七年级数学上册 1 如果日历坚列上相邻的3个数的和等于60练习人教新课标版
人教版七年级数学上册基础知识训练
7.A是一个五次多项式,B是一个五次单项式,则A-B一定是
A.十次多项式B.五次多项式C.四次多项式D.不高于五次的整式
8.下列运算中,错误的是()
A. B. C. D.
9.一台微波炉成本价是a元,销售价比成本价增加22%,因库存积压降价60%出售,则每台实际售价为( ).
A.a(1+22%)(1+60%)元;B.a(1+22%)·60%元;
(1)请写出n=5时,S=;
(2)请写出n=18时,S=;
(3)按上述规律,写出S与n的关系式S=.
人教版七年级数学上册基础知识训练
一、精心选一选
1.下列方程是一元一次方程的是()
A. B. C. D.
2. 是下列哪个方程的解()
A. B. C. D.
3、下列方程变形过程正确的是()
A.由 得 B.由 得
5.计算:1-3+5-7+9-11+…+97-99+100=________.
6.观察下列等式:12-02=1;22-12=3;32-22=5;42-32=7;……用含自然数n的等式表示你发现的规律为__________.
二、精心选一选
7.若abc<0,a+b=0,则- +c的值是()
A.等于0 B.小于0 C.大于0 D.不确定
C.a(1+22%)(1-60%)元;D.a(1+22%+60%)元.
10..当 分别等于 和 时,多项式 的值是()
A.互为相反数B.互为倒数C.相等D.异号
11.如图:一个正三角形场地,如果在每边上放2盆花共需要3盆花;如果在每边上放3盆花共需要6盆花,如果在每边上放n(n>1)盆花,那么共需要花( )盆。
第三章一元一次方程解答题日历问题突破训练 2021—2022学年人教版数学七年级上册
人教版七年级上册数学第三章一元一次方程解答题日历问题突破训练1.将连续的偶数2,4,6,8,10……排列成如下的数表(每行6个数),用十字框框出5个数(如图).将十字框上下左右平移,使得十字框正好框住数列中的5个数,我们发现这五个数的和总等于中间数的整数倍.设中间的数为a.(1)则框住的5个数字之和=(用a的代数式表示).(2)是否存在实数a,使得该十字框框住的5个数之和恰好等于2022?若存在,求出a的值;若不存在,请说明理由;(3)十字框框住的5个数之和能等于430吗?若能,分别写出十字框框住的这5个数;若不能,请说明理由.2.将连续的整数1,2,3,4,5,6……排成如图所示的数表(1)如图,方框中九个数之和与中间数25有什么关系?请计算说明.(2)如(1)中的关系,其他这样的方框还成立吗?请举例说明.(3)如(1)中的关系,方框中九个数之和能等于630吗?为什么?3.如图是2021年6月份的月历表,请仔细观察后,解答下列问题:(1)月历表中,每行数字的大小规律是;(2)月历表中,每列数字的大小规律是;(3)若用正方形框框住几个数字,也会发现在一定方向上的排列也有规律,请再观察对角线“撇”方向的数字排列大小规律.“捺”方向的数字排列大小规律是;(4)如果用正方形框把每9个数字框起来,发现中间的数字与它的四周的所有数字有一定关系,如果中间的数字设为x,那么四周数字的和一定是;(5)如果发现用正方形框框住16个数字的和为224.试求出这16个数字中最大的数字.4.下图是某月的月历,通过观察发现:日一二三四五六1 2 3 4 56 7 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 2627 28 29 30 3163,则这三个数分别为、、;(2)在月历中,观察一个竖列上相邻的三个数,如果设中间的数为a,则另外两个数分别为、;(3)随手拿出一张月历,在上面任意圈出一个如图所示"2 2"的正方形,请问这4个数的和可能是112吗?如果可能,请你求出4个数分别是多少?如果不可能,请说明理由。
人教版七年级上册数学第三章一元一次方程3-4实际问题与一元一次方程课后练习【含答案】
人教版七年级上册数学第三章一元一次方程3.4实际问题与一元一次方程课后练习一、单选题(共12题)1.虽然受到新冠疫情的影响,但2020年我国前三季度的GDP比2019年前三季度增长0.7%,达到亿元,称为世界上首个实现经济正增长的主要经济体.设我国2019年前三季度的GDP为x亿元,根据题意,可列出方程()A. (1+0.7%)x=722786B. x+0.7%=722786C. x+(1+0.7%)=722786D. x+(1−0.7%)=7227862.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张.根据题意,下面所列方程正确的是()A. x+5(12−x)=48B. x+5(x−12)=48C. x+12(x−5)=48D. 5x+(12−x)=483.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是()A. 2×1000(26−x)=800xB. 1000(13−x)=800xC. 1000(26−x)=2×800xD. 1000(26−x)=800x4.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,一共有三百八十一盏灯,则这个塔顶的灯数为()A. 4盏B. 3盏C. 2盏D. 1盏5.一个电器商店卖出一件电器,售价为1820元,以进价计算,获利40%,则进价为()A. 728元B. 1300元C. 1092元D. 455元6.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A. 54−x=20%×108B. 54−x=20%×(108+x)C. 54+x=20%×162D. 108−x=20%(54+x)7.由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为()A. 300元B. 270元C. 250元D. 230元8.某商场上月的营业额是a万元,本月营业额为500万元,比上月增长15%,那么可列方程为()A. 15%a=500B. (1+15%)a=500C. 15%(1+a)=500D. 1+15%a=5009.日历中同一竖列相邻三个数的和不可能是()A. 35B. 39C. 51D. 6010.一件服装的进货价为80元,按标价的6折出售,仍获利50%,则这件服装的标价为()A. 150B. 200C. 250D. 30011.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A. 8天B. 7天C. 6天D. 5天12.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量要比环保限制的最大量少100t.新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?如果设新工艺的废水排量为2xt,旧工艺的废水排量为5xt.那么下面所列方程正确的是()A. 5x−200=2x+100B. 5x+200=2x−100C. 5x+200=2x+100D. 5x−200=2x−100二、填空题(共6题)13.某酒店客房都有三人间普通客房,双人间普通客房,收费标准为:三人间150元/间,双人间140元/间.为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元,则该旅游团住了三人间普通客房和双人间普通客房共________间;14.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则图中m的值为________.15.一组“数值转换机”按下面的程序计算,如果输入的数是30,则输出的结果为56,要使输出的结果为76,则输入的最小正整数是________.16.某电视台组织知识竞赛,共设有20道单项选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.如果参赛者D得70分,则他答对的题数为________.17.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了________张电影票.18.按下面的程序计算:若输入n=20,输出结果是101;若开始输入的n值为正整数,最后输出的结果为131,则开始输入的n 值可以是________.三、综合题(共4题)19.由于疫情防控的需要,学校开学第一周给某班配备了一定数量的口罩,若每个学生发5个,则多40个口罩,若每个学生发6个,则少12个口罩,请问该班有多少名学生?学校给该班准备了多少个口罩?20.今年开学,由于疫情防控的需要,某学校统一购置口罩(1)班全体学生配备了一定数量的口罩,若每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?21.某项工程,如果让甲工程队单独工作需75天完成,如果让乙工程队单独工作需50天完成.如果让两个工程队一起工作15天,再由乙工程队完成剩余部分,共需多少天完成?(请列方程解应用题)22.为了适应新的教育形势发展的需要,我县某初中学校研究决定探索符合学校情况的课改模式,通过多方面调查、探究和思考,学校最终确定的课改思路为“先学后教、以学定教”,根据学校实际决定先在七年级实行小班额教学,但是由于学校教室有限,除了八、九年级学生所占教室外,能供七年级用的就不多了,若每间教室安排40名学生,则缺少1间教室;若每间教室安排44名学生,则空出1间教室,请你根据所提供的信息帮助算一算该校能供七年级学生所用的教室校共有多少间?答案解析部分一、单选题1. A解:依题意得:(1+0.7%)x=722786.故A.【分析】由2020年我国前三季度的GDP=2019年我国前三季度的GDP×(1+增长率),即可得出关于x的一元一次方程,此题得解.2. A解: 1元纸币为x张, 那么5元纸币有(12-x)张,∴ x+5(12-x) =48 ,故A.【分析】由题意得:等量关系为: 1x1元纸币的张数+ 5x5元纸币的张数=48,据此列方程即可.3. C解:设安排x名工人生产口罩面,则(26-x)人生产耳绳,由题意得1000(26-x)=2×800x.故选:C.【分析】设安x名工人生产口罩面,则(26-x)生产口罩耳绳,由一个口罩面需要配两个口罩耳绳可知,口罩耳绳的个数是口罩面个数的2倍,从而得出等量关系,则可列出方程.4. B解:设塔顶的灯数为x盏,则从塔顶向下,每一层灯的数量依次是2x,4x,8x,16x,32x,64x,所以x+2x+4x+8x+16x+32x+64x=381,127x=381x=381÷127x=3答:这个塔顶的灯数为3盏.故B.【分析】设塔顶的灯数为x盖,则根据每层悬挂的红灯数是上层的2倍,分别求出每一层灯的数量,然后求和,根据它们的和是381列方程求解即可.5. B解:设电器每件的进价是x元,利润可表示为(1820-x)元,则1820-x=40%x,解得x=1300即电器每件的进价是1300元.所以B选项是正确的.故B.【分析】设电器每件的进价是x元,根据利润=利润率×进价=售价-进价,列出方程,求出解即可.6. B解:根据题意可得改造后旱地的面积为(54-x)公顷;林地的面积为(108+x)公顷,根据题意可得等式为:旱地的面积=林地的面积×20%,即54-x=20%×(108+x).【分析】根据原有林地108公顷,旱地54公顷,列方程求解即可。
2024年人教版七年级上册数学第三单元课后练习题(含答案和概念)
2024年人教版七年级上册数学第三单元课后练习题(含答案和概念)试题部分一、选择题:1. 下列哪个数是第三单元所学的有理数?()A. πB. √3C. 3D. 52. 一个数是2,那么它的相反数是()A. 2B. 2C. 1/2D. 1/23. 下列哪个式子是整式的加法?()A. 3x 2xB. 3x + 2yC. 4xy 3x^2D. 5a^2 + 3b^24. 若a=3,b=2,则a+b的值是()A. 5B. 5C. 1D. 15. 下列哪个数是正整数?()A. 3B. 0C. 2.5D. 36. 下列哪个式子是整式的乘法?()A. 4x + 3yB. 5x 2xC. 6a^2 3aD. 7m × 8n7. 若3x 2 = 7,则x的值是()A. 3B. 5C. 2D. 18. 下列哪个数是负分数?()A. 3/4B. 2/3C. 5D. 59. 下列哪个式子是整式的减法?()A. 5a 3bB. 4xy + 2x^2C. 7m × 8nD. 9p^2 6p^310. 若a=5,b=4,则ab的值是()A. 1B. 9C. 1D. 9二、判断题:1. 有理数包括整数和分数。
()2. 相反数的意义是两个数相加等于0。
()3. 整式的加法是指把同类项的系数相加。
()4. 负数比正数小。
()5. 0既不是正数也不是负数。
()6. 整式的乘法是指把两个整式相乘得到一个新的整式。
()7. 解一元一次方程时,移项要变号。
()8. 分数可以表示成正整数除以正整数的形式。
()9. 整式的减法是指把同类项的系数相减。
()10. 若a>b,则ab一定大于0。
()三、计算题:1. 计算:3 + 7 4 + 52. 计算:(3/4) (2/3) + (5/6)3. 计算:4 × (2) ÷ 24. 计算:(5 3) × 2^35. 计算:2^4 ÷ (2)6. 计算:3 × (2 4 + 6)7. 计算:5 × (5) + 10 ÷ 28. 计算:(4/5) × (5/4) (1/2)9. 计算:2^5 ÷ 2^210. 计算:(3/8) ÷ (1/4) + (1/2)11. 计算:3^2 + 4^212. 计算:(6/7) (2/3) + (1/2)13. 计算:4 × (3) × 214. 计算:(2/3)^215. 计算:5 × (3/4 + 1/2)16. 计算:2^3 × (1/2)17. 计算:(8/9) ÷ (2/3)18. 计算:7 2^3 + 4 × 319. 计算:(3/5)^2 (2/5)^220. 计算:4 ÷ (1/2) + 3 × (1/4)四、应用题:1. 小明有5个苹果,他吃掉了其中的2个,然后又得到了3个,现在他有多少个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
最新部编版人教《初中数学七年级上册全册同步训练习题及答案》精品完美优秀实用打印版整册每课测试题
