高三数学函数应用
函数应用问题-学会解题之高三数学多题一解【解析版】
函数应用问题【高考地位】应用题是指利用数学知识解决一些非数学领域中的问题,在近几年全国各地高考中经常出现。
数学的高度抽象性决定了数学应用的广泛性,因而应用题的非数学背景是多种多样的,解应用题往往需要在陌生的情景中去理解、分析给出的有关问题,并舍弃与数学无关的非本质因素,通过抽象转化成相应的数学问题,或许正是这个原因让学生比较惧怕数学应用题。
在高考中要处理好函数应用题,学会数学建模分析的步骤和掌握数学建模的具体方法是关键.方法 解函数应用题的一般步骤万能模板 内 容使用场景 函数的实际应用问题解题模板第一步 审题——弄清题意,分清条件和结论,理顺数量关系;第二步 建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步 解模——求解数学模型,得到数学结论;第四步 还原——将用数学方法得到的结论还原为实际问题的意义;第五步 反思——对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.例1.已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x 千件()025x <≤并全部销售完,每千件的销售收入为()R x 万元,且()21108,(010)3{ 17557,(1025)x x R x x x x-<≤=-++<≤.⑴ 写出年利润()f x (万元)关于年产量x (千件)的函数解析式;⑴ 当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入-年总成本).【答案】(1)详见解析;(2) 9千件.【解析】第一步,审题——弄清题意,分清条件和结论,理顺数量关系;某公司的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x 千件()025x <≤并全部销售完,每千件的销售收入为()R x 万元,且()21108,(010)3{ 17557,(1025)x x R x x x x-<≤=-++<≤. 第二步,建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 当010x <≤时,第三步,解模——求解数学模型,得到数学结论;第四步,还原——将用数学方法得到的结论还原为实际问题的意义;第五步,反思——对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.考点:1、函数的解析式及定义域;2、函数的单调性.【点评】(1)由年利润=年销售收入-年总成本,结合()R x ,即可得到所求()f x 的解析式;(2)由()1的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果。
高三数学总复习优质课件 函数 导数及其应用 第2节 函数的单调性与最值
(B)(1,+∞)
(C)(-∞,1)
(D)(0,+∞)
解析:因为f(x)是R上的减函数且f(2a-1)<f(a),所以2a-1>a,所以a>1,故
选B.
4.若函数f(x)=(m-2)x+b在R上是减函数,则f(m)与f(2)的大小关系是
( A )
(A)f(m)>f(2)
(B)f(m)<f(2)
在这一区间具有(严格的)单调性, 区间D 叫做函数y=f(x)的单调区间.
2.函数的最值
前提
条件
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足
(3)对于任意的 x∈I,
(1)对于任意的x∈I,都有 f(x)≤M ; 都有 f(x)≥M
;
(2)存在x ∈I,使得 f(x0)=M _
(4)存在x ∈I,使得
所以(2a+2b)x+c=0,所以 c=0,a=-b,
所以二次函数图象的对称轴方程为 x= .
因为 f(x)在区间[2m,m+1]上不单调,所以 2m< <m+1,所以- <m< .
答案:(- , )
[对点训练3] 若函数f(x)=2|x-a|+3在区间[1,+∞)上不单调,则a的取值范
是增函数;如果y=f(u)和u=g(x)的单调性相反,那么y=f(g(x))是减函数.在
应用这一结论时,必须注意:函数u=g(x)的值域必须是y=f(u)的单调区间的
子集;
(3)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函
函数性质的八大题型综合应用(解析版)-高中数学
函数性质的八大题型综合应用题型梳理【题型1函数的单调性的综合应用】【题型2函数的最值问题】【题型3函数的奇偶性的综合应用】【题型4函数的对称性的应用】【题型5对称性与周期性的综合应用】【题型6类周期函数】【题型7抽象函数的性质】【题型8函数性质的综合应用】命题规律从近几年的高考情况来看,本节是高考的一个热点内容,函数的单调性、奇偶性、对称性与周期性是高考的必考内容,重点关注单调性、奇偶性结合在一起,与函数图象、函数零点和不等式相结合进行考查,解题时要充分运用转化思想和数形结合思想,灵活求解.对于选择题和填空题部分,重点考查基本初等函数的单调性、奇偶性,主要考察方向是:判断函数单调性及求最值、解不等式、求参数范围等,难度较小;对于解答题部分,一般与导数相结合,考查难度较大.知识梳理【知识点1函数的单调性与最值的求解方法】1.求函数的单调区间求函数的单调区间,应先求定义域,在定义域内求单调区间.2.函数单调性的判断(1)函数单调性的判断方法:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.(3)函数单调性的几条常用结论:①若f(x)是增函数,则-f(x)为减函数;若f(x)是减函数,则-f(x)为增函数;②若f(x)和g(x)均为增(或减)函数,则在f(x)和g(x)的公共定义域上f(x)+g(x)为增(或减)函数;③若f(x)>0且f(x)为增函数,则函数f(x)为增函数,1f(x)为减函数;④若f(x)>0且f(x)为减函数,则函数f(x)为减函数,1f(x)为增函数.3.求函数最值的三种基本方法:(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.4.复杂函数求最值:对于较复杂函数,可运用导数,求出在给定区间上的极值,最后结合端点值,求出最值.【知识点2函数的奇偶性及其应用】1.函数奇偶性的判断判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.(3)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如f(x)+g(x),f(x)-g(x),f(x)×g(x),f(x)÷g(x).对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(4)复合函数y=f[g(x)]的奇偶性原则:内偶则偶,两奇为奇.(5)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).2.函数奇偶性的应用(1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)画函数图象:利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.【知识点3函数的周期性与对称性常用结论】1.函数的周期性常用结论(a是不为0的常数)(1)若f(x+a)=f(x),则T=a;(2)若f(x+a)=f(x-a),则T=2a;(3)若f(x+a)=-f(x),则T=2a;(4)若f(x+a)=f(1x),则T=2a;(5)若f(x+a)=f(1x),则T=2a;(6)若f(x+a)=f(x+b),则T=|a-b|(a≠b);2.对称性的三个常用结论(1)若函数f(x)满足f(a+x)=f(b-x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数f(x)满足f(a+x)=-f(b-x),则y=f(x)的图象关于点a+b2,0对称.(3)若函数f(x)满足f(a+x)+f(b-x)=c,则y=f(x)的图象关于点a+b2,c 2对称.3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).举一反三【题型1函数的单调性的综合应用】1(2023·广东深圳·统考模拟预测)已知函数f x 的定义域为R,若对∀x∈R都有f3+x= f1-x,且f x 在2,+∞上单调递减,则f1 ,f2 与f4 的大小关系是()A.f4 <f1 <f2B.f2 <f1 <f4C.f1 <f2 <f4D.f4 <f2 <f1【解题思路】由f3+x=f1-x,得到f1 =f3 ,利用单调性即可判断大小关系,即可求解.【解答过程】因为对∀x∈R都有f3+x=f1-x,所以f1 =f3-2=f[1-(-2)]=f3 又因为f x 在2,+∞上单调递减,且2<3<4,所以f4 <f3 <f2 ,即f4 <f1 <f2 .故选:A.【变式训练】1(2023·山西朔州·怀仁市第一中学校校考二模)定义在R上的函数f(x)满足f2-x=f x ,且当x ≥1时,f (x )单调递增,则不等式f 2-x ≥f (x +1)的解集为()A.12,+∞ B.0,12C.-∞,-12D.-∞,12【解题思路】根据函数的对称性和单调性即可.【解答过程】由f 2-x =f (x ),得f (x )的对称轴方程为x =1,故2-x -1 ≥x +1 -1 ,即(1-x )2≥x 2,解得x ≤12.故选:D .2(2023上·江西鹰潭·高三校考阶段练习)已知函数f x =-x 2+2ax +4,x ≤1,1x,x >1是-12,+∞ 上的减函数,则a 的取值范围是()A.-1,-12B.-∞,-1C.-1,-12D.-∞,-1【解题思路】首先分析知,x >1,函数单调递减,则x ≤1也应为减函数,同时注意分界点处的纵坐标大小关系即可列出不等式组,解出即可.【解答过程】显然当x >1时,f x =1x为单调减函数,f x <f 1 =1当x ≤1时,f x =-x 2+2ax +4,则对称轴为x =-2a2×-1=a ,f 1 =2a +3若f x 是-12,+∞上减函数,则a ≤-122a +3≥1解得a ∈-1,-12 ,故选:A .3(2023·四川绵阳·统考三模)设函数f x 为x -1与x 2-2ax +a +3中较大的数,若存在x 使得f x ≤0成立,则实数a 的取值范围为()A.-43,-1 ∪1,4 B.-∞,-43∪4,+∞ C.-∞,1-132∪1+132,4D.-1,1【解题思路】根据绝对值函数的图像和二次函数讨论对称轴判定函数的图像即可求解.【解答过程】因为f x =max x -1,x 2-2ax +a +3 ,所以f x 代表x -1与x 2-2ax +a +3两个函数中的较大者,不妨假设g (x )=|x |-1,h (x )=x 2-2ax +a +3g (x )的函数图像如下图所示:h(x)=x2-2ax+a+3是二次函数,开口向上,对称轴为直线x=a,①当a<-1时,h(x)=x2-2ax+a+3在-1,1上是增函数,需要h(-1)=(-1)2-2a(-1)+a+3=3a+4≤0即a≤-4 3,则存在x使得f x ≤0成立,故a≤-4 3;②当-1≤a≤1时,h(x)=x2-2ax+a+3在-1,1上是先减后增函数,需要h(x)min=h(a)=a2-2a⋅a+a+3=-a2+a+3≤0,即a2-a-3≥0,解得a≥1+132或a≤1-132,又1+132>1,1-132<-1故-1≤a≤1时无解;③当a>1时,h(x)=x2-2ax+a+3在-1,1上是减函数,需要h(1)=12-2a+a+3=-a+4≤0即a≥4,则存在x使得f x ≤0成立,故a≥4.综上所述,a的取值范围为-∞,-4 3∪4,+∞.故选:B.【题型2函数的最值问题】1(2023·江西九江·校考模拟预测)若0<x<6,则6x-x2有()A.最小值3B.最大值3C.最小值9D.最大值9【解题思路】根据二次函数的性质进行求解即可.【解答过程】令y =6x -x 2=-(x -3)2+9,对称轴为x =3,开口向下,因为0<x <6,所以当x =3时,6x -x 2有最大值9,没有最小值,故选:D .【变式训练】1(2023·全国·校联考三模)已知函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,则实数b的取值范围是()A.-∞,-4B.9,+∞C.-4,9D.-92,9【解题思路】由已知可得当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立,通过分离变量,结合函数性质可求b 的取值范围【解答过程】因为f 1 =-3,函数f x =bx -b +3 x 3在-1,1 上的最小值为-3,所以对∀x ∈-1,1 ,f x ≥-3恒成立,所以bx -b +3 x 3≥-3恒成立,即bx 1-x 2 ≥-31-x 3 恒成立,当x =1时,b ∈R ,当-1≤x <1时,可得bx 1+x ≥-3x 2+x +1 恒成立.当x =0或x =-1时,不等式显然成立;当0<x <1时,b ≥-3x 2+x +1 x 1+x =-31+1x 2+x,因为x 2+x ∈0,2 ,所以1x 2+x ∈12,+∞ ,1+1x 2+x ∈32,+∞ ,-31+1x 2+x∈-∞,-92 ,所以b ≥-92;当-1<x <0时,b ≤-31+1x 2+x,因为x 2+x ∈-14,0 ,所以1x 2+x ∈-∞,-4 ,1+1x 2+x ∈-∞,-3 ,-31+1x 2+x∈9,+∞ ,所以b ≤9.综上可得,实数b 的取值范围是-92,9.故选:D .2(2023上·广东广州·高一校考阶段练习)定义一种运算min a ,b =a ,a ≤bb ,a >b,设f x =min 4+2x -x 2,x -t (t 为常数,且x ∈[-3,3],则使函数f x 的最大值为4的t 的值可以是()A.-2或4B.6C.4或6D.-4【解题思路】根据定义,先计算y=4+2x-x2在x∈-3,3上的最大值,然后利用条件函数f(x)最大值为4,确定t的取值即可.【解答过程】y=4+2x-x2=-x-12+5在x∈-3,3上的最大值为5,所以由4+2x-x2=4,解得x=2或x=0,所以x∈0,2时,y=4+2x-x2>4,所以要使函数f(x)最大值为4,则根据定义可知,当t≤1时,即x=2时,2-t=4,此时解得t=-2,符合题意;当t>1时,即x=0时,0-t=4,此时解得t=4,符合题意;故t=-2或4.故选:A.3(2023·广东惠州·统考一模)若函数f x 的定义域为D,如果对D中的任意一个x,都有f x > 0,-x∈D,且f-xf x =1,则称函数f x 为“类奇函数”.若某函数g x 是“类奇函数”,则下列命题中,错误的是()A.若0在g x 定义域中,则g0 =1B.若g x max=g4 =4,则g x min=g-4=1 4C.若g x 在0,+∞上单调递增,则g x 在-∞,0上单调递减D.若g x 定义域为R,且函数h x 也是定义域为R的“类奇函数”,则函数G x =g x h x 也是“类奇函数”【解题思路】对A,根据“类奇函数”的定义,代入x=0求解即可;对B,根据题意可得g-x=1g x,再结合函数的单调性判断即可;对C,根据g-x=1g x,结合正负分数的单调性判断即可;对D,根据“类奇函数”的定义,推导G x G-x=1判断即可.【解答过程】对于A,由函数g x 是“类奇函数”,所以g x g-x=1,且g x >0,所以当x=0时,g0 g-0=1,即g0 =1,故A正确;对于B,由g x g-x=1,即g-x=1g x,g-x随g x 的增大而减小,若g(x)max=g4 =4,则g(x)min=g-4=14成立,故B正确;对于C,由g x 在0,+∞上单调递增,所以g-x=1g x,在x∈0,+∞上单调递减,设t=-x∈-∞,0 ,∴g t 在t ∈-∞,0 上单调递增,即g x 在x ∈-∞,0 上单调递增,故C 错误;对于D ,由g x g -x =1,h x h -x =1,所以G x G -x =g x g -x h x h -x =1,所以函数G x =g x h x 也是“类奇函数”,所以D 正确;故选:C .【题型3 函数的奇偶性的综合应用】1(2023·广东·东莞市校联考一模)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=ax +1,若f (-2)=5,则不等式f (x )>12的解集为()A.