通用版2019年中考数学总复习:一元二次方程、分式方程的解法及应用--巩固练习(基础)

合集下载

九年级数学专题复习一元二次方程、分式方程

九年级数学专题复习一元二次方程、分式方程

总复习一元二次方程、分式方程【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为242b b acx a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.要点进阶:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点进阶:△≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,.要点进阶:(1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.(3)一元二次方程0c bx ax 2=++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题.(4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.要点进阶:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点进阶:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,使能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇. (6)和、差、倍、分问题 增长量=原有量×增长率; 现有量=原有量+增长量; 现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点进阶:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】 类型一、一元二次方程例1.阅读材料:为解方程222(1)5(1)40x x ---+=,我们可以将21x - 看作一个整体,然后设21x y -=,那么原方程可化为2540y y -+=……①, 解得11y =,24y =,当1y =时,211x -=,22x ∴=,2x ∴=±;当4y =时,214x -=,25x ∴=,5x ∴=±,故原方程的解为12x =,22x =-,35x =,45x =-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程4260x x --=.举一反三:【变式】设m 是实数,求关于x 的方程2320x mx x m --++=的根.例2.设x 1、x 2是方程2x 2+4x ﹣3=0的两个根,利用根与系数关系,求下列各式的值: (1)(x 1﹣x 2)2; (2).举一反三:【变式】已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.类型二、分式方程例3.解方程:11765556 222-++=-+-+ x xx xx x举一反三:【变式1】解方程:xxxxxxxx++-++=++-++ 21436587【变式2】解方程:7643165469 222x x x x x x ----+=--+例4.m为何值时,关于x的方程22432xmxx x-+-=+2会产生增根?举一反三:【变式】当m为何值时,方程会产生增根( )A. 2B. -1C. 3D.-3类型三、一元二次方程、分式方程的应用例5.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成.问规定日期是多少天?【变式】据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.例6.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队工程费共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.一、选择题1. 已知方程20x bx a++=有一个根是(0)a a-≠,则下列代数式的值恒为常数的是()A.ab B.abC.a b+ D.a b-2.方程x2+ax+1=0和x2﹣x﹣a=0有一个公共根,则a的值是()A.0 B.1 C.2 D.33.若方程2310x x--=的两根为1x、2x,则1211x x+的值为( ).A.3 B.-3 C.13D.13-4.如果关于x的方程2313xmxm-=--有增根,则的值等于()A. -3B. -2C. -1D. 35.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米 B.1.5米 C.2米D.2.5米6.关于x的方程2(6)860a x x--+=有实数根,则整数a的最大值是()A.6 B.7 C.8 D.9二、填空题7.方程﹣1=的解为8.关于x 的一元二次方程2(1)10m x mx --+=有两个不相等的实数根,则m 的取值范围是 .9.已知x 1=-1是方程052=-+mx x 的一个根,则m 的值为 ;方程的另一根x 2= .10.某市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为_____ ___.11.若关于x的方程 11-+x ax -1=0有增根,则a的值为 .12.当 k 的值是 时,方程 1-x x =xx x k --22 只有一个实数根.三、解答题13.解下列分式方程: (1); (2).14. 若关于x 的方程 12-x k - xx x -2 =x kx 1+ 只有一个解,试求k值与方程的解.15.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2010年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2012年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2010年到2012年,A 市三年共投资“改水工程”多少万元?16. 从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、.(1)求实数k 的取值范围;(2)设k t βα+=,求t 的最小值.题乙:如图(16),在矩形ABCD 中,P 是BC 边上一点,连结DP 并延长,交AB 的延长线于点Q .(1)若31=PC BP ,求AQ AB 的值; (2)若点P 为BC 边上的任意一点,求证1==BQ AB BP BC . 我选做的是_______题.图(16)PQ DC B A。

中考复习——一元二次方程及分式方程(附答案)

中考复习——一元二次方程及分式方程(附答案)

一元二次方程及分式方程专题训练一、填空题:(每题 3 分,共 36 分)1、当 a ____时,方程 (a-1) x2+x-2=0 是一元二次方程。

2、方程 2x (1+x)=3 的一般形式为_________。

3、当 x=____时,分式x+1x+2的值等于45。

4、方程 2x2=32 的解为____。

5、方程21-x2-1=11+x的解为____。

6、方程 x2-5x-6=0 可分解成____与____两个一元一次方程。

7、已知 m 是方程 x2-x-23=0 的一个根,则 m2-m=____。

8、2x2+4x+10=2 (x+___)2+____。

9、以-2 和 3 为根的一元二次方程为______(写出一个即可)。

10、如果方程 x2-3x+m=0 的一根为 1,那么方程的另一根为____。

11、如果方程x+1x-2-1=m2-x有增根,那么 m=____。

12、长 20m、宽 15m 的会议室,中间铺一块地毯,地毯的面积是会议室面积的12,若四周未铺地毯的留空宽度相同,则留空的宽度为____。

二、选择题:(每题 4 分,共 24 分)1、下列方程中是一元二次方程的是()A、x+3=5B、xy=3C、x2+1x=0 D、2x2-1=02、若关于 x 的方程2x-ax-1=1 无解,则 a 的值等于()A、0B、1C、2D、4 3、方程 2x (x-2)=3 (x-2) 的根是()A、x=32B、x=2C、x1=32,x2=2 D、x=-324、把方程 x2+3=4x 配方得()A、(x-2)2=7B、(x-2)2=1C、(x+2)2=1D、(x+2)2=25、某车间原计划 x 天内生产零件 50 个,由于采用新技术,每天多生产零件 5 个,因此提前3 天完成任务,则可列出的方程为()A、50x-3=50x-5 B、50x=50x-3-5 C、50x-3=50x-5 D、50x=50x-3-56、把一个小球以 20m/s 的速度竖直向上弹出,它在空中高度 h (m) 与时间 t (s) 满足关系:h=20t-5t2,当 h=20 时,小球的运动时间为()A、20sB、2sC、(22+2) sD、(22-2) s三、解下列方程:(每题 6 分,共 36 分)1、x (x+5)=24 2、2x2=(2+3) x 3、x2-4x=5 4、4 (x-1)2=(x+1)25、5x=7x-26、x+1x-1-1=4x2-1四、解答题:(每题 8 分,共 32 分)1、解关于 x 的方程ax-ab=1+x(a≠b)2、方程 x2+3x+m=0 的一个根是另一根的 2 倍,求 m 的值。

中考总复习一元二次方程分式方程的解法及应用--巩固练习

中考总复习一元二次方程分式方程的解法及应用--巩固练习

中考总复习一元二次方程分式方程的解法及应用--巩固练习一、一元二次方程的解法及应用1.解法一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b和c为已知常数,且a ≠ 0。