部编版人教初中数学七年级上册全册同步训练习题及答案前言:该同步训练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步训练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步训练习题)第一章有理数1.1 正数和负数5分钟训练(预习类训练,可用于课前)1.下面说法中正确的是()A.“向东5米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6 ℃记作-6 ℃,那么+8 ℃的意义就是零上8 ℃D.若将高1米设为标准0,高1.20米记作+0.20,那么-0.05所表示的高是0.95米思路解析:弄清具有相反意义的量的含义,如东与西,升与降,高与低等语意答案:D2.填空:(1)如果零上5 ℃记为+5 ℃,那么-9 ℃表示的意义是___________;(2)高出海平面129米记为+129米,那么-45米表示的是__________;(3)某仓库运出货物40千克记为-40千克,那么运进21千克货物应记为___________;(4)如果下降5米记为-5米,那么上升4米应记为__________;(5)某钢厂增产14吨钢记为+14吨,那么减产3吨应记为____________.思路解析:(1)零上5 ℃规定为+5 ℃,即“+”号表示“零上”,那么与它相反意义的量“零下”就规定为“-”.本题里的各小题中的“零上、上升、高出、运进、增产”等表示的量均为正数,与它们意义相反的量则都用负数表示.(4)本小题的“-”号表示“下降”,因此,“上升”应记为“+”,也就是说,具有相反意义的两个量,把其中的一个规定为正时,那么另一个即为负.答案:(1)零下9 ℃ (2)低于海平面45米 (3)+21千克 (4)+4米 (5)-3吨10分钟训练(强化类训练,可用于课中)1.如果水库的水位高于正常水位2 m时,记作+2 m,那么低于正常水位3 m时,应记作…()A.+3 mB.-3 mC.+13m D.-13m思路解析:注意规定“正、负”的相对性.对于具有相反意义的量,如节约用水为正,那么浪费用水为负;反过来,节约用水为负,那么浪费用水为正.答案:B2.在下列横线上填上适当的词,使前后构成具有相反意义的量.(1)收入5 000元,_______2 000元;(2)向南走5千米,向_______走3千米;(3)_______2万元,盈利212万元;(4)_______9.5吨,运出12吨.思路解析:本例题考查具有相反意义的量,这些相反意义的量与现实生活紧密相连,必须掌握常见的表示具有相反意义的名词术语.答案:(1)支出(2)北(3)亏损(4)运进3.高于海平面50 m记作_______,低于海平面30 m记作_______,海平面的高度记作___ _____.思路解析:通常情况下,我们把海平面的高度看作0 m,高于海平面记作“+”,低于海平面记作“-”.答案:+50 m -30 m 0 m4.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4 000千米,记作____ _____;(2)球赛时,如果胜2局记作+2,那么-2表示_________;(3)若-4万元表示亏损4万元,那么盈余3万元记作________;(4)+150米表示高出海平面150米,低于海平面200米应记作_________.思路解析:注意“+”“-”号使用的相对性,如向东记作“+”,则向西记作“-”,反之亦然.答案:(1)-4 000千米 (2)输2局 (3)+3万元 (4)-200米5.在-1.2,23,-0.10,π,0,-(-1),3中,非负数共有_________个.思路解析:非负数就是大于或等于零的数.答案:5快乐时光寄信有一天,父亲让8岁的儿子去寄一封信,儿子已经拿着信跑了,父亲才想起信封上没写地址和收信人的名字.儿子回来后,父亲问他:“你把信丢进邮筒了吗?”“当然.”“你没看见信封上没有写地址和收信人的名字吗?”“我当然看见信封上什么也没写.”“那你为什么不拿回来呢?”“我还以为您不写地址和收信人,是为了不想让我知道您把信寄给谁呢!”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)0是自然数,也是偶数;()(2)0可以看成是正数,也可以看成是负数;()(3)海拔-155米表示比海平面低155米;()(4)如果盈利1 000元,记作+1 000元,那么亏损200元就可记作-200元;()(5)如果向南走记为正,那么-10米表示向北走-10米;()(6)温度0 ℃就是没有温度.()思路解析:根据具有相反意义的含义来判断.答案:(1)√(2)×(3)√(4)√(5)×(6)×2.今年我省元月份某一天的天气预报中,延安市最低气温为-6 ℃,西安市最低气温为2℃.这一天延安市的气温比西安市的气温低()A.8 ℃B.-8 ℃C.6 ℃D.2 ℃思路解析:在这里考查对正、负数的理解一个比0 ℃要低6 ℃,而另一个比0 ℃要高出2 ℃,故这一天延安市的气温比西安市的气温低8 ℃.答案:A3.用正数和负数表示下列具有相反意义的量.(1)温度上升5 ℃和温度下降7 ℃;(2)向东6米和向西10米;(3)球赛时,如果胜一场得1分,败一场扣1分;(4)海平面以上200米和海平面以下30米.思路解析:习惯规定上升、向东、得分、高出等记作正.答案:(1)+5 ℃和-7 ℃(2)+6米和-10米(3)+1和-1 (4)+200米和-30米4.填空:(1)如果零上3 ℃记作+3 ℃,那么-7 ℃表示的意义是____________;(2)某钢厂增产150吨钢记作+150吨,那么减产30吨记作____________;(3)如果前进5千米记作+5千米,那么后退16千米记作_____________;(4)支出100元记作-100元,那么+1 000元表示的意义是_____________.思路解析:利用相反意义的量来解决实际问题.答案:(1)零下7 ℃(2)-30吨(3)-16千米(4)收入1 000元5.把下列各数填在相应的集合内:15,-6,+2,-0.9,12,0,0.23,-113,14.正数集合{____________…};负数集合{____________…};正分数集合{____________…};负分数集合{____________…}思路解析:此题主要考查你对数的分类能力.正数包括正整数和正分数;负数包括负整数和负分数;正分数包括正分数本身外,还有正的小数;同样,负的小数也属于负分数;另外,填整数集合时,不要漏掉“0”.填集合时通常最后要加省略号.答案:正数集合{15,+2,12,0.23,14,…};负数集合{-6,-0.9,-113,…};正分数集合{12,0.23,14,…};负分数集合{-0.9,-113,…}6.桌上放着8只茶杯,全部杯口朝上,每次翻转其中4个,只要翻转两次,就可以把它们全都翻成杯口朝下.如果将问题中的8只茶杯改为6只,每次仍然翻转其中的4只,能否经过若干次翻转把它们全部翻成杯口朝下?请你动手试验一下.提示:用+1表示杯口朝上,-1表示杯口朝下,请填出翻转次数及过程:初始状态 +1,+1,+1,+1,+1,+1.第一次翻转-1,-1,-1,-1,______,__________________ ______________________________________________ ______________________________________……答案:答案不唯一6只茶杯:翻转三次可以全部翻成杯口朝下.第一次翻转为-1,-1,-1,-1,+1,+1;第二次翻转为-1,+1,+1,+1,-1,+1;第三次翻转为-1,-1,-1,-1,-1,-1.1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)0千米表示原地未动2.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,_ _______,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{__________ _…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.问答题(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14••51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括______ __和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B4.在下列适当的空格里打上“√”号.有理数整数分数正整数负分数自然数2-3.14-5 8思路解析:根据数的分类来判别.答案:有理数整数分数正整数负分数自然数2 √√√√-3.14 √√√0 √√√-58√√√5.把下列各数分别填在相应的大括号里1.8,-42,+0.01,-512,0,-3.1415926,1112,1整数集合{_________________…};分数集合{_________________…};正数集合{_________________…};负数集合{_________________…};自然数集合{___________________…};。
人教版七年级数学上册-3-4-实际问题与一元一次方程-同步练习(数字、和差倍分问题)【含答案】全篇
人教版七年级数学上册 3.4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)一、选择题1.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,如图所示,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a ,b 之和为( )A .9B .10C .11D .122.我国的《洛书》中记载着世界上最古老的一个幻方:将1-9这九个数字填入的方格内,使得处于同一横行、同33⨯一竖列、同一斜对角线上的三个数之和都相等.在如图所示的幻方中,字母所表示的数是( )mA .2B .7C .8D .93.一个五位数,个位数为5,这个五位数加上6120后所得的新的五位数的万位、千位、百位、十位、个位的数恰巧分别为原来五位数的个位、万位、千位、百位、十位上的数,则原来的五位数为( )A .48755B .47585C .37645D .364754.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是()A .星期一B .星期二C .星期五D .星期日5.如图,在1000个“○”中依次填入一列数字使得其中任意四个相邻“○”中所填数字之和都等于,1231000,,,m m m m 10-已知,,则的值为( )251m x =-9992m x =-xA .1B .C .2D .1-2-6.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队,如果设应13从乙队调x 人到甲队,列出的方程正确的是( )A .96+x =(72﹣x )B .(96﹣x )=72﹣x 1313C .(96+x )=72﹣x D .×96+x =72﹣x13137.课外兴趣小组的女生人数占全组人数的,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有13多少人?若设原有x 人,则下列方程正确的是( )A .B .C .D .1132x x =11+632x x =11+632x x =11(6)23x +=8.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .B .C .D .()4x 12x 8-=+()4x 12x 8+=-x x 8142++=x x 8142--=9.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .B .5(211)6(1)x x +-=-5(21)6(1)x x +=-C .D .5(211)6x x +-=5(21)6x x+=10.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x 的方程符合题意的是()A .8x+3=7x-4B .8x-3=7x+4C .8(x-3)=7(x+4)D .x+4=x-31718二、填空题11.已知m ,n 都是质数,若关于的方程的解是3,则__________..x 597mx n +=4m n -=12.小明分发一堆水果分给好朋友,第个朋友取走一半加个,第个朋友取走剩下的一半加个,第个朋友再取走11213剩下的一半加个,……,直到第个朋友再取走剩下的一半加个时,恰好给小明留下了个水果,则这堆水果一共有1711_______个.13.一个两位数,十位数字是a ,个位数字比十位数字的2倍少2,交换它的十位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数为__________.14.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.x 15.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有______升酒.三、解答题16.把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?17.一个四位数,它的个位数字是8,若把这个数字调到千位上,其他数字向后顺移,得到新的四位数比原来的四位数大117,求原来的四位数.18.对任意一个三位数m ,将m 的各个数位上的数字分别加2得到一个新的三位数m ′,并且在这一过程中各个数位均不产生进位,则称m 为“真牛数”,m '为m 的“猛牛数”.把“真牛数”m 与“猛牛数”m '的和与37的商记为F (m ).例如:n =315是一个“真牛数”,理由如下:3+2=5<9,1+2=3<9,5+2=7<9.∴315是一个“真牛数”,它F (n )==37n n '+;315537852=3737+(1)判断678 (填“是”或者“不是”“真牛数”:计算F (370)= ;(2)若s 、t 都是“真牛数”,s 的百位数字为1,t 的百位数字为3,t 的个位数字是s 个位数字的3倍,则F (s )+F (t )=36,求s 的值.19.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈年龄是小明同学的年龄的2倍?20.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中,若要使甲处植树的人数仍然是乙处植树人数的90100m <<3倍,则应调往甲,乙两处各多少人?21.定义:对于整数n ,在计算n +(n +1)+(n +2)时,结果能被15整除,则称n 为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n 在﹣10到10之间时,直接写出使2n +3是15的“亲和数”的所有n 的值.22.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的厚度为______cm ,课桌的高度为______cm ;(2)当课本数为x (本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离为__________cm (用含x 的代数式表示);(3)若桌面上有26本相同的数学课本整齐叠放成一摞,现从中取走a (a≤26)本,求余下的数学课本高出地面的距离;(4)若桌面上有50本相同规格的数学课本整齐的叠成一摞,现从中取走a (a≤50)本放在旁边另叠成一摞,发现两摞课本的高度相差2cm ,则a=______ .23.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:时段8:00~9:0010:00~11:0012:00~13:0014:00~15:00 16:00~17:00 客流量(人)-21+33-12 +21+54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?1.A 2.C 3.A 4.D 5.C 6.C 7.B 8.A 9.A 10.B11.1312.38213.3414.911616x x -=+15.8.7516.20,24,11,4417.875818.(1)不是,26;(2)s 可能为101,111,121,131,141.19.(1)14岁;(2)12年后20.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人21.(1)是;(2)404个;(3)n =或-7或3或8.2-22.(1)0.5;(2);(3)余下的数学课本高出地面的距离为cm ;(4)23或27850.5x +() 980.5a -23.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元。
