2015届高三数学(理)第一轮总复习周周练素材:(六)

合集下载

2015届高考理科数学第一轮知识点专项题库11

2015届高考理科数学第一轮知识点专项题库11

沁园春·雪<毛泽东>北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,欲与天公试比高。

沁园春·雪 <毛泽东> 北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

第8讲函数与方程一、填空题1.若a >2,则函数f (x )=13x 3-ax 2+1在(0,2)内零点的个数为________.解析 依题意得f ′(x )=x 2-2ax ,由a >2可知,f ′(x )在x ∈(0,2)时恒为负,即f (x )在(0,2)内单调递减,又f (0)=1>0,f (2)=83-4a +1<0,因此f (x )在(0,2)内只有一个零点.答案 12.已知符号函数sgn(x )=⎩⎨⎧ 1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(ln x )-ln 2x的零点个数为________. 解析 依题意得,当x >1时,ln x >0,sgn(ln x )=1,f (x )=sgn(ln x )-ln 2x =1-ln 2x ,令1-ln 2x =0,得x =e 或x =1e ,结合x >1,得x =e ;当x =1时,ln x =0,sgn(ln x )=0,f (x )=-ln 2x ,令-ln 2x =0,得x =1,符合;当0<x <1时,ln x <0,sgn(ln x )=-1,f (x )=-1-ln 2x .令-1-ln 2x =0,得ln 2x =-1,此时无解.因此,函数f (x )=sg n(ln x )-ln 2x 的零点个数为2.答案 23.若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]时,f (x )=1-x 2,函数g (x )=⎩⎪⎨⎪⎧ lg x ,x >0,0,x =0,-1x ,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]内的零点的个数是________.解析 依题意得,函数f (x )是以2为周期的函数,在同一坐标系下画出函数y =f (x )与函数y =g (x )的图象,结合图象得,当x ∈[-5,5]时,它们的图象的公共点共有8个,即函数h (x )=f (x )-g (x )在区间[-5,5]内的零点的个数是8.答案 84.设函数f (x )=13x -ln x (x >0),则函数f (x )在区间(0,1),(1,+∞)内的零点个数分别为________.解析 设y =13x 与y =ln x ,作图象可知f (x )在区间(0,1)内无零点,在(1,+∞)内仅有两个零点.答案 0,25.设函数f (x )=⎩⎨⎧ 4x -4,x ≤1,x 2-4x +3,x >1,则函数g (x )=f (x )-log 4x 的零点个数为________.解析 设y =f (x )与y =log 4x ,分别画出它们的图象,得有2个交点,所以函数g (x )的零点个数为2.答案 26.已知函数f (x )=⎩⎨⎧2x -1,x >0,-x 2-2x ,x ≤0.若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析 画出图象,令g (x )=f (x )-m =0,即y =f (x )与y =m 的图象的交点有3个,∴0<m <1.答案 (0,1)7.方程log 2(x +4)=2x 的根有________个.解析 作函数y =log 2(x +4),y =2x 的图象如图所示,两图象有两个交点,且交点横坐标一正一负,∴方程有一正根和一负根.答案 28.已知函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则实数k 的取值范围是________.解析 因为Δ=(1-k )2+4k =(1+k )2≥0对一切k ∈R 恒成立,又k =-1时,f (x )的零点x =-1∉(2,3),故要使函数f (x )=x 2+(1-k )x -k 的一个零点在(2,3)内,则必有f (2)·f (3)<0,即2<k <3.答案 (2,3)9.若关于x 的方程kx +1=ln x 有解,则实数k 的取值范围是________.解析 如图,若y =kx +1与y =ln x 相切于点P (x 0,y 0),则⎩⎨⎧ k =1x 0,kx 0+1=ln x 0,解得x 0=e 2,k =1e 2.欲使方程有解,则y =kx +1与y =ln x 有公共点,所以k ≤1e 2.答案 ⎝ ⎛⎦⎥⎤-∞,1e 2 10.已知函数f (x )=1+x -x 22+x 33-x 44+…+x 2 0112 011,g (x )=1-x +x 22-x 33+x 44-…-x 2 0112 011,设F (x )=f (x +3)·g (x -3),且函数F (x )的零点均在区间[a ,b ](a <b ,a ,b ∈Z )内,则b -a 的最小值为________.解析 由f ′(x )=1-x +x 2-x 3+…+x 2 010=1+x 2 0111+x, 则f ′(x )>0,f (x )为增函数,又f (0)=1>0,f (-1)<0,从而f (x )的零点在(-1,0)上;同理g (x )为减函数,零点在(1,2)上,∴F (x )的零点在(-4,-3)和(4,5)上,要使区间[a ,b ]包含上述区间,则需(b -a )min =9. 答案 9二、解答题11.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)试确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解 (1)∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则g (x )=m 就有零点.(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点.作出g (x )=x +e 2x (x >0)和f (x )的图象如图.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,其对称轴为直线x =e ,开口向下,最大值为m -1+e 2,故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根,∴m 的取值范围是m >-e 2+2e +1.12.已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个实数c ,使f (c )>0,求实数p 的取值范围.解 二次函数f (x )在区间[-1,1]内至少存在一个实数c ,使f (c )>0的否定是对于区间[-1,1]内的任意一个x 都有f (x )≤0,∴⎩⎪⎨⎪⎧ f (1)≤0,f (-1)≤0,即⎩⎪⎨⎪⎧ 4-2(p -2)-2p 2-p +1≤0,4+2(p -2)-2p 2-p +1≤0,整理得⎩⎪⎨⎪⎧2p 2+3p -9≥0,2p 2-p -1≥0, 解得p ≥32或p ≤-3,∴二次函数f (x )在区间[-1,1]内至少存在一个实数c ,使f (c )>0的实数p 的取值范围是⎝ ⎛⎭⎪⎫-3,32. 13.已知函数f (x )=|x -a |-a 2ln x ,a ∈R .(1)求函数f (x )的单调区间;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),求证:1<x 1<a <x 2<a 2.(1)解 由题意,函数的定义域为(0,+∞),当a ≤0时,f (x )=|x -a |-a 2ln x =x -a -a 2ln x ,f ′(x )=1-a 2x >0,函数f (x )的单调递增区间为(0,+∞).当a >0时,f (x )=|x -a |-a 2ln x =⎩⎪⎨⎪⎧ x -a -a 2ln x ,x ≥a ,a -x -a 2ln x ,0<x <a ,若x ≥a ,f ′(x )=1-a 2x =2x -a 2x >0,此时函数f (x )单调递增,若0<x<a,f′(x)=-1-a2x<0,此时函数f(x)单调递减,综上,当a≤0时,函数f(x)的单调递增区间为(0,+∞);当a>0时,函数f(x)的单调递减区间为(0,a);单调递增区间为(a,+∞).(2)证明由(1)知,当a≤0时,函数f(x)单调递增,至多只有一个零点,不合题意;则必有a>0,此时函数f(x)的单调递减区间为(0,a);单调递增区间为(a,+∞),由题意,必须f(a)=-a2ln a<0,解得a>1.由f(1)=a-1-a2ln 1=a-1>0,f(a)<0,得x1∈(1,a).而f(a2)=a2-a-a ln a=a(a-1-ln a),下面证明:a>1时,a-1-ln a>0.设g(x)=x-1-ln x,x>1,则g′(x)=1-1x=x-1x>0,∴g(x)在x>1时递增,则g(x)>g(1)=0,∴f(a2)=a2-a-a ln a=a(a-1-ln a)>0,又f(a)<0,∴x2∈(a,a2),综上,1<x1<a<x2<a2.14.设函数f(x)=3ax2-2(a+c)x+c (a>0,a,c∈R).(1)设a>c>0.若f(x)>c2-2c+a对x∈[1,+∞)恒成立,求c的取值范围;(2)函数f(x)在区间(0,1)内是否有零点,有几个零点?为什么?解(1)因为二次函数f(x)=3ax2-2(a+c)x+c的图象的对称轴为x=a+c 3a,由条件a>c>0,得2a>a+c,故a+c3a<2a3a=23<1,即二次函数f(x)的对称轴在区间[1,+∞)的左边,且抛物线开口向上,故f(x)在[1,+∞)内是增函数.若f(x)>c2-2c+a对x∈[1,+∞)恒成立,则f(x)min=f(1)>c2-2c+a,即a -c >c 2-2c +a ,得c 2-c <0,所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点. ②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c 3a .而f ⎝ ⎛⎭⎪⎫a +c 3a =-a 2+c 2-ac 3a<0, 所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1)内有两个零点.希望的灯一旦熄灭,生活刹那间变成了一片黑暗。

2015届高三数学(理)(通用版)一轮复习检测试题03 word版含解析

2015届高三数学(理)(通用版)一轮复习检测试题03 word版含解析

一.单项选择题。

(本部分共5道选择题)1.|y |-1=1-x -12表示的曲线是( ).A .抛物线B .一个圆C .两个圆D .两个半圆解析 原方程等价于⎩⎨⎧ |y |-1≥01-x -12≥0|y |-12=1-x -12 ⇔⎩⎨⎧ |y |-1≥0x -12+|y |-12=1 ⇔⎩⎨⎧ y ≥1x -12+y -12=1或⎩⎨⎧ y ≤-1x -12+y +12=1答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ).A .-1B .0C .1D .2解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B.答案 B3.设f (x )=lg(21-x +a )是奇函数,则使f (x )<0的x 的取值范围是( ). A .(-1,0) B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析 ∵f (x )为奇函数,∴f (0)=0,∴a =-1.∴f (x )=l g x +11-x ,由f (x )<0得,0<x +11-x<1, ∴-1<x <0.答案 A4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( ).A .24B .48C .72D .96解析 A 55-2A 22A 23A 22-A 22A 22A 33=48.答案 B5.复数i -21+2i=( ). A .i B .-iC .-45-35iD .-45+35i 解析 因为i -21+2i =i -21-2i 1+2i 1-2i =5i 5=i ,故选择A. 答案 A二.填空题。

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。

2015届上学期高三第一周周练数学理科答案

2015届上学期高三第一周周练数学理科答案

2015届上学期高三第一周周练数学理科答案1.C【解析】 试题分析:因为命题:p R x ∃∈,2lg x x ->是真命题,而命题:q R x ∀∈,1x e >是假命题,由复合命题的真值表可知命题()p q ∧⌝是真命题.故选C .考点:1全程命题,特称命题;2复合命题的真假判断.2.A 【解析】试题分析:13.-=x y A ,因为R x ∈-1,所以()+∞∈,0y ,,C ,因为112≥+x ,所以函数的值域,D .因为02>x ,所以值域是[)1,0,故选A .考点:函数的值域3.B【解析】试题分析:图象关于y 轴对称,因此排除A ,C ,当10<<x ,0cos >x ,考点:函数图象的判断4.A 【解析】试题分析:由题,对任意R x ∈都有)4()(+=x f x f ,即函数的周期为 4 ,故(2015)(1),(2012)(0)f f f f =-= 又)(x f 是定义在R 上的奇函数,所以当()2,0x ∈-时,()2x f x -=-,故()1(1)2=-2,(0)f f ---=-=0‘ (2015)(2012)f f +=-2考点:函数的单调性,奇偶性5.B 【解析】试题分析:先画出分段函数的图像,可判断,如果有3个不同的交点,那直线与右侧抛物线要有2个不同的交点,即当0>m 时,0>∆,,得到:0222=+-mx x ,根据⎩⎨⎧>∆>00m ,解得考点:函数图像的应用.6.A【解析】试题分析:函数,因为是奇函数,所以()()0=+-x f x f ,即,所以42=a ,即2=a ,,那么()b b ,-是定义域的子集,所以以b a 的取值范围是考点:1.奇函数;2.指数函数.7.B【解析】试题分析:观察函数的图象可知, 1()1f x -≤≤,1()1g x -≤≤,使()0f x =的x 为1,0,1-,使()1g x =±的x 均有2个,使()0g x =的x 有3个,所以()()0f g x =的实根个数7a =;使()0g x =的x 有3个,使()()0g f x =的只有()0f x =.所以()()0g f x =的实根个数3b =,故10a b +=,选B .考点:1.函数与方程;2.函数的奇偶性;3.转化与化归思想、数形结合思想.8.B【解析】,222(41)20x c x c +-+≥对(0,)x ∈+∞或2(41)160c --≤,解得B . 考点:不等式恒成立. 9.)1,0(【解析】 ,则满足0)(>x f ,即012>--t t ,解得10<<t ,即x 的取值范围)1,0(;考点:不等式的解法10【解析】 试题分析:由题意可得()f x 在[0,)+∞上是增函数,而0x <时,()1f x =,故满足不等式()()212f x f x ->的x 需满足221210x x x ⎧->⎨->⎩,即,解得考点:不等式的解法.11.3【解析】区间[m ,n]长度的最小值为3.根据图像结合x ∈[]2,a -(0a ≥),其值域为[],m n ,不难判定其区间长度最小值为3.考点:对数函数的图像与性质12.①②④【解析】试题分析:函数()f x 是单调递减函数,()()()0a b c f a f b f c <<<∴>> ()()()0f a f b f c <()()()0f a f b f c ∴>>>或()()()0f a f b f c >>>,()0f d a b d c =∴>>> 或d a b c >>>,因此成立当是考点:1.函数零点;2.函数单调性13.(1)()(,3][14,)R A C B =-∞-+∞I U ;(2)[1,)-+∞【解析】试题分析:(1)由题根据题意不难得到集合B=(-2,14),然后所给venn 图可知阴影部分表示的集合为()R A C B I ,不难计算结果;(2)由题C B ⊆,所以根据集合C 的情况进行讨论即可求得a 的范围.试题解析:(1)由028122<--x x 得(2,14)B =-, 2分 又(,3][6,)A =-∞-⋃+∞, 故阴影部分表示的集合为()(,3][14,)R A C B =-∞-+∞I U ; 5分(2) ① 21a a ≥+,即1a ≥时,C =∅,成立; 9分② 21a a <+,即1a <时,(2,1)(2,14)C a a =+⊆-,114,22,a a +≤⎧⎨≥-⎩得11a -≤<, 11分 综上所述,a 的取值范围为[1,)-+∞. 12分考点:(1)集合的混合运算;(2)含参数的集合关系14.(1(2) 1±=a 【解析】试题分析:(1)定义域为R ,指真数恒大于0,转化为二次函数恒大于0的问题;(2)根据函数的值域,确定真数的值域,从而根据二次函数的最值确定参数的取值. 试题解析:设()()222332a a x ax x x g u -+-=+-==(1)因为0>u 对R x ∈恒成立,所以032min >-=a u ,所以(2)因为函数()x f 的值域是(]1-,∞所以()x g 的值域是[)∞+,2,即()x g 的最小值是2-32=a ,所以1±=a考点:1.对数函数;2.对数函数的性质.15.(Ⅰ)1=x ;(Ⅱ)()(01)1(12)52(23)a a f x a a a <≤⎧⎪=<<⎨⎪-≤<⎩【解析】试题分析:(Ⅰ)当1=a 时,讨论绝对值的意义,分1≥x 和1<x 两种情况,去绝对值,解出x ;(2)第一步,同样是讨论绝对值的意义,将绝对值去掉,写成分段函数的形式,第二步,注意定义域是[]2,1,所以需讨论对称轴于定义域的关系,和分段函数的对应定义域与[]2,1的关系,所以将参数a 分为(]1,0,()2,1,[)3,2三个区间,讨论定义域的单调性,确定最大值.试题解析:解:(Ⅰ)1x = 4分 (Ⅱ)当()()()2211x ax x a f x x ax x a ⎧-++≥⎪=⎨-+<⎪⎩ 6分 当10≤<a 时,()x f 在[]2,1上递减,故()()max =1f x f a =; 8分 当21<<a 时,()x f 在[]a ,1上递增,[]2,a 上递减,故()()1max ==a f x f ; 10分 当32<≤a 时,()x f()()a f x f 252max -==.13分 综上:()(01)1(12)52(23)a a f x a a a <≤⎧⎪=<<⎨⎪-≤<⎩15分 考点:1.解绝对值方程;2.分段函数给定区间的最值;3.含参讨论问题.。