解一元二次方程可以通过以下步骤进行:- 求解判别式D = b^2 - 4ac的值,判别式D的值决定了方程的根的情况。

-当D>0时,方程有两个不相等的实数根。

-当D=0时,方程有两个相等的实数根。

-当D<0时,方程没有实数根。

-根据判别式D的值分情况讨论:-当D>0时,设方程的两个根为x1和x2,则有:x1=(-b+√D)/(2a),x2=(-b-√D)/(2a)。

-当D=0时,有一个重根,设方程的根为x,则有:x=-b/(2a)。

-当D<0时,方程没有实数根。

2.应用一元二次方程的应用非常广泛,涉及到物理、工程、经济等领域。

-物理:一元二次方程可以用于描述自由落体运动的高度、抛物线的轨迹等问题。

-工程:在建筑、土木等工程领域中,一元二次方程可以用于解决各种问题,如建筑物的最大高度、桥梁的弯曲等等。

-经济:在经济学中,一元二次方程可以用于解决收入、支出以及市场需求等问题。

二、分式方程的解法及应用1.解法分式方程是指含有分式表达式的方程。

解分式方程可以通过以下步骤进行:-化简分式方程,将其转化为简单的方程。

-求解方程,得到未知数的值。

-检验所得解是否满足原方程,若满足则为方程的解,否则无解。

2.应用分式方程的应用也非常广泛,主要用于解决涉及到分数的问题,如比例、扇形的面积等。

-比例:分式方程可以用于解决比例的问题,如已知两个量的比例关系,可以通过设未知数,列方程,求解来计算其中一个未知数的值。

-扇形的面积:分式方程可以用于求解扇形的面积。

通过设未知数,列方程,求解来计算扇形的半径、弧长等。

三、巩固练习以下是一些巩固练习题,以帮助你巩固一元二次方程和分式方程的解法及应用。

1.求解一元二次方程-2x^2+3x-2=0-x^2-5x+6=02.求解分式方程-(x+1)/(x-2)=1/3-(2x-3)/(x+4)-1/2=1/(x+4)3.应用题-一个矩形的长是宽的3倍,如果矩形的周长是32,求矩形的长和宽。

初二数学下《一元二次方程》全章复习与巩固—知识讲解(基础)+巩固练习

初二数学下《一元二次方程》全章复习与巩固—知识讲解(基础)+巩固练习

《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法. 要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆ (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.【高清ID 号:388528 关联的位置名称(播放点名称):根系关系】 2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释: 1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等); 设 (设未知数,有时会用未知数表示相关的量); 列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义); 答 (写出答案,切忌答非所问). 4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x+=B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --=【答案】C ;【解析】A :不是整式方程,故本选项错误;B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程; 故本选项错误;C :由原方程,得x 2+x-3=0,符号一元二次方程的要求;故本选项正确;D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2; (2)二次项系数不为0; (3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【高清ID 号:388528 关联的位置名称(播放点名称):利用定义求字母的值】 【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程. 【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2-=0; (2) (x+a)2=;(3) 2x2-4x-1=0; (4) (1-)x2=(1+)x.【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t =1. 【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0. ∴ 3x-2=0或3x-3=0,∴ 123x =,21x =. (2)原方程可化为:2(t-1)2+(t-1)=0. ∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0. ∴ 11t =,212t =.类型三、一元二次方程根的判别式的应用3.( •荆门)若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( ) A .a ≥1 B . a >1 C . a ≤1 D .a <1 【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0, ∴a ≥1. 故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式.【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题. 举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=. ∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm ,由题意得4x 2=10×8×(1-80%).解得x 1=2,x 2=-2.经检验,x 1=2符合题意,x 2=-2不符合题意舍去. ∴ x =2.答:截去的小正方形的边长为2cm .【总结升华】设小正方形的边长为x cm ,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%. 举一反三:【变式】( 春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在欲砌50m 长的墙,砌成一个面积300m 2的矩形花园,则BC 的长为多少 m?【答案】解:设AB=x 米,则BC=(50﹣2x )米. 根据题意可得,x (50﹣2x )=300, 解得:x 1=10,x 2=15,当x=10,BC=50﹣10﹣10=30>25, 故x 1=10(不合题意舍去), 50﹣2x=50﹣30=20. 答:BC 的长为20m .6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元? 【答案与解析】设每床每晚提高x 个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张, 根据题意,得(10+2x)(100-10x)=1120.整理,得x 2-5x+6=0. 解得,x 1=2,x 2=3. ∴ 当x =2时,2x =4; 当x =3时,2x =6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x 个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张, 则出租出去的总床位为(100-10x)张,据此可列方程.《一元二次方程》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题1.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定 2.若一元二次方程式ax (x +1)+(x +1)(x +2)+bx (x +2)=2的两根为0.2,则|3a +4b |之值为何( )A .2B .5C .7D .8 3.( •濠江区一模)某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( ) A .2% B . 5% C . 10% D . 20%4.将代数式x 2+4x-1化成(x+p )2+q 的形式( )A.(x-2)2+3B.(x+2)2-4C.(x+2)2-5D.(x+2)2+4 5.若关于x 的一元二次方程2210kx x ++=有实数根,则k 的取值范围是( ). A .k <0 B .k ≤0 C .k ≠1且k ≠0 D .k ≤1且k ≠06.从一块正方形的铁片上剪掉2 cm 宽的长方形铁片,剩下的面积是48 cm 2,则原来铁片的面积是( )A.64 cm 2B.100 cm 2C.121 cm 2D.144 cm 27.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定 8.如果关于x 的方程ax 2+x-1=0有实数根,则a 的取值范围是( )A .B .C .且D .且二、填空题9.已知关于x 的方程x 2+mx ﹣6=0的一个根为2,则m = ,另一个根是 . 10.( 秋•青海校级期末)有一间长20m ,宽15m 的矩形会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则地毯的长、宽分别为 和 .11.关于x 的一元二次方程22(1)10a x x a -++-=有一个根为0,则a = .12.阅读材料:设一元二次方程似20ax bx c ++=(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:12bx x a+=-,12c x x a=,根据该材料填空:已知x 1,x 2是方程2630x x ++=的两实数根,则2112x x x x +的值为________. 13.已知两个连续奇数的积是15,则这两个数是___________________.14.设x 1,x 2是一元二次方程x 2-3x-2=0的两个实数根,则2211223x x x x ++的值为________.15.问题1:设a 、b 是方程x 2+x -2012=0的两个实数根,则a 2+2a +b 的值为 ;问题2:方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1―1)(x 2―1)= ; 问题3:已知一元二次方程x 2-mx +m -2=0的两个实数根为x 1、x 2且x 1x 2(x 1+x 2)=3,则m 的值是 ;问题4:已知一元二次方程x 2-2x+m=0,若方程的两个实数根为X 1,X 2,且X 1+3X 2=3,则m 的值是 . 16.某校2010年捐款1万元给希望工程,以后每年都捐款,计划到2012年共捐款4.75万元,则该校捐款的平均年增长率是 .三、解答题17.某两位数的十位数字与个位上的数字之和是5,把这个数的个位上的数字与十位上的数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数.18. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.19.( •十堰)已知关于x 的一元二次方程x 2﹣(2m+3)x+m 2+2=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图像的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元?【答案与解析】一、选择题1.【答案】B;【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.2.【答案】B;【解析】先根据一元二次方程式ax(x+1)+(x+1)(x+2)+bx(x+2)=2的根确定a.b的关系式.然后根据a.b的关系式得出3a+4b=-5.用求绝对值的方法求出所需绝对值.3.【答案】D;【解析】设平均每月增长的百分率为x,根据题意,得50(1+x)2=72,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)故选D.4.【答案】C;【解析】根据配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.x2+4x-1=x2+4x+4-4-1=(x+2)2-5,故选C.5.【答案】D;【解析】因为方程是一元二次方程,所以k≠0,又因为一元二次方程有实数根,所以△≥0,即△=4-4k≥0,于是有k≤1,从而k的取值范围是k≤1且k≠0.6.【答案】A;【解析】本题用间接设元法较简便,设原铁片的边长为xcm.由题意,得x(x-2)=48,解得x1=-6(舍去),x2=8.∴x2=64,即正方形面积为64 cm2.7.【答案】A;【解析】由t是方程的根得at2+bt+c=0,M=4a2t2+4abt+b2=4a(at2+bt)+b2= b2-4ac=△.8.【答案】B;【解析】注意原方程可能是一元二次方程,也可能是一元一次方程.二、填空题9.【答案】1;﹣3.【解析】根据一元二次方程的解定义,将x=2代入关于x的方程x2+mx﹣6=0,然后解关于m的一元一次方程;再根据根与系数的关系x 1+x 2=﹣ba解出方程的另一个根. 10.【答案】 15m ,10m ;【解析】设留空宽度为xm ,则(20﹣2x )(15﹣2x )=20×15×, 整理得:2x 2﹣35x+75=0,即(2x ﹣5)(x ﹣15)=0,解得x 1=15,x 2=2.5, ∵20﹣2x >0,∴x<10, ∴x=2.5,∴20﹣2x=15,15﹣2x=10.∴地毯的长、宽分别为15m 和10m . 11.【答案】-1;【解析】把x=0代入方程得1a =±,因为10a -≠,所以1a =-. 12.【答案】10;【解析】此例首先根据阅读部分,明确一元二次方程根与系数的关系,然后由待求式2112x x x x +变形为2221212121212()2x x x x x x x x x x ++-=,再整体代换. 具体过程如下:由阅读材料知 x 1+x 2=-6,x 1x 2=3.而222221121212121212()2(6)23103x x x x x x x x x x x x x x ++---⨯+====. 13.【答案】3和5或-3和-5;【解析】注意不要丢解. 14.【答案】7;【解析】∵ x 1,x 2是一元二次方程2320x x --=的两实数根, ∴ x 1+x 2=3,x 1x 2=-2∴ 222222112211*********(2)()3(2)7x x x x x x x x x x x x x x ++=+++=++=+-=15.【答案】2011;-2;m=-1或3;m=34. 【解析】由于a ,b 是方程x 2+x-2012=0的两个实数根,根据根与系数的关系可以得到a+b=-1,并且a 2+a-2012=0,然后把a 2+2a+b 可以变为a 2+a+a+b ,把前面的值代入即可求出结果.16.【答案】50%; 【解析】设该校捐款的平均年增长率是x ,则,整理,得,解得,答:该校捐款的平均年增长率是50%.三、解答题17.【答案与解析】设原两位数的十位数字为x,则个位数字为(5-x),由题意,得[10x+(5-x)][10(5-x)+x]=736.整理,得x2-5x+6=0,解得x1=2,x2=3.当x=2时5-x=3,符合题意,原两位数是23.当x=3时5-x=2符合题意,原两位数是32.18.【答案与解析】设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.19.【答案与解析】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.20.【答案与解析】⑴若商店经营该商品不降价,则一天可获利润100×(100-80)=2000(元)⑵ ①依题意得:(100-80-x)(100+10x)=2160即x2-10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=(100-80-x)(100+10x)∴y= -10x2+100x+2000=-10(x-5)2+2250画草图(略)观察图像可得:当2≤x≤8时,y≥2160∴当2≤x≤8时,商店所获利润不少于2160元.。