人教版初中七年级数学上册第三章《一元一次方程》模拟检测题(包含答案解析)(19)
一、选择题1.(0分)[ID :68194]小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .2.(0分)[ID :68192]小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( ) A .0.20元B .0.40元C .0.60元D .0.80元3.(0分)[ID :68190]从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( ) A .408 3.6x x -= B .4083.6x=- C .3.6840x x -= D .3.6408x x-= 4.(0分)[ID :68168]下列变形中,正确的是( ) A .变形为B .变形为C .变形为D.变形为5.(0分)[ID:68248]下列变形不正确的是()A.由2x-3=5得:2x=8 B.由-23x=2得:x=-3C.由2x=5得:x=25D.由x+5 =3x-2得:7=2x6.(0分)[ID:68246]已知方程16x-1=233x,那么这个方程的解是()A.x=-2 B.x=2 C.x=-12D.x=127.(0分)[ID:68243]一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是()A.54 B.72 C.45 D.628.(0分)[ID:68242]图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为()A.2314B.3638C.42 D.449.(0分)[ID:68238]某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ()A.6折B.7折C.8折D.9折10.(0分)[ID:68227]某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25 B.3x+20=4x﹣25C.3x﹣20=4x﹣25 D.3x+20=4x+2511.(0分)[ID:68224]“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A、B 两种长方体形状的无盖纸盒.现有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个A 型盒子?”则下列结论正确的个数是()①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1B .2C .3D .412.(0分)[ID :68219]如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D13.(0分)[ID :68215]宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =- B .220315(34)x x ⨯=⨯- C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯14.(0分)[ID :68178]书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 15.(0分)[ID :68171]下列判断错误的是 ( ) A .若,则 B .若,则C .若,则D .若,则二、填空题16.(0分)[ID :68333]若方程2(2)3m m x x ---=是一元一次方程,则m =________. 17.(0分)[ID :68324]定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________.18.(0分)[ID :68319]对于实数a ,b ,c ,d ,规定一种运算a b c d =ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.19.(0分)[ID :68317]若2a +1与212a +互为相反数,则a =_____.20.(0分)[ID :68314]某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.21.(0分)[ID :68300]一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______.22.(0分)[ID :68294]在方程1322x -=-的两边同时_________,得x =__________. 23.(0分)[ID :68282]一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________.24.(0分)[ID :68270]将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.25.(0分)[ID :68269]如果ma mb =,那么下列等式一定成立的是_______. ①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.26.(0分)[ID :68268]已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.27.(0分)[ID :68260]关于x 的方程()232523m a x x-++-=是一元一次方程,则a m +=__________三、解答题28.(0分)[ID :68433]在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?29.(0分)[ID :68430]某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?30.(0分)[ID :68383]已知关于x 的方程3(2)x x a -=- 的解比223x a x a+-= 的解小52,求a 的值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.B 3.C 4.B 5.C6.A7.B8.C9.C10.B11.D12.A13.B14.A15.D二、填空题16.1或2【分析】利用一元一次方程的定义分和两种情况讨论即可求出m的值【详解】①当时由题意得且解得;②当时解得综上或2故答案为:或2【点睛】本题考查了一元一次方程的定义以及绝对值熟练掌握一元一次方程的定17.【分析】根据定义新运算及求出x的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题18.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(19.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应20.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题21.112cm2【分析】根据长方形的特征对边平行且相等长方形的周长=(长+宽)×2已知长是宽的3倍少10cm也就是长=3宽-10再根据长方形的面积公式s=ab列式解答【详解】解:设长方形的宽为xcm则长22.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x=-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x厘米由题意得:解得:x=15625答:锻压后25.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m=0时a=b不一定成立故26.5【解析】【分析】此题用m替换x解关于m的一元一次方程即可【详解】∵x=m∴3m−2=2m+3解得:m=5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数27.2【解析】【分析】根据一元一次方程的定义分别得到关于a和关于m的一元一次方程解之代入a+m计算求值即可【详解】根据题意得:a+2=0解得:a=−2m−3=1解得:m=4a+m=−2+4=2故答案为:三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试1.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+7+1=19∴x=4,故本选项错误;3B、设最小的数是x.x+x+6+x+7=19,∴x=2,故本选项正确.C、设最小的数是x.x+x+1+x+7=19,∴x=11,故本选项错误.3D、设最小的数是x.x+x+1+x+8=19,∴x=10,故本选项错误.3故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.2.B解析:B【分析】设未知数,根据题意中的等量关系列出方程,然后求解.【详解】解:设每支铅笔的标价是x元,根据题意得:20×(1-80%)x=1.6解得x=0.4故选:B.【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%.3.C解析:C本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可. 【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得: 3.6840x x -= 故选:C. 【点睛】列方程解应用题的关键是找出题目中的相等关系.4.B解析:B 【解析】 【分析】利用等式的性质对每个等式进行变形即可找出答案. 【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x ;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.5.C解析:C 【分析】根据等式的性质逐一进行判断即可得答案. 【详解】A.由2x-3=5的两边同时加上3得:2x=8,故该选项正确,B.由-23x=2的两边同时乘以32-得:x=-3,故该选项正确, C.由2x=5的两边同时除以2得:x=52,故该选项错误, D.由x+5=3x-2的两边同时加上(2-x )得:7=2x ,故该选项正确, 故选:C . 【点睛】本题考查了等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.A解析:A 【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得. 【详解】两边同乘以6去分母,得62(23)x x -=+, 去括号,得646x x -=+, 移项,得646x x -=+, 合并同类项,得510x -=, 系数化为1,得2x =-, 故选:A . 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.7.B解析:B 【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可. 【详解】设个位上的数为x ,则十位数字为()31x +,由题意得: x +(3x +1)=9, 解得:x =2, 十位数字为:6+1=7, 这个两位数是:72. 故选:B. 【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.8.C解析:C 【详解】解:设每一份为x ,则图②中白色的面积为8x ,灰色部分的面积为3x ,由题意,得 8x +3x =33,解得:x =3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42. 故选C . 【点睛】本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.9.C解析:C【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 800 20%800⨯-≥,解不等式可得:8x ≥. 【详解】设打折x 折,由题意可得:12000.1x 80020%800⨯-≥, 解得:8x ≥.故选C.【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.10.B解析:B【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可.【详解】解:根据题意可得:3x +20=4x ﹣25.故选B .【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.11.D解析:D【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断.【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x -个,需要长方形纸板3×1202x -张,因此可得120433602x x -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m 个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m +4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩ 即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个故③④正确.