第六章 平行四边形.平行四边形的性质(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章平行四边形
1.平行四边形的性质(一)
一、学生起点分析
学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。
学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。
二、学习任务分析
四边形和三角形一样,也是基本的平面图形,在七年级下册“空间与图形”有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。
教学目标:
1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;
2.索并掌握平行四边形的性质,并能简单应用;
3.在探索活动过程中发展学生的探究意识。
教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学方法:探索归纳法
三、教学过程设计
本节课分5个环节:
第一环节:实践探索,直观感知
第二环节:探索归纳,交流合作
第三环节:推理论证,感悟升华
第四环节:应用巩固,深化提高
第五环节:评价反思,概括总结
第一环节:实践探索,直观感知
1.小组活动一
内容:
问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;
(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
目的:
通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;
平行四边形的相邻的两个顶点连成的一段叫做它的对角线。
教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行
即AD // BC 且AB // BC;平行四边形的表示“。
2.小组活动二
内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?
目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。
效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。
第二环节探索归纳、合作交流
小组活动3:
用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?
(1)让学生动手操作、复制、旋转、观察、分析;
(2)学生交流、议论;
(3)教师利用多媒体展示实践的过程。
活动目的:
这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形对边、对角的特征,感受平行四边形的性质:平行四边形的对边相等,平行四边形的对角相等等。
活动注意事项:
在剪切平行四边形纸片时,要保证上下纸片的大小、形状完全相同。
第三环节推理论证、感悟升华
1.实践探索内容
(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。
(2)可以通过推理来证明这个结论,如图连结AC。
∵四边形ABCD是平行四边形
∴AD // BC,AB // CD
∴∠1=∠2,∠3=∠4
∴△ABC和△CDA中
∠2=∠1
AC=CA
∠3=∠4
∴△ABC≌△CDA(ASA)
∴AB=DC,AD=CB,∠D=∠B
又∵∠1=∠2
∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB
2.活动目的:
学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。
3.活动效果:
“实践→认识→再实践→认识”是数学学习的重要方法,说理论证平行四边形的性质是学生接受很好,由此看出这一年龄段的学习不应只停留在感性层面上。
第四环节应用巩固深化提高
1.活动内容:
(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?
A(学生思考、议论)
B总结归纳:可以确定其它三个内角的度数。
由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。
(2)练一练(P99随堂练习)
练1 如图:四边形ABCD是平行四边形。
(1)求∠ADC、∠BCD度数
(2)边AB、BC的度数、长度。
练2 四边形ABCD是平行四边形
(1)它的四条边中哪些线段可以通过平移相到得到?
(2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。
A 学生独立完成,上板
B 师生共同点评
C 参考答案
1.(1)56°124°
(2)25 30
2.(1)对边可以通过平移相互得到。
(2)AO=CO,DO=BO,可以通过全等三角形得到△AOD≌△COB,△ABO≌△CDO 归纳:平行四边形的性质:平行四边形的对角线互相平分。
2.活动目的:
通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。
3.活动效果:
1.学生经过通过此环节的议、练进一步理解和应用掌握了平行四边形的性质特征,是对探索归纳:比较的综合提高。
2.在学生练习2时,比较流畅的进行说理,并讲述并归纳平行四边形对角线平行的特征,因此此处可不必按课本程序。
第五环节评价反思概括总结
1.活动内容
[1]师生相互交流、反思、总结。
(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。
(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?
(3)本节学习到了什么?(知识上、方法上)
2.活动目的: