第3章 剪切和挤压

合集下载

剪切和挤压

剪切和挤压
一、知识点
1、 了解剪切变形的特点
2、 掌握剪切实用计算 3、 掌握挤压实用计算
二、重点内容 1、 剪切实用计算 2、 挤压实用计算
本章主要内容
§3-1 剪切与挤压的概念 §3-2 剪切和挤压的强度计算
§3-1 剪切与挤压的概念
剪切的工程实例
剪切件简化如下图
铆钉连接
螺栓连接
销轴连接
平键连接
焊接连接
榫连接
§3-2 剪切和挤压的强度计算
一.剪切的强度计算
F F
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
和板的材料相同,试校核其强度。
解:1.板的拉伸强度
2.板的剪切强度
Fs F 50103 A 4a 4 0.08 0.01
15.7106 15.7MPa [ ]
FN F A (b 2d )
50 103
(0.15 2 0.017) 0.01
43.1106 43.1MPa [ ]
变形特点:位于两力之间的截面发生相 对错动。
假设切应力在剪切面(m-m截面)
上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: 常由实验方法确定
二.挤压的强度计算
F
假设应力在挤压面上是均匀分布的
F
得实用挤压应力公式
bs
Fbs Abs
*注意挤压面面积的计算
挤压强度条件:
bs 常由实验方法确定
切应力强度条件:
挤压强度条件: 塑性材料: 脆性材料:
为充分利用材料,切 应力和挤压应力应满足

(完整版)剪切和挤压

(完整版)剪切和挤压

四、挤压及其实用计算
例 齿轮与轴由平键(b×h×L=20 ×12 ×100)连接,它传递的 扭矩m=2KNm,轴的直径d=70mm,键的许用剪应力为[]=
60M
Pa ,许用挤压应力为[jy]= 100M Pa,试校核键的强度。
m
h
2
h
L b
1 键的受力分析
P 2m 2 2 57kN d 0.07
由于变形区域较小,应力计算采用假定计算法。 假设:假设剪力在剪切面上呈均匀分布。
F
A
上式称为剪切强度条件
许用剪应力
其中,F 为剪切力——剪切面上内力的合力
A 为剪切面面积
三、剪切的实用计算
受剪切螺栓剪切面面积的计算:
A d 2
4
受剪切单键剪切面面积计算:
取单键下半部分进行分析
假设单键长宽高分别为 l b h
关于挤压面面积的确定 键连接
l h b
Abs l h 2
铆钉或螺栓连接
挤压力分 布
d
h
Abs d h
四、挤压及其实用计算
分析轮、轴、平键结构中键的剪切面与挤压面
(1)、 取轴和键为研究对象进行受力分析 F
M F d 0 2
M
(2)、单独取键为研究对象受力分析
键的左侧上半部分受到轮给键的约束反力的作用,合力大小F; 键的右侧的下半部分受到轴给键的作用力,合力大小F‘;
键连结和铆钉连接件 应力计算
一、剪切变形
1、剪切变形的特点
(1)外力特点:大小相等,方向相反,作用线平行且距离很近。 (2)变形特点:两外力作用线之间的横截面发生相互错动。
错位横截面称为剪切面
二、受剪切构件的主要类型
1、铆钉类

剪切力的计算方法

剪切力的计算方法

第3章 剪切和挤压的实用计算3.1 剪切的概念在工程实际中,经常遇到剪切问题。

剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。

图3-1工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。

构件剪切面上的内力可用截面法求得。

将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。

例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。

Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。

剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。

只有一个剪切面的情况,称为单剪切。

图3-1a 所示情况即为单剪切。

受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。

在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。

实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。

工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2 剪切和挤压的强度计算3.2.1 剪切强度计算剪切试验试件的受力情况应模拟零件的实际工作情况进行。

图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。

当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。

这种具有两个剪切面的情况,称为双剪切。

由图3-2c 可求得剪切面上的剪力为2F F Q =图3-2由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。