2015届高考理科数学立体几何一轮练习题-数学试题

2015届高考理科数学立体几何一轮练习题-数学试题

2015届高考理科数学立体几何一轮练习题-数学试题第1课时立体几何的结构及其三视图和直观图1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等没有严格要求).[对应学生用书P109]【梳理自测】一、空间几何体的结构特征1.(教材改编)下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点2.如图是一个正方体的展开图,将其折叠起来,变成正方体后的图形是()答案:1.D 2.B◆以上题目主要考查了以下内容:多面体棱柱棱柱的侧棱都平行且相等,上下底面是平行且全等的多边形.棱锥棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.棱台棱台可由平行于底面的平面截棱锥得到,其上下底面是平行且相似的多边形.旋转体圆柱圆柱可由矩形绕其任意一边所在直线旋转得到.圆锥圆锥可以由直角三角形绕其一条直角边所在直线旋转得到.圆台圆台可由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.球球可以由半圆或圆绕直径所在直线旋转得到.二、三视图1.有一个几何体的三视图如图所示,这个几何体应是一个()A.棱台B.棱锥C.棱柱D.都不对2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案:1.A 2.D◆以上题目主要考查了以下内容:名称几何体的三视图有:正视图、侧视图、俯视图画法1.画三视图时,重叠的线只画一条,挡住的线画成虚线. 2.三视图的正视图、侧视图、俯视图分别是从几何体的正前方、左方、正上方观察几何体得到的正投影图.规则1.画法规则:长对正、高平齐、宽相等. 2.摆放规则:侧视图在正视图的右侧,俯视图在正视图的下方.三、直观图及投影1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()2.如图,过BC的平面截去长方体的一部分,所得的几何体________棱柱(填“是”或“不是”).答案:1.A 2.是◆以上题目主要考查了以下内容:直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z 轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直. (2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴,平行于x轴和z轴的线段长度在直观图中不变,平行于y轴的线段长度在直观图中等于原来的一半.投影1.平行投影:平行投影的投影线互相平行. 2.中心投影:中心投影的投影线相交于一点.【指点迷津】1.一个程序由三视图还原几何体按下面的程序进行定底面根据俯视图确定定棱及侧面根据正视图确定几何体的侧棱与侧面特征,调整实线、虚线对应棱的位置定形状确定几何体的形状2.三个“变”与“不变”斜二测画直观图时“三变”坐标轴的夹角改变,与y轴平行的线段的长度变为原来的一半,图形改变.“三不变”平行性不改变,与x、z轴平行的线段的长度不改变,相对位置不改变.[对应学生用书P110]考向一空间几何体的结构特征给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2 D.3【审题视点】根据柱、锥、台几何体的结构特征判定.【典例精讲】①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.【答案】B【类题通法】(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.1.给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中不正确的命题的个数是________个.解析:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③都不准确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确.答案:4考向二空间几何体的三视图(2014&#8226;陕西省高三质检)如图是由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的左视图为()【审题视点】从左侧看这个几何体中小立方体组成的几何体的高度.【典例精讲】由俯视图知左视图从左到右最高的小立方体个数分别为2,3,1,选C.【答案】C【类题通法】(1)由实物图画三视图或判断选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则;(2)由三视图还原实物图,这一题型综合性较强,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.2.(2014&#8226;山西高考训练)某几何体的三视图均为直角三角形,如图所示,则围成该几何体的各面中,直角三角形的个数为()A.1B.2C.3 D.4解析:选D.依题意得,该几何体是一个底面为直角三角形、一条侧棱垂直于底面的三棱锥,其四个面均为直角三角形,选D.考向三空间几何体的直观图已知正三角形ABC的边长为a,那么◆ABC的平面直观图◆A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2【审题视点】画出正三角形◆ABC的平面直观图◆A′B′C′,求◆A′B′C′的高即可.【典例精讲】先画出正三角形ABC,然后再画出它的水平放置的直观图,如图所示,由斜二测画法规则知B′C′=a,O′A′=34a.过A′作A′M◆x′轴,垂足为M,则A′M=O′A′&#8226;sin 45°=34a×22=68a.◆S◆A′B′C′=12B′C′&#8226;A′M=12a×68a=616a2.【答案】D【类题通法】对于直观图,除了了解斜二测画法的规则外,还要了解原图形面积S与其直观图面积S′之间的关系S′=24S,能进行相关问题的计算.3.如图所示,四边形A′B′C′D′是一平面图形的水平放置的斜二测画法的直观图,在斜二测直观图中,四边形A′B′C′D′是一直角梯形,A′B′◆C′D′,A′D′◆C′D′,且B′C′与y′轴平行,若A′B′=6,D′C′=4,A′D′=2.求这个平面图形的实际面积.解析:根据斜二测直观图画法规则可知该平面图形是直角梯形,且AB=6,CD=4保持不变.由于C′B′=2A′D′=22.所以CB=42.故平面图形的实际面积为12×(6+4)×42=202.[对应学生用书P111]忽视几何体的放置与特征致误在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【正解】由正视图和俯视图可以推测几何体为半圆锥和三棱锥的组合体(如图所示),且顶点在底面的射影恰是底面半圆的圆心,可知侧视图为等腰三角形,且轮廓线为实线,故选D.【答案】D【易错点】(1)根据正视图和俯视图确定原几何体的形状时出现错误,误把半圆锥看成半圆柱,不能准确判断出几何体的形状而误选A.(2)对实线与虚线的画法规则不明确而误选C.【警示】 1.首先确定几何体,面对读者是怎么放置的.2.要分清三视图中的虚线是被哪部分挡住的.3.要明确三视图中三角形的高度是不是几何体的高度.1.(2013&#8226;高考四川卷)一个几何体的三视图如图所示,则该几何体的直观图可以是()解析:选D.先观察俯视图,再结合主视图和侧视图还原为空间几何体.由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,可得选项D. 2.(2013&#8226;高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于()A.32B.1C.2+12D.2解析:选D.根据正方体的俯视图及侧视图特征想象出其正视图后求面积.由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为2.3.(2012&#8226;高考陕西卷)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为()解析:选B.还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.4.(2012&#8226;高考湖南卷)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()解析:选C.若为C选项,则主视图为:故不可能是C选项.。

【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 专题六

【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律  专题六

vE=tavnDyθ=
2gRcos θ tan θ
由 A 到 E 根据机械能守恒定律:mgh=12mv2E 解得 h=2vg2E=csoins23θθR
(2)由 A 到 C 根据机械能守恒定律:mg(h+R)=12mv2C 根据牛顿第二定律:FN-mg=mvR2C
课堂探究
学科素养培养
高考模拟
课堂探究
(1)释放点 A 距 B 点的高 h;
(2)物块在圆弧轨道最低点 C 受到的支持
力 FN 的大小;
图1
(3)物块与水平面间的动摩擦因数 μ.
课堂探究
学科素养培养
高考模拟
课堂探究
专题六 力学三大观点的应用
解析 (1)物块在 D 竖直方向上的分速度 vDy 满足
v2Dy=2gRcos θ
在 E 点的速度等于在 D 点的水平方向上的分速度
第六章 动量守恒定律
专题六 力学三大观点的应用
课堂探究
专题六 力学三大观点的应用
考点一 应用动量观点和能量观点处理多过程问题
综合应用动量和能量观点处理直线运动、曲线运动(或平抛运 动)和圆周运动相结合的多过程问题是我省高考的重点和热点 之一. 1.弄清有几个物体参与运动,并划分清楚物体的运动过程. 2.进行正确的受力分析,明确各过程的运动特点. 3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定 守恒;碰撞过程、子弹打击木块、不受其他外力作用的二物 体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.
课堂探究
学科素养培养
高考模拟
课堂探究
专题六 力学三大观点的应用
【例 2】 如图 3 所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆

2015届高三数学理通用版一轮复习检测试题23word版含解析

2015届高三数学理通用版一轮复习检测试题23word版含解析

一.单项选择题。

(本部分共5道选择题)1.设a ,b 满足2a +3b =6,a >0,b >0,则2a +3b的最小值为( )A.256B.83C.113D .4 解析 由a >0,b >0,2a +3b =6得a 3+b 2=1,∴2a +3b =(2a +3b )(a 3+b 2)=23+32+b a +ab≥136+2 b a ·a b =136+2=256.当且仅当b a =a b 且2a +3b =6,即a =b =65时等号成立.即2a +3b 的最小值为256.答案 A2.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析 若a +b =0,则a =-b . ∴a ∥b ;若a ∥b ,则a =λb ,a +b =0不一定成立. 答案 A3. 设变量x ,y 满足10,020,015,x y x y y -⎧⎪≤+≤⎨⎪≤≤⎩则2x +3y 的最大值为( )A. 20B.35C. 45D. 55解析 画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D. 答案 D4.已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ). A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12-1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝⎛⎭⎪⎫1-14n .答案 C二.填空题。

(本部分共2道填空题)1.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率为________.解析 因为事件A 与事件B 是互斥事件,所以P (A ∪B )=P (A )+P (B )=12+16=23.答案232.已知直线x +y +m =0与圆x 2+y 2=2交于不同的两点A 、B ,O 是坐标原点,|OA →+OB →|≥|AB →|,那么实数m 的取值范围是________.解析 方法1:将直线方程代入圆的方程得2x 2+2mx +m 2-2=0,Δ=4m 2-8(m 2-2)>0得m 2<4,即-2<m <2.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-22,|OA →+OB →|≥|AB →|即|OA →+OB →|≥|OB →-OA →|,平方得OA →·OB →≥0,即x 1x 2+y 1y 2≥0,即x 1x 2+(m +x 1)(m +x 2)≥0,即2x 1x 2+m (x 1+x 2)+m 2≥0,即2×m 2-22+m (-m )+m 2≥0,即m 2≥2,即m ≥2或m ≤- 2.综合知-2<m ≤-2或2≤m <2.方法2:根据向量加减法的几何意义|OA →+OB →|≥|AB →|等价于向量OA →,OB →的夹角为锐角或者直角,由于点A ,B 是直线x +y +m =0与圆x 2+y 2=2的交点,故只要圆心到直线的距离大于或者等于1即可,也即m 满足1≤|m |2<2,即-2<m ≤-2或者2≤m <2.答案 (-2,-2]∪[2,2) 二.填空题。

【高考聚焦】2015届高考数学(理)一轮复习题库(梳理自测+重点突破+能力提升):3.6正弦定理、余弦定理]

【高考聚焦】2015届高考数学(理)一轮复习题库(梳理自测+重点突破+能力提升):3.6正弦定理、余弦定理]