2019编辑2019年全国中考数学真题分类汇编:一元二次方程和应用(含答案).doc

2019编辑2019年全国中考数学真题分类汇编:一元二次方程和应用(含答案).doc

2019年全国中考数学真题分类汇编:一元二次方程及应用一、选择题1.(2019年山东省滨州市)用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3【考点】解一元二次方程【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.2. (2019年四川省达州市)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【考点】一元二次方程的应用【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.3. (2019年广西贵港市)若α,β是关于x的一元二次方程x2-2x+m=0的两实根,且+=-,则m等于()A. B. C. 2 D. 3【考点】一元二次方程根与系数的关系【解答】解:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵+===-,∴m=-3;故选:B.4. (2019年江苏省泰州市)方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于()A .-6B .6C .-3D . 3 【考点】一元二次方程根与系数的关系【解答】试题分析:∵一元二次方程2x 2+6x -1=0的两个实根分别为x 1,x 2,由两根之和可得; ∴x 1+x 2=﹣26=3, 故答案为:C .5. (2019年河南省)一元二次方程(x +1)(x ﹣1)=2x +3的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根【考点】一元二次方程根的判别式【解答】解:原方程可化为:x 2﹣2x ﹣4=0, ∴a =1,b =﹣2,c =﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0, ∴方程由两个不相等的实数根. 故选:A .6. (2019年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿 线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区 居民年人均收入平均增长率为 .(用百分数表示) 【考点】一元二次方程的应用【解答】解:设该地区居民年人均收入平均增长率为x , 20000(1+x )2=39200,解得,x 1=0.4,x 2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%, 故答案为:40%.7. (2019年甘肃省)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或0【考点】一元二次方程的解【解答】解:把x =﹣1代入方程得:1+2k +k 2=0, 解得:k =﹣1, 故选:A .8. (2019年湖北省鄂州市)关于x 的一元二次方程x 2﹣4x +m =0的两实数根分别为x 1、x 2,且x1+3x2=5,则m的值为()A.B.C.D.0【考点】一元二次方程根与系数的关系【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.9. (2019年湖北省荆州市)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】一元二次方程根的判别式【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.10. (2019年黑龙江省伊春市)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.7【考点】一元二次方程的应用【解答】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.11. (2019年内蒙古包头市)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,则m的值是()A.34 B.30 C.30或34 D.30或36【考点】一元二次方程根与系数的关系【解答】解:当a=4时,b<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.12. (2019年内蒙古赤峰市)某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900 B.400(1+2x)=900C.900(1﹣x)2=400 D.400(1+x)2=900【考点】一元二次方程的应用【解答】解:设月平均增长率为x,根据题意得:400(1+x)2=900.故选:D.13. (2019年内蒙古呼和浩特市)若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为()A.﹣2 B.6 C.﹣4 D.4【考点】一元二次方程的根与系数的关系【解答】解:∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,x12+x1=3,∴x22﹣4x12+17=x12+x22﹣5x12+17=(x1+x2)2﹣2x1x2﹣5x12+17=(﹣1)2﹣2×(﹣3)﹣5x12+17=24﹣5x22=24﹣5(﹣1﹣x1)2=24﹣5(x12+x1+1)=24﹣5(3+1)=4,故选:D.14. (2019年内蒙古通辽市)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或80【考点】一元二次方程的应用【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.15. (2019年新疆)若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1【考点】一元二次方程根的判别式【解答】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.16.(2019年新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为()A.x(x﹣1)=36 B.x(x+1)=36C.x(x﹣1)=36 D.x(x+1)=36【考点】一元二次方程的应用【解答】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.二、填空题1.(2019年上海市)如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【考点】一元二次方程根的判别式【解答】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.2. (2019年山东省济宁市)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.【考点】一元二次方程的根与系数的关系【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.3. (2019年山东省青岛市)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【考点】一元二次方程根的判别式【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.4. (2019年山东省枣庄市)已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是.【考点】一元二次方程根的判别式【解答】解:由关于x的方程ax2+2x﹣3=0有两个不相等的实数根得△=b 2﹣4ac =4+4×3a >0, 解得a > 则a >且a ≠0故答案为a >且a ≠05. (2019年四川省资阳市)a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 . 【考点】一元二次方程的解【解答】解:∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.6. (2019年江苏省泰州市)若关于x 的方程x 2+2x +m =0有两个不相等的实数根,则m 的取值范围是 .【考点】一元二次方程根的判别式【解答】∵关于x 的方程x 2+2x +m =0有两个不相等的实数根,∴△=4﹣4m >0 解得:m <1,∴m 的取值范围是m <1. 故答案为:m <1.7. (2019年江苏省扬州市)一元二次方程()22-=-x x x 的根为___.【考点】一元二次方程的解法 【解答】解:()22-=-x x x()()021=--x x x 1=1, x 2=28. (2019年湖北省十堰市)对于实数a ,b ,定义运算“◎”如下:a ◎b =(a +b )2﹣(a ﹣b )2.若(m +2)◎(m ﹣3)=24,则m = .【考点】一元二次方程的解法【解答】解:根据题意得[(m +2)+(m ﹣3)]2﹣[(m +2)﹣(m ﹣3)]2=24, (2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0, 2m ﹣1+7=0或2m ﹣1﹣7=0,所以m 1=﹣3,m 2=4. 故答案为﹣3或4.9. (2019年甘肃省武威市)关于x 的一元二次方程x 2+x +1=0有两个相等的实数根,则m 的取值为 .【考点】一元二次方程根的判别式 【解答】解:由题意,△=b 2﹣4ac =()2﹣4=0得m =4 故答案为410. (2019年辽宁省本溪市)如果关于x 的一元二次方程x 2﹣4x +k =0有实数根,那么k 的取值范围是 .【考点】一元二次方程根的判别式 【解答】解:根据题意得:△=16﹣4k ≥0, 解得:k ≤4. 故答案为:k ≤4.11. (2019年西藏)一元二次方程x 2﹣x ﹣1=0的根是 . 【考点】一元二次方程的解法【解答】解:△=(﹣1)2﹣4×(﹣1)=5, x =,所以x 1=,x 2=.故答案为x 1=,x 2=.三、解答题1.(2019年安徽省)解方程2x 1=4-()【考点】一元二次方程的解法【解答】利用直接开平方法:x-1=2或x-1=-2 ∴ , 2.(2019年北京市)关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.【考点】一元二次方程根的判别式、一元二次方程的解法【解答】∵01222=-+-m x x 有实数根,∴△≥0,即0)12(4)2(2≥---m ,∴1≤m∵m 为正整数,∴1=m ,故此时二次方程为,0122=+-x x 即0)1(2=-x∴121==x x ,∴1=m ,此时方程的根为121==x x3.(2019年乐山市)已知关于x 的一元二次方程04)4(2=++-k x k x . (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足431121=+x x ,求k 的值; (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根1x 、2x ,求∆Rt ABC的内切圆半径.【考点】一元二次方程根的判别式、一元二次方程的解法、一元二次方程根与系数关系、内切圆 【解答】(1)证明: 0)4(16816)4(222≥-=+-=-+=∆k k k k k ,∴无论k 为任何实数时,此方程总有两个实数根.(2)由题意得:421+=+k x x ,k x x 421=⋅, 431121=+x x,432121=⋅+∴x x x x ,即4344=+k k , 解得:2=k ;(3)解方程得:41=x ,k x =2,根据题意得:22254=+k ,即3=k , 设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理可得:5)4()3(=-+-r r ,∴直角三角形ABC 的内切圆半径r =12543=-+;4.(2019年重庆市)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,64月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.【考点】一元一次方程的应用与解法、一元二次方程的应用与解法【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.由题意得100(1﹣%)•200(1+2a%)+160(1﹣%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.5. (2019年山东省德州市)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.【考点】一元二次方程的应用与解法【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x )+128(1+x )2=608 化简得:4x 2+12x -7=0 ∴(2x -1)(2x +7)=0, ∴x =0.5=50%或x =-3.5(舍)答:进馆人次的月平均增长率为50%. (2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×=432<500答:校图书馆能接纳第四个月的进馆人次.6. (2019年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚 熟芒果远销北上广等大城市。