在这种计算方法中,假设应力在剪切面内是均匀分布的。

剪切和挤压

剪切和挤压

挤压强度条件:
bs

Fbs Abs

bs
塑性材料: 0.5 0.7 bs 1.5 2.5
脆性材料: 0.8 1.0 bs 0.9 1.5
材料力学
Fs F
A lb
bs
mm
材料力学
三.其它连接件的实用计算方法
焊缝剪切计算
l
有效剪切面
h
45
L
材料力学
本章小结
一、知识点
1、 了解剪切变形的特点
2、 掌握剪切实用计算 3、 掌握挤压实用计算
二、重点内容 1、 剪切实用计算 2、 挤压实用计算
材料力学
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
变形特点:位于两力之间的截面发生相 对错动。
假设切应力在剪切面(m-m截面)
上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: Fs
A
常由实验方法确定

Fbs Abs

F cb
材料力学
bs 2


Fs A

4F
d 2
bs

Fbs Abs

F dh
为充分利用材料,切 应力和挤压应力应满足
F dh

2

4F
d 2
d 8h

材料力学
d
b
a
例1:图示接头,受轴向力F 作用。
已知F=50kN,b=150mm,δ =10mm, d=17mm,a=80mm,[σ ]=160MPa,

材料力学课件 第三章 剪切与挤压

材料力学课件 第三章  剪切与挤压
铆钉直径 d =16mm,钢板的尺寸为 b =100mm,d =10mm,F = 90kN, 铆钉的许用应力是 [] =120MPa, [bs] =200MPa,钢板的许用拉应力
[]=160MPa. 试校核铆钉接头的强度.
d
d
F
F
第三章
d
F
剪切与挤压
d
F
F
b
F
第三章
F/4 F F/4
剪切与挤压
第三章
3.1 剪切与挤压的概念 剪切变形
剪切与挤压
螺栓
1.工程实例 (1) 螺栓连接
F
F 铆钉
(2) 铆钉连接
F F
第三章
(3) 键块联接
剪切与挤压
(4) 销轴联接
F
齿轮 m

d

B
d1
A
d d1
F
第三章
2.受力特点 以铆钉为例
剪切与挤压
(合力) F
构件受两组大小相等、方向相
反、作用线相互很近的平行力系
F 2
挤压面
F
F 2
这两部分的挤压力相等,故应取长度 为d的中间段进行挤压强度校核. FS
FS
bs
F F 150MPa bs Abs td
故销钉是安全的.
第三章
D
剪切与挤压
思考题 (1)销钉的剪切面面积 A
h
(2)销钉的挤压面面积 Abs
d
F
第三章
D
挤压面
剪切与挤压
(3)校核钢板的拉伸强度 剪切面 F/4 F/4 F/4
F
F/4
F
+
3F/4 F/4
第三章

剪切与挤压

剪切与挤压
接触面上的压力称为挤压力,用 表示。由 挤压力引起的接触面上的表面压强,习惯上称为挤压 应力,用 表示。
图2.31 挤压的计算
➢注意:挤压与压缩的概念是不同的。压缩变形是指 杆件的整体变形,其任意横截面上的应力是均匀分 布的;挤压时,挤压应力只发生在ቤተ መጻሕፍቲ ባይዱ件接触的局部 表面,一般并不均匀分布。
➢与切应力在剪切面上的分布相类似,如图2.31(a) 所示,挤压面上挤压应力的分布也较复杂,如图 2.31(b)所示。
面积
,如图2.31(c)所示,因此有
➢应用名义挤压应力的概念,也可通过试验得到
材料的极限挤压应力u,除以适当的安全因数n,
即得材料的许用挤压应力
➢对于剪切问题,工程上有时会遇到剪切破坏。例如, 车床传动轴的保险销,当载荷超过极限值时,保险销 首先被剪断,从而保护车床的重要部件。而冲床冲剪 工件,则是利用剪切破坏来达到加工目的的。剪切破 坏的条件为
图2.31 挤压的计算
➢为了简化计算,工程中同样采用挤压的实用计算, 即假设挤压应力在挤压面上是均匀分布的,如图2.31 (c)所示。
图2.31 挤压的计算
➢按这种假设所得的挤压应力称为名义挤压应力。
当接触面为平面时,挤压面就是实际接触面;对
于圆柱状联接件,接触面为半圆柱面,挤压面面
积 。取为实际接触面的正投影面,即其直径面
只有一个剪切面的剪切称为单剪,如上述两例。 有两个剪切面的剪切称为双剪,如图2.29中螺栓所受 的剪切。剪切面上的内力仍然由截面法求得,它也 是分布内力的合力,称为剪力,用F表示,如图2.30 (a)所示。剪切面上分布内力的集度即为切应力τ, 如图2.30(b)所示。
图2.29 双剪实例
图2.30 剪力