第6课时正弦定理、余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.[对应学生用书P60]【梳理自测】1.(教材改编)在△ABC中,A=60°,a=43,b=42,则B 等于( )A.45°或135°B.135°C.45°D.30°2.已知△ABC中,a=c=2,A=30°,则b=( )A. 3 B.2 3C.3 3 D.3+13.在△ABC中,若a=2,c=4,B=60°,则b等于( )A.2 3 B.12C.27 D.284.(课本精选题)在△ABC中,若A=60°,a=3,则a+b+csin A+sin B+sin C=________.5.(教材改编)在△ABC中,a=15,b=10,A=60°,则cos B =________.答案:1.C 2.B 3.A 4.2 5.6 3◆以上题目主要考查了以下内容:正弦定理和余弦定理1.一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.2.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.三类问题①两角及一边,可用正弦定理.②一角及两边,可用正弦定理或余弦定理. ③三边,可用余弦定理. 4.三种结果:两解、一解、无解已知两边和其中一边的对角,解三角形时,注意解的情况.[对应学生用书P 61]考向一 利用正、余弦定理解三角形(2013·高考全国新课标卷)如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB=150°,求tan ∠PBA.【审题视点】 (1)在三角形中利用余弦定理求边长;(2)利用正弦定理得出弦之间的关系,再利用商数关系化为正切. 【典例精讲】 (1)由已知得∠PBC =60°,所以∠PBA =30°. 在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos 30°=74,故PA =72.(2)设∠PBA =α,由已知得PB =sin α.在△PBA中,由正弦定理得3sin 150°=sinαsin(30°-α),化简得3cosα=4sinα,所以tanα=34,即tan∠PBA=34.【类题通法】 1.利用正弦定理可解决以下两类三角形:一是已知两角和一角的对边,求其他边角;二是已知两边和一边的对角,求其他边角.2.利用余弦定理可解两类三角形:一是已知两边和它们的夹角,求其他边角;二是已知三边求其他边角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的.1.已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且a cos C+32c=b.(1)求角A;(2)若a=1,且3c-2b=1,求角B.解析:(1)由a cos C+32c=b,得sin A cos C+32sin C=sin B,而sin B=sin(A+C)=sin A cos C+cos A sin C,则可得32sin C=cos A sin C,又sin C≠0,则cos A=32,A=π6.(2)由3c-2b=1,得3c-2b=a,即3sin C-2sin B=sin A.又A =π6,∴C =56π-B , ∴3sin (56π-B)-2sin B =12,整理得cos (B +π6)=12,∵0<B <56π,∴π6<B +π6<π.∴B +π6=π3,即B =π6.考向二 利用正、余弦定理判断三角形形状(2014·山东高三模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知m =⎝ ⎛⎭⎪⎫cos 3A 2,sin 3A 2,n =⎝⎛⎭⎪⎫cos A 2,sin A 2,且满足|m +n |= 3.(1)求角A 的大小;(2)若|AC →|+|AB →|=3|BC →|,试判断△ABC 的形状. 【审题视点】 (1)把|m +n |=3转化为A 的等式. (2)由正弦定理边化为角,判断形状.【典例精讲】 (1)由|m +n |=3,得m 2+n 2+2m ·n =3,即1+1+2⎝⎛⎭⎪⎫cos 3A 2cos A 2+sin 3A 2sin A 2=3,∴2+2cos A =3.∴cos A =12.∵0<A <π,∴A =π3.(2)∵|AC →|+|AB →|=3|BC →|,∴b +c =3a , ∴sin B +sin C =3sin A ,∴sin B +sin ⎝ ⎛⎭⎪⎫2π3-B =3×32, 即32sin B +12cos B =32, ∴sin ⎝⎛⎭⎪⎫B +π6=32.∵0<B <2π3,∴π6<B +π6<5π6,∴B +π6=π3或2π3,故B =π6或π2.当B=π6时,C=π2;当B=π2时,C=π6.故△ABC是直角三角形.【类题通法】判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A、B、C的范围对三角函数值的影响.2.(2014·安徽省“江南十校”联考)已知△ABC的内角A、B、C 成等差数列,且A、B、C所对的边分别为a、b、c,则下列命题中正确的有________(把所有正确的命题序号都填上.①B=π3;②若a、b、c成等比数列,则△ABC为等边三角形;③若a=2c,则△ABC为锐角三角形;④若AB→2=AB→·AC→+BA→·BC→+CA→·CB→,则3A=C;⑤若tan A+tan C+3>0,则△ABC为钝角三角形.解析:∵内角A、B、C成等差数列,∴A+C=2B.又A+B+C=π.∴B=π3,故①正确;对于②,由余弦定理得b2=a2+c2-2ac·cos B=a2+c2-ac.又b2=ac,∴a2+c2-ac=ac,即(a-c)2=0,∴a=c,又B =π3,∴△ABC 为等边三角形;对于③,∵b 2=a 2+c 2-2ac cos B =4c 2+c 2-2c 2=3c 2, ∴b =3c ,此时满足a 2=b 2+c 2,说明△ABC 是直角三角形;对于④,c 2=bc cos A +ac cos B +ab cos C =12ac +b (c cos A +a cos C )=12ac +b 2=12ac +a 2+c 2-ac ,化简得c =2a ,又b 2=a 2+c 2-ac =3a 2,∴b =3a ,此时有a 2+b 2=c 2,∴C =π2,B =π3,A =π6,∴3A =C成立;对于⑤,tan A +tan C =tan(A +C )(1-tan A tan C ),∵A +C =2π3,∴tan A +tan C =-3+3tan A tan C ,∵tan A +tan C +3=3tan A tan C >0,又在△ABC 中,A 、C 不能同为钝角,∴A 、C 都是锐角,∴△ABC 为锐角三角形.答案:①②④考向三 与三角形面积有关的问题(2014·南昌市高三模拟)设角A ,B ,C 为△ABC 的三个内角,已知cos(B +C )+sin 2A 2=54.(1)求角A 的大小;(2)若AB →·AC →=-1,求BC 边上的高AD 长的最大值.【审题视点】 (1)利用B +C =π-A ,及降幂公式转化已知等式为求cos A 的值.(2)利用面积为定值,当底最小时高为最大.【典例精讲】 (1)由题意知-cos A +1-cos A 2=54,cos A=-12,因为A∈(0,π),所以A=2π3.(2)设a,b,c分别是角A,B,C的对边,由AB→·AC→=-1知bc=2,所以S△ABC=12bc sin A=32,而a=b2+c2+bc≥3bc=6,当且仅当b=c=2时,上式取等号,所以BC边上的高AD的最大值为2 2 .【类题通法】在解决三角形问题中,面积公式S=12ab sin C=1 2bc sin A=12ac sin B最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理联系起来.3.(2014·昆明市高三调研)在△ABC中,角A,B,C的对边分别为a,b,c,若a cos2C2+c cos2A2=32b.(1)求证:a,b,c成等差数列;(2)若∠B=60°,b=4,求△ABC的面积.解析:(1)证明:a cos2C2+c cos2A2=a·1+cos C2+c·1+cos A2=32b即a(1+cos C)+c(1+cos A)=3b.由正弦定理得:sin A+sin A cos C+sin C+cos A sin C=3sin B,即sin A+sin C+sin(A+C)=3sin B,∴sin A+sin C=2sin B.由正弦定理得,a+c=2b,故a,b,c成等差数列.(2)由∠B=60°,b=4及余弦定理得:42=a2+c2-2ac cos 60°,∴(a+c)2-3ac=16,又由(1)知a+c=2b,代入上式得4b2-3ac=16,解得ac=16,∴△ABC的面积S=12ac sin B=12ac sin 60°=4 3.[对应学生用书P62]忽视三角形边角关系使解的个数致误在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【正解】∵在△ABC中,cos(B+C)=-cos A,又∵1+2cos(B+C)=0,∴1-2cos A=0,∴A=π3 .在△ABC中,根据正弦定理asin A=bsin B,得sin B=b sin Aa=22.∴B=π4或3π4.∵a>b,∴B=π4 .∴C=π-(A+B)=512π.∴sin C=sin(B+A)=sin B cos A+cos B sin A=22×12+22×32=6+24.∴BC边上的高为b sin C=2×6+24=3+12.【易错点】忽视“大角对大边”的关系(a>b,A>B)导致B 有两解,产生增根.【警示】已知三角形两边及一边对角(a,b及A)解三角形时,会出现一解、两解、无解的情况:1.(2013·高考湖南卷)在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3b,则角A等于( )A.π3B.π4C.π6D.π12解析:选A.利用正弦定理将边化为角的正弦.在△ABC中,a=2R sin A,b=2R sin B(R为△ABC的外接圆半径).∵2a sin B=3b,∴2sin A sin B=3sin B.∴sin A=32.又△ABC为锐角三角形,∴A=π3.2.(2013·高考陕西卷)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为( ) A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定解析:选 B.利用余弦定理的变形将角的余弦值转化为三角形边之间的关系.∵b cos C +c cos B =b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac=b 2+a 2-c 2+c 2+a 2-b 22a =2a 22a=a =a sin A ,∴sin A =1. ∵A ∈(0,π),∴A =π2,即△ABC 是直角三角形.3.(2013·高考福建卷)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD=3,则BD 的长为________.解析:先利用诱导公式化简三角函数,再利用余弦定理求解. ∵sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223, ∴在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3∴BD = 3. 答案: 34.(2013·高考江西卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.(1)求证:a ,b ,c 成等差数列; (2)若C =2π3,求a b的值.解析:(1)证明:由已知得sin A sin B +sin B sin C =2sin 2B .因为sin B≠0,所以sin A+sin C=2sin B.由正弦定理得a+c=2b,即a,b,c成等差数列.(2)由C=2π3,c=2b-a及余弦定理得(2b-a)2=a2+b2+ab,即有5ab-3b2=0,所以ab=35.。

1.2015届高考数学(理)一轮复习268班周周练试题(1)

1.2015届高考数学(理)一轮复习268班周周练试题(1)

2015届高考数学(理)一轮复习268班周周练试题(1)一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1、(广东茂名市2013届高三第二次模拟)曲线f(x)=xlnx 在点x=1处的切线方程为( )A .y=2x+2B .y=2x-2C .y=x-1 C .y=x+12、(2013高考浙江理)已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则 ( )A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值 3、【北大附中河南分校2013届高三第四次月考理】如果)(x f '是二次函数, 且)(x f '的图象开口向上,顶点坐标为(1,3), 那么曲线)(x f y =上任一点的切线的倾斜角α的取值范围是 ( ) A .]3,0(πB .)2,3[ππC .]32,2(ππ D .),3[ππ4、【贵州省六校联盟2013届高三第一次联考理】已知函数()y xf x ='的图象如图3所示(其中()f x '是函数)(x f 的导函数).下面四个图象中,)(x f y =的图象大致是( )5、(2013高考湖北理)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( )A .121()0,()2f x f x >>- B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-6、(广东省深圳市2013高三第二次调研考试)由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图1中的阴影部分)的面积是( )A .1B .4πC.3D.27、(2012吉林市期末质检)已知函数a a bx ax x x f 7)(223--++=在1=x 处取得极大值10,则b a的值为( )A.32- B.2-C.2-或32-D. 不存在8、(广东省惠州市2013届高三4月模拟考试)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P 横坐标的取值范围为( )A .11,2⎡⎤--⎢⎥⎣⎦B .[]1,0-C .[]0,1D .1,12⎡⎤⎢⎥⎣⎦9、(广东省广州市2013届高三4月综合测试(二))已知函数()yf x =的图象如图1所示,则其导函数()y f x '=的图象可能是图1A .B .C .D .10、(2013年普通高等学校招生统一考试新课标Ⅱ卷))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x =11、【山东省青岛一中2013届高三1月调研理】设a 为实数,函数32()(3)f x x ax a x =++-的导函数为()f x ',且()f x '是偶函数,则曲线()y f x =在原点处的切线方程为( ) A .31y x =+B .3y x =-C .31y x =-+D .33y x =-12.【北大附中河南分校2013届高三第四次月考数学(理)】已知函数1()(*)n f x x n N +=∈的图象与直线1x =交于点P ,若图象在点P 处的切线与x 轴交点的横坐标为n x ,则12013log x +22013log x +…+20122013log x 的值为( )A .-1B . 1-log 20132012C .-log 20132012D .1二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(广东省湛江市2013届高三4月高考测试(二))曲线y= x 3-x + 3在点(1,3)处的切线方程为_______ 14、(2013广东理)若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______. 15. (2012江西理)设函数()f x 在(0,)+∞内可导,且()xxf e x e =+,则(1)xf =_________ 16、函数()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f ′(x )的最小值为-12.(1)求a ,b ,c 的值;(2)求函数f (x )的单调递增区间,并求函数f (x )在[-1,3]上的最大值和最小值.18.(本题满分12分) (2013重庆理)设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值.19.(本题满分12分) 【北京市海淀区2013届高三上学期期末理】(本小题满分13分) 已知函数e ().1axf x x =-(I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 的单调区间.20.(本题满分12分) (常州市2013届高三期末)第八届中国花博会将于2013年9月在常州举办,展览园指挥中心所用地块的形状是大小一定的矩形ABCD ,BC a =,CD b =.a ,b 为常数且满足b a <.组委会决定从该矩形地块中划出一个直角三角形地块AEF 建游客休息区(点E ,F 分别在线段AB ,AD 上),且该直角三角形AEF 的周长为(2l b >),如图.设AE x =,△AEF 的面积为S .(1)求S 关于x 的函数关系式;(2)试确定点E 的位置,使得直角三角形地 块AEF 的面积S 最大,并求出S 的最大值.21.(本题满分12分) (江苏徐州、淮安、宿迁市2013届高三期末)已知函数).1,0(ln )(2≠>-+=a a a x x a x f x(1) 求函数)(x f 在点))0(,0(f 处的切线方程; (2) 求函数)(x f 单调区间;(3) 若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a的取值范围.22.(本题满分12分)(2013年高考四川卷(理))已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.参考答案 1、C 2、C3、【答案】B【解析】由题意可设2'()(1)0)f x a x a =->,即函数切线的斜率为2'()(1)k f x a x ==-tan α≥32ππα≤<,选B.4、C 【解析】由条件可知当01x <<时,'()0f x <,函数递减,当1x >时,'()0f x >,函数递增,所以当1x =时,函数取得极小值.当1x <-时,'()0xf x <,所以'()0f x >,函数递增,当10x -<<,'()0xf x >,所以'()0f x <,函数递减,所以当1x =-时,函数取得极大值.所以选C. 5、D6、D 7、【答案】A【解析】由题2'()32f x x ax b =++,则23201710a b a b a a ++=⎧⎨++--=⎩,解得21a b =-⎧⎨=⎩,或69a b =-⎧⎨=⎩,经检验69a b =-⎧⎨=⎩满足题意,故23a b =-,选A 。