-∞,-12 ∪0,16B.-12,0 ∪0,16C.-∞,-12 ∪16,+∞ D.-12,0 ∪16,+∞ 【解题思路】根据条件可求得x >0时f (x )的解析式,根据函数为奇函数继而可求得当x <0时f (x )的解析式,分情况解出不等式即可.【解答过程】因为函数f (x )是定义在R 上的奇函数,所以f (-2)=-f (2)=5,则f (2)=-5,则2a +1=-5,所以a =-3,则当x >0时,f (x )=-3x +1,当x <0时,-x >0,则f (x )=-f (-x )=-[-3×(-x )+1]=-3x -1,则当x >0时,不等式f (x )>12为-3x +1>12,解得0<x <16,当x <0时,不等式f (x )>12为-3x -1>12,解得x <-12,故不等式的解集为-∞,-12 ∪0,16,故选:A .【变式训练】1(2023·全国·模拟预测)已知函数f (x ),g (x )的定义域均为R ,f (3x +1)为奇函数,g (x +2)为偶函数,f (x +1)+g (1-x )=2,f (0)=-12,则102k =1 g (k )=()A.-51B.52C.4152D.4092【解题思路】由题意,根据函数奇偶性可得f (x )的图象关于点(1,0)中心对称、g (x )的图象关于点(1,2)中心对称,进而可知g (x )是以4为周期的周期函数.求出g (1),g (2),g (3),g (4),结合周期即可求解.【解答过程】因为f (3x +1)为奇函数,所以f (x +1)为奇函数,所以f (x +1)=-f (-x +1),f (x )的图象关于点(1,0)中心对称,f (1)=0.因为g (x +2)为偶函数,所以g (x +2)=g (-x +2),g (x )的图象关于直线x =2对称.由f (x +1)+g (1-x )=2,得f (-x +1)+g (1+x )=2,则-f (x +1)+g (1+x )=2,所以g (x +1)+g (1-x )=4,g (x )+g (2-x )=4,所以g (x )的图象关于点(1,2)中心对称.因为g (x )的图象关于x =2轴对称,所以g (x )+g (2+x )=4,g (x +2)+g (x +4)=4,所以g (x +4)=g (x ),即g (x )是以4为周期的周期函数.因为f (1)=0,f (0)=-12,所以g (1)=2,g (2)=52,g (3)=g (1)=2,g (4)=g (0)=4-g (2)=32,所以102k =1g (k )=25×2+52+2+32 +2+52=4092.故选:D .2(2023·安徽亳州·蒙城第一中学校联考模拟预测)已知函数f x 是定义在R 上的偶函数,函数g x 是定义在R 上的奇函数,且f x ,g x 在0,+∞ 上单调递减,则()A.f f 2 >f f 3B.f g 2 <f g 3C.g g 2 >g g 3D.g f 2 <g f 3【解题思路】利用函数的单调性以及函数的奇偶性,判断各选项的正负即可.【解答过程】因为f x ,g x 在0,+∞ 上单调递减,f x 是偶函数,g x 是奇函数,所以g x 在R 上单调递减,f x 在-∞,0 上单调递增,对于A ,f 2 >f 3 ,但无法判断f 2 ,f 3 的正负,故A 不正确;对于B ,g 2 >g 3 ,但无法判断g 2 ,g 3 的正负,故B 不正确;对于C ,g 2 >g 3 ,g x 在R 上单调递减,所以g g 2 <g g 3 ,故C 不正确;对于D ,f 2 >f 3 ,g x 在R 上单调递减,g f 2 <g f 3 ,故D 正确.故选:D .3(2023·江西吉安·江西省遂川中学校考一模)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R有f (x 1+x 2)=f (x 1)+f (x 2)-2016,且x >0时,f (x )>2016,记f (x )在[-2017,2017]上的最大值和最小值为M ,N ,则M +N 的值为()A.2016B.2017C.4032D.4034【解题思路】先计算得到f (0)=2016,再构造函数g (x )=f (x )-2016,判断g (x )的奇偶性得出结论.【解答过程】解:令x 1=x 2=0得f (0)=2f (0)-2016,∴f (0)=2016,令x 1=-x 2得f (0)=f (-x 2)+f (x 2)-2016=2016,∴f (-x 2)+f (x 2)=4032,令g(x)=f(x)-2016,则g max(x)=M-2016,g min(x)=N-2016,∵g(-x)+g(x)=f(-x)+f(x)-4032=0,∴g(x)是奇函数,∴g max(x)+g min(x)=0,即M-2016+N-2016=0,∴M+N=4032.故选:C.【题型4函数的对称性的应用】1(2023·江西赣州·统考二模)已知函数f(x)的图像既关于点(-1,1)对称,又关于直线y=x对称,且当x∈[-1,0]时,f(x)=x2,则f174=()A.-194B.-92C.-72D.-174【解题思路】用Γ表示函数y=f x 的图像,设x0,y0∈Γ,根据中心对称性与轴对称性,得到4+y0,-4+x0∈Γ,令4+y0=174,求出y0,即可求出x0,即可得解.【解答过程】用Γ表示函数y=f x 的图像,对任意的x0∈-1,0,令y0=x20,则x0,y0∈Γ,且y0∈0,1,又函数f(x)的图像既关于点(-1,1)对称,且关于直线y=x对称,所以y0,x0∈Γ,则-2-y0,2-x0∈Γ,则2-x0,-y0-2∈Γ,则-4+x0,4+y0∈Γ,则4+y0,-4+x0∈Γ,令4+y0=174,即y0=14,此时x0=-12或x0=12(舍去),此时-4+x0=-4+-1 2=-92,即174,-92∈Γ,因此f174 =-92.故选:B.【变式训练】1(2023·四川绵阳·绵阳中学校考一模)若函数y=f x 满足f a+x+f(a-x)=2b,则说y=f x 的图象关于点a,b对称,则函数f(x)=xx+1+x+1x+2+x+2x+3+...+x+2021x+2022+x+2022x+2023的对称中心是()A.(-1011,2022)B.1011,2022C.(-1012,2023)D.1012,2023【解题思路】求出定义域,由定义域的对称中心,猜想a=-1012,计算出f(-1012+x)+f(-1012-x) =4046,从而求出对称中心.【解答过程】函数定义域为{x|x≠-1,x≠-2...,...x≠-2022,x≠-2023},定义域的对称中心为(-1012,0),所以可猜a=-1012,则f(-1012+x)=-1012+x-1011+x+-1011+x-1010+x+-1010+x-1009+x+...+1009+xx+1010+1010+x1011+x,f(-1012-x)=-1012-x-1011-x +-1011-x-1010-x+-1010-x-1009-x+...+1009-x1010-x+1010-x1011-x=1012+x 1011+x +1011+x1010+x+1010+x1009+x+...+1009-x1010-x+1010-x1011-x,故f(-1012+x)+f(-1012-x)=1010+x1011+x +1012+x 1011+x+1009+xx+1010+1011+x 1010+x⋯+-1012+x-1011+x +1010-x 1011-x=2×2023=4046所以y=f x 的对称中心为(-1012,2023),故选:C.2(2023·四川南充·四川省南充高级中学校考三模)函数f x 和g x 的定义域均为R,且y=f3+3x为偶函数,y=g x+3+2为奇函数,对∀x∈R,均有f x +g x =x2+1,则f7 g7 = ()A.615B.616C.1176D.2058【解题思路】由题意可以推出f x =f6-x,g x =-4-g6-x,再结合f x +g x =x2+1可得函数方程组,解出函数方程组后再代入求值即可.【解答过程】由函数f3+3x为偶函数,则f3+3x=f3-3x,即函数f x 关于直线x=3对称,故f x =f6-x;由函数g x+3+2为奇函数,则g x+3+2=-g-x+3-2,整理可得g x+3+g-x+3=-4,即函数g x 关于3,-2对称,故g x =-4-g6-x;由f x +g x =x2+1,可得f6-x+g6-x=(6-x)2+1,所以f x -4-g x =(6-x)2+1,故f x +g x =x2+1f x -4-g x =(6-x)2+1 ,解得f x =x2-6x+21,g x =6x-20,所以f7 =72-6×7+21=28,g7 =6×7-20=22,所以f7 g7 =28×22=616.故选:B.3(2023·甘肃张掖·高台县校考模拟预测)已知函数f(x)的定义域为R,f x-1的图象关于点(1,0)对称,f3 =0,且对任意的x1,x2∈-∞,0,x1≠x2,满足f x2-f x1x2-x1<0,则不等式x-1f x+1≥0的解集为()A.-∞,1∪2,+∞B.-4,-1∪0,1C.-4,-1∪1,2D.-4,-1∪2,+∞【解题思路】首先根据f(x-1)的图象关于点(1,0)对称,得出(x)是定义在R上的奇函数,由对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,得出f(x)在(-∞,0)上单调递减,然后根据奇函数的对称性和单调性的性质,求解即可.【解答过程】∵f(x-1)的图象关于点(1,0)对称,∴f(x)的图象关于点(0,0)对称,∴f(x)是定义在R 上的奇函数,∵对任意的x1,x2∈(-∞,0),x1≠x2,满足f(x2)-f(x1)x2-x1<0,∴f(x)在(-∞,0)上单调递减,所以f(x)在(0,+∞)上也单调递减,又f3 =0所以f-3=0,且f0 =0,所以当x∈-∞,-3∪0,3时,f x >0;当x∈-3,0∪3,+∞时,f x <0,所以由x-1f x+1≥0可得x-1<0,-3≤x+1≤0或x-1>0,0≤x+1≤3或x-1=0,解得-4≤x≤-1或1≤x≤2,即不等式x-1f x+1≥0的解集为-4,-1∪1,2.故选:C.【题型5对称性与周期性的综合应用】1(2023·四川宜宾·统考一模)已知函数f x ,g x 的定义域为R,g x 的图像关于x=1对称,且g2x+2为奇函数,g1 =1,f x =g3-x+1,则下列说法正确的个数为()①g(-3)=g(5);②g(2024)=0;③f(2)+f(4)=-4;④2024n=1f(n)=2024.A.1B.2C.3D.4【解题思路】根据奇函数定义得到g-2x+2=-g2x+2,进而得到g x 的对称中心为,再根据对称轴求出周期,通过赋值得到答案.【解答过程】因为g2x+2为奇函数,所以g-2x+2=-g2x+2,则g-x+2=-g x+2,所以g x 对称中心为2,0,又因为g x 的图像关于x=1对称,则g-x+2=g x ,所以-g x+2=g x ,则g x+4=-g x+2=g x ,所以g x 的周期T=4,①g-3=g-3+8=g5 ,所以①正确;②因为g1 =1,g-x+2=g x ,g x 对称中心为2,0,所以g0 =g2 =0,所以g(2024)=g0 =0,所以②正确;③因为f x =g3-x+1,所以f2 =g1 +1=2,因为-g x+2=g x ,所以g-1=-g1 ,则f4 =g-1+1=-g1 +1=0,所以f(2)+f(4)=2,所以③错误;④因为f x =g 3-x +1且g x 周期T =4,所以f x +4 =g 3-x -4 +1=g 3-x +1=f x ,则f x 的周期为T =4,因为f 1 =g 2 +1=1,f 2 =2,f 3 =g 0 +1=1,f 4 =0,所以f 1 +f 2 +f 3 +f 4 =4,所以2024n =1 f (n )=506f 1 +f 2 +f 3 +f 4 =4 =506×4=2024,所以④正确.故选:C .【变式训练】1(2023·北京大兴·校考三模)已知函数f x 对任意x ∈R 都有f x +2 =-f x ,且f -x =-f x ,当x ∈-1,1 时,f x =x 3.则下列结论正确的是()A.函数y =f x 的图象关于点k ,0 k ∈Z 对称B.函数y =f x 的图象关于直线x =2k k ∈Z 对称C.当x ∈2,3 时,f x =x -2 3D.函数y =f x 的最小正周期为2【解题思路】根据f x +2 =-f x 得到f x +2 =f x -2 ,所以f x 的周期为4,根据f -x =-f x 得到f x 关于x =-1对称,画出f x 的图象,从而数形结合得到AB 错误;再根据f x =-f x -2 求出x ∈2,3 时函数解析式;D 选项,根据y =f x 的最小正周期,得到y =f x 的最小正周期.【解答过程】因为f x +2 =-f x ,所以f x =-f x -2 ,故f x +2 =f x -2 ,所以f x 的周期为4,又f -x =-f x ,所以f -x =f x -2 ,故f x 关于x =-1对称,又x ∈-1,1 时,f x =x 3,故画出f x 的图象如下:A 选项,函数y =f x 的图象关于点1,0 不中心对称,故A 错误;B 选项,函数y =f x 的图象不关于直线x =2对称,B 错误;C 选项,当x ∈2,3 时,x -2∈0,1 ,则f x =-f x -2 =-x -2 3,C 错误;D 选项,由图象可知y =f x 的最小正周期为4,又f x +2 =-f x =f x ,故y =f x 的最小正周期为2,D 正确.故选:D .2(2023·四川绵阳·绵阳校考模拟预测)已知函数f x 的定义域为R ,f 1 =0,且f 0 ≠0,∀x ,y∈R 都有f x +y +f x -y =2f x f y ,则下列说法正确的命题是()①f 0 =1;②∀x ∈R ,f -x +f x =0;③f x 关于点1,0 对称;④2023i =1 f (i )=-1A.①②B.②③C.①②④D.①③④【解题思路】利用特殊值法,结合函数的奇偶性、对称性和周期性进行求解即可.【解答过程】对于①,由于∀x ,y ∈R 都有f x +y +f x -y =2f x f y ,所以令x =y =0,则f 0 +f 0 =2f 0 f 0 ,即f 0 =f 20 ,因为f 0 ≠0,所以f 0 =1,所以①正确,对于②,令x =0,则f y +f -y =2f 0 f y =2f y ,所以f y =f -y ,即f x =f -x ,所以∀x ∈R ,f -x -f x =0,所以②错误,对于③,令x =1,则f 1+y +f 1-y =2f 1 f y =0,所以f 1+y =-f 1-y ,即f 1+x =-f 1-x ,所以f x 关于点1,0 对称,所以③正确,对于④,因为f 1+x =-f 1-x ,所以f 2+x =-f -x ,因为f x =f -x ,所以f 2+x =-f x ,所以f 4+x =-f 2+x ,所以f 4+x =f x ,所以f x 的周期为4,在f x +y +f x -y =2f x f y 中,令x =y =1,则f 2 +f 0 =2f 1 f 1 =0,因为f 0 =1,所以f (2)=-1,f (3)=f (-1)=f (1)=0,f (4)=f (0)=1,所以f (1)+f (2)+f (3)+f (4)=0+(-1)+0+1=0,所以2023i =1 f (i )=505×f (1)+f (2)+f (3)+f (4) +f (1)+f (2)+f (3)=-1,所以④正确,故选:D .3(2023·安徽合肥·合肥一中校考模拟预测)已知函数f x 与g (x )的定义域均为R ,f (x +1)为偶函数,且f (3-x )+g (x )=1,f (x )-g (1-x )=1,则下面判断错误的是()A.f x 的图象关于点(2,1)中心对称B.f x 与g x 均为周期为4的周期函数C.2022i =1f (i )=2022D.2023i =0g (i )=0【解题思路】由f (x +1)为偶函数可得函数关于直线x =1轴对称,结合f (3-x )+g (x )=1和f (x )-g (1-x )=1可得f x 的周期为4,继而得到g x 的周期也为4,接着利用对称和周期算出对应的值即可判断选项【解答过程】因为f x +1 为偶函数,所以f x +1 =f -x +1 ①,所以f x 的图象关于直线x =1轴对称,因为f x -g 1-x =1等价于f 1-x -g x =1②,又f 3-x +g x =1③,②+③得f 1-x +f 3-x =2④,即f 1+x +f 3+x =2,即f 2+x =2-f x ,所以f 4+x =2-f 2+x =f x ,故f x 的周期为4,又g x =1-f 3-x ,所以g x 的周期也为4,故选项B 正确,①代入④得f 1+x +f 3-x =2,故f x 的图象关于点2,1 中心对称,且f 2 =1,故选项A 正确,由f 2+x =2-f x ,f 2 =1可得f 0 =1,f 4 =1,且f 1 +f 3 =2,故f 1 +f 2 +f 3 +f 4 =4,故2022i =1 f (i )=505×4+f (1)+f (2)=2021+f (1),因为f 1 与f 3 值不确定,故选项C 错误,因为f 3-x +g x =1,所以g 1 =0,g 3 =0,g 0 =1-f 3 ,g 2 =1-f 1 ,所以g 0 +g 2 =2-f 1 +f 3 =0,故g 0 +g 1 +g 2 +g 3 =0,故2023i =0 g (i )=506×0=0,所以选项D 正确,故选:C .