降了20%,工资涨了10%,实际用去21500元。

求原来材料费及工资各是多少元?。

相关文档
最新文档