剪切和挤压工程力学

剪切和挤压工程力学
成正比(图3-7)。这就是材料的剪切胡克定律
τ=Gγ
(3.5)
式(3.5)中,比例常数G与材料有关,称为材料的切变模量,是 表示材料抵抗剪切变形能力的物理量,它的单位与应力的单 位相同,常用GPa,其数值可由实验测得。一般钢材的G约为 80GPa,铸铁约为45GPa。
下一页 返回
3.3 剪切虎克定律 切应力互等定律
上一页 下一页 返回
3.3 剪切虎克定律 切应力互等定律
(τdy·dz)·dx= (τ´dy·dx)·dz

τ=τ´
(3.6)
为了明确切应力的作用方向,对其作如下号规定:使单元体 产生顺时针方向转动趋势的切应力为正,反之为负。则式 (3.6)应改写为
τ=-τ´
(3.7)
式(3.7)表明,单元体互相垂直两个平面上的切应力必定是同 时成对存在,且大小相等,方向都垂直指向或背离两个平面 的交线。这一关系称为切应力互等定理。
上一页 下一页 返回
6.2 剪切和挤压实用计算
当挤压面为平面时,挤压面面积即为实际接触面面积;当为 圆柱面时,挤压面面积等于半圆柱面的正投影面积,如图3-6
所示,Ajy=dl。
为了保证构件具有足够的挤压强度而正常工作,必须满足工
作挤压应力不超过许用挤压应力的条件。即挤压的强度条件

jy
F jy A jy
在承受剪切的构件中,发生相对错动的截面称为剪切面。剪
切面上与截面相切的内力称为剪力,用FQ表示 (图3-3d),其
大小可用截面法通过列平衡方程求出。 构件中只有一个剪切面的剪切称为单剪,如图3-3中的铆钉。
构件中有两个剪切面的剪切则称为双剪,拖车挂钩中螺栓所 受的剪切(图3-4)即是双剪的实例。

剪切和挤压

剪切和挤压
A
【公式3-9】
许用切应力,常由实验方法确定:公式3-10
塑性材料: 0.5 0.7
脆性材料: 0.8 1.0
目录
挤压强度条件----挤压强度
d
δ Abs d
d
(a)
(b)
(c)
挤压强度条件:
bs

Fbs Abs
§3-2 剪切和挤压
1、剪切 2、挤压 3、剪切与挤压强度 4、剪切与挤压在生产实践中应用
剪切和挤压的工程实例
剪床剪钢板
铆钉连接
【图3-13】 F
F
目录
剪切和挤压的工程实例
销轴连接
F
F
工程中承受剪切变形的构件常常是连接件。
常遇到受剪切变形的零件有螺栓、键、销、铆 钉等标准件。
目录