2015届上学期高三第一周周练数学理科答案

2015届上学期高三第一周周练数学理科答案

2015届上学期高三第一周周练数学理科答案1.C【解析】试题分析:因为命题:p R x ∃∈,2lg x x ->是真命题,而命题:q R x ∀∈,1x e >是假命题,由复合命题的真值表可知命题()p q ∧⌝是真命题.故选C .考点:1全程命题,特称命题;2复合命题的真假判断.2.A【解析】试题分析:13.-=x y A ,因为R x ∈-1,所以()+∞∈,0y ,13112.-+=-+=x x x y B ,函数的值域是{}1≠y y ,C ,因为112≥+x ,所以函数的值域{}2≥y y ,D .因为02>x ,所以值域是[)1,0,故选A .考点:函数的值域3.B【解析】试题分析:由()x x x f ln cos =,得()()()x f xx x x x f ==--=-ln cos ln cos 是偶函数,图象关于y 轴对称,因此排除A ,C ,当10<<x ,0cos >x ,0ln ln <=x x ,因此()x x x f ln cos =0< 考点:函数图象的判断4.A【解析】试题分析:由题,对任意R x ∈都有)4()(+=x f x f ,即函数的周期为4,故(2015)(1),(2012)(0)f f f f =-=又)(x f 是定义在R 上的奇函数,所以当()2,0x ∈-时,()2x f x -=-,故()1(1)2=-2,(0)f f ---=-=0‘(2015)(2012)f f +=-2考点:函数的单调性,奇偶性5.B【解析】试题分析:先画出分段函数的图像,可判断,如果有3个不同的交点,那直线与右侧抛物线要有2个不同的交点,即当0>m 时,0>∆,⎪⎩⎪⎨⎧+==1212x y mx y ,得到:0222=+-mx x ,根据⎩⎨⎧>∆>00m ,解得2>m . 考点:函数图像的应用.6.A【解析】试题分析:函数()xax x f 211lg +-=-,因为是奇函数,所以()()0=+-x f x f ,即0211lg 211lg =+-+-+x ax x ax ,即0411lg 222=--x x a ,所以141-1222=-xx a ,所以42=a ,即2=a ,那么函数的定义域是⎭⎬⎫⎩⎨⎧<<-2121x x ,那么()b b ,-是定义域的子集,所以210≤<b ,所以b a 的取值范围是(]2,1.考点:1.奇函数;2.指数函数.7.B【解析】试题分析:观察函数的图象可知,1()1f x -≤≤,1()1g x -≤≤,使()0f x =的x 为1,0,1-,使()1g x =±的x 均有2个,使()0g x =的x 有3个,所以()()0f g x =的实根个数7a =;使()0g x =的x 有3个,使()()0g f x =的只有()0f x =.所以()()0g f x =的实根个数3b =,故10a b +=,选B .考点:1.函数与方程;2.函数的奇偶性;3.转化与化归思想、数形结合思想.8.B【解析】 试题分析:22()log 1()x f x x c =≤+,22()x x c ≤+,222(41)20x c x c +-+≥对(0,)x ∈+∞恒成立,则4104c --≤或2(41)160c --≤,解得18c ≥,选B . 考点:不等式恒成立.9.)1,0(【解析】 试题分析:由题可知,设331x x t ==,则满足0)(>x f ,即012>--t t ,解得10<<t ,即x 的取值范围)1,0(;考点:不等式的解法10.(1,21)-- 【解析】 试题分析:由题意可得()f x 在[0,)+∞上是增函数,而0x <时,()1f x =,故满足不等式()()212f x f x ->的x 需满足221210x x x ⎧->⎨->⎩,即121211x x ⎧--<<-+⎪⎨-<<⎪⎩,解得121x -<<-.考点:不等式的解法.11.3【解析】试题分析:先去绝对值原函数变成2,0212(),0x x x x y x ⎧≥⎪⎨<⎪⎩==,做出其图像,根据图像不难得到区间[m ,n]长度的最小值为3.由题做出2,0212(),0x x x x y x ⎧≥⎪⎨<⎪⎩==的图像,根据图像结合x ∈[]2,a -(0a ≥),其值域为[],m n ,不难判定其区间长度最小值为3.考点:对数函数的图像与性质12.①②④【解析】试题分析:函数()f x 是单调递减函数,()()()0a b c f a f b f c <<<∴>>()()()0f a f b f c <()()()0f a f b f c ∴>>>或()()()0f a f b f c >>>,()0f d a b d c =∴>>>或d a b c >>>,因此成立当是考点:1.函数零点;2.函数单调性13.(1)()(,3][14,)R A C B =-∞-+∞;(2)[1,)-+∞ 【解析】试题分析:(1)由题根据题意不难得到集合B=(-2,14),然后所给venn 图可知阴影部分表示的集合为()R A C B ,不难计算结果;(2)由题C B ⊆,所以根据集合C 的情况进行讨论即可求得a 的范围.试题解析:(1)由028122<--x x 得(2,14)B =-,2分又(,3][6,)A =-∞-⋃+∞,故阴影部分表示的集合为()(,3][14,)R A C B =-∞-+∞;5分(2)①21a a ≥+,即1a ≥时,C =∅,成立;9分②21a a <+,即1a <时,(2,1)(2,14)C a a =+⊆-,114,22,a a +≤⎧⎨≥-⎩得11a -≤<,11分 综上所述,a 的取值范围为[1,)-+∞.12分考点:(1)集合的混合运算;(2)含参数的集合关系14.(1)(a ∈33-<<a ;(2)1±=a 【解析】试题分析:(1)定义域为R ,指真数恒大于0,转化为二次函数恒大于0的问题;(2)根据函数的值域,确定真数的值域,从而根据二次函数的最值确定参数的取值.试题解析:设()()222332a a x ax x x g u -+-=+-==(1)因为0>u 对R x ∈恒成立,所以032min >-=a u ,所以33-<<a(2)因为函数()x f 的值域是(]1-,∞所以()x g 的值域是[)∞+,2,即()x g 的最小值是2-32=a ,所以1±=a考点:1.对数函数;2.对数函数的性质.15.(Ⅰ)1=x ;(Ⅱ)()(01)1(12)52(23)a a f x a a a <≤⎧⎪=<<⎨⎪-≤<⎩【解析】试题分析:(Ⅰ)当1=a 时,讨论绝对值的意义,分1≥x 和1<x 两种情况,去绝对值,解出x ;(2)第一步,同样是讨论绝对值的意义,将绝对值去掉,写成分段函数的形式,第二步,注意定义域是[]2,1,所以需讨论对称轴于定义域的关系,和分段函数的对应定义域与[]2,1的关系,所以将参数a 分为(]1,0,()2,1,[)3,2三个区间,讨论定义域的单调性,确定最大值.试题解析:解:(Ⅰ)1x =4分(Ⅱ)当()()()2211x ax x a f x x ax x a ⎧-++≥⎪=⎨-+<⎪⎩6分 当10≤<a 时,()x f 在[]2,1上递减,故()()max =1f x f a =;8分当21<<a 时,()x f 在[]a ,1上递增,[]2,a 上递减,故()()1max ==a f x f ;10分 当32<≤a 时,()x f 在⎥⎦⎤⎢⎣⎡21a ,上递减,⎥⎦⎤⎢⎣⎡2,2a 递增,且2ax =是函数的对称轴,所以()()a f x f 252max -==.13分综上:()(01)1(12)52(23)a a f x a a a <≤⎧⎪=<<⎨⎪-≤<⎩15分 考点:1.解绝对值方程;2.分段函数给定区间的最值;3.含参讨论问题.声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。