【题型6 类周期函数】1(2023·安徽合肥·合肥一六八中学校考模拟预测)定义在R 上的函数f x 满足f x +1 =12f x ,且当x ∈0,1 时,f x =1-2x -1 .当x ∈m ,+∞ 时,f x ≤332,则m 的最小值为()A.278B.298C.134D.154【解题思路】根据已知计算出f x =12n 1-2x -2n +1 ≤12n ,画出图象,计算f x =332,解得x =298,从而求出m 的最小值.【解答过程】由题意得,当x ∈1,2 时,故f x =12f x -1 =121-2x -3 ,当x ∈2,3 时,故f x =12f x -1 =141-2x -5 ⋯,可得在区间n ,n +1 n ∈Z 上,f x =12n 1-2x -2n +1 ≤12n ,所以当n ≥4时,f x ≤332,作函数y =f x 的图象,如图所示,当x ∈72,4 时,由f x =181-2x -7 =332,2x -7 =14,x =298,则m ≥298,所以m 的最小值为298故选:B .【变式训练】1(2023上·湖南长沙·高三校考阶段练习)定义域为R 的函数f x 满足f x +2 =2f x -1,当x∈0,2 时,f x =x 2-x ,x ∈0,1 1x,x ∈1,2.若x ∈0,4 时,t 2-7t 2≤f x ≤3-t 恒成立,则实数t 的取值范围是()A.1,2B.1,52C.12,2D.2,52【解题思路】由f (x +2)=2f (x )-1,求出x ∈(2,3),以及x ∈[3,4]的函数的解析式,分别求出(0,4]内的四段的最小值和最大值,注意运用二次函数的最值和函数的单调性,再由t 2-7t2≤f x ≤3-t 恒成立即为t 2-7t2≤f x min ,f x max ≤3-t ,解不等式即可得到所求范围【解答过程】当x ∈(2,3),则x -2∈(0,1),则f (x )=2f (x -2)-1=2(x -2)2-2(x -2)-1,即为f (x )=2x 2-10x +11,当x ∈[3,4],则x -2∈[1,2],则f (x )=2f (x -2)-1=2x -2-1.当x ∈(0,1)时,当x =12时,f (x )取得最小值,且为-14;当x ∈[1,2]时,当x =2时,f (x )取得最小值,且为12;当x ∈(2,3)时,当x =52时,f (x )取得最小值,且为-32;当x ∈[3,4]时,当x =4时,f (x )取得最小值,且为0.综上可得,f (x )在(0,4]的最小值为-32.若x ∈(0,4]时, t 2-7t2≤f x min 恒成立,则有t 2-7t 2≤-32.解得12≤t ≤3.当x ∈(0,2)时,f (x )的最大值为1,当x ∈(2,3)时,f (x )∈-32,-1 ,当x ∈[3,4]时,f (x )∈[0,1],即有在(0,4]上f (x )的最大值为1.由f x max ≤3-t ,即为1≤3-t ,解得t ≤2,综上,即有实数t 的取值范围是12,2.故选:C .2(2022·四川内江·校联考二模)定义域为R 的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,若x ∈[-4,-2]时,f (x )≥1183t-t 恒成立,则实数t 的取值范围是()A.-∞,-1 ∪0,3B.-∞,-3 ∪0,3C.-1,0 ∪3,+∞D.-3,0 ∪3,+∞【解题思路】根据题意首先得得到函数的具体表达式,由x ∈[-4,-2],所以x +4∈[0,2],所以f (x +4)=x 2+6x +8,再由f (x +4)=3f (x +2)=9f (x )可得出f (x )的表达式,在根据函数思维求出f (x )最小值解不等式即可.【解答过程】因为x ∈[-4,-2],所以x +4∈[0,2],因为x ∈[0,2]时,f x =x 2-2x ,所以f x +4 =(x +4)2-2(x +4)=x 2+6x +8,因为函数f x 满足f x +2 =3f x ,所以f x +4 =3f x +2 =9f x ,所以f x =19f x +4 =19x 2+6x +8 ,x ∈[-4,-2],又因为x ∈[-4,-2],f x ≥1183t-t 恒成立,故1183t -t ≤f x min =-19,解不等式可得t ≥3或-1≤t <0.故选C .3(2023上·浙江台州·高一校联考期中)设函数f x 的定义域为R ,满足f x =2f x -2 ,且当x∈0,2 时,f x =x 2-x .若对任意x ∈-∞,m ,都有f x ≤3,则m 的取值范围是()A.-∞,52B.-∞,72C.-∞,92D.-∞,112【解题思路】根据给定条件分段求解析式及对应函数值集合,再利用数形结合即得.【解答过程】因为函数f x 的定义域为R ,满足f x =2f x -2 ,且当x ∈0,2 时,f x =x 2-x =-x -1 2+1∈0,1 ,当x ∈(2,4],时,x -2∈(0,2],则f (x )=2f (x -2)=2x -2 2-x -2 =-2x -3 2+2∈0,2 ,当x ∈(4,6],时,x -4∈(0,2],则f (x )=4f (x -2)=4x -2-2 4-x -2 =-4x -5 2+4∈0.4 ,当x ∈(-2,0],时,x +2∈(0,2],则f (x )=12f (x +2)=12(x +2)-x =-12x +1 2+12∈0,12,作出函数f x 的大致图象,对任意x ∈-∞,m ,都有f x ≤3,设m 的最大值为t ,则f t =3,所以-4t -5 2+4=3,解得t =92或t =112,结合图象知m 的最大值为92,即m 的取值范围是-∞,92.故选:C .【题型7 抽象函数的性质】1(2023·新疆乌鲁木齐·统考二模)已知f x ,g x 都是定义在R 上的函数,对任意x ,y 满足f x -y=f x g y -g x f y ,且f -2 =f 1 ≠0,则下列说法正确的是()A.f 0 =1B.函数g 2x +1 的图象关于点1,0 对称C.g 1 +g -1 =0D.若f 1 =1,则2023n =1 f n =1【解题思路】利用赋值法结合题目给定的条件可判断AC ,取f x =sin2π3x ,g x =cos 2π3x 可判断B ,对于D ,通过观察选项可以推断f x 很可能是周期函数,结合f x g y ,g x f y 的特殊性及一些已经证明的结论,想到令y =-1和y =1时可构建出两个式子,两式相加即可得出f x +1 +f x -1 =-f x ,进一步得出f x 是周期函数,从而可求2023n =1 f n 的值.【解答过程】解:对于A ,令x =y =0,代入已知等式得f 0 =f 0 g 0 -g 0 f 0 =0,得f 0 =0,故A 错误;对于B ,取f x =sin 2π3x ,g x =cos 2π3x ,满足f x -y =f x g y -g x f y 及f -2 =f 1 ≠0,因为g 3 =cos2π=1≠0,所以g x 的图象不关于点3,0 对称,所以函数g 2x +1 的图象不关于点1,0 对称,故B 错误;对于C ,令y =0,x =1,代入已知等式得f 1 =f 1 g 0 -g 1 f 0 ,可得f 1 1-g 0 =-g 1 f 0 =0,结合f 1 ≠0得1-g 0 =0,g 0 =1,再令x =0,代入已知等式得f -y =f 0 g y -g 0 f y ,将f 0 =0,g 0 =1代入上式,得f -y =-f y ,所以函数f x 为奇函数.令x =1,y =-1,代入已知等式,得f 2 =f 1 g -1 -g 1 f -1 ,因为f -1 =-f 1 ,所以f 2 =f 1 g -1 +g 1 ,又因为f 2 =-f -2 =-f 1 ,所以-f 1 =f 1 g -1 +g 1 ,因为f 1 ≠0,所以g 1 +g -1 =-1,故C 错误;对于D ,分别令y =-1和y =1,代入已知等式,得以下两个等式:f x +1 =f x g -1 -g x f -1 ,f x -1 =f x g 1 -g x f 1 ,两式相加易得f x +1 +f x -1 =-f x ,所以有f x +2 +f x =-f x +1 ,即:f x =-f x +1 -f x +2 ,有:-f x +f x =f x +1 +f x -1 -f x +1 -f x +2 =0,即:f x -1 =f x +2 ,所以f x 为周期函数,且周期为3,因为f 1 =1,所以f -2 =1,所以f 2 =-f -2 =-1,f 3 =f 0 =0,所以f 1 +f 2 +f 3 =0,所以2023n =1 f n =1=f 1 +f 2 +f 3 +⋯+f 2023 =f 2023 =f 1 =1,故D 正确.故选:D .【变式训练】1(2023·福建宁德·福鼎市校考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x f y ,则下列说法正确的个数是()①f 0 =0;②fx 必为奇函数;③f x +f 0 ≥0;④若f (1)=12,则2023n =1f (n )=12.A.1B.2C.3D.4【解题思路】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令y =x ,得出f 2x+f0 ≥0,变量代换可判断③;利用赋值法求出f(n)部分函数值,推出其值具有周期性,由此可计算2023n=1f(n),判断④,即可得答案.【解答过程】令x=y=0,则由f x+y+f x-y=2f x f y 可得2f0 =2f20 ,故f(0)=0或f0 =1,故①错误;当f(0)=0时,令y=0,则f(x)+f(x)=2f(x)f(0)=0,则f(x)=0,故f (x)=0,函数f (x)既是奇函数又是偶函数;当f(0)=1时,令x=0,则f(y)+f(-y)=2f(0)f(y),所以f-y=f y ,则-f (-y)=f (y),即f (-y)=-f (y),则f (x)为奇函数,综合以上可知f (x)必为奇函数,②正确;令y=x,则f2x+f0 =2f2x ,故f2x+f0 ≥0.由于x∈R,令t=2x,t∈R,即f t +f0 ≥0,即有f x +f0 ≥0,故③正确;对于D,若f1 =12,令x=1,y=0,则f1 +f1 =2f1 f0 ,则f(0)=1,令x=y=1,则f2 +f0 =2f21 ,即f2 +1=12,∴f2 =-12,令x=2,y=1,则f3 +f1 =2f2 f1 ,即f3 +12=-12,∴f(3)=-1,令x=3,y=1,则f4 +f2 =2f3 f1 ,即f4 -12=-1,∴f(4)=-12,令x=4,y=1,则f5 +f3 =2f4 f1 ,即f5 -1=-12,∴f(5)=12,令x=5,y=1,则f6 +f4 =2f5 f1 ,即f6 -12=12,∴f(6)=1,令x=6,y=1,则f7 +f5 =2f6 f1 ,即f7 +12=1,∴f(7)=12,令x=7,y=1,则f8 +f6 =2f7 f1 ,即f8 +1=12,∴f(8)=-12,⋯⋯,由此可得f(n),n∈N*的值有周期性,且6个为一周期,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,故2023n=1f n =337×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)=12,故④正确,即正确的是②③④,故选:C.2(2023·河南·校联考模拟预测)已知函数f x 对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,且当x<0时,f(x)>0.(1)求f(0)的值;(2)判断f x 的单调性,并证明;(3)解关于x的不等式:f x2-(a+2)x+f(a+y)+f(a-y)>0.【解题思路】(1)根据题意,令x=0,y=0,即可求得f(0)=0;(2)令x=0,得到f(-y)=-f(y),所以f x 为奇函数,在结合题意和函数单调性的定义和判定方法,即可求解;(3)化简不等式为f x2-(a+2)x>f(-2a),结合函数f x 的单调性,把不等式转化为x2-(a+2)x <-2a,结合一元二次不等式的解法,即可求解.【解答过程】(1)解:因为函数f(x)对任意实数x,y恒有f(x-y)+f(x+y)=f(2x)成立,令x=0,y=0,则f(0)+f(0)=f(0),所以f(0)=0.(2)解:函数f x 为R上的减函数.证明:令x=0,则f(-y)+f(y)=f(0)=0,所以f(-y)=-f(y),故f x 为奇函数.任取x1,x2∈R,且x1<x2,则x1-x2<0,因为当x<0时,f(x)>0,所以f x1-x2>0,所以f x1-f x2=f x1+f-x2=fx1-x22+x1+x22+f x1-x22-x1+x22=f x1-x2>0,即f x1>f x2,所以f x 是R上的减函数.(3)解:根据题意,可得f x2-(a+2)x>-[f(a+y)+f(a-y)]=-f(2a)=f(-2a),由(2)知f x 在R上单调递减,所以x2-(a+2)x<-2a,即x2-(a+2)x+2a<0,可得(x-2)(x-a)<0,当a>2时,原不等式的解集为(2,a);当a=2时,原不等式的解集为∅;当a<2时,原不等式的解集为(a,2).3(2023上·广东东莞·高一校联考期中)已知函数f x 对任意实数x,y恒有f x+y=f x +f y ,当x>0时,f x <0,且f1 =-2.(1)判断f x 的奇偶性;(2)判断函数单调性,求f x 在区间-3,3上的最大值;(3)若f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,求实数m的取值范围.【解题思路】(1)令x=y=0,求得f0 =0,再令y=-x,从而得f-x=-f x ,从而证明求解. (2)设x1,x2∈R且x1<x2,结合条件用单调性的定义证明函数f x 的单调性,然后利用单调性求解区间-3,3上的最大值.(3)根据函数f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,说明f x 的最大值2小于右边,因此先将右边看作a的函数,解不等式组,即可得出m的取值范围.【解答过程】(1)f x 为奇函数,证明如下:令x=y=0,则f0+0=2f0 ,所以f0 =0,令y=-x,则f x-x=f x +f-x=f0 =0,所以:f-x=-f x 对任意x∈R恒成立,所以函数f x 为奇函数.(2)f x 在R上是减函数,证明如下:任取x1,x2∈R且x1<x2,则x2-x1>0f x2-f x1=f x2+f-x1=f x2-x1<0,所以f x2<f x1,所以f x 在R上为减函数.当x∈-3,3时,f x 单调递减,所以当x=-3时,f x 有最大值为f-3,因为f3 =f2 +f1 =3f1 =-2×3=-6,所以f-3=-f3 =6,故f x 在区间-3,3上的最大值为6.(3)由(2)知f x 在区间-1,1上单调递减,所以f x ≤f-1=-f1 =2,因为f x <m2-2am+2对所有的x∈-1,1,a∈-1,1恒成立,即m2-2am>0对任意a∈-1,1恒成立,令g a =-2am+m2,则g-1>0g1 >0,即2m+m2>0-2m+m2>0,解得:m>2或m<-2.故m的取值范围为-∞,-2∪2,+∞.