由于受剪零件同时伴有挤压作用,因此
剪切和挤压在生产实践中的应用
工程中,常用连接件受到的剪力和挤压力比较复杂,变形也 复杂。计算设计这类杆件时常采用
实践应用:把及其中某个次要零件设计成机器中最薄弱的 环节,机器超载时,这个零件先行破坏,从而保护机器中 其他重要零件。
【例3-4】 【例3-5】
目录

bs
bs 许用挤压应力,常由实验方法确定
【公式3-11】
塑性材料: bs 1.5 2.5 脆性材料: bs 0.9 1.5
目录
利用抗剪强度和挤压强度两个条件式3-9、311可以解决三类强度问题,即:强度校核,设 计截面尺寸和确定许用载荷。
P
P P /2
P
}P
P
P/2
P/2
Q
Q
}P

第3章剪切和挤压的实用计算

第3章剪切和挤压的实用计算

第3章 剪切和挤压的实用计算剪切的概念在工程实际中,经常遇到剪切问题。

剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。

图3-1工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。

构件剪切面上的内力可用截面法求得。

将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。

例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。

Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。

剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。

只有一个剪切面的情况,称为单剪切。

图3-1a 所示情况即为单剪切。

受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。

在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。

实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。

工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

剪切和挤压的强度计算3.2.1 剪切强度计算剪切试验试件的受力情况应模拟零件的实际工作情况进行。

图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。

当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。

这种具有两个剪切面的情况,称为双剪切。

由图3-2c 可求得剪切面上的剪力为 2F F Q =图3-2由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。

在这种计算方法中,假设应力在剪切面内是均匀分布的。

材料力学第3章剪切与挤压的实用计算

材料力学第3章剪切与挤压的实用计算

力作用的交界面发生相对错动,同时,在外力作用面上产生挤压效应
图3.1
图3.2
图3.3
连接件实际受力和变形比较复杂。因此,要对这类构件进行理论上的精确分 析是相当困难的。工程实际中,常根据连接件的实际使用和破坏情况,对其
受力及应力分布作出一些假设,并在此基础上进行简化计算,这种方法称为
剪切和挤压的实用计算或工程计算。实践证明,用此方法设计的连接件是安 全可靠的。
图3.5
例3.1如图3.6(a)所示的结构中,已知钢板厚度t=10 mm,其剪切极限应力 b=300 MPa。若用冲床将钢板冲出直径d=25 mm的孔,试问需要多大的冲剪力
F?
图3.6
解剪切面就是钢板内被冲头冲出的圆柱体的侧面,如图3.6(b)所示。其面积

根据式(3.2),钢需的冲剪力应为
3.3挤压的实用计算
一般情况下,连接件在承受剪切作用的同时,在连接件与被连接件之间传递 压力的接触面上还会发生局部受压的现象,称为挤压。连接件和被连接件相
互挤压的接触面称为挤压面。例如,图3.7(a)给出了销钉承受挤压力作用的
情况,挤压面上的压力称为挤压力,用Fbs表示;挤压力引起的应力称为挤压 应力,用σ
面积。
图3.8
采用式(3.5)计算得到的挤压应力称为名义挤压应力。用名义挤压应力建立
的挤压强度条件为
其中,[σ
bs]为许用挤压应力,其确定方法与上一节中介绍的许用切应

的确定方法相类似,具体数值通常可根据材料、连接方式和载荷情况
等实际工作条件在有关设计规范中查得。一般情形下,对于同种材料, 定量的数值关系为
°,再除以适当的安全因数n,即得材料的许用切应力
,即
图3.4(a)中的铆钉连接只有一个剪切面,这种剪切称为单剪切。有的连接件 存在两个剪切面,这种剪切称为双剪切。例如,图3.5(a)中的销钉连接。销

材料力学第三章剪切

材料力学第三章剪切

σ jy

Pjy A jy

pbL / 2 td

pbL 2td
2.0 0.06 0.15 2 0.012 0.015
50(MPa)
21
例3 如图所示为铆接接头,板厚t=2mm,板宽b=15mm, 板端部长a=8mm,铆钉直径d=4mm,拉力P=1.25kN,材料 的许用剪切应力[τ]=100MPa,许用挤压应力[σjy] =300MPa, 拉伸许用应力[σ]=160MPa。试校核此接头的 强度。
t
t
P
P
P
P
d
(a)
(b)
22 P
P
b
P
P
22
a
(c)
22
1、接头强度分析 2、铆钉的剪切与挤压强度计算
QP
τ Q 1.25 10 3 99.5N / mm 2 99.5MPa [τ]
A 42
4 Pjy P ; Ajy d t
σ jy