走向高考--2015高考一轮总复习人教A版数学6-1

走向高考--2015高考一轮总复习人教A版数学6-1

基础巩固强化一、选择题1.给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是( )A .a n =2n 2+3n -1B .a n =n 2+5n -5C .a n =2n 3-3n 2+3n -1D .a n =2n 3-n 2+n -2 [答案] C[解析] 当n =1时,a 1=1,否定A 、D.当n =3时,a 3=35,否定B ,故选C.2.数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为( )A .a n =2n -1B .a n =2n +1C .a n =⎩⎪⎨⎪⎧ 4 n =1,2n -1 n ≥2.D .a n =⎩⎪⎨⎪⎧4 n =1,2n +1 n ≥2.[答案] D[解析] a 1=S 1=4,n ≥2时,a n =S n -S n -1=2n +1,∴a n =⎩⎪⎨⎪⎧4 n =1,2n +1 n ≥2.3.(文)(2013·北京海淀区期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9[答案] B[解析] ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n .设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1<0,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)<0,∴193≤k <223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.(理)若数列{a n }的前n 项和S n =n 2-10n (n ∈N *),则数列{na n }中数值最小的项是( )A .第2项B .第3项C .第4项D .第5项[答案] B[解析] n ≥2时,a n =S n -S n -1=(n 2-10n )-[(n -1)2-10(n -1)]=2n -11,令b n =na n ,则b n =n (2n -11)=2(n -114)2-1218, ∵n ∈N *,∴n =3时,b n 取最小值.4.(文)(2012·西安模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N +),则a 3a 5的值是( )A.1516B.158C.34D.38[答案] C[解析] ∵a n a n -1=a n -1+(-1)n , ∴a 2a 1=a 1+1, a 3a 2=a 2-1,a 4a 3=a 3+1, a 5a 4=a 4-1,∵a 1=1,∴a 2=2,a 3=12,a 4=3,a 5=23, ∴a 3a 5=34.(理)(2013·德州模拟)已知数列{a n }中,a 1=45,a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤12,2a n -1,12<a n ≤1,则a 2012等于( )A.45 B.35 C.25 D.15[答案] C[解析] ∵a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤12,2a n -1,12<a n ≤1,又a 1=45,∴a 2=2×45-1=35,a 3=2×35-1=15,a 4=2×15=25,a 5=2×25=45,∴数列{a n }以4为周期, ∵20124=503,∴a 2012=a 4=25.5.(文)(2012·佛山质检)数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92 D.132[答案] B[解析] ∵a n +a n +1=12,a 2=2,∴a n =⎩⎨⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×(-32)+10×2=72.(理)(2013·池州一模)数列{a n }的通项公式a n =2n ·sin(n π2-π3)+3n cos n π2,前n 项和为S n ,则S 2013=( )A .1007B .-1007C .2013D .-2013[答案] B[解析] a n =2n sin(n π2-π3)+3n cos n π2 =n sin n π2.由函数y =sin π2x 的周期是4,且a 1=1,a 2=2×0=0,a 3=3×(-1)=-3,a 4=4×0=0,归纳可知数列{a n }从第一项开始依次每相邻四项之和是一个常数-2,即a i +a i +1+a i +2+a i +3=-2(i =4k +1,k ∈N ),所以S 2013=2013-14×(-2)+2013=-1007,故选A.6.(文)已知x 与函数f (x )的对应关系如下表所示,数列{a n }满足:a 1=3,a n +1=f (a n ),则a 2014=( )A.3 B .2 D .不确定 [答案] A[解析] ∵a 1=3,∴a 2=f (a 1)=f (3)=1,∴a 3=f (a 2)=f (1)=2,a 4=f (a 3)=f (2)=3,∴数列{a n }为周期数列,周期T =3,∴a 2014=a 1=3,故选A.(理)若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2014等于( )A .3B .2 C.12 D.23 [答案] C[解析] a 1=2,a 2=3,a 3=a 2a 1=32,a 4=a 3a 2=12,依次可得a 5=13,a 6=23,a 7=2,a 8=3,a 9=32…,可见{a n }是周期为6的周期数列.∴a 2014=a 4=12,故选C.[点评] 数列是函数,故可用研究函数的方法加以讨论,由a n =a n -1a n -2(n ≥3,n ∈N *)知,a n +1=a n a n -1=a n -1a n -2a n -1=1a n -2,∴a n +3=1a n (n ∈N *),∴a n +6=a n ,故{a n }周期为6.二、填空题7.(文)设数列{a n }的前n 项和为S n ,且a n =sin n π2,则S 2014=________.[答案] 1[解析] 依题意得,数列{a n }是以4为周期的周期数列,且a 1=1,a 2=0,a 3=-1,a 4=0,a 1+a 2+a 3+a 4=0,注意到2014=4×503+2,因此S 2014=0×503+a 1+a 2=1.(理)(2012·湖北文,17)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:b 2012是数列{a n }中的第________项.[答案] 5030[解析] 由前四组可以推知a n =n (n +1)2,b 1=a 4=10,b 2=a 5=15,b 3=a 9=45,b 4=a 10=55,依次可知,当n =4,5,9,10,14,15,19,20,24,25,…时,a n 能被5整除,由此可得,b 2k =a 5k (k ∈N *),∴b 2012=a 5×1006=a 5030.8.(文)已知数列{a n }中,a 1=12,a n +1=1-1a n(n ≥2),则a 2014=________.[答案] 12[解析] 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,∴此数列是以3为周期的周期数列,∴a 2014=a 1=12.(理)在数列{a n }中,若a 1=1,a n +1=2a n +3(n ∈N *),则数列{a n }的通项a n =________.[答案] 2n +1-3[解析] 依题意得,a n +1+3=2(a n +3),a 1+3=4,因此数列{a n+3}是以4为首项,2为公比的等比数列,于是有a n +3=4×2n -1=2n +1,则a n =2n +1-3.9.已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2014项之和S 2014等于________.[答案] 2010[解析] 由题意a n +1+a n -1=a n (n ≥2),a n +a n +2=a n +1,两式相加得a n +2=-a n -1,∴a n +3=-a n ,∴a n +6=a n , 即{a n }是以6为周期的数列.∵2014=335×6+4,a 1+a 2+a 3+a 4+a 5+a 6=0,∴a 1+a 2+…+a 2014=335×0+a 2011+a 2012+a 2013+a 2014=a 1+a 2+a 3+a 4=2010.三、解答题10.(文)(2013·江西)正项数列{a n }满足:a 2n -(2n -1)a n -2n =0.(1)求数列{a n }的通项公式a n ;(2)令b n =1(n +1)a n,求数列{b n }的前n 项和T n .[解析] (1)由a 2n -(2n -1)a n -2n =0,得(a n -2n )(a n +1)=0.由于{a n }是正项数列,所以a n =2n .(2)a n =2n ,b n =1(n +1)a n ,则b n =12n (n +1)=12(1n -1n +1).T n =12(1-12+12-13+…+1n -1-1n +1n -1n +1)=12(1-1n +1)=n2(n +1).(理)(2013·广州调研)各项都为正数的数列{a n },满足a 1=1,a 2n +1-a 2n =2.(1)求数列{a n }的通项公式; (2)求数列{a 2n2n }的前n 项和S n .[解析] (1)因为a 2n +1-a 2n =2,a 21=1,所以数列{a 2n }是首项为1,公差为2的等差数列. 所以a 2n =1+(n -1)×2=2n -1,因为a n >0,所以a n =2n -1(n ∈N *). (2)由(1)知,a n =2n -1,所以a 2n2n =2n -12n , 于是S n =12+322+523+…+2n -32n -1+2n -12n ,①12S n =122+323+524+…+2n -32n +2n -12n +1,② ①-②得,12S n =12+222+223+224+…+22n -2n -12n +1=12+2(122+123+124+…+12n )-2n -12n +1=12+2×14×(1-12n -1)1-12-2n -12n +1 =32-2n +32n +1,所以S n =3-2n +32n .能力拓展提升一、选择题11.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖的块数为(用含n 的代数式表示)()A .4nB .4n +1C .4n -3D .4n +8[答案] D[解析] 第(1),(2),(3)个图案黑色瓷砖数依次为3×5-3=12;4×6-2×4=16;5×7-3×5=20,代入选项验证可得答案为D.12.(文)(2012·东城模拟)已知数列{a n }的通项公式为a n =log 3nn +1(n ∈N *),设其前n 项和为S n ,则使S n <-4成立的最小自然数n 等于( )A .83B .82C .81D .80[答案] C[解析] ∵a n =log 3nn +1=log 3n -log 3(n +1),∵S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4,解得n >34-1=80.(理)设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点列{P n (n ,a n )}恒满足P n P n +1=(1,2),则数列{a n }的前n 项和S n 为( )A .n (n -43) B .n (n -34) C .n (n -23) D .n (n -12)[答案] A[解析] 设P n +1(n +1,a n +1),则P n P n +1=(1,a n +1-a n )=(1,2),即a n +1-a n =2,所以数列{a n }是以2为公差的等差数列.又a 1+2a 2=3,所以a 1=-13,所以S n =n (n -43),选A.13.(文)由1开始的奇数列,按下列方法分组:(1),(3,5),(7,9,11),…,第n 组有n 个数,则第n 组的首项为( )A .n 2-nB .n 2-n +1C .n 2+nD .n 2+n +1 [答案] B[解析] 前n -1组共有1+2+…+(n -1)=(n -1)(n -1+1)2=n (n -1)2个奇数,故第n 组的首项为2×n (n -1)2+1=n 2-n +1. [点评] 可直接验证,第2组的首项为3,将n =2代入可知A 、C 、D 都不对,故选B.(理)已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……则第2014个数对是( )A .(3,61)B .(3,60)C .(61,3)D .(61,2)[答案] C[解析] 根据题中规律知,(1,1)为第1项,(1,2)为第2项,(1,3)为第4项,…,整数对和为n +1的有n 项,由n (n +1)2≤2014得n ≤62,且n =63时,n (n +1)2=2016,故第2014个数对是和为64的倒数第3项,即(61,3).二、填空题14.(文)(2013·北京东城区综合练习)若数列{a n }满足1a n +1-1a n=d (n∈N *,d 为常数),则称数列{a n }为调和数列.已知数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________.[答案] 20[解析] 由题意,若{a n }为调和数列,则{1a n}为等差数列,∵{1x n}为调和数列,∴数列{x n }为等差数列,由等差数列的性质可知,x 5+x 16=x 1+x 20=x 2+x 19=…=x 10+x 11=20010=20.(理)(2013·大连测试)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n=(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式a n =________.[答案] 3n[解析] a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,把n 换成n -1得,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n+3,两式相减得a n =3n .15.(2013·江苏调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] 由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,a 3-a 2=22,…,a n -a n -1=2n -1,由累加法得a n =2+2+22+…+2n -1=2n ,从而S n =2(1-2n )1-2=2n +1-2. 三、解答题16.(文)(2013·河北质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)在数列{b n }中,b 1=5,b n +1=b n +a n ,求数列{b n }的通项公式. [解析] (1)当n =1时,S 1=a 1=32a 1-1,所以a 1=2. ∵S n =32a n -1,①∴当n ≥2时,S n -1=32a n -1-1,② ①-②,得a n =(32a n -1)-(32a n -1-1), 所以a n =3a n -1,又a 1≠0,故a n -1≠0, 所以a na n -1=3,故数列{a n }是首项为2,公比为3的等比数列, 所以a n =2·3n -1.(2)由(1)知b n +1=b n +2·3n -1. 当n ≥2时,b n =b n -1+2·3n -2,…b 3=b 2+2·31, b 2=b 1+2·30,将以上n -1个式子相加并整理,得b n =b 1+2×(3n -2+ (31)30)=5+2×1-3n -11-3=3n -1+4.当n =1时,31-1+4=5=b 1, 所以b n =3n -1+4(n ∈N *).(理)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n 为正整数).(1)求出数列{a n }的通项公式;(2)若对任意正整数n ,k ≤S n 恒成立,求实数k 的最大值. [解析] (1)∵3a n +1+2S n =3,① ∴当n ≥2时,3a n +2S n -1=3,② 由①-②得,3a n +1-3a n +2a n =0. ∴a n +1a n=13 (n ≥2).又∵a 1=1,3a 2+2a 1=3,解得a 2=13.∴数列{a n }是首项为1,公比q =13的等比数列.∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫13n -1(n 为正整数).(2)由(1)知,∴S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n ,由题意可知,对于任意的正整数n ,恒有k ≤32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n ,∵数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 单调递增,当n =1时,数列取最小项为23,∴必有k ≤1,即实数k 的最大值为1.考纲要求了解数列的概念,了解数列是自变量为正整数的一类函数. 了解数列的几种简单表示方法(列表、图象、通项公式). 补充说明1.求数列的通项公式常见的有以下三种类型 (1)已知数列的前几项,写出一个通项公式.依据数列前几项的特点归纳出通项公式:方法是依据数列的排列规律,求出项与项数的关系.一般步骤是:①定符号,②定分子、分母,③观察前后项的数值特征找规律,④综合写出项与项数的关系.要特别注意以下数列特点: ①自然数列,自然数的平方列. ②奇数列,偶数列.③a n =(-1)n ,a n =12[1+(-1)n ]. ④a n =sin n π2,a n =cos n π2.⑤a n =k 9(10n-1)(k =1,2,…,9). 要注意理顺其大小规律如:2,-83,4,-325,…先变化为:42,-83,164,-325,…. (2)已知数列的递推关系求其通项公式:一般是采用“归纳—猜想—证明”,有时也通过变形转化为等差、等比数列进行处理.(3)已知数列的前n 项和求通项公式,用a n =S n -S n -1(n ≥2)求解. 2.注意数列的两个性质(1)单调性——若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性——若a n +k =a n (n ∈N *,k 为非零常数),则{a n }为周期数列,k 为{a n }的一个周期.3.数列求和方法 (1)公式法①直接用等差、等比数列的求和公式求. ②了解一些常见的数列的前n 项和. 1+2+3+…+n =12n (n +1); 1+3+5+…+(2n -1)=n 2;12+22+32+…+n 2=16n (n +1)(2n +1).(2)倒序相加法如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和可用“乘公比,错位相减”法进行,如等比数列的前n 项和就是用此法推导的,其一般步骤是:第一步,将数列{c n }写成c n =a n ·b n ,其中{a n }为等差数列,{b n }为等比数列,公比为q .第二步,写出S n =a 1b 1+a 2b 2+…+a n b n .第三步,乘公比q 得,qS n =a 1b 2+a 2b 3+…+a n b n +1. 第四步,错位相减,用等比数列求和公式求和得(q -1)S n . 第五步,等式两边同除以q -1得S n .第六步,检查解题过程,看求和公式是否用错,符号是否正确,化简有无错误.(4)裂项相消法如果数列的通项可以表达成两项之差,各项随n 的变化而变化,前后项相加可以相互抵消就用裂项相加相消法.(5)分组求和法当一个数列的通项由几个项构成,各个项构成等差或等比数列时,可分为几个数列分别求和再相加.4.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此可用函数的知识,函数的思想方法来解决.(2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.备选习题1.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 3=( ) A .8 B .4 C .2 D .1 [答案] A[解析] 由S 1=2(a 1-1)得a 1=2;由S 2=2(a 2-1)得a 2=4.由S 3=2(a 3-1)得,a 3=8.2.如果f (a +b )=f (a )·f (b )(a ,b ∈R )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)等于( )A .2011B .2012C .2013D .2014[答案] D[解析] 令a =n ,b =1,f (n +1)=f (n )·f (1), ∴f (n +1)f (n )=f (1)=2,∴f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)=2×1007=2014.。

【步步高】2015届高考数学第一轮大复习(基础+思想典型题+题组专练)6.4 数列求和文档专练 文

【步步高】2015届高考数学第一轮大复习(基础+思想典型题+题组专练)6.4 数列求和文档专练 文

§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100 答案 A解析 利用裂项相消法求和.设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎨⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A.2n +n 2-1B.2n +1+n 2-1 C.2n +1+n 2-2D.2n +n 2-2 答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200B.-200C.400D.-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解.解 由已知得,数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)-(12+122+…+12n )]n 个=2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n1-12=12n -1+2n -2.题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1. 若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{}对应项之积组成的数列{a n },即a n =b n ×的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用X 围.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N *,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2, b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)(2012·某某)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .S n =-12n 2+kn 及S n 最大值为8S n 是n 的二次函数 n =k 时(S n )max =S k =8(根据S n 的结构特征确定k 值) k =4,S n =-12n 2+4n利用a n 、S n 的关系 a n =92-n9-2a n 2n =n2n -1根据数列的结构特征,确定求和方法:错位相减法 T n =1+22+322+…+n -12n -2+n2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规X 解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①[7分]所以2T n =2+2+32+…+n -12n -3+n2n -2②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防X1.直接应用公式求和时,要注意公式的应用X 围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( ) A.n n +1B.4n n +1C.3n n +1D.5nn +1 答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1), ∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)] =4(1-1n +1)=4n n +1. 2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A.20B.17C.19D.21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=19(a 1+a 19)2=19a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于 ( )A.0B.100C.-100D.10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A.31B.120C.130D.185答案 C解析 a 1+...+a k +...+a 10=240-(2+...+2k + (20)=240-(2+20)×102=240-110=130.5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A.-10B.-9C.10D.9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________. 答案 n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18, 6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n ) =(1+2+3+…+n )+(12+122+123+…+12n ) =n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n . 7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解.∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×(10+234)2=1 830. 三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n ∈N *),数列{}满足=a n ·b n .(1)求数列{b n }的通项公式;(2)求数列{}的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N *), 又b n =3log 14a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *), 所以=(3n -2)×(14)n (n ∈N *). 所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *). 10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求等比数列S 1,S 2,S 4的公比;(2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0),所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d .因为S 1,S 2,S 4成等比数列且设其公比为q ,所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2.因为公差d ≠0.所以d =2a 1.所以q =S 2S 1=4a 1a 1=4. (2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1.(3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1), 所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32.要使T n <m 20对所有n ∈N *都成立, 则有m 20≥32,即m ≥30. 因为m ∈N *,所以m 的最小值为30.B 组 专项能力提升(时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A.2 008B.2 010C.1D.0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n 的三边长分别为a n 、b n 、,△A n B n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=+a n 2,+1=b n +a n 2,则( ) A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13; 故S 1= 3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2= 3a 12·a 12·2a 13·a 13=66a 21. 显然S 2>S 1;a 3=a 1,b 3=76a 1+a 12=1312a 1, c 3=56a 1+a 12=1112a 1, S 3= 3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·某某)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则: (1)a 3=________;(2)S 1+S 2+…+S 100=________.答案 (1)-116(2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1, ∴a n =(-1)n a n -(-1)n -1a n -1+12n . 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 根据以上{a n }的关系式及递推式可求. a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…, ∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N *时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2,∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2, 当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列,∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0, ∴{T n }为递增数列,∴T n ≥T 1=12. 5.直线l n :y =x -2n 与圆:x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2. (1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n . 解 (1)由题意,知圆的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数,T n +1=(n +1)2-(n +1)2+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n,所以T n =n 2+n 2+13(2n -2). 所以T n =⎩⎪⎨⎪⎧ n 2-n 2+23(2n -1)(n 为偶数),n 2+n 2+13(2n -2)(n 为奇数).。