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)与例题讲解

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)与例题讲解

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(基础)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2. 会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20axbx c ++=(a ≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x=;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20axbx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程20axbx c ++=,当240b ac -≥时,它的解为242b b ac x a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根; △=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么acx x ab x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程. 2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率×100%.=利润成本价明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:2213x x +=【思路点拨】把二次项系数化为1,常数项右移,方程两边都加上一次项系数一半的平方,再用直接开平方法解出未知数的值. 【答案与解析】移项,得2231xx -=-二次项系数化为1,得23122xx -=- 配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 由此可得3144x -=±11x =,212x =【总结升华】用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.举一反三:【变式】用配方法解方程x2-7x-1=0.【答案】将方程变形为x2-7x=1,两边加一次项系数的一半的平方,得x2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为 x=7+532或x=7-532.2.(2018•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【思路点拨】判别式大于0,二次项系数不等于0.【答案与解析】(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,,x2=1,x1=2m∵方程有两个不相等的正整数根,∴m=1或2,∵m=2不合题意,∴m=1.【总结升华】(1)注意隐含条件m≠0;(2)注意整数根的限制条件的应用,求出m的值,要验证m的值是否符合题意.举一反三:【变式】已知关于x 的方程2(2)210xm x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解. 【答案】(1)证明:因为△=)12(4)2(2--+m m =4)2(2+-m所以无论m 取何值时, △>0,所以方程有两个不相等的实数根.(2)解:因为方程的两根互为相反数,所以021=+x x,根据方程的根与系数的关系得02=+m ,解得2-=m ,所以原方程可化为052=-x,解得51=x ,52-=x .类型二、分式方程3.(2018•贺州)解分式方程:=﹣.【思路点拨】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【答案与解析】解:方程两边同乘以(2x+1)(2x ﹣1),得 x+1=3(2x-1)-2(2x+1)x+1=2x-5, 解得x=6.检验:x=6是原方程的根. 故原方程的解为:x=6.【总结升华】首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根. 举一反三:【变式1】解分式方程:21233x x x -+=--. 【答案】方程两边同乘以3x -,得 22(3)1x x -+-=.2261x x -+-=.5x =.经检验:5x =是原方程的解,所以原方程的解是5x =.【一元二次方程、分式方程的解法及应用 :例1(1)】 【变式2】方程22123=-+--xx x 的解是x= .【答案】0x =.4.若解分式方程2111(1)x m x x x x x++-=++产生增根,则m 的值是( ) A.B. C. D.【思路点拨】先把原方程化为整式方程,再把可能的增根分别代入整式方程即可求出m 的值.【答案】D ;【解析】由题意得增根是:化简原方程为:把代入解得2m =-或1, 故选择D.【总结升华】分式方程产生的增根,是使分母为零的未知数的值.举一反三:【一元二次方程、分式方程的解法及应用:例1(2)-例2】【变式】若关于x 的方程2332+-=--x m x x 无解,则m 的值是 .【答案】1.类型三、一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.【思路点拨】在航行问题中的等量关系是“顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度”,两次航行提供了两个等量关系.【答案与解析】设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时由题意,得解得:经检验:是原方程的根x y x y ==⎧⎨⎩==⎧⎨⎩173173答:水流速度为3千米/小时,船在静水中的速度为17千米/小时. 【总结升华】流水问题公式:顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度;静水速度=(顺流速度+逆流速度)÷2;水流速度=(顺流速度-逆流速度)÷2.举一反三:【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?【答案】设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树,由题意得:答:甲班每小时种树20棵,乙班每小时种树22棵.6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【思路点拨】设该产品的成本价平均每月降低率为x,那么两个月后的(1+6%),两个月后的成本价为500(1-x)销售价格为625(1-20%)2,然后根据已知条件即可列出方程,解方程即可求出结果.【答案与解析】设该产品的成本价平均每月应降低的百分数为x.625(1-20%)(1+6%)-500(1-x)2=625-500整理,得500(1-x)2=405,(1-x)2=0.81.1-x=±0.9,x=1±0.9,x1=1.9(舍去),x2=0.1=10%.答:该产品的成本价平均每月应降低10%.【总结升华】题目中该产品的成本价在不断变化,销售价也在不断变化,•要求变化后的销售利润不变,即利润仍要达到125元,•关键在于计算和表达变动后的销售价和成本价.。