【题型8函数性质的综合应用】1(2023上·河北石家庄·高一校考阶段练习)已知函数f(x)=a x,g(x)=b⋅a-x+x,a>0且a≠1,若f(1)+g(1)=52,f(1)-g(1)=32,设h(x)=f(x)+g(x),x∈[-4,4].(1)求函数h(x)的解析式并判断其奇偶性;(2)判断函数h(x)的单调性(不需证明),并求不等式h(2x+1)+h(2x-1)≥0的解集.【解题思路】(1)由f(1)+g(1)=52、f(1)-g(1)=32代入可解出a、b,得到h(x),再计算h(x)与h(-x)的关系即可得到奇偶性;(2)分别判断h(x)中每一部分的单调性可得h(x)的单调性,结合函数的单调性与奇偶性解决该不等式即可得.【解答过程】(1)由f(1)+g(1)=52,f(1)-g(1)=32,即有a+ba+1=52a-ba-1=32,解得a=2b=-1,即f(x)=2x,g(x)=-2-x+x,则h(x)=2x-2-x+x,其定义域为R,h (-x )=2-x -2x -x =-2x -2-x +x =-h (x ),故h (x )为奇函数.(2)h (x )=2x -2-x +x ,由2x 在R 上单调递增,-2-x 在R 上单调递增,x 在R 上单调递增,故h (x )在R 上单调递增,由h (2x +1)+h (2x -1)≥0,且h (x )为奇函数,即有h (2x +1)≥-h (2x -1)=h 1-2x ,即有2x +1≥1-2x ,解得x ≥0,故该不等式的解集为x x ≥0 .【变式训练】1(2023上·上海·高一校考期中)已知定义在全体实数上的函数f x 满足:①f x 是偶函数;②f x 不是常值函数;③对于任何实数x 、y ,都有f x +y =f x f y -f 1-x f 1-y .(1)求f 1 和f 0 的值;(2)证明:对于任何实数x ,都有f x +4 =f x ;(3)若f x 还满足对0<x <1有f x >0,求f 13+f 23 +⋯+f 20263 的值.【解题思路】(1)取x =1,y =0代入计算得到f 1 =0,取y =0得到f x =f x f 0 ,得到答案.(2)取y =1,结合函数为偶函数得到f x +2 =-f x ,变换得到f x +4 =f x ,得到证明.(3)根据函数的周期性和奇偶性计算f 13 +f 23 +⋯+f 123 =0,取x =y =13和取x =13,y =-13得到f 13 =32,根据周期性得到f 13 +f 23 +⋯+f 20263=-f 13 -1,计算得到答案.【解答过程】(1)f x +y =f x f y -f 1-x f 1-y取x =1,y =0得到f 1 =f 1 f 0 -f 0 f 1 =0,即f 1 =0;取y =0得到f x =f x f 0 -f 1-x f 1 =f x f 0 ,f x 不是常值函数,故f 0 =1;(2)f x +y =f x f y -f 1-x f 1-y ,取y =1得到f x +1 =f x f 1 -f 1-x f 0 =-f 1-x ,f x 是偶函数,故f x +1 =-f x -1 ,即f x +2 =-f x ,f x +4 =-f x +2 =f x .(3)f x +2 +f x =0,f x 为偶函数,取x =-13,则f 53 +f -13 =0,即f 53 +f 13 =0;取x =-23,则f 43 +f -23 =0,即f 43 +f 23=0;故f 73+f 83 +f 103 +f 113 =-f 13 -f 23 -f 43 -f 53 =0,f 2 =-f 0 =-1,f 3 =f -1 =f 1 =0,f 4 =f 0 =1,故f 13+f 23 +⋯+f 123 =0,取x =y =13得到f 23 =f 213 -f 223,取x =13,y =-13得到f 0 =f 213 -f 23 f 43 =f 213 +f 223=1,f 13 >0,f 23 >0,解得f 13 =32,f 13+f 23 +⋯+f 20263 =-f 113 -f 123 =-f 13 -1=-32-1.2(2023下·山西运城·高二统考期末)已知f x =e x -1+e 1-x +x 2-2x +a ,(1)证明:f x 关于x =1对称;(2)若f x 的最小值为3(i )求a ;(ii )不等式f m e x +e -x +1 >f e x -e -x 恒成立,求m 的取值范围【解题思路】(1)代入验证f (x )=f (2-x )即可求解,(2)利用单调性的定义证明函数的单调性,即可结合对称性求解a =2,分离参数,将恒成立问题转化为m >e x -e -x -1e x +e -xmax ,构造函数F (x )=e x -e -x -1e x +e-x ,结合不等式的性质即可求解最值.【解答过程】(1)证明:因为f x =e x -1+e 1-x +x 2-2x +a ,所以f (2-x )=e 2-x -1+e1-(2-x )+(2-x )2-2(2-x )+a =e 1-x +e x -1+x 2-2x +a ,所以f (x )=f (2-x ),所以f (x )关于x =1对称.(2)(ⅰ)任取x 1,x 2∈(1,+∞),且x 1<x 2f x 1 -f x 2 =e x 1-1+e1-x 1+x 21-2x 1-ex 2-1+e1-x 2+x 22-2x 2=e x 1-1-ex 2-1+e1-x 1-e1-x 2+x 21-x 22 -2x 1-x 2=(ex 1-1-ex 2-1)(e x 1-1e x 2-1-1)ex 1-1ex 2-1+(x 1-x 2)(x 1+x 2-2)∵1<x 1<x 2,∴0<x 1-1<x 2-1,∴e x 1-1>1,ex 2-1>1,ex 1-1-ex 2-1<0,ex 1-1e x 2-1-1>0,x 1-x 2<0,x 1+x 2-2>0,∴f (x 1)<f (x 2),所以f (x )在1,+∞ 上单调递增,又f (x )关于x =1对称,则在-∞,1 上单调递减.所以f (x )min =f (1)=1+a =3,所以a =2.(单调性也可以用单调性的性质、复合函数的单调性判断、导数证明)(ⅱ)不等式f (m (e x +e -x )+1)>f (e x -e -x )恒成立等价于(m (e x +e -x )+1)-1 >e x -e -x -1 恒成立, 即m >ex-e -x -1 e x +e -x =e x -e -x -1e x +e -x恒成立,即m >e x -e -x -1e x +e -xmax令F (x )=e x -e -x -1e x +e -x ,则F (x )=e 2x -e x -1e 2x +1=1-e x +2e 2x +1,令e x +2=n ,n ∈2,+∞ ,则e x =n -2则g n =1-n n 2-4n +5=1-1n -4+5n,因为n ∈2,+∞ ,n -4+5n ≥25-4,n =5取等号,则g n ∈-52,1,所以g n ∈0,52,所以m >52,即m ∈-∞,-52 ∪52,+∞ .3(2023下·广东·高一统考期末)已知函数y =φx 的图象关于点P a ,b 成中心对称图形的充要条件是φa +x +φa -x =2b .给定函数f x =x -6x +1及其图象的对称中心为-1,c .(1)求c 的值;(2)判断f x 在区间0,+∞ 上的单调性并用定义法证明;(3)已知函数g x 的图象关于点1,1 对称,且当x ∈0,1 时,g x =x 2-mx +m .若对任意x 1∈0,2 ,总存在x 2∈1,5 ,使得g x 1 =f x 2 ,求实数m 的取值范围.【解题思路】(1)根据函数的对称性得到关于c 的方程,解出即可求出函数的对称中心;(2)利用函数单调性的定义即可判断函数f (x )单增,(3)问题转化为g (x )在[0,2]上的值域A ⊆[-2,4],通过讨论m 的范围,得到关于m 的不等式组,解出即可.【解答过程】(1)由于f (x )的图象的对称中心为-1,c ,则f (-1+x )+f (-1-x )=2c ,即(x -1)-6x -1+1+(-x -1)-6-x -1+1=2c ,整理得-2=2c ,解得:c =-1,故f (x )的对称中心为(-1,-1);(2)函数f (x )在(0,+∞)递增;设0<x 1<x 2,则f x 1 -f x 2 =x 1-6x 1+1-x 2+6x 2+1=x 1-x 2 +6x 1-x 2 x 2+1 x 1+1=x 1-x 2 1+6x 2+1 x 1+1,由于0<x 1<x 2,所以x 1-x 2<0, 6x 2+1 x 1+1>0,所以f x 1 -f x 2 <0⇒f x 1 <f x 2 ,故函数f (x )在(0,+∞)递增;。
人教A版高中数学必修1第三章《函数的应用》思维导图
人教A版高中数学必修1第三章《函数
的应用》思维导图
用思维导图复习,一天顶一个月。
高中数学必修和选修课本共计13本,通常两年内学完,平均一年6本,每学期3本。
每本平均三到四章,每学期5个月,大约半月学完一章。
而高考总复习的时间则更为宝贵,如果高考一轮复习的时候,在基础知识模块,大家还需要消耗大量时间去翻看教材显然得不偿失。
当然,我们并不是说教材不重要,相反,教材非常重要。
而是希望大家在平时的学习过程中,养成总结梳理的习惯,尤其是在高一高二的时候。
只要大家学会使用思维导图梳理,这样在高三的时候就可以快人一步,将更多的宝贵时间拿来突破自己的弱项,争取取得更好的成绩。
已经进入高三的同学,也不用担心,后续我们会持续更新,大家关注我们的文章即可,我们会帮大家梳理好,大家可以通过文章末尾留言免费获取。
本文,我们主要梳理了人教版A版高中数学必修1(也就是高一数学)第三章《函数的应用》。
主要内容大纲如下:
其中重点在于零点问题、函数模型及函数的应用。
下面我们逐一展开回忆下。
一、函数与方程
二、函数模型及其应用
到本文为止,有关人教版A版高中数学必修一(也就是高一数学必修1)的内容,我们就在前面三篇文章给大家梳理完了,至于第一章《集合与函数的概念》及第二章《基本初等函数(I)》,请大家查阅我们前面两天的文章即可。
大家如果觉得这种方式好,可以自己下载思维导图软件尝试下。
时间紧迫,需要x mind 思维导图原图进行复习的同学,可以在评论区联系我们获取。
三角函数的综合应用+课件-2025届高三数学一轮复习
(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
高三数学一轮复习知识点专题2-7函数的图象及其应用
高三数学一轮复习知识点专题专题专题2-7函数的图象及其应用【核心素养分析】1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.3.培养学生逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】知识点一 利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.知识点二 利用图象变换法作函数的图象 (1)平移变换(2)对称变换y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; y =f (x )的图象――→关于y 轴对称y =f (-x )的图象; y =f (x )的图象――→关于原点对称y =-f (-x )的图象;y =a x (a >0,且a ≠1)的图象――——————————→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图象. (3)伸缩变换y =f (x )―——————————————————―→纵坐标不变各点横坐标变为原来的1a(a >0)倍y =f (ax ).y =f (x )―——————————————————―→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ).(4)翻折变换y =f (x )的图象―————————————————―→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;y =f (x )的图象―————————————————―→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.【特别提醒】记住几个重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称. (2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称.(3)若函数y =f (x )对定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.【典型题分析】高频考点一 由函数式判断图像 例1.【2020·天津卷】函数241xy x =+的图象大致为 ( )A BC D 【答案】A【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误,故选A 。
高三数学高考中常用函数模型归纳及应用
○高○考中常用函数模型....归纳及应用 山东莘县观城中学 郭银生 岳红霞高中数学中,函数是重点内容,函数思想贯穿于数学的每一个领域,函数图象是数形结合的常用工具。
复杂的函数问题也是有简单的基本初等函数组合而成,熟练掌握常见的函数模型对解决函数综合问题大有裨益。
高考试题中,函数问题是“大块头”,各套试题所占比重在30%以上。
现归纳常用的函数模型及其常见应用如下: 一. 常数函数y=a判断函数奇偶性最常用的模型,a=0时,既是奇函数,又是偶函数,a ≠0时只是偶函数。
关于方程解的个数问题时常用。
例1.已知x ∈(0, π],关于方程2sin(x+3π)=a 有两个不同的实数解,则实数a 的取植范围是( )A .[-2,2] B.[3,2] C.( 3,2] D.( 3,2)解析;令y=2sin(x+3π), y=a 画出函数y=2sin(x+3π),y=a 图象如图所示,若方程有两个不同的解,则两个函数图象有两个不同的交点,由图象知( 3,2),选D二. 一次函数y=kx+b (k ≠0)函数图象是一条直线,易画易分析性质变化。
常用于数形结合解决问题,及利用“变元”或“换元”化归为一次函数问题。
有定义域限制时,要考虑区间的端点值。
例2.不等式2x 2+1≤m(x-1)对一切│m │≤2恒成立,则x 的范围是( )A .-2≤x ≤2 B.431- ≤x ≤0 C.0≤x ≤471+ D. 471-≤x ≤413-解析:不等式可化为m(x-1)- 2x 2+1≥0设f(m)= m(x-1)- 2x 2+1若x=1, f(m)=-3<0 (舍) 则x ≠1则f(m)是关于m 的一次函数,要使不等式在│m │≤2条件下恒成立,只需⎩⎨⎧≥-≥0)2(0)2(f f ,解之可得答案D 三.二次函数y=ax 2+bx+c (a ≠0)二次函数是应用最广泛的的函数,是连接一元二次不等式和一元二次方程的纽带。
高考数学一轮复习函数性质的综合应用-教学课件
时,f(x)=2x2-x,则 f(1)等于( )
(A)-3 (B)-1 (C)1 (D)3 (2)设函数 f(x)=x(ex+ae-x)(x∈R)是偶函数,则实数 a 的值
为
.
(3)已知函数 y=f(x)是 R 上的偶函数,且在(-∞,0]上是减
函数,若 f(a)≥f(2),3;1=2-x 得 x= 1 . 2
由图象可以看出,
当 x= 1 时,f(x)取到最小值 3 .
2
2
答案:(1) 1 +2 1 + 1 (2)1 (3) 3
a a2
2
反思归纳 (1)求函数值域与最值的常用方法:
①先确定函数的单调性,再由单调性求值域或最值.
②图象法:先作出函数在给定区间上的图象,再观察其最高、最低 点,求出最值. ③配方法:对于二次函数或可化为二次函数形式的函数,可用配方 法求解. ④换元法:对较复杂的函数可通过换元法转化为熟悉的函数,再用 相应的方法求值域或最值. ⑤基本不等式法:先对解析式变形,使之具备“一正二定三相等” 的条件后,再用基本不等式求出最值. ⑥导数法:先求导,然后求在给定区间上的极值,最后结合端点值,
2
4
4
(D) 1 2
(2)(2013 年高考天津卷)已知函数 f(x)是定义在 R 上的偶函数,且在区间[0,+∞)上单调递增.若
实数 a 满足 f(log2a)+f( log 1 a)≤2f(1),则 a 的
2
取值范围是( )
(A)[1,2] (B)(0, 1 ](C)[ 1 ,2](D)(0,2]
3.函数 f(x)= 1 的最大值是( D )
1 x 1 x
(A) 4 5
2023版高考数学一轮总复习第二章函数2.7函数的应用第2课时函数模型及其应用课件
70 ≈100r.