浙江省宁波市2015届高三一轮复习阶段性考试(数学理)--含答案

浙江省宁波市2015届高三一轮复习阶段性考试(数学理)--含答案

浙江省宁波市2015届高三一轮复习阶段性考试数学理试题本试题卷分选择题和非选择题两部分.全卷共4页, 选择题部分1至2页, 非选择题部分3至4页.满分150分, 考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(选择题部分 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |1122x -<<},N ={x | x 2 ≤ x },则M ∩N = (A )1[1,)2- (B )1(,1]2-(C )1[0,)2 (D )1(,0]2-2.设a >1>b >0,则下列不等式中正确的是(A )(-a )7<(-a )9 (B )b - 9<b - 7(C )11lg lg a b > (D )11ln ln a b>3.已知R α∈,cos 3sin αα+=,则tan2α=(A )43 (B )34 (C )34- (D )43-4.若某程序框图如图所示,则输出的n 的值是(A )3 (B )4 (C )5 (D )6(第4题图)5.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确..的是 (A )若//,m n αβ⊥且αβ⊥,则m n ⊥ (B )若,m n αβ⊥⊥且m n ⊥,则αβ⊥ (C )若/,/n m αβ⊥且n β⊥,则//m α (D )若,m n αβ⊂⊂且//m n ,则//αβ6.已知某锥体的三视图(单位:cm )如图所示,则该锥体的体积为 (A )23cm (B )43cm (C )63cm (D )83cm 7.251(1)(2)x x--的展开式的常数项是(A )48 (B )﹣48 (C )112 (D )﹣112 8.袋子里有3颗白球,4颗黑球,5颗红球.由甲、乙、丙三人依次各抽取一个球,抽取后不放回.若每颗球被抽到的机会均等,则甲、乙、丙三人所得之球颜色互异的概率是 (A )14 (B )13 (C )27 (D )3119.已知实系数二次函数()f x 和()g x 的图像均是开口向上的抛物线,且()f x 和()g x 均有两个不同的零点.则“()f x 和()g x 恰有一个共同的零点”是“()()f x g x +有两个不同的零点”的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件(D )既不充分也不必要条件10.设F 1、F 2是椭圆Γ的两个焦点,S 是以F 1为中心的正方形,则S 的四个顶点中能落在椭圆Γ上的个数最多有(S 的各边可以不与Γ的对称轴平行)(A )1个 (B )2个 (C )3个 (D )4个(第6题图)正视图侧视图俯视图221第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题, 每小题4分, 共28分. 11.已知复数z 满足22z z +-= i (其中i 是虚数单位),则z = ▲ . 12.设25z x y =+,其中实数,x y 满足68x y ≤+≤且20x y -≤-≤,则z 的取值范围是 ▲ .13.已知抛物线23x y =上两点,A B 的横坐标恰是方程2510x x ++=的两个实根,则直线AB 的方程是 ▲ .14.口袋中装有大小质地都相同、编号为1,2,3,4,5,6的球各一只.现从中一次性随机地取出两个球,设取出的两球中较小的编号为X ,则随机变量X 的数学期望是 ▲ .15.已知直线10x y --=及直线50x y --=截圆C 所得的弦长均为10,则圆C 的面积是 ▲ .16.在△ABC 中,∠C=90︒,点M 满足3BM MC =,则sin ∠BAM 的最大值是 ▲ .17.已知点O 是△ABC 的外接圆圆心,且AB=3,AC=4.若存在非零实数....x 、y ,使得AO x AB y AC =+,且21x y +=,则cos ∠BAC = ▲ .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分) 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且sin 5B c =,11cos 14B =.(I )求角A 的大小;(II )设BC 边的中点为D ,2AD =,求ABC ∆的面积. 19.(本小题满分14分)设等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为n T ,且230n n T b -+=,n N *∈. (I )求数列{}n a ,{}n b 的通项公式;(II )设⎩⎨⎧=为偶数为奇数n b n a c nn n , 求数列{}n c 的前n 项和n P .20.(本题满分15分)如图所示,PA ⊥平面ABCD ,△ABC 为等边三角形,PA AB =,AC ⊥CD,M 为AC 中点.(I )证明:BM ∥平面PCD ;(II )若PD 与平面PAC所成角的正切值,求二面角C -PD -M 的正切值.21.(本题满分15分)已知椭圆Γ:22221(0)x y a b a b +=>>的离心率为12,其右焦点F 与椭圆Γ的左顶点的距离是3.两条直线12,l l 交于点F ,其斜率12,k k 满足1234k k =-.设1l 交椭圆Γ于A 、C两点,2l 交椭圆Γ于B 、D 两点. (I )求椭圆Γ的方程;(II )写出线段AC 的长AC 关于1k 的函数表达式,并求四边形ABCD 面积S 的最大值.22.(本题满分14分)已知R λ∈,函数(1)()ln 1x f x x x λλ-=-+-,其中[1,)x ∈+∞.(Ⅰ)当2λ=时,求()f x 的最小值;(Ⅱ)在函数ln y x =的图像上取点(,ln )n P n n ()n N *∈,记线段P n P n +1的斜率为k n ,12111n nS k k k =+++.对任意正整数n ,试证明: (ⅰ)(2)2n n n S +<; (ⅱ)(35)6n n n S +>.PABCDM(第20题图)y(第21题图)浙江省宁波市2015届高三一轮复习阶段性考试数学理试题参考答案说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算。

2015届高考数学一轮总复习 10-6排列与组合

2015届高考数学一轮总复习 10-6排列与组合

2015届高考数学一轮总复习10-6排列与组合基础巩固强化一、选择题1.(2013·哈尔滨模拟)如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有()A.9种B.11种C.13种D.15种[答案] C[解析]有一个点脱落时有2种,有两个点脱落时有C24=6种,有三个点脱落时有C34=4种,四个点都脱落时有1种,共有2+6+4+1=13种.2.(2013·河北沧州一模)10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2个站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A35[答案] C[解析]从后排抽2人的方法种数是C27;前排的排列方法种数是A25,由分步乘法计数原理知不同调整方法种数是C27A25.3.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16 B.18C.24 D.32[答案] C[解析]若将7个车位从左向右按1~7进行编号,则该3辆车有4种不同的停放方法:(1)停放在1~3号车位;(2)停放在5~7号车位;(3)停放在1、2、7号车位;(4)停放在1、6、7号车位.每一种停放方法均有A33=6种,故共有24种不同的停放方法.4.(2013·海口模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且其中甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108C.180 D.216[解析] 设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C 14种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有C 24A 33种方法,故共有C 14C 24A 33种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C 24种方法,甲与丁、戊分配到其他三个社团中有A 33种方法,这时共有C 24A 33种参加方法;综合(1)(2),共有C 14C 24A 33+C 24A 33=180种参加方法.[解法探究] 由于甲是特殊元素,故按甲进行分类.第一类,甲自己去一个社团,有C 13种选法,将其余4人中选2人有C 24种选法,将这2人和其余2人分派到三个社团共有A 33种方法,∴共有C 13C 24A 33=108种.第二类,甲与另外一人同去一个社团,先安排甲有C 13种选法,然后将剩余4人分派到四个社团有A 44种,∴共有C 13A 44=72种,∴总共有108+72=180种参加方法.5.(2013·四川理,8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a 、b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20 [答案] C[解析] 解法1:记基本事件为(a ,b ),则基本事件构成的集合为Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lg a b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab 的值相等,则不同值的个数为20-2=18(个),故选C.解法2:由于lg1-lg3=lg3-lg9,lg3-lg1=lg9-lg3,所以共有不同值A 25-2=18个. 6.一次演出,原计划要排4个节目,因临时有变化,拟再添加2个小品节目,若保持原有4个节目的相对顺序不变,则这6个节目不同的排列方法有( )A .30种B .25种C .24种D .20种 [答案] A[解析] 原来4个节目的相对顺序不变,故4个节目形成5个空档,将这两个节目插入.(一)当两节目不相邻时,有A 25=20种选法,(二)当两节目相邻时,有A 22·C 15=10种排法,∴共有20+10=30种不同排法.二、填空题7.由1、2、3、4、5、6组成的奇偶数字相间且无重复数字的六位数的个数是________.(以具体数字作答)[解析]首位数字是奇数时有A33·A33种排法,首位数字是偶数时也有A33·A33种排法,所以一共可以组成2A33·A33=72个奇偶数字相间且无重复数字的六位数.8.某广场中心建造一个花圃,花圃分成5个部分(如图).现有4种不同颜色的花可以栽种,若要求每部分必须栽种1种颜色的花且相邻部分不能栽种同样颜色的花,则不同的栽种方法有________种.[答案]72[解析]依题意,按花圃的5个部分实际栽种花的颜色种数进行分类计数:第一类,花圃的5个部分实际栽种花的颜色种数是3时,满足题意的方法数共有A34=24种;第二类,花圃的5个部分实际栽种花的颜色种数是4时,满足题意的方法数共有A44×2=48种.因此,满足题意的方法数共有24+48=72种.9.将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A班,那么不同的分配方案有________.[答案]24种[解析]将4名新来的同学分配到A、B、C三个班级中,每个班级至少安排一名学生有C24A33种分配方案,其中甲同学分配到A班共有C23A22+C13A22种方案.因此满足条件的不同方案共有C24A33-C23A22-C13A22=24(种).10.某农科院在3行3列9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为________.[答案]1 14[解析]如图,由于每行每列都有一块试验田种植水稻,∴当1处种植水稻时,只能是(1,5,9)或(1,6,8),依此可列出所有可能种植方法为:(1,5,9),(1,6,8),(2,6,7),(2,4,9),(3,5,7),(3,4,8),共6种,又从9块试验田中选3块的选法为C39,∴所求概率为P=6C39=114.能力拓展提升一、选择题11.一个质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这颗骰子连续投掷三次,观察向上的点数,则三次点数依次成等比数列的概率为( )A.1108B.1216C.136D.127 [答案] D[解析] 连续抛掷三次骰子可得结果为63=216种,其中依次构成等比数列的情况有 (1)公比为1,共6种.(2)公比为2,只有1种,即1,2,4,. (3)公比为12,只有1种,即4,2,1.∴共有8种,∴P =8216=127.12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A .10B .11C .12D .15 [答案] B[解析] 与信息0110至多有两个对应位置上的数字相同的信息包括三类: 第一类:与信息0110有两个对应位置上的数字相同有C 24=6(个) 第二类:与信息0110有一个对应位置上的数字相同有C 14=4(个) 第三类:与信息0110没有一个对应位置上的数字相同有C 04=1(个) 与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11(个)13.(2013·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A .60B .48C .36D .24 [答案] B[解析] 长方体中,含有四个顶点的平面有两类.第一类侧面、底面,对其中每一个面(如底面ABCD ),与其平行的直线有6条,共有6×6=36个“平行线面组”;第二类对角面,对其中每一个面与其平行的直线有2条,共有6×2=12个“平行线面组”.∴共有36+12=48个,选B.二、填空题14.在空间直角坐标系O-xyz中有8个点:P1(1,1,1)、P2(-1,1,1)、…、P7(-1,-1,-1)、P8(1,-1,-1)(每个点的横、纵、竖坐标都是1或-1),以其中4个点为顶点的三棱锥一共有________个(用数字作答).[答案]58[解析]这8个点构成正方体的8个顶点,此题即转化成以正方体的8个顶点中的4个点为顶点的三棱锥一共有多少个.从正方体的8个顶点中任取4个,有不同取法C48种,其中这四点共面的(6个对角面、6个表面)共12个,∴这样的三棱锥有C48-12=58个.15.(2013·潍坊五校联考)数字1,2,3,4,5,6按如图形式随机排列,设第一行这个数为N1,N2、N3分别表示第二、三行中的最大数,则满足N1<N2<N3的所有排列的个数是________.[答案]240[解析]由题意知6必在第三行,安排6有C13种方法,第三行中剩下的两个空位安排数字有A25种方法,在留下的三个数字中,必有一个最大数,把这个最大数安排在第二行,有C12种方法,剩下的两个数字有A22种排法,按分步计数原理,所有排列的个数是C13×A25×C12×A22=240.三、解答题16.(2012·合肥调研)要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.[解析](1)间接法.从12人中选5人有C512种选法,这5人全为男生的选法有C57种,∴不同选法有C512-C57=771(种).(2)按“至多有2名女生”分类:2名女生有C25C37种,1名女生有C15C47种,无女生有C57种,∴共有不同选法C25C37+C15C47+C57=546(种).(3)只需再从剩余10人中选取3人,不同选法共有C310=120(种).(4)间接法.C512-C310=672(种).(5)间接法.男甲与女乙都不入选时有C510种,∴共有不同选法C512-C510=540(种).考纲要求1.理解分类加法计数原理和分步乘法计数原理.2.理解排列、组合的概念.3.能利用计数原理推导排列数公式、组合数公式.4.会用分类加法计数原理、分步乘法计数原理和排列组合知识解决一些简单的实际问题.补充说明1.排列、组合问题的类型及解答策略排列、组合问题,通常都是以选择题或填空题的形式出现在试卷上,它联系实际,生动有趣;但题型多样,解法灵活.实践证明,备考有效的方法是将题型与解法归类,识别模式、熟练运用.下面介绍常见排列组合问题的解答策略.(1)相邻元素捆绑法.在解决某几个元素必须相邻问题时,可整体考虑将相邻元素视为一个元素参与排列.[例1](2012·山西四校联考)有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有________种.[答案]192[分析]甲站正中间,左边、右边各3人,乙、丙相邻排列后作为一个“整体元素”,按这个整体元素的站位考虑有4种情况,其他位置可任意排列.[解析]依题意得,满足题意的不同站法共有4·A22·A44=192种.(2)相离问题插空法.相离问题是指要求某些元素不能相邻,由其他元素将它隔开,此类问题可以先将其他元素排好,再将所指定的不相邻的元素插入到它们的空隙及两端位置,故称“插空法”.[例2](2013·郑州第一次质量预测)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.12种B.18种C.24种D.48种[答案] C[解析]将甲、乙捆绑,与除丙、丁外的另外一架飞机进行全排列,有A22·A22种方法.而后将丙、丁进行插空,有3个空,有A23种排法,故共有A22·A22·A23=24种方法.(3)定序问题属组合.排列时,如果限定某些元素或所有元素保持一定顺序称为定序问题,定序的元素属组合问题.[例3]6个人排一队参观某项目,其中甲、乙、丙三人进入展厅的次序必须是先乙,再甲,最后丙,则不同的列队方式有________种.[答案]120[解析]解法1:由于甲、乙、丙三人的次序已定,故只需从6个位置中选取3个排上其余3人,有A36种排法,剩下的三个位置排甲、乙、丙三人,只有一种排法,∴共有A36=120种.解法2:先选取3个位置排甲、乙、丙三人有C36种方法,剩下3个位置站其余3人,有A33种方法,∴共有C36·A33=120种.(4)定元、定位优先排.在有限制条件的排列、组合问题中,有时限定某元素必须排在某位置,某元素不能排在某位置;有时限定某位置只能排(或不能排)某元素.这种特殊元素(位置)解题时要优先考虑.[例4](2012·太原部分重点中学联考)6位同学安排到3个社区A,B,C参加志愿者服务,每个社区安排两名同学,其中甲同学必须到A社区,乙和丙同学均不能到C社区,则不同的安排方法种数为()A.12B.9C.6D.5[答案] B[解析]当乙、丙中有一人在A社区时有C12C13C22=6种安排方法;当乙、丙两人都在B社区时有C13C22=3种安排方法,所以共有9种不同的安排方法.(5)至多、至少间接法.含“至多”、“至少”的排列组合问题,是需要分类问题.可用间接法,即排除法,但仅适用于反面情况明确且易于计算的情况.[例5]从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有() A.36种B.30种C.42种D.60种[答案] A[解析]解法1(直接法):选出的3名志愿者中含1名女生有C12·C26种选法,含2名女生有C22·C16种选法,∴共有C12C26+C22C16=36种选法.解法2(间接法):若选出的3名全是男生,则有C36种选法,∴至少有一名女生的选法数为C38-C36=36种.(6)选排问题先选后排法.对于排列组合的混合应用题,一般解法是先选(组合)后排(排列).[例6]四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有________种(用数字作答).[答案]144[解析]先从四个小球中取两个放在一起,有C24种不同的取法,再把取出的两个小球与另外两个小球看作三堆,并分别放入四个盒子中的三个盒子中,有A34种不同的放法,据分步计数原理,共有C24·A34=144种不同的放法.(7)部分符合条件淘汰法.在选取总数中,只有一部分符合条件,可从总数中减去不符合条件数,即为所求.[例7]过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对[答案] D[解析]三棱柱共6个顶点,由此6个顶点可组成C46-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.(8)数字问题要弄清可否重复及首位不能为0.[例8]用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328C.360 D.648[答案] B[解析]利用分类计数原理,共分两类:(1)0作个位,共A29=72个偶数;(2)0不作个位,共A14·A18·A18=256个偶数,共计72+256=328个偶数,故选B.2.建模思想[例9]一只电子蚂蚁在如图所示的网格线上由原点O(0,0)出发,沿向上或向右方向爬至点(m,n),(m,n∈N*),记可能的爬行方法总数为f(m,n),则f(m,n)=________.[答案]C m m+n[解析]从原点O出发,只能向上或向右方向爬行,记向上为1,向右为0,则爬到点(m,n)需m个0和n个1.这样爬行方法总数f(m,n)是m个0和n个1的不同排列方法数.m个0和n个1共占m+n个位置,只要从中选取m个放0即可.∴f(m,n)=C m m+n.[点评](1)例如f(3,4)=C37,其中0010111表示从原点出发后,沿右右上右上上上的路径爬行.(2)抽象建模后就是一个含相同数字的纯粹排列组合问题.[例10]方程x+y+z=8的非负整数解的个数为________.[答案]45[解析]把x、y、z分别看作是x个1,y个1和z个1,则共有8个1,问题抽象为8个1和两个十号的一个排列问题.由于x、y、z非负,故允许十号相邻,如11++111111表示x=2,y=0,z =6,+11111111+表示x=0,y=8,z=0等等,∴不同排法总数为从10个位置中选取2个放十号,∴方程的非负整数解共有C210=45个.[例11]一条街道上共有12盏路灯,为节约用电又不影响照明,决定每天晚上十点熄灭其中的4盏,并且不能熄灭相邻两盏也不能熄灭两头两盏,问不同熄灯方法有多少种.[解析]记熄灭的灯为0,亮灯为1,则问题是4个0和8个1的一个排列,并且要求0不相邻,且不排在两端,故先将1排好,在8个1形成的7个空中,选取4个插入0,共有方法数C47=35种.[点评]实际解题中,先找出符合题设条件的一种情形,然后选取一种替代方案,注意是否相邻、相间等受限条件,然后确定有无顺序是排列还是组合,再去求解.[例12]如图,从上往下读(不能跳读)构成句子“构建和谐社会,创美好未来”的不同读法种数是()构建建和和和谐谐谐谐社社社社社会会会会会会创创创创创美美美美好好好未未来A.250 B.240C.252 D.300[答案] C[解析]要组成题设中的句子,则每行读一字,不能跳读.每一种读法须10步完成(从上一个字到下一个字为一步),其中5步是从左上角到右下角方向读的,故共有不同读法C510=252种.3.枚举法[例13]如果直线a与b异面,则称a与b为一对异面直线,六棱锥的侧棱与底边共12条棱所在的直线中,异面直线共有________对.[答案]24[解析]六棱锥的侧棱都相交,底面六条边所在直线都共面,故异面直线只可能是侧棱与底面上的边.考察P A与底面六条边所在直线可用枚举法列出所有异面直线(P A,BC),(P A,CD),(P A,DE),(P A,EF)共四对.同理与共它侧棱异面的底边也各有4条,故共有4×6=24对.备选习题1.(2013·山东理,10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243B.252C.261D.279[答案] B[解析]构成所有的三位数的个数为C19C110C110=900,而无重复数字的三位数的个数为C19C19C18=648,故所求个数为900-648=252,应选B.2.(2012·浙江理,6)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种[答案] D[解析]取出的4个数和为偶数,可分为三类.四个奇数C45,四个偶数C44,二奇二偶,C25C24.共有C45+C44+C25C24=66种不同取法.3.(2013·昆明重点高中检测)某班班会准备从含甲、乙的7名学生中选取4人发言,要求甲、乙2人至少有一人参加,若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序种数为()A.720 B.520C.600 D.360[答案] C[解析]解法1:根据题意,分2种情况讨论:若甲、乙其中一人参加,有C12·C35·A44=480种;若甲、乙2人都参加,共有C25·A44=240种发言顺序,其中甲、乙相邻的情况有C25·A22·A33=120种,故有240-120=120种.则不同的发言顺序种数为480+120=600.解法2:C12C35A44+C25A22A23=600种.4.(2013·湖北荆门质检)第12届全国运动会将在沈阳举行,某校4名大学生申请A,B,C三个比赛项目的志愿者,组委会接受了他们的申请,每个比赛项目至少分配一人,每人只能服务一个比赛项目,若甲要求不去服务A比赛项目,则不同的安排方案共有()A.20种B.24种C.30种D.36种[答案] B[解析]解法1:4人分到A,B,C三个项目共有C24A33种,其中A项目有甲与另一人的分法有A33种,A项目只有甲一人的分法有C23A22种.故符合题意的安排方案有C24A33-A33-C23A22=24,故选B.解法2:C12A33+C12C23A22=24.5.(2013·重庆理,13)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).[答案]590[解析]方法一:从12名医生中任选5名,不同选法有C512=792种.不满足条件的有:只去骨科和脑外科两科医生的选法有C57=21种,只去骨科和内科两科医生的选法有C58-C55=55种,只去脑外科和内科两科医生的选法有C59-C55=125种,只去内科一科医生的选法有C55=1种,故符合条件的选法有:792-21-55-125-1=590种.方法二:设选骨科医生x名,脑外科医生y名,则需选内科医生(5-x-y)人.(1)当x=y=1时,有C13·C14·C35=120种不同选法;(2)当x=1,y=2时,有C13·C24·C25=180种不同选法;(3)当x=1,y=3时,有C13·C34·C15=60种不同选法;(4)当x=2,y=1时,有C23·C14·C25=120种不同选法;(5)当x=2,y=2时,有C23·C24·C15=90种不同选法;(6)当x=3,y=1时,有C33·C14·C15=20种不同选法.所以不同的选法共有120+180+60+120+90+20=590种.[点评]按骨科医生去的人数可分三类:骨科医生去1名,2名,3名.不同选派方法有:C13(C14C35+C24C25+C34C15)+C23(C14C25+C24C15)+C33C14C15=590种.11。