Pjy A jy
1.25103 42
4
概 述(续)
简单典型 —— 1个螺栓、2个被联接的构件
Q Q
先研究螺栓的受力情况
5
概 述(续)
Q
Q
螺栓受力特点
1、 横截面 mn, pq 上 有作用力 Q —— 象剪刀一样,试图把螺栓从该截面处剪开称Q为剪力
(Shear force),引起切应力( Shear stress) 2、杆段①、②、③ 受到被联接构件的挤压(Bearing)引起挤
P
P
P
P
2
2
t
t
P
2t2
Q
Q

材料力学剪切与挤压

材料力学剪切与挤压
A
16
双剪(两个剪切面)试验
压头 试件
F
FS
FS
u
Fu 2A
u / n
17
• 工程中常用材料的许用剪应力,可从有关规范 中查得,也可按下面的经验公式确定。
• 一般工程规范规定,对于塑性性能较好的钢材, 剪切许用应力[τ]可由拉伸许用应力[σ]按下式 确定: [τ]=(0.6 – 0.8) [σ]
F F
挤压面积:挤压面在垂直 于挤压力的平面上的正投
22
在有些情况下,构件在
3剪生. 挤切挤压压破强破坏(坏之bs,前)max所可 以能APbbss 需首 要先bs 建发 度立条挤件压:强度条件。 (许用挤
4.挤压许用应力: 压应力) 由塑模性拟材实料验,测许定用挤压应
力与材[料σbs拉]=(伸1.7-许2.0用)σ应力
平键联接的强度。已知轴的直 径d=48mm,A型平键的尺寸 为b=m14mm,Fh=m 9mm,L= 45mm,传M递的转矩M=l81481
N·mm,键的许用切应F力[τ]= 60MPa,许用挤压应力[σ]=26
27
解:1. 以键和d 轴为研究 对用切象键m槽剪mΣFF1N—力,截联工切8)求==1Mm和面接作和42键o截80M(挤法的 面 挤1所面/F0压可/破间压F受4d2被m力求8坏的强=的切=得可度挤2:-力7断x5FF能必压M6或Q=:1是须破==.键77键同坏F5与6沿时。j1y键.=7N
FF
F
F
挤压面
压溃(塑性变形)
t t
D
B︰︰︰A︰︰︰C
20
2.挤压应力
挤压应力在挤压面上的
分布规律也是比较复杂的,
d
工程上同样采用实用计算法

03剪切与挤压讲解

03剪切与挤压讲解
编而成的。
新课 F
剪切受力特点:
F
剪切面
杆件受到两个大小相等,方向相反、作用线垂
直于杆的轴线并且相互平行且相距很近的力的
作用。
剪切变形特点: 杆件沿两力之间的截面发生错动。
剪切面:∥外力,发生错动的面。
二、连接件可能的两种破坏形式
1、 剪切破坏:
沿剪切面发生错动.
如果剪力 过大,杆 件将沿着剪切面被剪断 而发生剪切破坏。
铆钉孔挤压变形示意图
挤压面:⊥外力,接触处
挤压面:⊥外力,接触处
挤压面显著的塑性变形
2、 挤压破坏:
接触面间的相互压应力称为 挤压应力。
挤压应力过大会使接触处的局部 区域发生塑性变形; 使连接件被 压扁或钉孔成为长圆形,造成连
接松动,称为挤压破坏。
在有些情况下,构件在 剪切破坏之前可能首先发生 挤压破坏,所以需要建立挤 压强度条件。
F/2
F/2
F F
点蚀
新课
2.挤压的实用计算
F
F 挤压面:⊥外力,接触处
Fbs
Fbs 挤压应力公式:
2、挤压强度条件
有效挤压面的确定:
挤压面积等于挤压面
在垂直挤压力平面上 的投影面积
一般,连接件必须同时满
足剪切和挤压强度条件
挤压面积: Ajy=δ×d
练习 1