中考数学一元二次方程与分式方程专题练习含解析

中考数学一元二次方程与分式方程专题练习含解析

一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的范围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是m≠±2.【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值范围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值范围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值范围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16.【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD 的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是2.【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0;若关于x的方程﹣1=0无实根,则a的值为±1.【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b 的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据CN的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形CNP中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。

中考总复习一元二次方程分式方程的解法及应用--知识讲解

中考总复习一元二次方程分式方程的解法及应用--知识讲解

中考总复习一元二次方程分式方程的解法及应用--知识讲解一、一元二次方程的解法一元二次方程是指一个未知数的平方最高次数为2的方程。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为已知常数,且a≠0。

解一元二次方程的方法有以下几种:1.因式分解法:对方程进行因式分解,然后令每个因式等于0,求解得到方程的解。

2. 公式法:利用求根公式(-b±√(b^2-4ac))/2a,计算出方程的根。

3.完全平方式:对一元二次方程进行配方处理,将其化为完全平方的形式,然后求解。

4.图像法:将方程的解与图像相结合,通过观察图像的交点来确定方程的解。

二、一元二次方程的应用1.抛物线问题:一元二次方程常用来描述抛物线的形状与运动轨迹。

在物理学、工程学等领域中,抛物线的特性与运动轨迹有很多应用。

2.几何问题:一元二次方程可以用来解决与几何问题相关的计算和推理。

如求解一个平面图形的面积、找到一个图形的对称轴等。

3.速度问题:一元二次方程可以用来描述具有变速度的运动过程。

在物理学和运动学中,可以通过一元二次方程来计算运动物体的速度、加速度等相关参数。

4.财务问题:一元二次方程可以用来解决与财务相关的问题,如计算利润、成本和销售量之间的关系等。

5.人口增长问题:一元二次方程可以用来描述人口增长的模型。

通过一元二次方程的解,可以预测人口增长的趋势和规律。

总结:一元二次方程是数学中常见的一种方程形式,掌握解一元二次方程的方法对于提高数学学习的能力和解决实际问题具有重要意义。

在解题过程中,要根据具体情况选择合适的方法,并灵活运用数学知识解决问题。

人教版初三数学:一元二次方程的解法(三)--公式法,因式分解法—巩固练习(基础)

人教版初三数学:一元二次方程的解法(三)--公式法,因式分解法—巩固练习(基础)

一元二次方程的解法(三)--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题 1.(2016•厦门)方程x 2﹣2x=0的根是( ) A .x 1=x 2=0 B .x 1=x 2=2 C .x 1=0,x 2=2 D .x 1=0,x 2=﹣2 2.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =- 3.一元二次方程2340x x +-=的解是( )A .11x =;24x =-B .11x =-;24x =C .11x =-;24x =-D .11x =;24x = 4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 6.已知210x x --=,则3222012x x -++的值为 ( )A . 2011B .2012C . 2013D .2014 二、填空题7.(2015•厦门)方程x 2+x =0的解是___ _____; 8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________.12.(2016•随州)已知等腰三角形的一边长为9,另一边长为方程x 2﹣8x +15=0的根,则该等腰三角形的周长为 .三、解答题 13.(2014秋•宝坻区校级期末)解方程 (1)2(x ﹣3)2=8(直接开平方法) (2)4x 2﹣6x ﹣3=0(运用公式法) (3)(2x ﹣3)2=5(2x ﹣3)(运用分解因式法) (4)(x+8)(x+1)=﹣12(运用适当的方法)14. 用因式分解法解方程(1)x 2-6x-16=0. (2) (2x+1)2+3(2x+1)+2=0.15.(1)利用求根公式完成下表:(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.【答案与解析】 一、选择题 1.【答案】C【解析】解:x 2﹣2x=0,x (x ﹣2)=0,解得:x 1=0,x 2=2.故选:C . 2.【答案】C ;【解析】整理得x 2-x-2=0,∴ (x-2)(x+1)=0. 3.【答案】A ;【解析】可分解为(x-1)(x+4)=0 4.【答案】B ;【解析】要设法找到两个数a ,b ,使它们的和a+b =-5,积ab =-6, ∴ (x+1)(x-6)=0,∴ x+1=0或x-6=0. ∴ x 1=-1,x 2=6. 5.【答案】D ;【解析】此方程左右两边含有相同的因式(x-5),应移项后用因式分解法求解.即(x-5)(x-6)-(x-5)0.∴ (x-5)(x-6-1)=0,∴ 15x =,27x =6.【答案】C ;【解析】由已知得x 2-x =1,∴ 322222012()20122012120122013x x x x x x x x 2-++=--++=-++=+=.二、填空题 7.【答案】x 1=0,x 2=-1.【解析】可提公因式x ,得x(x+1)=0.∴ x =0或x+1=0,∴ x 1=0,x 2=-1. 8.【答案】x 1=1,x 2=-2,x 3=3.【解析】由x-1=0或x+2=0或x-3=0求解.9.【答案】2320x x -+=;【解析】逆用因式分解解方程的方法,两根为1、2的方程就是(x-1)(x-2)=0,然后整理可得答案. 10.【答案】4;【解析】 m 应是一个整数的平方,此题可填的数字很多. 11.【答案】2;【解析】由(x 2+y 2)2-(x 2+y 2)-2=0得(x 2+y 2+1)(x 2+y 2-2)=0又由x ,y 为实数,∴ x 2+y 2>0,∴ x 2+y 2=2.12.【答案】19或21或23.【解析】由方程x 2﹣8x +15=0得:(x ﹣3)(x ﹣5)=0, ∴x ﹣3=0或x ﹣5=0, 解得:x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21; 当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去; 当等腰三角形的三边长为9、5、5时,其周长为19; 综上,该等腰三角形的周长为19或21或23. 三、解答题 13. 【解析】解:(1)(x ﹣3)2=4x ﹣3=2或x ﹣3=﹣2, 解得,x 1=1或x 2=5; (2)a=4,b=﹣6,c=﹣3,b 2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x ﹣3)2﹣5(2x ﹣3)=0,因式分解得,(2x ﹣3)(2x ﹣3﹣5)=0,,x 2=4;(4)化简得,x 2+9x+20=0, (x+4)(x+5)=0,解得,x 1=﹣4,x 2=﹣5.14. 【解析】(1)(x-8)(x+2)=0,∴ x-8=0或x+2=0, ∴ 18x =,22x =-.(2)设y =2x+1,则原方程化为y2+3y+2=0,∴ (y+1)(y+2)=0,∴ y+1=0或y+2=0, ∴ y =-1或y =-2.当1y =-时,211x +=-,1x =-;当2y =-时,212x +=-,32x =-. ∴ 原方程的解为11x =-,232x =-.15.【解析】 (1)方程24b ac -的值24b ac -的符号(填>0,=0,<0) 1x ,2x 的关系(填“相等”“不等”或“不存在”)2230x x --= 16 >0 不等 2210x x -+= 0 =0 相等 2230x x -+=-8<0不存在(2)①当240b ac ->时,方程有两个不相等的实数根; ②当240b ac -=时,方程有两个相等的实数根; ③当240b ac -<时,方程没有实数根. (3)242015b ac m -=-,①当原方程有两个不相等的实数根时,2420150b ac m -=->,即34m >且m ≠2; ②当原方程有两个相等的实数根时,b 2 -4ac =20m -15=0,即34m =; ③当原方程没有实数根时, 2420150b ac m -=-<,即34m <.附录资料: 《相似》全章复习与巩固--巩固练习(基础)【巩固练习】 一、选择题1.(2015•乐山)如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知,则的值为( )A.B.C.D.2. (2016•奉贤区一模)用一个4倍放大镜照△ABC,下列说法错误的是()A.△ABC放大后,∠B是原来的4倍B.△ABC放大后,边AB是原来的4倍C.△ABC放大后,周长是原来的4倍D.△ABC放大后,面积是原来的16倍3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是( )4.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是,则点B的横坐标是()A.B. C.D.5.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( ) A.1个B.2个 C.3个 D.4个6. 如图,在正方形ABCD中,E是CD的中点,P是BC边上的点,下列条件中不能推出△ABP与以点E、C、P为顶点的三角形相似的是( )A.∠APB=∠EPC B.∠APE=90° C.P是BC的中点D.BP:BC=2:37. 如图,在△ABC中,EF∥BC,12AEEB,,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.138.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是()A.∠E=2∠K B.BC=2HIC.六边形ABCDEF的周长=六边形GHIJKL的周长D.S六边形ABCDEF=2S六边形GHIJKL二、填空题9. (2016•衡阳)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.10. 如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的面积之比为_______,•△CFG与△BFD的面积之比为________.11. 如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△BOC=_______.12. 在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在面上的影长为40米,则古塔高为________.13. (2015•金华)如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是.14.如图,在△ABC中,MN∥BC,若∠C=68°,AM:MB=1:2,则∠MNA=_______度,AN:NC=_____________.15.如图,点D,E分别在AB、AC上,且∠ABC=∠AED。