2015届高考理科数学第一轮知识点复习方案测试题43

2015届高考理科数学第一轮知识点复习方案测试题43

45分钟滚动基础训练卷(五)(考查范围:第17讲~第24讲,以第21讲~第24讲内容为主分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.要得到函数y =-sin x 的图像,只需将函数y =cos x 的图像( )A .向右平移π2个单位B .向右平移π个单位C .向左平移π个单位D .向左平移π2个单位2.某人向正东方向走x km 后,向右转150°,然后朝新的方向走了3 km ,结果他离出发点恰好为 3 km ,则x =( ) A. 3 B .2 3 C.3或2 3 D .33.已知a ,b ,c 是△ABC 的三边长,且满足等式(a +b -c )·(a +b +c )=ab ,则角C 的度数为( )A .60°B .90°C .120°D .150°4.在△ABC 中,若a =5,b =3,C =120°,则sin A 的值为( ) A.5 314 B .-5 314C.3 314 D .-3 3145.在△ABC 中,A =π3,b =1,S △AB C =3,则a +b +c sin A +sin B +sin C=( )A.393B.2 393C.13 D .2 136.[2013·临沂一模] 函数f (x )=Asin(ωx +φ)其中(A >0,|φ|<π2)的部分图像如图G5-1所示,为了得到g (x )=cos 2x 的图像,则只要将f (x )的图像( )A .向左平移π12个单位长度B .向右平移π12个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度7.在△ABC 中,由已知条件解三角形,其中有两解的是( )A .b =20,A =45°,C =80°B .a =30,c =28,B =60°C .a =14,b =16,A =45°D .a =12,c =15,A =120°8.[2013·银川一中二模] 已知2sin 2θ+sin 2θ1+tan θ=k ,0<θ<π4,则sin (θ-π4)的值( )A .随着k 的增大而增大B .有时随着k 的增大而增大,有时随着k 的增大而减小C .随着k 的增大而减小D .是一个与k 无关的常数二、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中横线上)9.[2013·大连一模] 已知△ABC 的三个内角A ,B ,C ,且sin A ∶sin B ∶sin C =2∶3∶4,则cos C 的值为________.10.[2013·临沂模拟] 若△ABC 的边a ,b ,c 满足a 2+b 2-c 2=4,且C =60°,则ab 的值为________.11.[2013·北京西城区一模] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos A cos B =b a =34.若c =10,则△ABC 的面积是________.三、解答题(本大题共3小题,每小题15分,共45分,解答应写出文字说明,证明过程或演算步骤)12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知asin 2B 2+b sin 2A 2=c 2.(1)求证:a ,c ,b 成等差数列;(2)若a -b =4,△ABC 的最大内角为120°,求△ABC 的面积.13.[2013·广东惠州模拟] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -cos (B +π4)的最大值,并求取得最大值时角A 的大小.14.已知向量m =(3sin 2x +2,cos x ),n =(1,2cos x ),f (x )=m ·n .(1)求函数f (x )的最小正周期及对称轴方程;(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若f (A )=4,b =1,△ABC 的面积为32,求a 的值.45分钟滚动基础训练卷(五)1.D 2.C 3.C 4.A 5.B 6.A 7.C 8.A9.-14 10.4 11.2412.(1)略 (2)S △ABC =15 3413.(1)C =π4 (2)最大值为2,此时A =π314.(1)T =π,对称轴方程为x =k π2+π6(k ∈Z )(2)a =3薄雾浓云愁永昼, 瑞脑消金兽。

【新课标I版】地区2015届高三数学(理)一轮复习参考试题数列Word版含答案

【新课标I版】地区2015届高三数学(理)一轮复习参考试题数列Word版含答案

数列n n m -1m m +13,则m =( ).A .3B .4C .5D .6 【答案】C【2013新课标I 版(理)12】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】:B【2012新课标I 版(理)5】已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 【答案】D【2013新课标I 版(理)14】若数列{a n }的前n 项和2133n n S a =+,则{a n }的通项公式是a n =__________.【答案】:1(2)n --【2012新课标I 版(理)16】数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为__________. 【答案】1830【2014新课标I 版(理)17】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数, (I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由.【答案】(I )由题设,11211, 1.n n n n n n a a S a a S λλ++++=-=-两式相减得 121().n n n a a a a λ+++-= 由于10n a +≠,所以 2.n n a a λ+-= ……6分(II )由题设,11a =,1211a a S λ=-,可得2 1.a λ=- 由(I )知,3 1.a λ=+ 令2132a a a =+,解得 4.λ= 故24n n a a +-=,由此可得{}21n a -是首项为1,公差为4的等差数列,2143n a n -=-; {}2n a 是首项为3,公差为4的等差数列,241n a n =-.所以21n a n =-,12n n a a --=. 因此存在4λ=,使得数列{}n a 为等差数列. ……12分错误!未指定书签。