b
连接件的强度计算

d
a
图示接头,受轴向力F 作 用。已知F=50kN,b=150mm, δ=10mm,d=17mm,a=80mm, [σ]=160MPa,[τ]=120MPa, [σbs]=320MPa,铆钉和板的材
2.板和铆钉的挤压强度
jy

Fjy Ajy

剪切和挤压

剪切和挤压

第3章 剪切与挤压3.1 剪切的概念和实用计算3.1.1 剪切的概念力之间的横截面发生相对错动称为剪切变形。

该发生相对错动的面称为剪切面。

剪切变形的受力特点和变形特点归纳如下:作用于构件两侧且与构件轴线垂直的外力,可以简化为大小相等、方向相反、作用线相距很近的一对力,使构件沿横截面发生相对错动。

3.1.2 剪切的实用计算3.1.2.1 剪切内力—剪力图3.1 联接件螺栓的剪切变形图3.2 联接件键的剪切变形图3.3 联接件销钉的剪切变形图3.4 焊缝的剪切变形图3.5 剪切变形的一般情形图3.6 剪切内力—剪力3.1.2.2 剪切的实用计算剪切面上仅有剪应力,假定其均匀分布。

于是螺栓剪切面上应力的大小为 AQ=τ (3.1) 式中Q 为剪切面上的剪力,A 为剪切面的面积。

剪应力τ的方向与Q 相同。

实际是平均剪应力,称其为名义剪应力。

测得破坏载荷后,按(3.1)式求得名义极限剪应力b τ,再除以安全系数n ,得到许用剪应力[τ],:[] bnττ= (3.2) 与轴向拉伸(压缩)类似,剪切的强度条件为:[] ττ≤=AQ(3.3)对于钢材,常取:[]()[]στ8060.~.= (3.4)式中[]σ为其许用拉应力。

【例3.1】电瓶车挂钩由插销联接(例题3.1a 图)。

插销材料为20钢,[]τ=30MPa ,直径d =20mm 。

挂钩及被联接的板件的厚度分别为t =8mm 和1.5t =12mm.牵引力P =15kN 。

试校核插销的剪切强度。

解:插销受力如例题3.1b 图所示。

根据受力情况,插销中段相对于上、下两段,沿m m -和n n -两个面向左错动。

所以有两个剪切面,称为双剪切。

由平衡方程容易求得2P Q = 插销横截面上的名义剪应力为[]τπτ<=⨯⨯⨯⨯==--MPa 9.23)1020(421015233AQ故插销满足强度要求,安全。