故选D.【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.12.A解析:A【分析】设运动x 秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出x 的值,将其代入2x 中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x 秒后,乌龟和兔子第2020次相遇,依题意,得:2x +6x =2×4×2020,解得:x =2020,∴2x =4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A .故选:A .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 13.B解析:B【分析】设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名,根据生产的小齿轮的数量:生产的大齿轮的数量=3:2即可列出方程,进而可得答案.【详解】解:设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名.根据题意,得220315(34)x x ⨯=⨯-.故选:B .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.14.A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得, 2x-8=12(x+8)+3, 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.15.D解析:D【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则,正确; D. 当c=0时,若,a 就不一定等于b ,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.二、填空题16.1或2【分析】利用一元一次方程的定义分和两种情况讨论即可求出m 的值【详解】①当时由题意得且解得;②当时解得综上或2故答案为:或2【点睛】本题考查了一元一次方程的定义以及绝对值熟练掌握一元一次方程的定解析:1或2【分析】利用一元一次方程的定义,分20m -≠和20m -=两种情况讨论,即可求出m 的值.【详解】①当20m -≠时,由题意得|2|1m -=,且210m --≠,解得1m =;②当20m -=时,解得2m =.综上,1m =或2.故答案为:1或2.【点睛】本题考查了一元一次方程的定义以及绝对值,熟练掌握一元一次方程的定义,利用分类讨论思想是解本题的关键.17.【分析】根据定义新运算及求出x 的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题 解析:1935【分析】 根据定义新运算及5213*=,求出x 的值,即可求出34*的值. 【详解】解:∵1(1)(1)x a b a b a b *=++++,5213*= ∴15=21(21)(11)3++++x ∴=8x ∴18(1)(1)*=++++a b a b a b ∴181934=34(31)(41)35*=++++ 故答案为:1935 【点睛】本题主要考查定义新运算的知识,解答此题的关键是,根据所给出的式子,得出x 的值,再利用新的运算方法解决问题.18.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x 的方程然后解方程即可求出x 的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,然后解方程即可求出x的值.【详解】解:∵(1)(2) (3)(1)x xx x++--=27,∴(x+1)(x-1)-(x+2)(x-3)=27,∴x2-1-(x2-x-6)=27,∴x2-1-x2+x+6=27,∴x=22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.19.﹣1【分析】利用相反数的性质列出方程求出方程的解即可得到a的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次方程的应解析:﹣1【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.20.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题解析:100【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.21.112cm2【分析】根据长方形的特征对边平行且相等长方形的周长=(长+宽)×2已知长是宽的3倍少10cm 也就是长=3宽-10再根据长方形的面积公式s=ab 列式解答【详解】解:设长方形的宽为xcm 则长解析:112cm 2.【分析】根据长方形的特征,对边平行且相等,长方形的周长=(长+宽)×2,已知长是宽的3倍少10cm ,,也就是长=3宽-10,再根据长方形的面积公式s=ab ,列式解答.【详解】解:设长方形的宽为xcm,则长为(3x-10)cm,依题意得:2x+2(3x-10)=44解得:x=8∴长方形的长=38⨯-10=14cm.∴这个长方形的面积=14⨯8=112cm 2.故答案为112 cm 2.【点睛】此题主要考查长方形的周长公式、面积公式的综合运用.22.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x =-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:加12 1- 【解析】【分析】根据等式的性质2,方程的两边加12即可. 【详解】方程1322x -=-的两边同时加12得:x =-1, 故答案为:加12;1-. 【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.23.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.24.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 25.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故 解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确; 根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确;根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.26.5【解析】【分析】此题用m 替换x 解关于m 的一元一次方程即可【详解】∵x =m ∴3m−2=2m+3解得:m =5故答案为:5【点睛】本题考查一元一次方程的解的定义方程的解就是能够使方程左右两边相等的未知数解析:5【解析】【分析】此题用m 替换x ,解关于m 的一元一次方程即可.【详解】∵x =m ,∴3m−2=2m+3,解得:m =5.故答案为:5.【点睛】本题考查一元一次方程的解的定义.方程的解就是能够使方程左右两边相等的未知数的值.27.2【解析】【分析】根据一元一次方程的定义分别得到关于a 和关于m 的一元一次方程解之代入a+m 计算求值即可【详解】根据题意得:a+2=0解得:a=−2m−3=1解得:m=4a+m=−2+4=2故答案为:解析:2【解析】【分析】根据一元一次方程的定义,分别得到关于a和关于m的一元一次方程,解之,代入a+m,计算求值即可.【详解】根据题意得:a+2=0,解得:a=−2,m−3=1,解得:m=4,a+m=−2+4=2,故答案为:2【点睛】此题考查一元一次方程的定义,难度不大三、解答题28.(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x个成人,y个学生,依题意得,1240400.5400x yx y+=⎧⎨+⨯=⎩,解得84xy=⎧⎨=⎩,答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.29.(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解.【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-.. 解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦,解得:y 20=,则:50y 30-=.答:小明购买了钢笔20支,签字笔30支.【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 30.a=1【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.。
新人教版初中数学七年级数学上册第一单元《有理数》测试(含答案解析)(3)
一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个 2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=3.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是( ) A .28B .34C .45D .754.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|5.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作(). A .+0.02克 B .-0.02克C .0克D .+0.04克6.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5B .少10C .多5D .多107.如果向右走5步记为+5,那么向左走3步记为( ) A .+3B .-3C .+13D .-138.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-129.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则ab=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数. A .4个B .5个C .6个D .7个10.某市11月4日至7日天气预报的最高气温与最低气温如表:最高气温(℃) 19 12 20 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日 B .11月5日 C .11月6日 D .11月7日 11.把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.数轴上A 、B 两点所表示的有理数的和是 ________.14.若有理数a ,b 满足()26150a b -+-=,则ab =__________. 15.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.16.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1ba=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.17.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________. 18.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0. 19.一个数的25是165-,则这个数是______.20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.计算:|﹣2|﹣32+(﹣4)×(12-)322.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).23.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.24.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷-⎪⎝⎭25.计算下列各式的值:(1)1243 3.55-+- (2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--26.计算:(1)9-(-14)+(-7)-15; (2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可. 【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确; ②|-a|一定是非负数,故说法不正确; ③倒数等于它本身的数为±1,说法正确; ④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确. 说法正确的有③、⑥, 故选A . 【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.C解析:C 【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.C解析:C 【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断. 【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a ,则上边的数是a - 7,下边的数是a + 7,则三个数的和是3a ,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C 选项是正确的. 【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.4.D解析:D 【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意, 故选D.5.B解析:B 【解析】 -0.02克,选A.6.D解析:D 【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10. 故选D .7.B解析:B 【解析】 试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3. 故选B .8.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.9.C解析:C 【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断. 