2015届高考理科数学第一轮知识点专项题库62

2015届高考理科数学第一轮知识点专项题库62

第2讲古典概型一、填空题1.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是________.解析分别从两个集合中各取一个数,共有15种取法,其中满足b>a的有3种取法,故所求事件的概率P=315=1 5.答案1 52.若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率为________.解析试验是连续掷两次骰子,故共包含6×6=36(个)基本事件.事件点P 在x+y=5下方,共包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个基本事件,故P=636=1 6.答案1 63.在一次招聘口试中,每位考生都要在5道备选试题中随机抽出3道题回答,答对其中2道题即为及格,若一位考生只会答5道题中的3道题,则这位考生能够及格的概率为________.解析要及格必须答对2道或3道题,共C23C12+C33=7(种)情形,故P=7C35=7 10.答案7 104.从三名男同学和n名女同学中任选三人参加一场辩论赛,已知三人中至少有一人是女生的概率是3435,则n=________.解析三人中没有女生的概率为C33C3n+3,∴三人中至少有一人是女生的概率为1-C 33C 3n +3. 由题意得1-C 33C 3n +3=3435,解得n =4.答案 n =45.下课后教室里最后还剩下2位男同学和2位女同学,如果没有2位同学一块走,则第二位走的是男同学的概率是________.解析 每个同学均可能在第二位走,故共有4种情况,而男同学有2个,故所求概率为P =24=12. 答案 126.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是________. 解析:从“6听饮料中任取2听饮料”这一随机试验中所有可能出现的基本事件共有15个,而“抽到不合格饮料”含有9个基本事件,所以检测到不合格饮料的概率为P =915=35. 答案 357.甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是________.解析 正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个等可能的基本事件.两条直线相互垂直的情况有5种(4组邻边和对角线),包括10个基本事件,所以概率等于518. 答案 5188. 一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为________.解析 基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2)…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364. 答案 3649.连掷两次骰子分别得到点数m ,n ,向量a =(m ,n ),若b =(-1,1),△ABC 中AB→与a 同向,CB →与b 反向,则∠ABC 是钝角的概率是________. 解析 ∵∠ABC 是钝角,向量a =(m ,n ),b =(-1,1)夹角为锐角,∴n -m >0,m <n ,∴包含15个基本事件,又共有36个基本事件,∴∠ABC 是钝角的概率是512. 答案 51210.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).解析 6节课共有A 66种排法,按要求共有三类排法,一类是三门文化课排列,有两个空,插入2节艺术课,有A 33A 23×2种排法;第二类,三门文化课排列有两个空,插入1节艺术课,有A 33·A 13·2A 33种排法;第三类,三门文化课相邻排列,有A 33A 44种排法.则满足条件的概率为 2A 33A 23+A 33A 13·2A 33+A 33A 44A 66=35.答案 35 二、解答题11.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.解将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件.(1)记“两数中至少有一个奇数”为事件B,则事件B与“两数均为偶数”为对立事件,所以P(B)=1-936=3 4;即两数中至少有一个奇数的概率为34.(2)基本事件总数为36,点(x,y)在圆x2+y2=15的内部记为事件C,则C包含8个事件,所以P(C)=836=2 9.即点(x,y)在圆x2+y2=15的内部的概率为29.12.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的概率;(3)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.解(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35(人),样本容量为70,所以样本中学生身高在170~185 cm之间的频率f=3570=0.5.故由f估计该校学生身高在170~185 cm之间的概率P=0.5.(3)样本中身高在180~185 cm之间的男生有4人,设其编号为①②③④,样本中身高在185~190 cm之间的男生有2人,设其编号为⑤⑥.从上述6人中任选2人的树状图为:故从样本中身高在180~190 cm之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm之间的可能结果数为9,因此,所求概率P2=915=3 5.13.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:(1)求第66s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.解(1)∵这6位同学的平均成绩为75分,∴16(70+76+72+70+72+x6)=75,解得x6=90,这6位同学成绩的方差s2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s=7.(2)从前5位同学中,随机地选出2位同学的成绩有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为410=0.4,即恰有1位同学成绩在区间(68,75)中的概率为0.4. 14.设S是不等式x2-x-6≤0的解集,整数m,n∈S.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设ξ=m2,求ξ的分布列及其数学期望E(ξ).解(1)由x2-x-6≤0得-2≤x≤3,即S={x|-2≤x≤3}.由于m,n∈Z,m,n∈S且m+n=0,所以A包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以ξ=m2的所有不同取值为0,1,4,9,且有P(ξ=0)=1 6,P(ξ=1)=26=13,P(ξ=4)=26=13,P(ξ=9)=1 6.故ξ的分布列为:所以E(ξ)=0×16+1×13+4×13+9×16=196.。

高三数学理第一轮总复习周周练素材:六

高三数学理第一轮总复习周周练素材:六

学海导航·新课标高中总复习(第1轮)B·理科数学周周练(六)·新课标高中总复习(第1轮)B·理科数学 周 周 练 (六) 班级:__________ 姓名:__________ 学号:__________一、选择题1.已知点(a,2)在函数f (x )=log 3x 的图象上,则sin(-3πa )的值等于( ) A .-32 B .-12 C.12 D.322.已知tan(π-α)=-2,则1sin 2α-2cos 2α=( ) A .2 B.25C .3 D.523.已知f (x )=3cos 2x +2sin x cos x ,则f (13π6)=( ) A .- 3 B. 3C.32 D .-324.log 32(2cos 15°-1)+log 32(2cos 15°+1)等于( ) A .-1 B .0C .1D .25.已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34C .-34D .-43二、填空题6.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=___________________________________________________.7.已知α为锐角,且cos(α+π4)=35,则sin α=_____________________________. 8.已知cos α=15,-π2<α<0,则cos (π2+α)tan (α+π)cos (-α)tan α的值为__________.9.化简:1-2sin 380°cos 340°=___________________________________.10.设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ=__________. 三、解答题11.已知函数f (x )=2sin(πx 6+π3)(0≤x ≤5),点A ,B 分别是函数y =f (x )图象上的最高点和最低点.(1)求点A 、B 的坐标;(2)设点A 、B 分别在角α,β的终边上,求tan(α-2β)的值.12.已知函数f (x )=2cos(x -π12),x ∈R . (1)求f (-π6)的值; (2)若cos θ=35,θ∈(3π2,2π),求f (2θ+π3).周周练(六)1.A 因为点(a,2)在函数f(x)=log 3x 的图象上,所以log 3a =2,解得a =9,故sin (-3πa )=sin (-π3)=-sin π3=-32. 2.D 由tan (π-α)=-2知tan α=2,所以1sin 2α-2cos 2α=sin 2α+cos 2αsin 2α-2cos 2α=tan 2α+1tan 2α-2=4+14-2=52. 3.B f(x)=3cos 2x +sin 2x =2sin (2x +π3), 所以f(13π6)=2sin (13π3+π3)=2sin (4π+2π3) =2sin 2π3= 3. 4.C log 32(2cos 15°-1)+log 32(2cos 15°+1) =log 32(2cos 215°-1)=log 32cos 30° =log 3232=1. 5.C 由(sin α+2cos α)2=(102)2, 得sin 2α+4sin αcos α+4cos 2α=104=52, 即4sin αcos α+1+3cos 2α=52, 即2sin 2α+1+3×1+cos 2α2=52, 故2sin 2α=-3cos 2α2,所以tan 2α=-34,选C . 6.-357.210 因为0<α<π2,所以π4<α+π4<3π4, 因此sin (α+π4)=45, 故sin α=sin [(α+π4)-π4] =sin (α+π4)cos π4-cos (α+π4)sin α =45×22-35×22=210. 8.612 由cos α=15,-π2<α<0,得tan α=-26, 原式=-sin αtan αcos αtan α=-1tan α=612. 9.cos 20°-sin 20°原式=1-2sin (360°+20°)cos (360°-20°)=1-2sin 20°cos 20°=(cos 20°-sin 20°)2=cos 20°-sin 20°.10.-105 由tan (θ+π4)=12,得tan θ=-13, 所以cos 2θ=cos 2θsin 2θ+cos 2θ=1tan 2θ+1=910. 又θ是第二象限角,所以cos θ=-31010,sin θ=1010, 所以sin θ+cos θ=-105. 11.解析:(1)因为0≤x ≤5,所以π3≤πx 6+π3≤7π6, 所以-12≤sin (πx 6+π3)≤1, 当πx 6+π3=π2,即x =1时,sin (πx 6+π3)=1,f(x)取得最大值2; 当πx 6+π3=7π6,即x =5时,sin (πx 6+π3)=-12,f(x)取得最小值-1. 因此,点A ,B 的坐标分别是A(1,2),B(5,-1).(2)因为点A(1,2),B(5,-1)分别在角α,β的终边上,所以tan α=2,tan β=-15, 因为tan 2β=2×(-15)1-(-15)2=-512, 所以tan (α-2β)=2-(-512)1+2×(-512)=292. 12.解析:(1)f(-π6)=2cos (-π6-π12)=2cos (-π4)=2cos π4=1. (2)f(2θ+π3)=2cos (2θ+π3-π12)=2cos (2θ+π4)=cos 2θ-sin 2θ, 因为cos θ=35,θ∈(3π2,2π),所以sin θ=-45, 所以sin 2θ=2sin θcos θ=-2425, cos 2θ=cos 2θ-sin 2θ=-725, 所以f(2θ+π3)=cos 2θ-sin 2θ=-725-(-2425)=1725.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学海导航·新课标高中总复习(第1轮)B·理科数学周周练(六) ·
新课标高中总复习(第1轮)B·理科数学 周 周 练 (六)
班级:__________ 姓名:__________ 学号:__________
一、选择题
1.已知点(a,2)在函数f (x )=log 3x 的图象上,则sin(-3πa
)的值等于( ) A .-32 B .-12
C.12
D.32
2.已知tan(π-α)=-2,则1sin 2α-2cos 2α
=( ) A .2 B.25
C .3 D.52
3.已知f (x )=3cos 2x +2sin x cos x ,则f (13π6
)=( ) A .- 3 B. 3
C.32 D .-32 4.log 32(2cos 15°-1)+log 32
(2cos 15°+1)等于( ) A .-1 B .0
C .1
D .2
5.已知α∈R ,sin α+2cos α=102
,则tan 2α=( ) A.43 B.34
C .-34
D .-43
二、填空题 6.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45
,则cos α=___________________________________________________.
7.已知α为锐角,且cos(α+π4)=35
,则sin α=_____________________________. 8.已知cos α=15,-π2<α<0,则cos (π2+α)tan (α+π)cos (-α)tan α
的值为__________. 9.化简:1-2sin 380°cos 340°=___________________________________.
10.设θ为第二象限角,若tan(θ+π4)=12
,则sin θ+cos θ=__________. 三、解答题
11.已知函数f (x )=2sin(πx 6+π3
)(0≤x ≤5),点A ,B 分别是函数y =f (x )图象上的最高点和最低点.
(1)求点A 、B 的坐标;
(2)设点A 、B 分别在角α,β的终边上,求tan(α-2β)的值.
12.已知函数f (x )=2cos(x -π12
),x ∈R . (1)求f (-π6
)的值; (2)若cos θ=35,θ∈(3π2,2π),求f (2θ+π3
).
周周练(六)
1.A 因为点(a,2)在函数f(x)=log 3x 的图象上,
所以log 3a =2,解得a =9,
故sin (-3πa )=sin (-π3)=-sin π3=-32
. 2.D 由tan (π-α)=-2知tan α=2,
所以1sin 2α-2cos 2α=sin 2α+cos 2αsin 2α-2cos 2α=tan 2α+1tan 2α-2
=4+14-2=52
. 3.B f(x)=3cos 2x +sin 2x =2sin (2x +π3
), 所以f(13π6)=2sin (13π3+π3)=2sin (4π+2π3
) =2sin 2π3
= 3. 4.C log 32(2cos 15°-1)+log 32
(2cos 15°+1) =log 32(2cos 215°-1)=log 32
cos 30° =log 3232
=1. 5.C 由(sin α+2cos α)2=(102
)2, 得sin 2α+4sin αcos α+4cos 2α=104=52
, 即4sin αcos α+1+3cos 2α=52
, 即2sin 2α+1+3×1+cos 2α2=52
, 故2sin 2α=-3cos 2α2,所以tan 2α=-34
,选C . 6.-35
7.210 因为0<α<π2,所以π4<α+π4<3π4
, 因此sin (α+π4)=45
, 故sin α=sin [(α+π4)-π4] =sin (α+π4)cos π4-cos (α+π4
)sin α =45×22-35×22
=210. 8.612 由cos α=15,-π2
<α<0,得tan α=-26, 原式=-sin αtan αcos αtan α=-1tan α=612
. 9.cos 20°-sin 20°
原式=1-2sin (360°+20°)cos (360°-20°)
=1-2sin 20°cos 20°
=(cos 20°-sin 20°)2
=cos 20°-sin 20°.
10.-
105 由tan (θ+π4)=12,得tan θ=-13, 所以cos 2θ=cos 2θsin 2θ+cos 2θ=1tan 2θ+1=910
. 又θ是第二象限角,所以cos θ=-31010,sin θ=1010
, 所以sin θ+cos θ=-105
. 11.解析:(1)因为0≤x ≤5,所以π3≤πx 6+π3≤7π6
, 所以-12≤sin (πx 6+π3
)≤1, 当πx 6+π3=π2,即x =1时,sin (πx 6+π3
)=1,f(x)取得最大值2; 当πx 6+π3=7π6,即x =5时,sin (πx 6+π3)=-12
,f(x)取得最小值-1. 因此,点A ,B 的坐标分别是A(1,2),B(5,-1).
(2)因为点A(1,2),B(5,-1)分别在角α,β的终边上,
所以tan α=2,tan β=-15
, 因为tan 2β=2×(-15)1-(-15)2=-512, 所以tan (α-2β)=2-(-512)1+2×(-512
)=292. 12.解析:(1)f(-π6)=2cos (-π6-π12)=2cos (-π4)=2cos π4=1. (2)f(2θ+π3)=2cos (2θ+π3-π12)=2cos (2θ+π4
)=cos 2θ-sin 2θ, 因为cos θ=35,θ∈(3π2,2π),所以sin θ=-45
, 所以sin 2θ=2sin θcos θ=-2425
, cos 2θ=cos 2θ-sin 2θ=-725
, 所以f(2θ+π3)=cos 2θ-sin 2θ=-725-(-2425)=1725.。

相关文档
最新文档