3.2 挤压的概念和实用计算3.2.1 挤压的概念当螺栓发生剪切变形时,它与钢板接触的侧面上同时发生局部受压现象,这种现象称为挤压,相应的接触面称为挤压面。

【工程力学】剪切与挤压【工程类精品资料】

【工程力学】剪切与挤压【工程类精品资料】

第三章剪切和联结的实用计算3.1预备知识一、基本概念 1、联接件工程构件中有许多构件往往要通过联接件联接。

所谓联接是指结构或机械中用螺栓、销钉、键、铆钉和焊缝等将两个或多个部件联接而成。

这些受力构件受力很复杂,要对这类构件作精确计算是十分困难的。

2、实用计算联接件的实用计算法,是根据联接件实际破坏情况,对其受力及应力分布作出一些假设和简化,从而建名义应力公式,以此公式计算联接件各部分的名义工作应力。

另一方面,直接用同类联接件进行破坏试验,再按同样的名义应力公式,由破坏载荷确定联接件的名义极限应力,作为强度计算依据。

实践证明,用这种实用计算方法设计的联接许是安全可靠的。

3、剪切的实用计算联接件一般受到剪切作用,并伴随有挤压作用。

剪切变形是杆件的基本变形之一,它是指杆件受到一对垂直于杆轴的大小相等、方向相反、作用线相距很近的力作用后所引起的变形,如图3—1a 所示。

此时,截面cd 相对于ab 将发生错动(滑移)(图3—1b )即剪切变形。

若变形过大,杆件将在cd 面和ab 面之间的某一截面m —m 处被剪断,m —m 截面称为剪切面。

联接件被剪切的面称为剪切面。

剪切的名义切应力公式为AQ=τ,式中Q 为剪力,A 为剪切面面积,剪切强度条件为[]ττ≤=AQ4、挤压的实用计算联接件中产生挤压变形的表面称为挤压面。

名义挤压应力公式为jyjy jyA F =σ,式中F jy 为挤压力,A jy 是挤压面面积。

当挤压面为平面接触时(如平键),挤压面积等于实际承压面积;当接触面为柱面时,挤压面积为实际面积在其直径平面上投影。

挤压强度条件为[]jy jyjy jy A F σσ≤=(a)(b)二、重点与难点1、确定剪切面和挤压面、名义挤压面积的计算。

2、注意区分挤压变形和压缩变形的不同,压缩是杆件的均匀受压,挤压则是在联接件的局部接触区域的挤压现象,在挤压力过大时,会在局部接触面上产生塑性变形或压碎现象。

三、解题方法要点1、在进行联接件的强度计算时,首先要判断剪切面和挤压面,并确定剪切面积和挤压面积。

第3章 剪切和挤压的实用计算

第3章    剪切和挤压的实用计算

第3章 剪切和挤压的实用计算3.1 剪切的概念在工程实际中,经常遇到剪切问题。

剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。

图3-1工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。

构件剪切面上的内力可用截面法求得。

将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。

例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。

Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。

剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。

只有一个剪切面的情况,称为单剪切。

图3-1a 所示情况即为单剪切。

受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。

在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。

实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。

工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2 剪切和挤压的强度计算3.2.1 剪切强度计算剪切试验试件的受力情况应模拟零件的实际工作情况进行。

图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。

当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。

这种具有两个剪切面的情况,称为双剪切。

由图3-2c 可求得剪切面上的剪力为2F F Q =图3-2由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。

在这种计算方法中,假设应力在剪切面内是均匀分布的。

挤压及其实用计算

挤压及其实用计算

第7讲教学方案――剪切与挤压的实用计算第三章剪切与挤压的实用计算§ 3-1剪切及其实用计算1.工程上的剪切件陵下刀刃囲3*1 ■杆费W圈通过如图3-1所示的钢杆受剪和图3-2所示的联接轴与轮的键的受剪情况,可以看出,工程上的剪切件有以下特点:1)受力特点杆件两侧作用大小相等,方向相反,作用线相距很近的外力。

2)变形特点两外力作用线间截面发生错动,由矩形变为平行四边形。

(见动画:受剪切作用的轴栓)。

因此剪切定义为相距很近的两个平行平面内,分别作用着大小相等、方向相对(相反)的两个力,当这两个力相互平行错动并保持间距不变地作用在构件上时,构件在这两个平行面间的任一(平行)横截面将只有剪力作用,并产生剪切变形。

2 .剪应力及剪切实用计算剪切实用计算中,假定受剪面上各点处与剪力Q相平行的剪应力相等,于是受剪面上的剪应力为A式中:Q —剪力;A —剪切面积(3-1)—名义剪切力剪切强度条件可表示为:(3-2)式中:'■—构件许用剪切应力。

-b *—用J 3 ,•的片切由直Hi 3 5啟的炭并啊剪切面为圆形时,其剪切面积为:对于如图3-3所示的平键,键的尺寸为 b h l,其剪切面积为: A = b」。