(通用版)2019年中考数学总复习-题型集训(5)—解一元二次方程及分式方程课件

(通用版)2019年中考数学总复习-题型集训(5)—解一元二次方程及分式方程课件

独家教育资源为你2提供,thank you
7.解方程:23xx+-99=4xx--37+2. 解:去分母得 2x+9=3(4x-7)+6(x-3), 整理得-16x=-48,解得 x=3. 检验:当 x=3 时,3(x-3)=0, 则 x=3 是原方程的增根.故原方程无解.
独家教育资源为你2提供,thank you
独家教育资源为你2提供,thank you
5.(2018·南通)解方程:x+x 1=3x2+x 3+1.
解:方程两边都乘 3(x+1),得:3x-2x=3(x+1), 解得:x=-32,经检验 x=-32是方程的解, ∴原方程的解为 x=-32.
独家教育资源为你2提供,thank you
6.(2018·贺州)解分式方程:x2-4 1+1=xx- +11. 解:去分母得:4+x2-1=x2-2x+1, 解得:x=-1,经检验 x=-1 是增根,分式方程无解.
17,x2=3-4
17 .
独家教育资源为你2提供,thank you
4.解下列方程:(x+3)2-8(x+3)+16=0. 解:(x+3)2-8(x+3)+16=0,设 x+3=a, 则原方程化为 a2-8a+16=0,(aห้องสมุดไป่ตู้4)2=0, 解得:a1=a2=4,即 x+3=4,x=1, 即原方程的解为 x1=x2=1.
2.解方程:(x-1)(x-3)=8. 解:原方程变形为:x2-4x-5=0,(x-5)(x+1)=0, x1=5,x2=-1.
独家教育资源为你2提供,thank you
3.解方程:2x2-3x-1=0.
解:2x2-3x-1=0,a=2,b=-3,c=-1,
∴Δ=9+8=17,∴x=3±4 17,x1=3+4

2019中考数学基础部分专题复习专题七 一元二次方程及应用

2019中考数学基础部分专题复习专题七  一元二次方程及应用

2019中考数学基础部分专题复习专题七 一元二次方程及应用一、考点扫描1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)2.一元二次方程的解法:直接开平方法⑴ 配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m )2=n 的形式;⑤如果n ≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵ 公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0) ⑶ 因式分解法:因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x 的方程(k 2-1)x 2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵ 应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a 、b 、c 的值;③求出b 2-4ac 的值;④若b 2-4ac ≥0,则代人求根公式,求出x 1 ,x 2.若b 2-4a <0,则方程无解.⑶ 方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4⑷ 注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.4.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.5.注重.解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性. 二、考点训练1、下列方程中,关于x 的一元二次方程是( )2222211.3(1)2(1) .20.0 .21A x xB x yC ax bx cD x x x +=++-=++=+=- 2、已知方程5x 2+kx -10=0一个根是-5,则它的另一个根为 .3、关于x 的一元二次方程22(1)2m x x m m +++- 30-=,则m 的值为( )A .m=3或m=-1 B. .m=-3或m= 1C .m=-1D .m=-34、方程(3)(3)x x x +=+解是( )A .x 1=1B .x 1=0, x 2=-3C .x 1=1,x 2=3D .x 1=1, x 2=-35、若t 是一元二次方程ax 2+bx+c=0(a ≠0)的根,则判别式Δ=b 2-4ac 和完全平方式M=(2at+b)2的关系是( )A .Δ=MB .Δ>MC .Δ<MD .大小关系不能确定6、已知x 1、x 2是方程x 2-3x +1 =0的两个实数根,则1x 1+1x 2的值是( ) A 、3 B 、-3 C 、13D 、1 7、用换元法解方程(x 2-x)-x 2-x =6时,设x 2-x =y ,那么原方程可化为( )A. y 2+y -6=0B. y 2+y +6=0C. y 2-y -6=0D. y 2-y +6=08、已知关于x 的方程221(3)04x m x m --+=有两个不相等的实根,那么m 的最大整数是( )A .2B .-1C .0D .l “三、例题剖析1、等腰△ABC 中,BC=8,AB 、BC 的长是关于x 的方程x 2-10x+m= 0的两根,则m 的值是________.2、两个数的和为6,差(注意不是积)为8,以这两个数为根的一元二次方 程是__________3、关于x 的一元二次方程ax 2 +2x+1=0的两个根同号,则a 的取值范围是 _______________4、某水果批发商场经销一种高档水果 如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?5、某书店老板去批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,并很快售完.由于该书畅销,第二次购书时,每本的批发价比第一次高0.5元,用去了150元,所购书数量比第一次多10本,当这批书售出45时,出现滞销,便以定价的5折售完剩余的图书.试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其他因素片若赔钱,赔多少?若赚钱,赚多少?。

通用版2019年中考数学总复习:一元二次方程、分式方程的解法及应用--巩固练习(提高)

通用版2019年中考数学总复习:一元二次方程、分式方程的解法及应用--巩固练习(提高)