【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则ab=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数, ∴a 的倒数小于b 的倒数不正确, ∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确; ⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确; ⑦负数的相反数是正数,大于负数,故本小题错误; ⑧负数的偶次方是正数,故本小题错误, 所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.14.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.15.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2 =-2.4;(2)32.5+46+(-22.5) =[32.5+(-22.5)]+46 =10+46 =56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56. 【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.16.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④ 【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可. 【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误; ②0ab 时,a ,b 互为相反数,但是对于等式1ba=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确. 综上,正确的有④. 故答案为:④. 【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.17.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0 【分析】将同分母的分数分别相加,再计算加法即可. 【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦. 故答案为:0. 【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.18.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < > 【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可. 【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<-> 故答案为:<,<,<,> 【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.19.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8 【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法【详解】(165-)÷25=−8. 故答案为−8. 【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30 【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.162- 【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:|﹣2|﹣32+(﹣4)×(12-)3 =2﹣9+(﹣4)×(﹣18) =2+(﹣9)+12=162-. 【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 22.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】(1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d ,∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.23.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.24.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.25.(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 26.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。
数学:人教版7年级上册 同步练习05试题及答案
七年级数学(人教版上)同步练习第三章第三节解一元一次方程(二)一. 本周教学内容:一元一次方程(二)列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
列方程解应用题的主要步骤:1. 认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;2. 用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;3. 利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);4. 求出所列方程的解;5. 检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。
【学习提示】一. 数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2N+2或2N—2表示;奇数用2N+1或2N—1表示。
例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为X+7,个位上的数是3X,等量关系为三个数位上的数字和为17。
解:设这个三位数十位上的数为X,则百位上的数为X+7,个位上的数是3XX+X+7+3X=17 解得X=2X+7=9,3X=6 答:这个三位数是926例2.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数解:设十位上的数字X,则个位上的数是2X,10×2X+X=(10X+2X)+36解得X=4,2X=8,答:原来的两位数是48。
同步练习册数学七年级上册答案必备
同步练习册数学七年级上册答案必备七年级上册数学同步练习册参考答案人教版§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|<|-0.01| (2) >§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.七年级上册数学同步练习答案沪教版基础检测:1.2.5,,106; 1, 1.732, 3.14,拓展提高4. 两个,±55. -2,-1,0,1,2,36. 74362, 1 757.-3,-1 8.11.2.3相反数基础检测1、5,-5,-5,5;2、2,2.-3, 0.3.相反4.解:2010年我国全年平均降水量比上年的增长量记作-24㎜2009年我国全年平均降水量比上年的增长量记作+8㎜2008年我国全年平均降水量比上年的增长量记作-20㎜拓展提高:5.B6.C7.-32m ,808.18 22℃9. +5m表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处。
1.2.1有理数测试基础检测1、正整数、零、负整数;正分数、负分数;正整数、零、负整数、正分数、负分数; 正有理数、零;负有理数、零;负整数、零;正整数、零;有理数;无理数。
新课标数学核心素养 衔接预科班人教版七年级上册 第3章 实际问题与一元一次方程二 反馈同步练习 含答案
人教版七年级数学2018年7月最新课标核心素养暑期预科同步练实际问题与一元一次方程第二课时一.选择题1.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.722.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了()A.17道B.18道C.19道D.20道3.某服装商同时卖出两套服装,每套均为168元,以成本计算,其中一套盈利20%,另一套亏本20%,这次出售商家()A.不赚不赔B.赔14元C.赚14元D.赚37.2元4.几个人打算合买一件物品,每人出7元,还少5元;每人出8元,就多3元,则该物品的价格为()A.59元B.60元C.61元D.62元5.小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是()A.25斤B.20斤C.30斤D.15斤6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场二.填空题7.某商店在一笔交易中卖了两个进价不同的随身听,售价都为132元,按成本计算,其中一个盈利20%,另一个盈利10%,则该商店在这笔交易中共赚了元.8.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.9.为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:2.75元/15分钟不足如果小明某次租赁自行车3小时,缴费14元,请判断小明该次租赁自行车所在地区的类别是类(填“A、B、C”中的一个).10.某商店举行商品促销活动,将定价为3元的商品,以下列方式优惠销售;若购买不超过10件,按原价付款,若一次性购买10件以上,超过的部分打八折,某顾客一次性消费65元全部用于购买此种商品,则他购买了件.三.解答题11.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?12.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠.设顾客预计累计购物x元(x >300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.答案:1.D.2.C解析:设某同学做对了x道题,那么他做错了25-x道题,他的得分应该是4x-(25-x)×1,据此可列出方程.设该同学做对了x题,根据题意列方程得:4x-(25-x)×1=70,解得x=19.3.B解析:设盈利这套服装的成本为x元,亏本这套服装的成本为y元,根据销售问题的数量关系建立方程求出x、y的值,再根据利润=售价-成本解题.设盈利这套服装的成本为x元,亏本这套服装的成本为y元,由题意,得x(1+20%)=168,y(1-20%)=168,解得:x=140,y=210.则该商贩在这次经营中的利润为:168×2-(140+210)=-14元,即亏本14元.4.C解析:设总人数为x,则:7x+5=8x-3,解得:x=8.则该物品的价格为:7×8+5=6 1(元).5.C解析:设小王购买豆角的数量是x斤,依据“之前一人只比你少买5斤就是按标价,还比你多花了3元”列出方程并解答.设小王购买豆角的数量是x斤,则3×80%x=3(x-5)-3,整理,得2.4x=3x-18,解得x=30.即小王购买豆角的数量是30斤.6.C解析:设共胜了x场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.设共胜了x场,则平了(14-5-x)场,由题意得:3x+(14-5-x)=19,解得:x=5,即这个队胜了5场.7.34解析:设一个的进价为x元,根据题意可得:x(1+20%)=132,解得:x=110,设另一个的进价为y元,根据题意可得:y(1+10%)=132,解得:x=120,故该商店在这笔交易中共赚了:132+132-120-110=34(元).8.18或46.8解析:按照优惠条件第一次付180元时,所购买的物品价值不会超过300元,不享受优惠,因而第一次所购物品的价值就是180元;300元的9折是270元,因而第二次的付款288元所购买的商品价值可能超过300元,也有可能没有超过300元.计算出两次购买物品的价值的和,按优惠条件计算出应付款数.9.B解析:如果租赁自行车所在地区的类别是A类,应该收费:1.5×4+2.75×8=28(元),如果停车所在地区的类别是B类,应该收费:1.0×4+1.25×8=14(元),如果停车所在地区的类别是C类,应该收费:0×4+0.75×8=6(元).10.24解析:易得65元可购买的商品一定超过了5件,关系式为:10×原价+超过10件的件数×打折后的价格≤65,把相关数值代入计算求得最大的正整数解即可.11.解:设每件衬衫降价x元,依题意有120×400+(120-x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.12.解:(1)∵在甲超市累计购买商品超出300元之后,超出部分按原价的八折优惠,∴在甲超市购物所付的费用为:300+0.8(x-300)=0.8x+60,∵在乙超市累计购买商品超出200元之后,超出部分按原价的九折优惠,∴设顾客预计累计购物x元(x>300),在乙超市购物所付的费用为:200+0.9(x-200)=0.9x+20;(2)当0.8x+60=0.9x+20时,解得:x=400,∴当x=400元时,两家超市一样;当0.8x+60<0.9x+20时,解得:x>400,当x>400元时,甲超市更合算;当0.8x+60>0.9x+20时,解得:x<400,当x<400元时,乙超市更合算.。
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
日历中的数学知识[1]
解: 设第一天为x,则其余三个数分别为(x+1),(x+7), (x+8),根据题意得方程: x+(x+1)+(x+7)+(x+8)=76 4x=60 x=15 因此,这4天分别为15号,16号,22号,23号.
课堂小结:
1、总结解应用题法
(1)审清题意(框数的方式:竖框、横框 ……) (2) 巧设未知数(使计算简便) (3) 检验、根据实际作答
课堂练习: (2)如果小明说出日历坚列上相邻的 3个数的和是21,你认为可能吗?为什么?
解:不可能. 原因:如果设中间那个数为x,则上一个数为(x-7), 下一个数为(x+7),根据题意得方程: (x-7)+x+(x+7)=21 x=7 因此:x-7=0 ; x+7=14 又因为日历中没有0号,与实际不符.所以不可能.