例3-1电瓶车挂钩由插销联接,如图3-4a。

插销材料为20#钢,!. l-30MPa,直径d =20mm。

挂钩及被联接的板件的厚度分别为t=8mm和1.5t=12mm。

牵引力P=15kN。

试校核插销的剪切强度。

PQ -2插销横截面上的剪应力为Q15 103T =—= ------------------------------------A 2 汉二(20=<10,24= 23.9 MPa < 1故插销满足剪切强度要求。

例3-2如图3-8所示冲床,P max =400kN,冲头卜1-400 MPa,冲剪钢板・b =360 MPa,设计冲头的最小直径值及钢板厚度最大值。

解:(1)按冲头压缩强度计算d所以解:插销受力如图3-4b所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知F=50kN,b=150mm,δ =10mm, d=17mm,a=80mm,[σ ]=160MPa, [τ ]=120MPa,[σ bs]=320MPa,铆钉 和板的材料相同,试校核其强度。 解:1.板的拉伸强度
b
a
2.板的剪切强度
FN F A (b 2d ) 50 103 (0.15 2 0.017) 0.01 43.1 106 43.1MP a [ ]
F
m m
F
假设切应力在剪切面(m-m截面) 上是均匀分布的 得切应力计算公式:
F
m
FS m
m FS m
F
Fs A
切应力强度条件:
常由实验方法确定
Fs A
7
二.挤压的强度计算
F F
假设应力在挤压面上是均匀分布的 得实用挤压应力公式
bs
Fbs Abs
Fbs Fbs

F d
2

4
d

4F

4 400 1000 34 440
mm
mm dm in 35
(2) 计算钢板的最大厚度t。

t
F dt
F 400 1000 10.1 d 35 360
mm
14
三.其它连接件的实用计算方法
第3章 剪切和挤压
1
本章主要内容
§3-1 剪切与挤压的概念
§3-2 剪切和挤压的强度计算
2
§3-1 剪切与挤压的概念
剪切的工程实例
3
剪切件简化如下图
4
铆钉连接
螺栓连接
销ห้องสมุดไป่ตู้连接
5
平键连接
焊接连接
榫连接
6
§3-2 剪切和挤压的强度计算
一.剪切的强度计算
F F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。 变形特点:位于两力之间的截面发生相 对错动。
9
脆性材料:
Fs F A lb
Fbs F bs Abs cb
10
Fs 4 F 2 A d Fbs F bs Abs dh
为充分利用材料,切 应力和挤压应力应满足
bs 2
F 4F 2 2 dh d
d
8h

11


d
例1:图示接头,受轴向力F 作用。
4.板和铆钉的挤压强度
bs
Fbs F 50103 Abs 2d 2 0.017 0.01 147 106 147MP a [ bs ]
结论:强度足够。
13
例2:冲头简化如图所示。冲头由优质碳钢制成,冲床最大冲裁力为 F=400kN,冲头材料的许用压应力 440 MPa,钢板的许用切应力 360 MPa,求在最大冲力作用下所能冲剪得圆孔最小直径d和板的最大厚 度t。 解:(1) 确定圆孔的最小直径d。
焊缝剪切计算
l h
45
有效剪切面
L
15
本章小结
一、知识点 1、 了解剪切变形的特点 2、 掌握剪切实用计算 3、 掌握挤压实用计算 二、重点内容 1、 剪切实用计算 2、 挤压实用计算
16
*注意挤压面面积的计算
Abs d
挤压强度条件:
Fbs bs bs Abs
bs
常由实验方法确定
8
切应力强度条件:
Fs A
挤压强度条件:
Fbs bs bs Abs
塑性材料:
0.5 0.7 bs 1.5 2.5 0.8 1.0 bs 0.9 1.5
12
Fs F 50103 A 4a 4 0.08 0.01 15.7 106 15.7MPa [ ]


d
3.铆钉的剪切强度
b
a
Fs 4F 2F 2 2 A 2 πd πd 2 50103 2 π 0.017 110106 110MP a [ ]
相关文档
最新文档