若 r=3%,f(x)≥2a,则 x 的最小整数值为
()
A. 22
B. 25
C. 23
D. 24
解:依题意可得
a(1+3%)x≥2a,即
ln2
0.693
x≥ln(1+3%)≈ 3%
15≈1007×03%=730≈23.
2. 三种函数模型性质比较
性质
在(0,+∞) 上的单调性
增长速度
图象的 变化
y=ax(a>1)
增函数
越来越快 随 x 值增大,
图象与 y 轴 接近平行
函数 y=logax(a>1)
增函数
越来越慢 随 x 值增大,
图象与 x 轴 接近平行
y=xn(n>0) 增函数
相对平稳 随 n 值变 化而不同
3. 用函数建立数学模型解决实际问题的基本过程 (1)分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”或其他); (2)根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题; (3)通过运算、推理求解函数模型; (4)用得到的函数模型描述实际问题的变化规律、解决有关问题.
利息与本金加在一起作为本金,再计算下一期利息. 假设最开始本金f(x).
若
f(x)≥2a,则
a(1+r)x≥2a,解得
ln2 x≥ln(1+r).
银行业中经常
使用“70 原则”,因为 ln2≈0. 693 15,而且当 r 比较小时,ln(1+r)≈r,所以ln(l1n+2 r)≈0.69r3 15
≈3α3,则 r 的近似值为
()
A.
MM21R
B.
2MM21R
C. 3 3MM12R
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。
高考数学第2章函数、导数及其应用第3讲函数的奇偶性与周期性创高三全册数学
12/8/2021
第十九页,共七十四页。
解析 答案
4.设函数 f(x)=cosπ2-xπ2+x+e2x+e2的最大值为 M,最小值为 N,则(M
+N-1)2020 的值为( )
A.1
B.2
C.22020
D.32020
解析 由已知 x∈R,f(x)=cosπ2-xπ2+x+e2x+e2=sinπx+xx2+2+ee22+2ex=
12/8/2021
第二页,共七十四页。
1
PART ONE
基础知识过关(guò〃guān)
12/8/2021
第三页,共七十四页。
1.函数的奇偶性
奇偶性
定义
图象特点
一般地,如果对于函数f(x)的定义域内 偶函数 任意一个x,都有 01 f(-x)=f(x) ,那 关于 02 y轴对称
么函数f(x)就叫做偶函数
第二章 函数(hánshù)、导数及其应用 第3讲 函数(hánshù)的奇偶性与周期性
12/8/2021
第一页,共七十四页。
[考纲解读] 1.了解函数奇偶性的含义. 2.会运用基本初等函数的图象分析函数的奇偶性.(重点) 3.了解函数周期性、最小正周期的含义,会判断、应用简单 函数的周期性.(重点) [考向预测] 从近三年高考情况来看,函数的奇偶性与周期性 是高考的一个热点.预测2021年高考会侧重以下三点:①函数 奇偶性的判断及应用;②函数周期性的判断及应用;③综合利 用函数奇偶性、周期性和单调性求参数的值或解不等式.
3.(2019·衡水模拟)已知 f(x)是定义在 R 上的奇函数,若 x>0 时,f(x)
=xln x,则 x<0 时,f(x)=( )
A.xln x
B.xln (-x)
高三数学一轮复习《函数的应用》综合复习练习题(含答案)
高三数学一轮复习《函数的应用》综合复习练习题(含答案)一、单选题 1.函数2ln y x x=-的零点所在的大致区间是( ) A .1(,1)eB .(1,2)C .(2,e)D .(e,)+∞2.已知函数()2sin 4f x x m π⎛⎫=++ ⎪⎝⎭在区间()0,π上有零点,则实数m 的取值范围为( )A .()2,2-B .(2,2⎤-⎦C .2,2⎡⎤-⎣⎦D .)2,2⎡-⎣3.已知函数()()32,0log ,0x x f x x k x +<⎧=⎨+≥⎩,则“(],3k ∈-∞”是“函数()()1F x f x =-有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.中国是全球最大的光伏制造和应用国,平准化度电成本(LCOE )也称度电成本,是一项用于分析各种发电技术成本的主要指标,其中光伏发电系统与储能设备的等年值系数CRF I 对计算度电成本具有重要影响.等年值系数CRF I 和设备寿命周期N 具有如下函数关系()()CRF 0.05111NNr I r +=+-,r 为折现率,寿命周期为10年的设备的等年值系数约为0.13,则对于寿命周期约为20年的光伏-储能微电网系统,其等年值系数约为( ) A .0.03B .0.05C .0.07D .0.085.已知函数()f x 的图像如图所示,则该函数的解析式为( )A .3()e ex x x f x -=+B .3e e ()x xf x x -+=C .2()e e x x x f x -=-D .3e e ()x xf x x --=6.已知函数2ln ,0,()=2,0.xx f x x x x x ⎧>⎪⎨⎪+≤⎩,若()()g x f x a =-有3个零点,则a 的取值范围为( )A .()1,0-B .11,e ⎛⎫- ⎪⎝⎭ C .10,e ⎡⎫⎪⎢⎣⎭ D .{}10,1e ⎛⎫⋃- ⎪⎝⎭7.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)([120,500])x ∈之间的函数关系可近似表示为[)[]3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .4008.已知函数()232,1,42,1,x x x f x x x x ⎧--≤⎪=⎨+->⎪⎩则函数()()3y f f x =-的零点个数为( ) A .2B .3C .4D .59.若函数()2ln f x x x ax =-在区间()0,∞+上有两个极值点,则实数a 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .(],0-∞C .(]1,02⎧⎫-∞⋃⎨⎬⎩⎭D .10,2⎛⎫ ⎪⎝⎭10.已知定义在R 上的奇函数()f x 恒有()()11f x f x -=+,当[)0,1x ∈时,()2121x x f x -=+,已知21,1518k ⎛⎫∈-- ⎪⎝⎭,则函数()()13g x f x kx =--在()1,6-上的零点个数为( )A .4个B .5个C .3个或4个D .4个或5个11.已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a 的取值范围是( ) A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞12.设函数()2sin()1(0,0)2f x x πωϕωϕ=+->的最小正周期为4π,且()f x 在[0,5]π内恰有3个零点,则ϕ的取值范围是( )A .50,312ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭B .0,,432πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .50,612ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭D .0,,632πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦二、填空题13.已知函数ln ,0()e 1,0xx x f x x ⎧>=⎨+≤⎩,且函数()()g x f x a =-恰有三个不同的零点,则实数a 的取值范围是______. 14.以模型()e0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =______.15.函数()sin ln 23f x x x π=--的所有零点之和为__________. 16.设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=_____________附:若()2,N ξμσ,则()0.6826P μσξμσ-<≤+≈,(22)0.9544P μσξμσ-<≤+≈.三、解答题 17.已知函数22()1=-f x x . (1)求()f x 的零点;(2)判断()f x 的奇偶性,并说明理由; (3)证明()f x 在(0,)+∞上是减函数.18.已知函数4()12x f x a a =-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.19.对于定义域为D 的函数()y f x =,若同时满足以下条件:①()y f x =在D 上单调递增或单调递减;②存在区间[],a b D ⊆,使()y f x =在[],a b 上的值域是[],a b ,那么我们把函数()()y f x x D =∈叫做闭函数.(1)判断函数()()110g x x x=->是不是闭函数?(直接写出结论,无需说明理由) (2)若函数()()2111h x x m x m=-++>0为闭函数,则当实数m 变化时,求b a -的最大值. (3)若函数()1e ln 112xx x x k x φ⎛⎫=-+-≤≤ ⎪⎝⎭为闭函数,求实数k 的取值范围.(其中e 是自然对数的底数,e 2.7≈)20.已知函数32()f x x ax bx c =+++在点()1,2P 处的切线斜率为4,且在=1x -处取得极值. (1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若函数()()1g x f x m =+-有三个零点,求m 的取值范围.21.已知函数()()24f x x x a x =-+∈R .(1)若(1,3)x ∈时,不等式2log ()1f x ≤恒成立,求实数a 的取值范围;(2)若关于x 的方程(21)(2)|21|80x x f a +++-+=有三个不同的实数解,求实数a 的取值范围.22.已知函数()ln f x x x =-. (1)求证:()1f x ≤-; (2)若函数()()()xxh x af x a e =+∈R 无零点,求a 的取值范围.23.辆高速列车在某段路程中行驶的速率v (单位:km /h )与时间t (单位:h )的关系如图所示.(1)求梯形OABC 的面积,并说明所求面积的实际含义;(2)记梯形OABC 位于直线()04t a a =<≤的左侧的图形的面积为()g a ,求函数()y g a =的解析式,并画出其图象.24.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(),1k k +()k N ∈上有零点,求k 的值;(3)记函数21()2()2g x x bx f x =---,设1212,()x x x x <是函数()g x 的两个极值点,若32b ≥,且12()()g x g x k-≥恒成立,求实数k 的取值范围。
高三数学专题复习函数的性质及应用
函数的基本性质与函数的综合运用是高考对函数内容考查的重中之重,其中函数单调性与奇偶性是高考命题的必考内容之一,有具体函数,还会涉及抽象函数。
函数单调性是函数在定义域内某个区间上的性质,函数奇偶性是函数在整个定义域上的性质。
研究基本性质,不可忽略定义域对函数性质的影响。
函数定义域体现了函数图像左右方向的延伸程度,而值域又表现了函数图像在上下方向上的延伸程度。
对函数单调性要深入复习,深刻理解单调性定义,熟练运用单调性定义证明或判断一个函数的单调性,掌握单调区间的求法,掌握单调性与奇偶性之间的联系。
掌握单调性的重要运用,如求最值、解不等式、求参数范围等,掌握抽象函数单调性的判断方法等等。
要充分重视运用方程与函数、等价转换、分类讨论及数形结合等数学思想,运用分离变量方法解决函数相关问题,并围绕函数单调性分析解决函数综合问题。
一、函数与反函数例1.(1)已知A={1,2,3},B={4,5},则以A为定义域,B为值域的函数共有个.(2)、(2012•徐汇区一模)已知函数f(x)=x2﹣1的定义域为D,值域为{﹣1,0,1},试确定这样的集合D最多有个.(3)(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0= .二、函数值域及最值求法例2、(1)(2011•上海)设g(x)是定义在R 上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[﹣2,5],则f(x)在区间[0,3]上的值域为.(2)(2013•黄浦区二模)已知,若存在区间[a,b]⊆(0,+∞),使得{y|y=f(x),x∈[a,b]}=[ma,mb],则实数m的取值范围是.(3).(2012•虹口区一模)已知函数f(x)=2x+a,g(x)=x2﹣6x+1,对于任意的都能找到,使得g(x2)=f(x1),则实数a的取值范围是.三、函数单调性与奇偶性例3、(1)(2013•资阳一模)已知函数若f(2m+1)>f(m2﹣2),则实数m的取值范围是.(2)已知是R上的增函数,那么a的取值范围是.(3)(2012•上海)已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(﹣1)= .(4)f(x)为R上的偶函数,g(x)为R上的奇函数且过(﹣1,3),g(x)=f(x﹣1),则f(2012)+f(2013)= .四、函数的周期性例4、(1)已知奇函数满足的值为 。
高三数学一轮复习 第2章 函数、导数及其应用第1课时 函数及其表示精品课件
结合具体函数,了解函数奇偶性的含义. 奇偶性
知识点
指数与指 数函 数
对数与对 数函 数
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运
算.
3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 过的特殊点.
4.知道指数函数是一类重要的函数模型.
• 4.函数的表示法: 解析法 、
图象法 、 列表法 .
• 5.分段函数 • 若函数在其定义域的不同子集上,因 对应关系不 同 而 分 别 用 几 个 不
同的式子来表示.这种函数称为分段函数.分段函数虽由几个部分组 成,但它表示的是 一个 函数.
1.函数y= x-1+ln(2-x)的定义域是( )
• 1.求函数定义域的步骤
• 对于给出具体解析式的函数而言,函数的定义域就是使函数解析式有
意义的自变量x取值的集合,求解时一般是先寻找解析式中的限制条 件,建立不等式,再解不等式求得函数定义域,当函数y=f(x)由实际 问题给出时,注意自变量x的实际意义.
• 2.求抽象函数的定义域时:
• (1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出.
(3)在f(x)=2f1x x-1中,用1x代替x, 得f1x=2f(x) 1x-1, 将f1x=2fxx-1代入f(x)=2f1x x-1中, 可求得f(x)=23 x+13.
• 【变式训练】 2.(1)已知f(1-cos x)=sin2x,求f(x); • (2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,试求f(x)的
知识点
考纲下载
1.了解构成函数的要素;了解映射的概念.
届高三数学一轮复习-函数的图像及其应用(共58张PPT)
考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
(2)伸缩变换:
f(ωx) . y=f(x)―0―<AA>―<1―,1,―横横―坐坐―标―标不―不变―变,―,纵―纵―坐坐―标标―伸缩―长―短为―为原―原来―来的―的―AA倍―倍→ y= Af(x) .
(3)对称变换: y=f(x)―关―于―x―轴―对―称→y=-f(x) ; y=f(x)―关―于―y―轴―对―称→y= f(-x); y=f(x)―关―于―原――点―对―称→y= -f(-x) . (4)翻折变换: y=f(x)―去将―掉―y轴y―轴右―左边―边的―图―图, ―象―保翻―留折―y到轴―左―右边―边―去图→y= f(|x|) ; y=f(x)―将―x―轴―下―方保―的 留―图x―轴象―上翻―方―折图―到―上―方―去→y= |f(x)| .