星期 日
星期 一
星期 二
星期 三
星期 四
星期 五
星期 六
1 7 8
2 9
3 10
4 11
5 12
6 13
14
21 28
15
22 29
16
23 30
17
24 31
18
25
19
26
20
27
一、复习导入:
这是2011年某月的日历,你能发 现日历中的数字有什么规律吗?
星期日 星期一 星期二 星期三 星期四 星期五 星期六
(3)能力提高
全体奇数排成下图形式,十字框框出的5个 数,要使这5个数的和等于2003,可能吗?如果可 能请求出这5个数.如果不可能,请说明理由.
1 3 5 7 9 11 解:不可能. 因为:设中间那个数为x,则其余四 13 15 17 19 21 23 个数分别为(x-2),(x+2),(x-12),
人教版七年级数学上册同步练习:3
第2课时合并同类项的应用01基础题知识点列方程解决“总量=各分量之和”问题1. 某数的3倍与这个数的2倍的和是30, 这个数为(C)A. 4B. 5C. 6D. 72. 一个两位数, 个位上的数字是十位上数字的3倍, 且它们的和为12, 则这个两位数是39.3. 等腰三角形的边长如图所示, 若等腰三角形的周长为24, 则a=3.4. (钦州钦南区期末)已知3个连续偶数的和为36, 则这三个偶数分别是10、12.14.5. 一条长1 210 m的水渠, 由甲、乙两队从两头同时施工. 甲队每天挖130 m, 乙队每天挖90 m, 则挖好水渠需要几天?解:设需要x天才能挖好水渠, 则130x+90x=1 210.解得x=5.5.答: 挖好水渠需要5.5天.6. 麻商集团三个季度共销售冰箱2 800台, 第一季度销售量是第二季度的2倍, 第三季度销售量是第一季度的2倍, 试问麻商集团第二季度销售冰箱多少台?[来源:1] 解:设麻商集团第二季度销售冰箱x台, 则第一季度销售量为2x台, 第三季度销售量为4x台.根据总量等于各分量的和, 得x+2x+4x=2 800.解得x=400.答: 麻商集团第二季度销售冰箱400台.02中档题7. 某人把360 cm长的铁丝分成两段, 每段分别做成一个正方形, 已知两个正方形的边长之比是4∶5, 则这两个正方形的边长分别是40__cm, 50__cm.8. 已知某三角形的周长为60 cm, 三边长之比为3∶4∶5, 则最短边的长为15cm.9. 在一张普通的日历中, 相邻三行里同一列的三个日期之和为30, 这三个日期分别为3.10、17.10. 足球的表面是由若干个黑色五边形和白色六边形皮块围成的, 黑白皮块的数目比为3∶5, 一个足球表面一共有32块皮, 黑色皮块和白色皮块各有多少?解:设黑色皮有3x块, 白色皮有5x块.根据“足球表面一共有32块皮”, 可得3x+5x=32.解得x=4.所以3x=3×4=12, 5x=5×4=20.答:黑色皮有12块, 白色皮有20块.03综合题11. 甲、乙两站相距336千米, 一列慢车从甲站开出, 每小时行驶72千米, 一列快车从乙站开出, 每小时行驶96千米. [来源:学。
七年级数学上册第三单元《一元一次方程》-填空题专项经典练习题(专题培优)
一、填空题1.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x 则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键. 2.我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺.【解析】【分析】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织布8x 尺第五天织布16x 尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织 解析:531【解析】【分析】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据5日共织布5尺列方程求解即可.【详解】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据题意可得:x+2x+4x+8x+16x =5, 解得:5x 31=, 即该女子第一天织布531尺,故答案为531. 【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 3.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.5cm 【分析】设矮胖形圆柱的高是xcm 根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm 由题意得π×80=πx 解得:x=5故答案为5cm 【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.4.在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人.3【解析】【分析】设调往甲处的人数为x 则调往乙处的人数为20-x 根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x 人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=3解析:3【解析】【分析】设调往甲处的人数为x ,则调往乙处的人数为20-x ,根据甲处的人数是在乙处人数的2倍列方程求解.【详解】设应调往甲处x 人,依题意得:27+x=2(19+20−x),解得:x=17,∴20−x=3,答:应调往甲处17人,调往乙处3人【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.5.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本 解析:110【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】 因为代数式154t +与15()4t -的值互为相反数, 所以154t ++15()4t -=0, 解得:t =110, 【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 6.将一个底面直径是10cm 、高为40cm 的圆柱锻压成底面直径为16cm 的圆柱,则锻压后圆柱的高为________cm.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x 厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 7.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.8.解方程:2(1)3x --=-.解:去括号,得__________;移项,得____________;合并同类项,得____________.【解析】【分析】根据解方程的过程方程去括号移项合并把x 系数化为1即可求出解【详解】去括号得;移项得;合并同类项得【点睛】本题考查了解一元一次方程熟练掌握计算法则是解题关键解析:213x -+=-, 321x =--+, 4x =-.【解析】【分析】根据解方程的过程,方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】2(1)3x --=-.去括号,得213x -+=-;移项,得321x =--+;合并同类项,得4x =-【点睛】本题考查了解一元一次方程,熟练掌握计算法则是解题关键.9.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米. (1)若设这个足球场的宽为x 米,那么长为_______米。
人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(含答案解析)(20)
一、选择题1.(0分)[ID :68200]如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .32.(0分)[ID :68194]小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A .B .C .D .3.(0分)[ID :68193]已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②4.(0分)[ID :68192]小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元 5.(0分)[ID :68164]如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D .6.(0分)[ID :68248]下列变形不正确的是( )A .由2x-3=5得:2x=8B .由-23x=2得:x=-3C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x7.(0分)[ID :68247]一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=1 8.(0分)[ID :68238]某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折9.(0分)[ID :68234]如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或13310.(0分)[ID :68231]解方程32282323x x x ----=的步骤如下,错误的是( ) ①2(3x ﹣2)﹣3(x ﹣2)=2(8﹣2x );②6x ﹣4﹣3x ﹣6=16﹣4x ;③3x +4x =16+10; ④x =267. A .①B .②C .③D .④ 11.(0分)[ID :68228]已知方程(1)30m m x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或1 12.(0分)[ID :68222]两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( )A .2 2.75%21100x ⨯=B . 2.75%21100x x +=C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=13.(0分)[ID :68213]佳佳的压岁钱由爸爸存入某村镇银行,当年年利率为1.5%,一年后取出时得到本息和为4060元,则佳佳的压岁钱是( )A .2060元B .3500元C .4000元D .4100元 14.(0分)[ID :68181]某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元 15.(0分)[ID :68170]下列方程中,以x =-1为解的方程是( )A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题16.(0分)[ID :68357]我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“.例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b 的值为_____.17.(0分)[ID :68355]解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-; ③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x -=,得352x x -=. 以上变形过程正确的有_____.(只填序号)18.(0分)[ID :68349]解方程213412208x x x -+-= -1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________. 19.(0分)[ID :68344]方程 2243x -=的解是__________ 20.(0分)[ID :68342]请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.21.(0分)[ID :68337]一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;22.(0分)[ID :68325]某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C 定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C 的销售额应比去年增加__________.23.(0分)[ID :68312]若有a ,b 两个数满足关系式:1a b ab +=-,则称a ,b 为“共生数对”,记作(),a b .例如:当2,3满足23231+=⨯-时,则()23,是“共生数对”.若()2x -,是“共生数对”,则x =__________. 24.(0分)[ID :68292]若方程()||110a a x --=是关于x 的一元一次方程,则a =____________.25.(0分)[ID :68283]在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.26.(0分)[ID :68280]某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.27.(0分)[ID :68258]张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.三、解答题28.(0分)[ID:68405]小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?29.(0分)[ID:68358]王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
西北师大附中七年级数学上册第三单元《一元一次方程》-填空题专项测试题(含答案解析)