中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(提高)【巩固练习】一、选择题1. 已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A .abB .a bC .a b +D .a b - 2.(2015•泰安模拟)方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,则a 的值是( )A .0B .1C .2D .3 3.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ). A .3 B .-3 C .13 D .13- 4.如果关于x 的方程2313x m x m -=--有增根,则的值等于() A. B. C. D. 35.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .9 二、填空题7.(2015•平房区二模)方程﹣1=的解为8.关于x 的一元二次方程2(1)10m x m x --+=有两个不相等的实数根,则m 的取值范围是 .9.已知x 1=-1是方程052=-+mx x 的一个根,则m 的值为 ;方程的另一根x 2= .10.某市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为_____ ___.11.若关于x的方程 11-+x ax -1=0有增根,则a的值为 . 12.当 k 的值是 时,方程1-x x =x x x k --22 只有一个实数根.三、解答题13.(2015•宝应县校级模拟)解下列分式方程:(1);(2).14. 若关于x 的方程12-x k - xx x -2 =x kx 1+ 只有一个解,试求k值与方程的解. 15.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2010年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以 后每年以相同的增长率投资,2012年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2010年到2012年,A 市三年共投资“改水工程”多少万元?16. 从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、.(1)求实数k 的取值范围;(2)设k t βα+=,求t 的最小值.题乙:如图(16),在矩形ABCD 中,P 是BC 边上一点,连结DP 并延长,交AB 的延长线于点Q .(1)若31=PC BP ,求AQ AB 的值; (2)若点P 为BC 边上的任意一点,求证1==BQ AB BP BC .我选做的是_______题.【答案与解析】一、选择题1.【答案】D ;【解析】将-a 代入20x bx a ++=中,则a 2-ab+a=0,则a -b+1=0∴a -b=-1(恒为常数). 2.【答案】C ;【解析】∵方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,∴(a+1)x+a+1=0,解得x=﹣1,当x=﹣1时,a=2,故选C .3.【答案】B ; 【解析】121212113=31x x x x x x ++==--. 4.【答案】B ;【解析】把方程两边都乘以若方程有增根,则x=3,即5+m=3,m=-2.5.【答案】A ;【解析】如图将路平移,设路宽为x 米,可列方程为:(30-x )(20-x )=551,解得:x=1或者x=49(舍去).6.【答案】C ;【解析】由题意得方程有实数根,则分两种情况,当a -6=0时,a=6,此时x=34, 当a -6≠0时,△=b 2-4ac ≥0,解得a ≤263 , 综合两种情况得整数a 的最大值是8.二、填空题7.【答案】x=;【解析】方程的两边同乘2(3x ﹣1),得4﹣2(3x ﹣1)=3,解得x=.检验:把x=代入2(3x ﹣1)=1≠0.∴原方程的解为:x=.8.【答案】2m ≠且1m ≠;【解析】 △>0且m-1≠0.9.【答案】m=-4;x 2=5;【解析】由题意得:05)1()1(2=-⨯-+-m 解得m=-4当m=-4时,方程为0542=--x x解得:x 1=-1 x 2=5所以方程的另一根x 2=5.10.【答案】272(1)56x -=;【解析】平均降低率公式为(1)na xb -= (a 为原数,x 为平均降低率,n 为降低次数,b 为降低后的量.)11.【答案】-1;【解析】原方程可化为:(a-1)x=-2.∵分式方程有增根, ∴ x=1把x=1代入整式方程有a=-1.12.【答案】 -1,0,3;【解析】原方程可化为:x2+2x-k=0当⊿=22+4k=0,即k=-1时,x1=x2=-1当⊿=22+4k>0,即k>-1时,方程有两个不等实数根.由题意可知:① 当增根x=0时,代入二次方程有k =0,方程唯一解为x=-2;② 当增根x=1时,代入二次方程有k =3,方程唯一解为x=-3.所以k=-1,0,3.三、解答题13.【答案与解析】解:(1)方程的两边同乘(x+1)(x ﹣1),得2﹣(x+1)=(x+1)(x ﹣1),解得x=﹣2或1.检验:把x=1代入(x+1)(x ﹣1)=0.x=1是原方程的增根,把x=﹣2代入(x+1)(x ﹣1)=3≠0.∴原方程的解为:x=﹣2.(2)方程的两边同乘x 2,得2(x+1)2+x (x+1)﹣6x 2=0,解得x=﹣或2.检验:把x=﹣代入x 2=≠0.把x=2代入x 2=4≠0.∴原方程的解为:x 1=﹣,x 2=2.14.【答案与解析】原方程可化为:kx2-(3k-2)x-1=0当k=0时,原方程有唯一解 x=21 当k≠0时,⊿=(3k -2)2+4k=5k 2+4(k -1)2 >0,知方程必有两个不等实数根.此时由题意可知:一元二次方程两根,一根是分式方程的根,另一根是分式方程的增根0或1. 当x=0时,不符合舍去;当x=1时,代入得k=21,分式方程的解是x=-2. 所以当k=0时,原方程有唯一解x=21;当k=21时,原方程有唯一解x=-2.15.【答案与解析】(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=. 解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.16.【答案与解析】题甲:(1)∵一元二次方程012)2(222=++--k x k x 有实数根βα、,∴0≥∆,即0)12(4)2(422≥---k k ,解得2-≤k .(2)由根与系数的关系得:k k 24)]2(2[-=---=+βα, ∴2424-=-=+=kk k k t βα, ∵2-≤k ,∴0242<-≤-k , ∴2244-<-≤-k, 即t 的最小值为-4.题乙:(1)四边形ABCD 为矩形,∵AB =CD ,AB ∥DC ,∴△DPC ∽△QPB , ∴31==CP PB DC BQ , ∴BQ DC 3=, 全品中考网 ∴4333=+=BQ BQ BQ BQ AB . (2)证明:由△DPC ∽△QPB , 得BPPC BQ DC =, ∴BP PC BQ AB =, 11=-+=-+=-BQAB BP PC BQ AB BP PC BP BQ AB BP BC .。

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)学生版

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)学生版

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(基础)【知识网络】【考点梳理】考点一、一元二次方程2.一元二次方程的解法(1)直接开平方法:把方程变成的形式,当m>0时,方程的解为;当m=0时,方程的解;当m<0时,方程没有实数解.(2)配方法:通过配方把一元二次方程变形为的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程,当时,它的解为.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.3.一元二次方程根的判别式一元二次方程根的判别式为.△>0方程有两个不相等的实数根;△=0方程有两个相等的实数根;△<0方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.要点诠释:△≥0方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程(a≠0)的两个根是,那么.【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:【总结升华】用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.2.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【思路点拨】判别式大于0,二次项系数不等于0.【答案与解析】(1)证明:△=(2)解:解方程得,x=,∵不论m为何值时,x1=,x2=,∴△∵方程有两个不相等的正整数根,∴方程总有实数根;∴m=或,∵m=不合题意,∴m=举一反三:【变式】已知关于x的方程.(1)求证方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.类型二、分式方程3.解分式方程:=﹣.【思路点拨】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验.【答案与解析】解:方程两边同乘以,得解得x=.检验:x=是原方程的根.故原方程的解为:x=.举一反三:【变式1】解分式方程:.【答案】方程两边同乘以,得 经检验:是原方程的解,所以原方程的解是.【变式2】方程的解是x=.4.若解分式方程产生增根,则m的值是()A. B. C. D.举一反三:【变式】若关于的方程无解,则的值是.类型三、一元二次方程、分式方程的应用5甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?【答案】设甲班每小时种x棵树,则乙班每小时种(x+2)棵树,由题意得:答:甲班每小时种树棵,乙班每小时种树棵.6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【思路点拨】设该产品的成本价平均每月降低率为x,那么两个月后的销售价格为625()(),两个月后的成本价为500()2,然后根据已知条件即可列出方程整理,得x1=,x2=.答:该产品的成本价平均每月应降低.。