⊥AB交AB于E,当l从左至右移动(与线段
AB有公共点)时,把四边形ABCD分成两部分,设AE=x,
左侧部分的面积为y,则y关于x的图象大致是
备战高考数学复习考点知识与题型讲解18---函数模型的应用
备战高考数学复习考点知识与题型讲解第18讲函数模型的应用考向预测核心素养考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,各种题型均有可能,中档难度.数学建模一、知识梳理1.六种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b logax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)“对勾”函数模型y=x+ax(a为常数,a>0)2.三种函数模型性质比较y=a x(a>1)y=logax(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同3.用函数建立数学模型解决实际问题的基本过程常用结论1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.“对勾”函数f (x )=x +a x(a >0)在(0,+∞)上的性质:在(0,a ]上单调递减,在[a ,+∞)上单调递增,当x =a 时f (x )取最小值2a .二、教材衍化1.(人A 必修第一册P 152例6改编)某校拟用一种喷雾剂对宿舍进行消毒,需对喷雾完毕后空气中每立方米药物残留量y (单位:毫克)与时间x (单位:时)的关系进行研究,为此收集部分数据并做了初步处理,得到如图散点图.现拟从下列四个函数模型中选择一个估计y 与x 的关系,则应选用的函数模型是( )A .y =ax +bB.y =a ·⎝ ⎛⎭⎪⎫14x+b (a >0)C .y =x a +b (a >0) D.y =ax +b x(a >0,b >0)解析:选 B.由散点图可知,函数在(0,+∞)上单调递减,且散点分布在一条曲线附近,函数y =a ·⎝ ⎛⎭⎪⎫14x+b 的图象为一条曲线,且当a >0时,该函数单调递减,符合题意,故选B.2.(多选)(人A 必修第一册P 155习题4.5T 9改编)如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法中正确的是( )A .浮萍每月的增长率为1B .第5个月时,浮萍面积就会超过30 m 2C .浮萍每月增加的面积都相等D .若浮萍蔓延到2 m 2,3 m 2,6 m 2所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3 解析:选ABD.把(1,2)代入y =a t ,可得函数解析式为y =2t , 因为2t +1-2t2t =1,所以每月增长率为1,A 对;当t =5时,y =32>30,所以B 对;第2个月增加2 m 2,第3个月增加4 m 2,C 错; 由2t 1=2,2t 2=3,2t 3=6,所以2t 1·2t 2=2t 3,故t 1+t 2=t 3,D 对.3.(人A 必修第一册P 96习题3.4T 5改编)下表是弹簧伸长长度x (单位:cm)与拉力F (单位:N)的相关数据:x 14.2 28.8 41.3 57.5 70.2 F12345写出能反映这一变化现象的函数为________.(不唯一)解析:根据点的分布特征,可以考虑用函数x =kF +b (k ≠0)作为刻画弹簧伸长长度与拉力关系的函数模型.取两组数据(1,14.2),(4,57.5),则⎩⎨⎧k +b =14.2,4k +b =57.5,解得⎩⎨⎧k ≈14.4,b ≈-0.2,所以x =14.4F -0.2.将已知数据代入上述解析式,或作出函数图象,可以发现,这个函数模型与已知数据拟合程度较好.答案:x =14.4F -0.2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( )(2)函数y =2x的函数值比y =x 2的函数值大.( ) (3)不存在x 0,使ax 0<x n 0<log a x 0.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏1.(函数模型选择易误)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100x B.y =50x 2-50x +100 C .y =50×2xD.y =100log 2x +100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证可知选C.2.(指数函数、对数函数性质不明致误)下面对函数f (x )=log 12x 与g (x )=⎝ ⎛⎭⎪⎫12x 在区间(0,+∞)上的衰减情况的说法中正确的为( )A .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越快B .f (x )的衰减速度越来越快,g (x )的衰减速度越来越慢C .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快解析:选C.在同一平面直角坐标系中画出f(x)与g(x)的图象如图所示,由图象可判断出衰减情况为:f(x)衰减速度越来越慢;g(x)衰减速度越来越慢,故选C.3.(平均增长率概念不清致误)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.解析:设年平均增长率为x,则(1+x)2=(1+p)(1+q),所以x=(1+p)(1+q)-1.答案:(1+p)(1+q)-1考点一用函数图象刻画变化过程(自主练透)复习指导:能将实际问题转化为数学问题,会应用函数图象对实际问题进行描述.1.一种叫万年松的树的生长时间t(年)与树高y(m)之间的散点图如图所示.请你据此判断,拟合这种树生长的年数与树高的关系式,选择的函数模型最好的是( ) A.y=2t B.y=log2tC.y=t3D.y=2t2解析:选B.由图知,函数的增长速度越来越慢,排除A,C,D.选B.2.(2022·广州市综合检测(一))如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T. 若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是( )解析:选B.水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速度先慢后快,故选B.3.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )解析:选D.y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.4.(多选)(2022·福建厦门高三质检)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y(单位:微克)与时间t(单位:小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则( )A.a=3B.注射一次治疗该病的有效时间长度为6小时C.注射该药物18小时后每毫升血液中的含药量为0.4微克D.注射一次治疗该病的有效时间长度为53132小时解析:选AD.当t =1时,y =4,即⎝ ⎛⎭⎪⎫121-a=4,解得a =3,所以y =⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1,故A 正确,药物刚好起效的时间,当4t =0.125,即t =132, 药物刚好失效的时间⎝ ⎛⎭⎪⎫12t -3=0.125,解得t =6,故药物有效时长为6-132=53132小时, 药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为4×18=0.5微克,故C 错误.判断函数图象与实际问题变化过程相吻合的方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二 已知或选择函数模型解决实际问题(综合研析)复习指导:1.已知函数模型,用待定系数法确定解析式; 2.根据几种常见函数的增长差异选择函数模型.(1)(2022·江西高三月考)果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知在一定时间内,某种水果失去的新鲜度y 与其采摘后时间t (小时)近似满足的函数关系式为y =k ·m t (k ,m 为非零常数),若采摘后20小时,这种水果失去的新鲜度为20%,采摘后30小时,这种水果失去的新鲜度为40%.那么采摘下来的这种水果大约经过多长时间后失去50%新鲜度(参考数据:lg 2≈0.3,结果取整数)( )A .33小时 B.23小时 C .35小时D.36小时(2)某地西红柿上市后,通过市场调查,得到西红柿的种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t60100 180 种植成本Q 11684116根据上表数据,从下列函数中选取一个函数描述西红柿的种植成本Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,则①西红柿种植成本最低时的上市天数是________; ②最低种植成本是________元/100 kg. 【解析】 (1)由题意⎩⎨⎧k ·m 20=20%k ·m 30=40%,两式相除得m 10=2,m =2110,代入得k =5%,所以y =5%·2t10,由50%=5%·2t 10得2t10=10,取对数得t 10lg 2=1,t =10lg 2≈100.3≈33(小时). (2)由题意知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎨⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎨⎧a =0.01,m =80, 所以Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg.【答案】 (1)A (2)①120 ②80已知或选择函数模型解决实际问题的注意点(1)已知模型的实际问题,根据待定系数法确定模型,再利用模型求解实际问题.(2)选择模型的问题可结合函数图象,函数值的增长特点(增减、增长快慢)等选用合适的函数模型.|跟踪训练|(多选)纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2018年到2021年产生的包装垃圾量如下表:有下列函数模型:①y =a ·b x -2 018;②y =a sin πx2 018+b (参考数据:lg 2=0.301 0,lg 3=0.477 1),则( )A .选择模型①,函数模型解析式y =4·⎝ ⎛⎭⎪⎫32x -2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系B .选择模型②,函数模型解析式y =4sin πx2 018+2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系C .若不加以控制,任由包装垃圾如此增长下去,从2023年开始,该城市的包装垃圾将超过40万吨D .若不加以控制,任由包装垃圾如此增长下去,从2024年开始,该城市的包装垃圾将超过40万吨解析:选AD.若选y =4·⎝ ⎛⎭⎪⎫32x -2 018,计算可得对应数据近似为4,6,9,13.5,若选y =4sin πx2 018+2 018,计算可得对应数据近似值都大于2 014,显然A 正确,B 错误;按照选择函数模型y =4·⎝ ⎛⎭⎪⎫32x -2 018,令y >40,即4×⎝ ⎛⎭⎪⎫32x -2 018>40,所以⎝ ⎛⎭⎪⎫32x -2 018>10,所以x -2 018>log 3210,所以x -2 018>lg 10lg 32=1lg 3-lg 2≈5.678 6,所以x >2 023.678 6,即从2024年开始,该城市的包装垃圾将超过40万吨,故C 错误,D 正确.考点三 构建函数模型解决实际问题(多维探究)复习指导:1.分析题意,寻找实际问题中起决定作用的两个变量. 2.确定两个变量间的关系,选择合适的函数模型. 角度1 构建二次函数、分段函数、“对勾”函数模型(链接常用结论2)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值,为9万元. 当x ≥8时,L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,当且仅当x =100x时等号成立,即x =10时,L (x )取得最大值,为15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.角度2 构建指数函数、对数函数模型(1)(2022·长春高三摸底考试)2018年5月至2019年春,在阿拉伯半岛和伊朗西南部,沙漠蝗虫迅速繁衍,呈现几何式的爆发,仅仅几个月,蝗虫数量增长了8 000倍,引发了蝗灾,到2020年春季蝗灾已波及印度和巴基斯坦,假设蝗虫的日增长率为5%,最初有N 0只,则达到最初的16 000倍只需经过(参考数据:ln 1.05≈0.048 8,ln 16 000≈9.680 3)( )A .191天 B.195天 C.199天D.203天(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】(1)设过x天能达到最初的16 000倍,由已知可得,N0(1+0.05)x=16 000N0,所以x=ln 16 000ln 1.05≈198.4,又x∈N,故经过199天能达到最初的16 000倍.(2)M=lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则9=lg A1-lg A0=lg A1A,则A1A=109,5=lg A2-lg A0=lgA2A,则A2A=105,所以A1A2=104.即9级地震的最大振幅是5级地震最大振幅的10 000倍.【答案】(1)C (2)6 10 000(1)建模解决实际问题的三个步骤①建模:抽象出实际问题的数学模型.②推理、演算:对数学模型进行逻辑推理或数学演算,得到问题在数学意义上的解.③评价、解释:对求得的数学结果进行深入的讨论,作出评价、解释,返回到原来的实际问题中去,得到实际问题的解.(2)构建函数模型解决实际问题,充分体现了数学建模的核心素养.[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)利用模型f(x)=ax+bx求解最值时,注意取得最值时等号成立的条件.|跟踪训练|1.(多选)某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5 000册.要使该杂志销售收入不少于22.4万元,每册杂志可以定价为( )A .2.5元 B.3元 C.3.2元D.3.5元解析:选BC.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x (x >2)元,则发行量为⎝ ⎛⎭⎪⎫10-x -20.2×0.5万册, 则该杂志销售收入为⎝ ⎛⎭⎪⎫10-x -20.2×0.5x 万元, 所以⎝ ⎛⎭⎪⎫10-x -20.2×0.5x ≥22.4,化简得x 2-6x +8.96≤0,解得2.8≤x ≤3.2,故选BC.2.某种茶水用100 ℃的水泡制,再等到60 ℃时饮用可产生最佳口感.已知茶水温度y (单位:℃)与经过时间t (单位:min)的函数关系是:y =ka t +y 0,其中a 为衰减比例,y 0是室温,t =0时,y 为茶水初始温度,若室温为20 ℃,a =⎝ ⎛⎭⎪⎫1218,茶水初始温度为100 ℃,则k =________,产生最佳口感所需时间是________min.解析:由题意,y =ka t +20,当t =0时,有y =ka t +20=k +20=100,k =80, 则y =80a t +20,当y =60时,即80a t +20=60,所以80a t =40,所以a t =12,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1218t =12,所以t =8.答案:80 8[A 基础达标]1.某种细菌在培养过程中,每15 min 分裂一次(由1个分裂成2个),这种细菌由1个分裂成4 096个需经过的时间是( )A .12 h B.4 h C.3 hD.2 h解析:选C.设这种细菌由1个分裂成4 096个需经过x次分裂,则4 096=2x,解得x=12,故所需时间t=12×1560=3 h.2.“龟兔赛跑”讲述了这样的故事:兔子和乌龟赛跑,领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )解析:选B.选项A表示龟兔同时到达;选项C表示兔子没有追赶乌龟;选项D表示兔子先到达终点.3.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利 B.略有亏损C.没有盈利也没有亏损 D.无法判断盈亏情况解析:选B.设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.4.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I与电线半径r的三次方成正比,若已知电流通过半径4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为( )A.60安 B.240安C.75安D.135安解析:选D.由已知,设比例常数为k,则I=k·r3.由题意,当r=4时,I=320,故有320=k×43,解得k=32064=5,所以I=5r3.故当r=3时,I=5×33=135(安).故选D.5.(2022·皖南八校联考)某购物网站在2021年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________.解析:为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.答案:36.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:87.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析:当t=0时,y=a;当t=8时,y=a e-8b=12a,故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16 min容器中的沙子只有开始时的八分之一.答案:168.某工厂因排污比较严重,决定着手整治,第一个月污染度为60,整治后前四个月的污染度如下表:污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f (x )=20|x -4|(x ≥1),g (x )=203(x -4)2(x ≥1),h (x )=30|log 2x -2|(x ≥1),其中x 表示月数,f (x ),g (x ),h (x )分别表示污染度.(1)试问选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60? 解:(1)用h (x )模拟比较合理,理由如下: 因为f (2)=40,g (2)≈26.7,h (2)=30;f (3)=20,g (3)≈6.7,h (3)≈12.5.由此可得h (x )更接近实际值,所以用h (x )模拟比较合理.(2)因为h (x )=30|log 2x -2|在x ≥4时是增函数,h (16)=60,所以整治后有16个月的污染度不超过60.9.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元,0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资额的函数关系分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资股票类产品为x 万元, 则投资债券类产品为(20-x )万元.依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20). 所以当x =2,即x =4时,收益最大,y max =3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.[B 综合应用]10.在标准温度和大气压下,人体血液中氢离子物质的量的浓度(单位:mol/L ,记作[H +])和氢氧根离子物质的量的浓度(单位:mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg[H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( )A.12B.13C.16D.110解析:选C.因为[H +]·[OH -]=10-14,所以[H +][OH -]=[H +]2×1014,因为7.35<-lg[H+]<7.45,所以10-7.45<[H +]<10-7.35,所以10-0.9<[H +][OH -]=1014·[H +]2<10-0.7,10-0.9=1100.9>110,lg 100.7=0.7>lg 3>lg 2,所以100.7>3>2,10-0.7<13<12,所以110<[H +][OH -]<13.故选C.11.(2022·焦作温县一中10月月考)搭载神舟十二号载人飞船的长征二号F 遥十二运载火箭,在酒泉卫星发射中心点火发射成功.此次航天飞行任务中,火箭起到了非常重要的作用.