一、填空题1.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x 则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键.2.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.3.在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人.3【解析】【分析】设调往甲处的人数为x则调往乙处的人数为20-x根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=3解析:3【解析】【分析】设调往甲处的人数为x,则调往乙处的人数为20-x,根据甲处的人数是在乙处人数的2倍列方程求解.【详解】设应调往甲处x人,依题意得:27+x=2(19+20−x),解得:x=17,∴20−x=3,答:应调往甲处17人,调往乙处3人【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.4.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g.17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg则一个果冻质量为2xg再根据图②列出关于x的方程求解即可【详解】解:由图①设一块巧克力质量为xg则一个果冻质量为2解析:17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量,可设一块巧克力质量为xg,则一个果冻质量为2xg,再根据图②列出关于x的方程求解即可.【详解】解:由图①设一块巧克力质量为xg,则一个果冻质量为2xg,由图②可列方程为:x+2x=51,解得x=17.故答案为:17.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于读懂题图巧克力与果冻的质量关系,设出未知数,列出方程求解.5.把方程|21|5x -=化成两个一元一次方程是___________________.【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值根据绝对值的性质可得一个数的绝对值是5则这个数是5或-5【详解】根据绝对值的性质将方程方程化成两个一元一次方程是故答案为:【点睛】本题主解析:215x -=,215x -=-【解析】【分析】数轴上表示数的点到原点的距离叫做这个数的绝对值,根据绝对值的性质可得,一个数的绝对值是5,则这个数是5或-5.【详解】根据绝对值的性质,将方程方程|21|5x -=化成两个一元一次方程是215x -=,215x -=-,故答案为: 215x -=,215x -=-.【点睛】本题主要考查绝对值的基本性质,解决本题的关键是要熟练掌握绝对值的基本性质. 6.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本 解析:110【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】 因为代数式154t +与15()4t -的值互为相反数, 所以154t ++15()4t -=0,解得:t =110, 【点睛】 本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 7.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1 解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【解析】【分析】根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】 本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.8.如果ma mb =,那么下列等式一定成立的是_______.①a b =;②66ma mb -=-;③1122ma mb -=-;④88ma mb +=+;⑤3131ma mb -=-;⑥33ma mb -=+.②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母等式仍成立即可解决【详解】当m =0时a =b 不一定成立故解析:②③④⑤【解析】【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立; ②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【详解】当m =0时,a =b 不一定成立.故①错误;ma =mb ,根据等式的性质1,两边同时减去6,就得到ma−6=mb−6.故②正确;根据等式的性质2,两边同时乘以−12,即可得到1122ma mb -=-,故③正确; 根据等式的性质1,两边同时加上8就可得到ma +8=mb +8.故④正确; 根据等式的性质2,两边同时乘以3,即可得到33ma mb =,根据等式的性质1,两边同时减去1就可得到3ma-1=3mb-1,故⑤正确;根据等式的性质1,ma mb =两边同时加或减3,结果仍相等,故⑥错误,故答案为:②③④⑤.【点睛】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x ,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x ,则长=12(14-10x )=2x , 解得x=1, 即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.10.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元.由此,列出方程_________________.解这个方程,得x =______________.因此每件服装的成本价是___________元.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.11.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.【解析】【分析】根据题意先设中间一个的数字为x 即可解答【详解】设中间一个的数字为x 其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x ,即可解答.【详解】设中间一个的数字为x ,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于找出等量关系.12.解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.Y=3【解析】【分析】根据解一元一次方程的法则对应各个步骤即可【详解】去分母得5(y-1)=2(y+2)去括号得5y-5=2y+4移项得5y-2y=5+4合并同类项得3y=9系数化为1得y=3;【点 解析:5(1)2(2)y y -=+, 5524y y -=+, 5254y y -=+, 39y =, Y=3【解析】【分析】根据解一元一次方程的法则,对应各个步骤即可.【详解】去分母,得5(y-1)=2(y+2),去括号,得5y-5=2y+4,移项,得5y-2y=5+4,合并同类项,得3y=9,系数化为1,得y=3;【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.13.在方程1322x -=-的两边同时_________,得x =__________.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x =-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:加12 1- 【解析】【分析】根据等式的性质2,方程的两边加12即可. 【详解】 方程1322x -=-的两边同时加12得:x =-1,故答案为:加12;1-.【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.14.若关于x的方程3x m-2-m=0是一元一次方程,则m=________,方程的解为________.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M,结合m的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键15.一个长方形周长是44cm,长比宽的3倍少10cm,则这个长方形的面积是______.112cm2【分析】根据长方形的特征对边平行且相等长方形的周长=(长+宽)×2已知长是宽的3倍少10cm也就是长=3宽-10再根据长方形的面积公式s=ab列式解答【详解】解:设长方形的宽为xcm则长解析:112cm2.【分析】根据长方形的特征,对边平行且相等,长方形的周长=(长+宽)×2,已知长是宽的3倍少10cm,,也就是长=3宽-10,再根据长方形的面积公式s=ab,列式解答.【详解】解:设长方形的宽为xcm,则长为(3x-10)cm,依题意得:2x+2(3x-10)=44解得:x=8∴长方形的长=38⨯-10=14cm.∴这个长方形的面积=14⨯8=112cm2.故答案为112 cm2.【点睛】此题主要考查长方形的周长公式、面积公式的综合运用.16.方程 2243x -=的解是__________x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】 解:2243x -= 2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】 本题考查解一元一次方程的步骤,解题关键是:移项变号.17.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x 的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一解析:x=1【分析】利用一元一次方程的定义求解即可.【详解】∵关于x 的方程3x m-2-3m+6=0是一元一次方程,∴m-2=1,解得:m=3,此时方程为3x-9+6=0,解得:x=1,故答案为x=1.【点睛】此题考查一元一次方程的定义以及解一元一次方程,熟练掌握一元一次方程的定义是解题的关键.18.在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.-33【分析】先设第一个空填m 则第二个空就填-m 最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m 则第二个空就填-m ∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3【分析】先设第一个空填m ,则第二个空就填-m ,最后形成一个方程,接着解出方程进一步求出答案即可.【详解】设第一个空填m ,则第二个空就填-m ,∴2315m m +=-,解得:3m =-,∴3m -=.故答案为:3-,3.【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键. 19.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
国兴中学七年级数学上册第三单元《一元一次方程》-填空题专项经典复习题(含解析)
一、填空题1.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.142128【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x 则上面的为x-7下面的是x+7然后根据题意列出方程求解进一步计算即可【详解】设中间的数为x 则上面的为x-7下面的是x+7则解析:14,21,28【分析】根据日历同一竖列相邻三个数依次相差7的关系设中间的数为x ,则上面的为x-7,下面的是x+7,然后根据题意列出方程求解进一步计算即可.【详解】设中间的数为x ,则上面的为x-7,下面的是x+7,则:77x x x -+++=63,解得:21x =,∴其余两个数为:14,28.所以答案为14,21,28.【点睛】本题主要考查了一元一次方程的实际运用,掌握日历中竖列相邻数的排列关系是解题关键.2.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3.【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=, 即x 20﹣=解得:x 2=,(2)当m=0时,x 20--=,解得:x 2=-(3)当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键. 3.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.5cm 【分析】设矮胖形圆柱的高是xcm 根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm 由题意得π×80=πx 解得:x=5故答案为5cm 【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.4.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.4【解析】【分析】直接设每千克苹果的售价是x 元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x 元则每千克香蕉售价2x 元根据题意可得:解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键. 5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是______g. 17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量可设一块巧克力质量为xg 则一个果冻质量为2xg 再根据图②列出关于x 的方程求解即可【详解】解:由图①设一块巧克力质量为xg 则一个果冻质量为2解析:17【解析】【分析】由图①可知4块巧克力质量等于2个果冻质量,可设一块巧克力质量为xg ,则一个果冻质量为2xg ,再根据图②列出关于x 的方程求解即可.【详解】解:由图①设一块巧克力质量为xg ,则一个果冻质量为2xg ,由图②可列方程为:x+2x=51,解得x=17.故答案为:17.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于读懂题图巧克力与果冻的质量关系,设出未知数,列出方程求解.6.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________.2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同并且相同字母的指数也相同可得出关于a 的一元一次方程【详解】∵和是同类项∴2a-1=a+2故答案为:2a-1=a+2【点睛】本题考查了由实解析:2a-1=a+2【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出关于a 的一元一次方程.【详解】 ∵21535a x y -和2547a x y +是同类项, ∴2a-1=a+2.故答案为:2a-1=a+2.【点睛】本题考查了由实际问题抽象出元一次方程的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,据此列方程.7.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.8.一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.9.方程3622y y y -+=,左边合并同类项后,得____________.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键解析:y=6【解析】先合并同类项,再进行化简即可.【详解】3622y y y -+= 合并同类项,得:13-1+=622y ⎛⎫⎪⎝⎭ y=6【点睛】本题考查合并同类项,熟练掌握计算法则是解题关键.10.在公式5(32)9c f =-中,已知20c =,则f =_____________.68【解析】【分析】把C=20代入C 与f 之间的关系式解方程就可以求出f 的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟解析:68【解析】【分析】把C=20代入C 与f 之间的关系式5(32)9c f =-,解方程就可以求出f 的值. 【详解】由题意,得当C=20时, 20=5(32)9f -, 180=5f−160,−5f=−340,f=68.故答案为:68.【点睛】 本题考查解一元一次方程,熟练掌握运算法则是解题关键.11.如果代数式453m -的值等于5-,那么m 的值是_________.