中考数学分式方程和一元二次方程复习

中考数学分式方程和一元二次方程复习

中考数学分式方程和一元二次方程复习一、专题讲解一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为2b x a-=. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.3.一元二次方程根的判别式一元二次方程根的判别式为.△>0方程有两个不相等的实数根;△=0方程有两个相等的实数根;△<0方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.4.一元二次方程根与系数的关系ac 4b 2-=∆⇔⇔⇔如果一元二次方程(a ≠0)的两个根是,那么.分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%. 明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题0c bx ax 2=++21x x 、ac x x a b x x 2121=⋅-=+,重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.一元二次方程1.用配方法解一元二次方程:2213x x +=【变式】用配方法解方程x 2-7x-1=0.2.已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.【变式】已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解.分式方程3.解分式方程:=﹣.【变式1】解分式方程:21233x x x -+=--.【变式2】方程22123=-+--xx x 的解是x= .4.若解分式方程2111(1)x m x x x x x++-=++产生增根,则m 的值是( ) A. --12或 B. -12或 C. 12或 D. 12或-【变式】若关于x 的方程2332+-=--x m x x 无解,则m 的值是 .一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?强化练习1. 已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .a b C .a b + D .a b - 2.方程x 2+ax+1=0和x 2﹣x ﹣a=0有一个公共根,则a 的值是( )A .0B .1C .2D .33.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ). A .3 B .-3 C .13 D .13- 4.如果关于x 的方程2313x m x m -=--有增根,则的值等于() A. -3 B. -2C. -1D. 3 5.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米6.关于的方程有实数根,则整数的最大值是( ) A .6B .7C .8D .9 7.方程﹣1=的解为x 2(6)860a x x --+=a8.关于x 的一元二次方程2(1)10m x mx --+=有两个不相等的实数根,则m 的取值范围是 .9.已知x 1=-1是方程的一个根,则m 的值为 ;方程的另一根x 2= .10.某市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为_____ ___.11.若关于x的方程 11-+x ax -1=0有增根,则a的值为 . 12.当 k 的值是 时,方程1-x x =x x x k --22 只有一个实数根.13.解下列分式方程:(1);(2).14. 若关于x 的方程 12-x k - xx x -2 =x kx 1+ 只有一个解,试求k值与方程的解. 052=-+mx x15.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2010年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2012年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2010年到2012年,A市三年共投资“改水工程”多少万元?16. 从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:若关于x 的一元二次方程012)2(222=++--k x k x 有实数根βα、.(1)求实数k 的取值范围;(2)设k t βα+=,求t 的最小值.题乙:如图(16),在矩形ABCD 中,P 是BC 边上一点,连结DP 并延长,交AB 的延长线于点Q .(1)若31=PC BP ,求AQ AB 的值; (2)若点P 为BC 边上的任意一点,求证1==BQ AB BP BC . 我选做的是_______题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基
础)
【巩固练习】
一、选择题
1. 用配方法解方程2250x x --=时,原方程应变形为( )
A .()216x +=
B .()216x -=
C .()229x +=
D .()229x -=
2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则
212()x x -的值是( )
A .1
B .12
C .13
D .25
3.(2015•成都)关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( )
A .k >﹣1
B .k ≥﹣1
C .k ≠0
D .k <1且k ≠0
4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )
A .1
B .2
C .1或2
D .0
5.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2
,设金色纸边的宽为x cm ,那么x 满足的方程是( ).
A .213014000x x +-=
B .2653500x x +-=
C .213014000x x --=
D .2653500x x --=
6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( )
A.
B. C. D.
二、填空题
7.(2015•宿迁)方程﹣
=0的解是 . 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.
9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .
10.当m 为 时,关于x 的一元二次方程02
142=-+-m x x 有两个相等的实数根;
此时这两个实数根是 .
11.如果分式方程1+x x =1
+x m 无解, 则 m = . 12.已知关于x 的方程
x 1 - 1-x m = m 有实数根,则 m 的取值范围是 .
三、解答题
13. (1)解方程:
x x x x 4143412+-=---; (2)解方程:x x x x 221103
+++=.
14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30
分钟,后把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.
15.(2015•泗洪县校级模拟)已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根,
(1)求m 的取值范围;
(2)若方程的一个根为1,求m 的值;
(3)设α、β是方程的两个实数根,是否存在实数m 使得α2+β2﹣αβ=6成立?如果存在,请求出,若不存在,请说明理由.
16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地
(1)怎样围才能使矩形场地的面积为750平方米?
(2)能否使所围的矩形场地面积为810平方米,为什么?
【答案与解析】 一、选择题
1.【答案】B ;
【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,
整理即可得到B 项是正确的.
2.【答案】C ;
【解析】∵22127x x += ∴
221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.
原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=
3.【答案】D ;
【解析】依题意列方程组

解得k <1且k ≠0.故选D .
4.【答案】B ;
【解析】有题意2320,10m m m -+=-且≠,解得2m =.
5.【答案】B ;
【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x .
6.【答案】B ;
【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为
千米。

又已知乘车的时间为b 小时,故汽车的速度为
/S av B b
-千米小时,应选. 二、填空题
7.【答案】x=6;
【解析】去分母得:3(x ﹣2)﹣2x=0,
去括号得:3x ﹣6﹣2x=0,
整理得:x=6,
经检验得x=6是方程的根.故答案为:x=6.
8.【答案】a <1且a ≠0;
【解析】△>0且a ≠0.
9.【答案】100)1(1202=-x ;
【解析】平均降低率公式为(1)n
a x
b -= (a 为原数,x 为平均降低率,n 为降低次数,b 为降低后
的量.)
10.【答案】m=2
9;x 1=x 2=2. 【解析】由题意得,△=(-4)2-4(m -21)=0 即16-4m+2=0,m=2
9.
当m=29时,方程有两个相等的实数根x 1=x 2=2.
11.【答案】-1;
【解析】原方程可化为:x= m.
∵ 原分式方程无解 ∴x=-1,故代入一次方程有m=-1.
所以,当m=-1时,原分式方程无解.
12.【答案】当m≤41
且m≠0时;
【解析】原方程可化为:mx2-x+1=0
当m=0时,得x=1,原分式方程无解,不符合题意舍去.
当m≠0时, ⊿=12-4m≥0,解之m≤41
所以,当m≤41
且m≠0时,原分式方程有实数根.
三、解答题
13.【答案与解析】
(1)部分移项得: x x x
x 4143
41
2=--+--- ∴x x x
x 414341
2=----
-- ∴x
41
2=
∴x =2
经检验:x =2是原分式方程的根.
(2)原方程可化为: x x x x 221
31
3+++=+ ∴或x x x x 2231
3+=+= 解之得:,x x 1234113
2121
621,,=-±=-± 1,23,4113
11
21226x x -±==-±经检验:,均是原分式方程的根.
14.【答案与解析】
设这列火车的速度为x千米/时
根据题意,得
方程两边都乘以12x,得
解得
经检验,是原方程的根
答:这列火车原的速度为75千米/时.
15.【答案与解析】
解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,
解得m≤;
(2)把x=1代入方程得1+2m﹣1+m2=0,
解得m1=0,m2=﹣2,
即m的值为0或﹣2;
(3)存在.
根据题意得α+β=﹣(2m﹣1),αβ=m2,
∵α2+β2﹣αβ=6,
∴(α+β)2﹣3αβ=6,
即(2m﹣1)2﹣3m2=6,
整理得m2﹣4m﹣5=0,解得m1=5,m2=﹣1,
∵m≤;
∴m的值为﹣1.
16.【答案与解析】
设AD=BC=xm,则AB=(80-2x)m
(1)由题意得:x(80-2x)=750
解得:x1=15, x2=25 ,
当x=15时,AD=BC=15m,AB=50m
当x=25时,AD=BC=25m,AB=30m
答:当平行于墙面的边长为50m,斜边长为15m时,矩形场地面积为750m2;或当平行于墙面的边长为30m,邻边长为25m时矩形场地面积为750m2.
(2)由题意得:x(80-2x)=810
△=40-4×405=1600-1620=-20<0
∴方程无解,即不能围成面积为810m2的矩形场地.。

相关文档
最新文档