在不考虑空气动力和地球引力的理想情况下,火箭在发动机工作期间获得速度增量v (单位:千米/秒)可以用齐奥尔科夫斯基公式v =ωln ⎝ ⎛⎭⎪⎫1+m M 来表示,其中,ω(单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身(除燃料外)的质量.若某型号的火箭发动机的喷射速度为5千米/秒,要使得该火箭获得的最大速度v 达到第一宇宙速度(7.9千米/秒),则火箭的燃料质量m 与火箭自身质量M 之比mM约为( )A .e 1.58 B.e 0.58 C .e 1.58-1D.e 0.58-1解析:选C.由题设,5ln ⎝ ⎛⎭⎪⎫1+m M =7.9,则m M =e 7.95-1=e 1.58-1.12.(多选)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )=⎩⎨⎧-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法正确的是( )A .随着时间的增加,小菲的单词记忆保持量降低B .第一天小菲的单词记忆保持量下降最多C .9天后,小菲的单词记忆保持量低于40%D .26天后,小菲的单词记忆保持量不足20%解析:选ABC.由函数解析式可知f (x )随着x 的增加而减少,故A 正确;由图象可得B 正确;当1<x ≤30时,f (x )=15+920x -12,则f (9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故C 正确;f (26)=15+920×26-12>15,故D 错误.13.燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁的燕子的飞行速度可以表示为函数v =5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)燕子静止时的耗氧量是________个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是________.解析:(1)由题意知,当燕子静止时,它的速度为0,代入v =5log 2Q 10中可得0=5log 2Q10,解得Q =10.(2)将耗氧量Q =80代入v =5log 2Q 10中,得v =5log 28010=5log 28=15 (m/s). 答案:(1)10 (2)15 m/s14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +(b -a )x .这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.解析:由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),因为b -c =(b -a )-(c -a ),所以(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.因为0<x <1,所以x =5-12. 答案:5-12[C 素养提升]15.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t (x )=⎩⎨⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃的保鲜时间是16小时. (1)该食品在8 ℃的保鲜时间是________小时;(2)已知甲在某日上午10时购买了该食品,并将其遗放在室外,且当日的室外温度随时间变化如图所示,那么到了当日13时,甲所购买的食品________保鲜时间.(填“过了”或“没过”)解析:(1)因为食品在4 ℃的保鲜时间是16小时,所以24k +6=16,解得k =-12.所以t (8)=2-4+6=4.(2)由图象可知在11时之前,温度已经超过了10 ℃,此时该食品的保鲜期少于21=2小时.而食品在11时之前已放了一段时间,所以到13时,该食品已过保鲜期.答案:(1)4 (2)过了16.(2022·上海高三月考)我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好民俗文化基础设施后任何一个月内(每月按30天计算)每天的旅游人数f (x )与第x 天近似地满足f (x )=8+8x(千人),且参观民俗文化村的游客人均消费g (x )近似地满足g (x )=143-|x -22|(元).(1)求该村的第x 天的旅游收入p (x )(单位:千元,1≤x ≤30,x ∈N *);(2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?(一年以365天计算)解:(1)依据题意,有p (x )=f (x )·g (x )=⎝ ⎛⎭⎪⎫8+8x ·(143-|x -22|)(1≤x ≤30,x∈N *)=⎩⎪⎨⎪⎧8x +968x +976(1≤x ≤22,x ∈N *),-8x +1 320x +1 312(22<x ≤30,x ∈N *).(2)①当1≤x ≤22,x ∈N *时,p (x )=8x +968x+976≥28x ·968x+976=1 152(当且仅当x =11时,等号成立),因此,p (x )min =p (11)=1 152(千元).②当22<x≤30,x∈N*时,p(x)=-8x+1 320x+1 312.求导可得p′(x)=-8-1 320x2<0,所以p(x)=-8x+错误!+1 312在(22,30]上单调递减,于是p(x)min=p(30)=1 116(千元).又1 152>1 116,所以日最低收入为1 116千元.该村两年可收回的投资资金为 1 116×20%×5%×365×2=8 146.8(千元)=814.68(万元),因为814.68万元>800万元,所以,该村在两年内能收回全部投资成本.21 / 21。
高三数学函数模型及其应用试题答案及解析
高三数学函数模型及其应用试题答案及解析1.某工厂需要建一个面积为512 m2的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌新墙所用材料最省时,堆料场的长和宽的比为()A.1B.2C.D.【答案】B【解析】设宽为x,长为kx,则kx2=512,用料为y=(k+2)x=(+2)x=2(+x)≥4=64(当且仅当x=16时取“=”),所以k==2.2.某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-R)万件,要使附加税不少于128万元,则R的取值范围是() A.[4,8]B.[6,10]C.[4%,8%]D.[6%,100%]【答案】A【解析】根据题意,要使附加税不少于128万元,需(30-R)×160×R%≥128,整理得R2-12R +32≤0,解得4≤R≤8,即R∈[4,8].3.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为()A.上午10:00B.中午12:00C.下午4:00D.下午6:00【答案】C【解析】当x∈[0,4]时,设y=kx,1=80,∴y=80x.把(4,320)代入,得k1x+b.当x∈[4,20]时,设y=k2把(4,320),(20,0)代入得解得∴y=400-20x.∴y=f(x)=由y≥240,得或解得3≤x≤4或4<x≤8,∴3≤x≤8.故第二次服药最迟应在当日下午4:00.故选C.4.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?【答案】(1)340(万元)(2)每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元【解析】解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+=32(元),书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x元时,由解得0<x<150.依题意,单套丛书利润P=x-(30+)=x--30,∴P=-[(150-x)+]+120.∵0<x<150,∴150-x>0,由(150-x)+≥2=2×10=20,=-20+120=100.当且仅当150-x=,即x=140时等号成立,此时,Pmax∴当每套丛书售价定为100元时,书商获得总利润为340万元,每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.5.[2014·武汉模拟]国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为()A.3000元B.3800元C.3818元D.5600元【答案】B【解析】由题意可建立纳税额y关于稿费x的函数解析式为y=,显然由0.14(x-800)=420,可得x=3800.6.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.【答案】(1)当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元(2)当长为16米,宽为10米时总造价最低,总造价最低为38 882元.【解析】(1)设污水处理池的宽为x米,则长为米.则总造价f(x)=400×(2x+)+248×2x+80×162=1 296x++12 960=1 296(x+)+12 960≥1 296×2 +12 960=38 880(元),当且仅当x=(x>0),即x=10时取等号.∴当长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知,∴10≤x≤16,设g(x)=x+(10≤x≤16),g(x)在上是增函数,∴当x=10时(此时),g(x)有最小值,即f(x)有最小值,即为1 296×+12 960=38 882元.∴当长为16米,宽为10米时总造价最低,总造价最低为38 882元.7.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?【答案】(1) 国家最少需要补贴万元,该工厂才能不会亏损;(2)30.【解析】(1)本题考查函数应用,属于容易题,解题的关键是列出收益函数,收益等于收入减成本,因此有利润,化简后它是关于的二次函数,利用二次函数的知识求出的取值范围,如果有非负的取值,就能说明可能获利,如果没有非负取值,说明不能获利,而国家最小补贴就是中最大值的绝对值. (2)每吨平均成本等于,由题意,我们根据基本不等式的知识就可以求出它的最小值以及取最小值时的值.试题解析:(1)根据题意得,利润和处理量之间的关系:2分,.∵,在上为增函数,可求得. 5分∴国家只需要补贴万元,该工厂就不会亏损. 7分(2)设平均处理成本为 9分11分当且仅当时等号成立,由得.因此,当处理量为吨时,每吨的处理成本最少为万元. 14分【考点】函数应用题,二次函数的值域,基本不等式的应用.8.设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D)有x+l∈D,且f(x +l)≥f(x),则称f(x)为M上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f (x)=|x-a2|-a2,且f(x)为R上的8高调函数,那么实数a的取值范围是( )A. B. C. D.【答案】A【解析】当时,,则,即为上的8高调函数;当时,函数的图象如图所示,若为上的8高调函数,则,解得且.综上.【考点】1.新定义题;2.函数图像.9.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).【答案】当r=0.4时,S有最大值0.48π,约为1.51平方米.【解析】由题意可知矩形的高即圆柱的母线长为=1.2-2r,∴塑料片面积S=πr2+2πr(1.2-2r)=πr2+2.4πr-4πr2=-3πr2+2.4πr=-3π(r2-0.8r)=-3π(r-0.4)2+0.48π.∴当r =0.4时,S有最大值0.48π,约为1.51平方米.10.要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?【答案】半圆直径与矩形的高的比为2∶1【解析】设半圆直径为2R,矩形的高为a,则2a+2R+πR=L(定值),S=2Ra+πR2=-R2+LR,当R=时S最大,此时=1,即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线.11.已知某种产品今年产量为1000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件.【答案】1331【解析】1000×(1+10%)3=1331.12.某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;(2)若该单位决定采用函数模型y=x-2lnx+a(a为常数)作为报销方案,请你确定整数a的值.(参考数据:ln2≈0.69,ln10≈2.3)【答案】(1)不符合(2)a的值为1.【解析】审题引导:正确理解三个条件:①要求模型函数在[2,10]上是增函数;②要满足y≥恒成立;③要满足y的最大值小于8.规范解答:解:(1)函数y=0.05(x2+4x+8)在[2,10]上是增函数,满足条件①,(2分)当x=10时,y有最大值7.4万元,小于8万元,满足条件③.(4分)但当x=3时,y=,即y≥不恒成立,不满足条件②,故该函数模型不符合该单位报销方案.(6分)(2)对于函数模型y=x-2lnx+a,设f(x)=x-2lnx+a,则f′(x)=1-=≥0.∴f(x)在[2,10]上是增函数,满足条件①.由条件②,得x-2lnx+a≥,即a≥2lnx-在x∈[2,10]上恒成立,令g(x)=2lnx-,则g′(x)=-=,由g′(x)>0得0<x<4,∴g(x)在(0,4)上是增函数,在(4,10)上是减函数.∴a≥g(4)=2ln4-2=4ln2-2.(10分)由条件③,得f(10)=10-2ln10+a≤8,解得a≤2ln10-2.另一方面,由x-2lnx+a≤x,得a≤2lnx在x∈[2,10]上恒成立,∴a≤2ln2.(12分)综上所述,a的取值范围为[4ln2-2,2ln2],∴满足条件的整数a的值为1.(14分)13.用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.【答案】10【解析】设容器的高为xcm,即小正方形的边长为xcm,该容器的容积为V,则V=(90-2x)(48-2x)x=4(x3-69x2+1080x),0<x<12,V′=12(x2-46x+360)=12(x-10)(x-36),当0<x<10时,V′>0;当10<x<12时,V′<0.所以V在(0,10]上是增函数,在[10,12)上是减函数,故当x =10时,V最大.14.某同学从A地跑步到B地,随路程的增加速度减小.若以y表示该同学离B地的距离,x表示出发后的时间,则下列图象中较符合该同学走法的是____________.(填序号)【答案】③【解析】由于y表示该同学离B地的距离,所以答案在①③中选,又随路程的增加速度减小,一半的时间内所走的路程要大于总路程的一半,故选③.15.里氏震级M的计算公式为:M=lgA-lgA0,其中A是测震仪记录的地震曲线的最大振幅,A是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震最大振幅的倍.【答案】6 10000【解析】由题意,在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA-lgA=lg1000-lg0.001=3-(-3)=6.设9级地震的最大振幅是x,5级地震的最大振幅是y,9=lgx+3,5=lgy+3,解得x=106,y=102.所以==10000.16.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL,那么,一个喝了少量酒后的驾驶员,至少经过小时,才能开车(精确到1小时).【答案】5【解析】设x小时后,该驾驶员血液中的酒精含量不超过0.09mg/mL,则有0.3·()x≤0.09,即()x≤0.3,估算或取对数计算得至少5小时后,可以开车.17.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【答案】(1) 国家每月至少补贴5000元才能使该项目不亏损(2) 当每月的处理量为400吨时,才能使每吨的平均处理成本最低.【解析】(1)该项目不会获利.当x∈[200,300]时,设该项目获利为S,则S=200x-(x2-200x+80000)=-x2+400x-80000=-(x-400)2,所以当x∈[200,300]时,S<0,因此该项目不会获利.当x=300时,S取得最大值-5000,所以国家每月至少补贴5000元才能使该项目不亏损.(2)由题意,可知二氧化碳的每吨处理成本为:=①当x∈[120,144)时,=x2-80x+5040=(x-120)2+240,所以当x=120时,取得最小值240.②当x∈[144,500]时,=x+-200≥2-200=200,当且仅当x=,即x=400时,取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低.18.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).【答案】(1)L=(x-3-a)·(12-x)2,x∈[9,11].(2)当每件售价为6+a元时,分公司一年的利润L最大,最大值Q(a)=43(万元).【解析】(1)分公司一年的利润L(万元)与售价x的函数关系式为L=(x-3-a)·(12-x)2,x∈[9,11].(2)L′(x)=(12-x)2-2(x-3-a)(12-x)=(12-x)·(18+2a-3x).令L′=0,得x=6+a或x=12(不合题意,舍去).∵3≤a≤5,∴8≤6+a≤.在x=6+a两侧,L′的值由正变负.所以①当8≤6+a<9,即3≤a<时,=L(9)=(9-3-a)(12-9)2=9(6-a);Lmax②当9≤6+a≤,即≤a≤5时,=L 2=43,Lmax所以Q(a)=故若3≤a<,则当每件售价为9元时,分公司一年的利润L最大,最大值Q(a)=9(6-a)(万元);若≤a≤5,则当每件售价为6+a元时,分公司一年的利润L最大,最大值Q(a)=43(万元).19.设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:t03691215182124经长期观察,函数y=f(t)的图象可以近似地看成函数y=h+A sin (ω+φ)的图象,写出最能近似表示表中数据间对应关系的函数是______.【答案】y=5.0+2.5sin t.【解析】由数据可知函数的周期T=12,又T=12=,所以ω=,函数的最大值为7.5,最小值为2.5,即h+A=7.5,h-A=2.5,解得h=5.0,A=2.5.所以函数为y=f(x)=5.0+2.5sin又y=f(3)=5.0+2.5sin=7.5,所以sin =cos φ=1,即φ=2kπ,k∈Z,故y=5.0+2.5sin t20.某镇政府为了更好地服务于农民,派调查组到某村考察.据了解,该村有100户农民,且都从事蔬菜种植,平均每户的年收入为3万元.为了调整产业结构,该镇政府决定动员部分农民从事蔬菜加工.据估计,若能动员x(x>0)户农民从事蔬菜加工,则剩下的继续从事蔬菜种植的农民平均每户的年收入有望提高2x%,而从事蔬菜加工的农民平均每户的年收入将为3 (a>0)万元.(1)在动员x户农民从事蔬菜加工后,要使从事蔬菜种植的农民的总年收入不低于动员前从事蔬菜种植的农民的总年收入,求x的取值范围;(2)在(1)的条件下,要使这100户农民中从事蔬菜加工的农民的总年收入始终不高于从事蔬菜种植的农民的总年收入,求a的最大值.【答案】(1)0<x≤50(2)5【解析】(1)由题意,得3(100-x)(1+2x%)≥3×100,即x2-50x≤0,又x>0,解得0<x≤50.(2)从事蔬菜加工的农民总年收入为3x万元,从事蔬菜种植的农民的总年收入为3(100-x)(1+2x%)万元.根据题意,得3x≤3(100-x)(1+2x%)恒成立,即ax≤100+x+恒成立.因为0<x≤50,所以a≤++1恒成立,而++1≥5,当且仅当x=50时取等号,所以a的最大值为5.21.某公司一年购买某种货物吨,每次都购买吨,运费为万元/次,一年的总存储费用为万元,若要使一年的总运费与总存储费用之和最小,则每次需购买吨.【答案】30【解析】本题要列出总费用与的函数关系式,然后利用不等式知识或函数的性质解决.根据题意总费用,当且仅当,即时等号成立.【考点】函数的应用与基本不等式.22.为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:若不建隔热层,每年能源消耗费用为8万元。
3.2函数性质的综合应用课件高三数学一轮复习
(2)(多选题)(2023·青岛质检)已知函数f(x)的定义域为R,且f(2x+1)是偶函数,f(x-1)
是奇函数,则下列结论正确的是( )
A.f(x)=f(x-16)
B.f(19)=0
C.f(2 024)=f(0)
D.f(2 023)=f(1)
【解析】选ABC.因为f(2x+1)是偶函数,所以f(-2x+1)=f(1+2x), 即f(1-x)=f(1+x),即函数关于x=1对称,则f(x)=f(2-x). 因为f(x-1)是奇函数,所以f(-x-1)=-f(x-1),则f(-x-2)=-f(x)=-f(2-x), 即f(x-2)=-f(2+x),则f(x)=-f(x+4),即f(x+8)=-f(x+4)=f(x),即函数的周期是8, 则f(x)=f(x-16)成立,故A正确; 令x=0,由f(-x-1)=-f(x-1),得f(-1)=-f(-1),得f(-1)=0,f(3)=0, 则f(19)=f(3)=0,故B正确; f(2 024)=f(8×253+0)=f(0)成立,故C正确; f(2 023)=f(8×253-1)=f(-1),故D错误.
谢谢观赏!!
2.函数y=f(x)对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0) 对称,f(1)=4,则f(2 020)+f(2 021)+f(2 022)的值为 4 . 【解析】因为y=f(x-1)的图象关于点(1,0)对称, 所以函数y=f(x)的图象关于原点对称,即函数f(x)是R上的奇函数,所以f(0)=0. 因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),故f(x)的周期为4, 所以f(2 021)=f(505×4+1)=f(1)=4,f(2 020)=f(0)=0,f(2 022)=f(2)=-f(0)=0, 所以f(2 020)+f(2 021)+f(2 022)=4.
函数与方程及函数的综合应用课件——高三数学一复习
2
x 1
品售价为50万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
解析 (1)当0<x<50时,L(x)=50x- 1 x 2 10 x -200=- 1 x2+40x-200,
6
4 3
3 2
6
2
函数f(x)的一个零点位于 , 内,即x0∈ , .故选C.
6 4
答案 C
6 4
考法二 已知函数有零点(方程有根)求参数值(或取值范围)
1.直接法:利用零点构建关于参数的方程(组)或不等式(组),直接求解.
2.参数分离法:将参数与自变量分离,转化为求函数的最值或值域.
2
2
当x≥50时,L(x)=50x-52x- 7 200 +1 200-200=1 000- 2 x 7 200 ,
x 1
1 2
x 40 x 200,0 x 50,
所以L(x)= 2
1 000 2 x 7 200 , x 50.
3.5专题三、函数与方程及
函数的综合应用
知识梳理
基础篇
考点一 函数的零点
1.函数的零点
1)函数零点的定义:对于一般函数y=f(x),把使f(x)=0的实数x叫做函数y=
f(x)的零点.
注意:零点不是点,是满足f(x)=0的实数x.
2)三个等价关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的
高三数学三角函数应用试题
高三数学三角函数应用试题1.下列命题正确的个数是①命题“ ”的否定是“ ”:②函数的最小正周期为“ ”是“a=1”的必要不充分条件;③在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“ ”A.1B.2C.3D.4【答案】B【解析】由特称命题的否定知,①正确;因为=,所以T==a=±1,故②对;因为在上恒成立在上恒成立,故③错,因为“平面向量与的夹角是钝角”“ ”,但“ ” 平面向量与的夹角是钝角或,故不是充要条件,故④错,故选B.【考点】特称命题的否定,三角函数的性质,充要条件,平面向量的数量积,不等式恒成立问题2.设摩天轮逆时针方向匀速旋转,24分钟旋转一周,轮上观光箱所在圆的方程为.已知时间时,观光箱A的坐标为,则当时(单位:分),动点A的纵坐标关于的函数的单调递减区间是.【答案】【解析】由题意,,设,则,又,,即,,,,取,则.【考点】三角函数的解析式与性质.3.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.4.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)【答案】(1) ();(2)少.【解析】(1)本题比较简单,就是利用扇形面积公式来计算弧田面积,弧田面积等于扇形面积对应三角形面积.(2)由弧田面积的经验计算公式计算面积与实际面积相减即得.试题解析:(1) 扇形半径, 2分扇形面积等于 5分弧田面积=(m2) 7分(2)圆心到弦的距离等于,所以矢长为.按照上述弧田面积经验公式计算得(弦´矢+矢2)=. 10分平方米 12分按照弧田面积经验公式计算结果比实际少1.52平米.【考点】(1)扇形面积公式;(2)弧田面积的经验计算公式.5.函数的值域是 .【答案】【解析】求函数的值域之前,要先求函数的定义域,同时如能确定函数的单调性就更好了,本题中函数的定义域为即,而本函数是减函数,故值域为.【考点】反三角函数的值域.6.已知函数.(1)求的最小正周期及最大值;(2)若,且,求的值.【答案】(1)的最小正周期为,最大值为.(2).【解析】(1)利用三角函数的和差倍半公式,首先化简函数,得到.明确最小正周期=,最大值为.(Ⅱ)依题意,由得到,求得.本题较为典型,注意角的范围.试题解析:(1)因为.即所以,的最小正周期为,最大值为.(2)因为,所以,.因为所以,所以,故.【考点】三角函数的和差倍半公式,三角函数的性质.7.函数f(x)=的值域是()A.[--1,1]∪[-1, -1]B.[-,]C.[--1, -1]D.[-,-1∪(-1,【答案】D【解析】所以故选D8.若,则=____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①利用计算工具,比较指数函数、对数函数以及幂函
数增长差异;结合实例体会直线上升、指数爆炸、对
数增长等不同函数类型增长的含义。 ②收集一些社会生活中普遍使用的函数模型(指数函
数、对数函数、幂函数、分段函数等)的实例,了解
函数模型的广泛应用。
知识要点
第一步:阅读理解,审清题意. 读题要做到逐字逐句,读懂题中的文字叙述,理解叙 述所反映的实际背景,在此基础上,分析出已知什么, 求什么,从中提炼出相应的数学问题.
知识要点
第二步:引进数学符号,建立数学模型.
一般地,设自变量为x,函数为y,必要时引入其他
相关辅助变量,并用x、y和辅助变量表示各相关量,
然后根据问题已知条件,运用已掌握的数学知识、
物理知识及其他相关知识建立关系式,在此基础上 将实际问题转化为一个函数问题,实现问题的数学化, 即所谓建立数学模型.
使每月所获利润最大?并计算该销售点一个月最多可赚得
多少元?
类型之一:二次函数
例2:某租赁公司拥有汽车100辆,当每辆车的月租金为3000
元时,可全部租出,当每辆车的月租金每增加50元时,未租 出的车将会增加一辆。租出的车每辆每月需要维护费200元。 (1)当每辆车月租金为3600元时,能租出多少辆车? (2)当每辆车月租金定为多少元时,租赁公司的月效
知识要点
第三步:利用数学的方法将得到的常规函数
问题(即数学模型)予以解答,求得结果.
第四步:将所得结果再转译成具体问题的解答.
类型之一:一次函数
例1:某家报刊销售点从报社买进报纸的价格是每份0.35
元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份 0.08元的价格退回报社,在一个月里,有20天每天可以卖 出400份,其余10天每天只能卖出250份,设每天从报社买 进报纸的数量相同,则应该每天从报社买进多少份,才能
益最大?
类型之三: 三次函数
例3:用总长14.8m的钢条制成一个长方体窗口框架,如果所制
做容器底面的一边比另一边长0.5m,那么高为多少时容器的容 积最大?并求出它的最大容积。
;/ 除甲醛公司;
喝用の都是最好の,咱也送你去最好の学府...""咱虽然没有去时时看望你,但也会经常联系你..."陆震道:"虽然咱心里有时也会想,你可能是咱の孩子,是咱最小の女尔,但是咱不敢和你相认,因为咱怕你有心理负担..."听着陆震讲述他の心结,鬼荷花脑袋也低了下来,她也有 些无语,脸色有些难看."可是你心里,肯定也壹直在想,咱是被人强出来の孩子吧!"鬼荷花阴沉着说.陆震心中壹怔,随即否认道:"咱从来没有这样子想过!咱只是怕你会这样想,所以才尽量不表现得太过殷勤而已...""是真の吗?"鬼荷花抬头看着他,想从他の眼中看出,他说の是 真话还是假话.可是她并没有从陆震の眼中,看到过壹丝迟疑与心虚,他似乎说の是真の,难道自己真の错了?"可惜,这壹切都晚了..."鬼荷花转过身去,突然感觉自己这个先天境强者,也感觉到了壹股寒意,她将裙子领部拉紧了壹些,幽然叹道:"咱已经做了坏女人了,走上了壹条 不归路了,再也回不到从前了...""孩子,这壹切都不晚,你只是走了壹段错路而已,还有回头の路..."陆震走上前壹步,叹道,"只要你肯回头,壹切就都来得及,你不要再壹错再错了...""你听咱の话,回头吧..."陆震语重心长の说.鬼荷花摇了摇头,叹道:"将陆家心法给咱吧,这 壹切因咱而起,自然也要因咱结束...""孩子,你想做什么?"陆震心中壹震,沉声道,"此事与你无关,就算你不掺和进来,咱们陆家和煞盟也有斩不断の宿怨,与你没有关系の你不要做傻事...""咱不是做傻事..."鬼荷花苦笑道,"你把咱想の太善良了,咱没有那么伟大,不会去牺牲 自己...""只是咱修行の确是需要陆家心法,或许有了这心法,咱就可以从魔道中走出来,再也不用那样子糟贱自己了..."鬼荷花说.陆震眉头微皱,问道:"你确定陆家心法能帮到你?""恩..."鬼荷花点了点头道:"有七成以上の把握吧...""既然如此..."陆震犹豫了壹会尔,叹 道,"那咱就将它传给你吧...""你真肯给咱?"鬼荷花有些不相信,陆震如此轻易の就答应了.她原本以为,今天晚上,要和陆震对几手の,但是没想到陆震如此爽快の答应了自己の要求,答应の让她觉得有种莫名の感动.这种感动,换个名词,应该叫做父爱.鬼荷花头壹回感受到这种 东西,来得如此突然,令她眼眶险些都要湿润了."当然,你要咱自然会给你,只要这东西真の能帮到你..."陆震沉声说道,壹边从口袋里,掏出了壹本有些发黄の古书,上面写着一些笔走龙蛇の金色大字,陆家心法."拿去吧..."他并没有多少犹豫,便将这本陆家心法,如此轻松の放 到了鬼荷花の手中.他对鬼荷花说:"这部心法咱也没怎么练过,家族中也有不少人都试过,但是都没怎么成功,所以能给你借鉴の经验也不是太多..."(正文贰叁6玖父女夜谈)贰叁70不归之路"不过其中の第六篇,那部去除魔气の法门,你倒是可以试壹试,也许对你の修行有帮 助..."陆震语重心长の说,"既然你要修炼,也不用去外面了,现在外面也不安全,那煞盟の人肯定也在盯着你,你就呆在咱の练功房里面吧,不会有人打扰你の,起码暂时也是安全の...""这..."鬼荷花眼眶有些红,眼中の黑戾之气,好像消散了壹部分."就这么说定了吧,若是哪天 你想走,都不用和咱说,你自己可以随时离开..."陆震将壹个黑色の遥控器放到了她の手里,对她说,"这是咱这里の遥控钥匙,你配壹把吧,你那里最好是不要再去住了,那里不安全...""天色好晚了,早些睡吧,咱这里有卧室,你随便找壹间..."陆震说完似乎好像老了不少,壹下子 就疲惫了许多,说完他便转身离开了,去了自己の卧室了.只留下鬼荷花站在原地,手里紧握着那部发黄の陆家心法,心里壹阵阵の绞痛,感觉心口好像被什么东西给堵住了似の,格外の难受.不知不觉间,鬼荷花の双眼里泪花已经涌现,泪水顺着眼颊流了下来,滴落到了木板地面上, 响起了嘀嘀嗒嗒の声音.[壹_本_读]"难道他真の从来没有那样子想过?""咱错了,咱真の错了..."鬼荷花无助の摇了摇头,然后便拖着疲惫の身子,走向了外面の院子,对面还有壹些客房,她打算去那里住."这女人真の开窍了...""确实也不容易呀..."此时根汉の身影也出现在了 陆震屋子の上空,就在刚刚根汉用天眼,终于是可以看到鬼荷花の过往了,或许是因为她想开了の原因,认错の原因.她心中の郁结打开了,与陆震这个自己の父亲の心结打开之后,体内の阴戾之气消散了壹些,根汉这才看到了她の过往经历.鬼荷花变成现在这个样子,与她小时候 の经历有很大の关系.她の母亲被那个男人下了药之后,便怀上了她,没过多久便生下了她.可是生下她之后,那个男人便失踪了,而且带着她母亲所有の钱离开了.那时候她母亲原本想去找陆震の,可是却没有脸去找他,觉得自己对不起陆震.因为她原本是和陆震约好の,要做他の 老婆の,没想到却发生了那样の事情.可是她又得带大鬼荷花,结果她后来又悲惨の被人给卖了,被逼良为娼了.被逼着做了几年の鸡之后,鬼荷花の母亲便得上了壹种怪病,那时连花楼都不要她了,将她们母.女俩给赶了出来,再壹次流落街头.可是她母亲还是没脸去见陆震,再加 上又患了重病,又花去了大部分の钱财,所以没活两年就过逝了,只留下了鬼荷花这个孤苦怜丁の孩子.她母亲临死这前告诉鬼荷花,可以让她拿着信物去投奔陆震,但是鬼荷花却没有听从她母亲の话,自己在外流浪了七八年.壹直到她近二十岁の时候,她才意外の遇到了陆震,陆 震将她带回了陆家.原本这壹切の苦难应该就可以结束了,陆家在这洪城地位很高,陆震の威名也是大名鼎鼎の,起码在这洪城自己是壹个千金大小姐.尤其是陆震看到她の第壹眼,心里就断定她是自己の孩子,更是对她宠爱有加.可是陆家の人毕竟多,而且陆震也要修行,陆震也 没有时间整日の陪着她,便将她送进了壹个洪城最好の贵族学校让她好好学习几年.也就是在这所贵族学校学习期间,让这鬼荷花走上了壹条不归之路,她在学校里面加入了壹个社团,这个社团是壹个极度偏门の社团,平时社团里の社员都没有几人.可就是这个社团,却是壹个名 为学习黑魔法の蛊惑之团,她在这里接触到了令她痛苦不堪,却又壹时无法自拔の黑魔法.也就是她现在修炼の这门吸魔.,原本在她那个社团里面,壹共有十一些社员,都在修炼这门吸魔..可是那些之前の社员,都没有她学习の这么快,她们只不过会壹些皮毛,可是这鬼荷花却有 这方面の天赋,她很快就掌握了这门吸魔.,而且在学校里面便开始了她の邪途.她在第三年の时候,就吸死了两个男同学,当时还在学校里面造成了不小の轰动,有不少人出现了恐慌.但是当时没有人查到,这件事是她所为,所以她也逃过了壹劫.尝到了甜头の她,此后便开始秘密 の出现在,各大娱乐场所里面,暗中引壹些男人出来玩,最后都成功の吸光他们,令自己の修为壹步壹步の提升.罪恶这种东西,有时候有了第壹回,就会像病毒壹样,让你无法控制,无法自拔.鬼荷花就是如此,自从以吸魔.杀了第壹个男人之后,就开始了无休无止の这种贪.婪,她根 本就无法控制.她经常出入不同の酒吧,会所,地下社团活动,还有时候在山中林间,约壹些男人出来,吸光他们.当然她并不是都会找每个男人睡觉,然后在睡觉过程中将人家给吸死了,很多时候是直接叫到了跟前,然后就吸光他们の.她自然也不是那种人尽可夫の女人,不会笨到 让每壹个男人来碰自己,只有那些自己觉得无法应付,实力比较强の那些武道男人の时候,她才会可能像之前对付那个中年男人壹样,会以身子来麻痹对方.然后给予对方致命壹击,以吸魔.吸死他们,令自己の修为快速提升.直到有壹天,她发现自己和别の女孩子有些不对劲了,她 才开始收敛起来.原来每到月圆之夜,她便会奇痛无比,体内便会窜出壹个恶魔,开始折磨着她整夜,睡也睡不着