【解析】【分析】根据题意列出方程求出方程的解即可得出m 的值【详解】由题意得:=去分母得:4m-5=-15解得m=【点睛】本题考查解一元一次方程熟练掌握计算法则是解题关键 解析:52-【分析】根据题意列出方程,求出方程的解即可得出m 的值.【详解】 由题意得:453m -=5- 去分母得:4m-5=-15 解得m=52-【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.12.完成下列的解题过程: 用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________.去括号,得_________________.移项、合并同类项,得________________.系数化为1,得_____________.(2)解法二:去括号,得______________.去分母,得________________.移项、合并同类项,得____________. 系数化为1,得_______________.【解析】【分析】解一元一次方程的一般步骤是:去分母去括号移项合并同类项系数化1但步骤也并不是固定不变的要灵活掌握【详解】两种方法解方程:解法1:去分母得去括号得9x -3=12-4x -12移项合并同类解析:3(31)124(3)x x -=-+, 9312412x x -=--, 133x =, 313x =, 31111443x x -=--, 9312412x x -=--, 133x =, 313x = 【解析】【分析】解一元一次方程的一般步骤是:去分母,去括号,移项合并同类项,系数化1,但步骤也并不是固定不变的,要灵活掌握.【详解】 两种方法解方程:11(31)1(3)43x x -=-+ 解法1:去分母,得3(31)124(3)x x -=-+. 去括号,得9x -3=12-4x -12移项、合并同类项,得13x=3.系数化为1,得313x =. 解法2:去括号,得31111443x x -=-- 去分母,得9312412x x -=--移项、合并同类项,得13x=3系数化为1,得313x =故答案为:(1) 3(31)124(3)x x -=-+(2) 9312412x x -=--(3) 133x = (4) 313x =(5) 31111443x x -=-- (6) 9312412x x -=-- (7) 133x = (8) 313x =. 【点睛】 本题考查解方程,熟练掌握解方程的步骤及计算法则是解题关键.13.在方程1322x -=-的两边同时_________,得x =__________.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x =-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:加12 1- 【解析】【分析】根据等式的性质2,方程的两边加12即可. 【详解】 方程1322x -=-的两边同时加12得:x =-1, 故答案为:加12;1-. 【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.14.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________2【解析】【分析】根据一元一次方程的定义分别得到关于a 和关于m 的一元一次方程解之代入a+m 计算求值即可【详解】根据题意得:a+2=0解得:a=−2m−3=1解得:m=4a+m=−2+4=2故答案为:解析:2【解析】【分析】根据一元一次方程的定义,分别得到关于a 和关于m 的一元一次方程,解之,代入a+m ,计算求值即可.【详解】根据题意得:a+2=0,解得:a=−2,m−3=1,解得:m=4,a+m=−2+4=2,故答案为:2【点睛】此题考查一元一次方程的定义,难度不大15.一批玩具,如果3个小朋友玩1个,还剩2个玩具;如果2个小朋友玩1个,还有9人没有分到玩具.若设有x 个玩具,根据题意可列方程______.【解析】【分析】依据题意分析可得等量关系:两总分法实际上球的个数不变【详解】解:若设有个玩具由题意得【点睛】本题考查了一元一次方程的应用解答本题的关键是读懂题意找出等量关系列方程求解解析:3(2)29x x -=+【解析】【分析】依据题意分析,可得等量关系: 两总分法实际上球的个数不变.【详解】解:若设有x 个玩具,由题意得,3(2)29x x -=+【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.16.关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________.0或6或8【分析】先解方程得到一个含有字母k 的解然后根据解是自然数解出k 的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k )x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x 的方解析:0或6或8【分析】先解方程,得到一个含有字母k 的解,然后根据解是自然数解出k 的值即可.【详解】解:移项得,9x-kx=2+7合并同类项得,(9-k )x=9,因为方程有解,所以k≠9,则系数化为1得,x=99-k, 又∵关于x 的方程9x-2=kx+7的解是自然数,∴k 的值可以为:0、6、8.其自然数解相应为:x=1、x=3、x=9.故答案为:0或6或8.【点睛】本题考查解一元一次方程、方程的解,解答的关键是根据方程的解对整数k 进行取值,注意不要漏解.17.在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.-33【分析】先设第一个空填m 则第二个空就填-m 最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m 则第二个空就填-m ∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3【分析】先设第一个空填m ,则第二个空就填-m ,最后形成一个方程,接着解出方程进一步求出答案即可.【详解】设第一个空填m ,则第二个空就填-m ,∴2315m m +=-,解得:3m =-,∴3m -=.故答案为:3-,3.【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键.18.已知222a b c k b c a c a b===+++,则k =______.1或-2【分析】分类讨论:①当时将等式变形即可求出k 的值;②当时则代入原等式即可求出k 的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本解析:1或-2【分析】分类讨论:①当0a b c ++≠时,将等式变形,即可求出k 的值;②当0a b c ++=时,则a b c +=-,代入原等式即可求出k 的值.【详解】解:①当0a b c ++≠时, ∵222a b c k b c a c a b===+++, ∴()()()2,2,2a k b c b k a c c k a b =+=+=+,∴()222a b c k b c a c a b ++=+++++,∴()()22a b c k a b c ++=++,∴22k =,∴1k =;②当0a b c ++=时,则a b c +=-. ∴222c c k a b c===-+- 故答案为:1或-2【点睛】 此题考查的是等式的基本性质,根据等式的基本性质将等式变形是解决此题的关键. 19.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x -亥61=-的x 的值为__________.【分析】原式利用题中的新定义计算即可求出值【详解】根据题中的新定义得亥故答案为:【点睛】本题考查了一元一次方程的解法掌握解一元一次方程的解法是解题的关键 解析:34- 【分析】原式利用题中的新定义计算即可求出值.【详解】根据题中的新定义得123x -亥61=-126613x -⨯-=- 2461x --=-43x -=34x =- 故答案为:34-. 【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的解法是解题的关键. 20.若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a 的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代 解析:4或0 ≠-1【分析】根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可.【详解】解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3, 把12+=n 代入方程得:2253-+=+ax bx x x ,整理得:()()23150-+--+=a x b x , ∴a-3=0,-b-1≠0,解得:a=3,b≠-1,∴a+n=4或0,故答案为:4或0;≠,-1.【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键. 21.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.20【分析】设王老师家三月份用水x 吨根据水费=10×2+超出10吨的部分×3及水费=50即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设王老师家三月份用水x 吨依题意:解得故答案为20【点睛解析:20【分析】设王老师家三月份用水x 吨,根据水费=10×2+超出10吨的部分×3及水费=50,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设王老师家三月份用水x 吨.依题意:102(10)350x ⨯+-⨯=,解得20x ,故答案为20.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 22.一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;x +3【分析】根据顺水速度=静水中的速度+水速即可列出代数式【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题解决问题的关键是读懂题意找到所求的量之 解析:x +3【分析】根据顺水速度=静水中的速度+水速,即可列出代数式.【详解】解:船在这条河中的顺水速度是(x+3)km/h;故答案为:x+3;【点睛】本题考查了行程问题,解决问题的关键是读懂题意,找到所求的量之间的关系. 23.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.11【分析】把9的后面2的前面的数字用字母表示出来根据任何相邻的三个数字之和都等于20确定出x 与y 的值即可求出x+y 的值【详解】解:如下图标注表格中的数:由题意得:则有9+x+2=20即x=9所以表解析:11【分析】把9的后面,2的前面的数字用字母表示出来,根据任何相邻的三个数字之和都等于20,确定出x 与y 的值,即可求出x+y 的值.【详解】解:如下图标注表格中的数:由题意得:9,2,a b a b c d e f e f ++=++++=++9,2,c d∴==则有9+x+2=20,即x=9,所以表格中的数字为9,9,2,9,9,2,9,9,2,9,9,2,9,9,2,9,9,即y=2,则x+y=11.故答案为:11.【点评】本题考查了有理数的加法,简单的一元一次方程的解法,熟练掌握运算法则是解本题的关键.24.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.28【解析】设这种电子产品的标价为x元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28解析:28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.25.方程2243x-=的解是__________x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.26.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x+(7-x)=15,解得x=4,故答案为:4.27.解方程213412208x x x-+-=-1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________.10x-6(2x-1)=15(3x +4)-120等式的性质2【分析】找出方程两边分母的最小公倍数根据等式的性质2即可得答案【详解】∵12208的最小公倍数是120∴去分母时方程两边应都乘120得10解析:10x-6(2x-1)=15(3x+4)-120 等式的性质2【分析】找出方程两边分母的最小公倍数,根据等式的性质2即可得答案.【详解】∵12、20、8的最小公倍数是120,∴去分母时,方程两边应都乘120,得10x-6(2x-1)=15(3x+4)-120,这一变形的依据是:等式的性质2故答案为:120,10x-6(2x-1)=15(3x+4)-120,等式的性质2【点睛】本题考查解一元一次方程及等式的性质,等式的性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等;熟练掌握相关知识是解题关键.28.为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人.8【分析】理解题意根据工作总量等于各分量之和设先植树的有x人可得【详解】设先植树的有x人可得解得x=8故答案为:8【点睛】考核知识点:一元一次方程应用根据工作量关系列出方程是关键解析:8【分析】理解题意,根据工作总量等于各分量之和,设先植树的有x人,可得()4251 8080xx++=.【详解】设先植树的有x人,可得()42518080x x ++=, 解得x =8.故答案为:8【点睛】考核知识点:一元一次方程应用.根据工作量关系列出方程是关键.29.若关于x 的方程2mx+3m=-1与3x+6x=-3的解相同,则m 的值为_____.【分析】分别解出两方程的解两解相等就得到关于m 的方程从而可以求出m 的值【详解】解:由3x+6x=-3可得:x=-由2mx+3m=-1可得:x=所以可得:解得:故答案为:【点睛】本题考查了同解方程本题 解析:37- 【分析】分别解出两方程的解,两解相等,就得到关于m 的方程,从而可以求出m 的值.【详解】解:由3x+6x=-3可得:x=-13, 由2mx+3m=-1可得:x=132m m --, 所以可得:13123m m --=-, 解得:37m =-, 故答案为:37-. 【点睛】本题考查了同解方程,本题解决的关键是能够求解关于x 的方程,要正确理解方程解的含义.30.某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.5【解析】【分析】首先设乙班平均每人捐款x 元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x 元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x 元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日历中的方程
1、在日历上横着每两个数的差为________,竖着的差为________。
2、小明去旅游一周,已知第一天与最后一天的和为15则小明出发的日期是_ _________号。
3、小彬假期外出旅行三天,这三天的日期之和是63,则小彬是
号回家。
4、设最小的数为,则日历上套出2×2个数中最大的数表示为()。
A.x+2 B.x+1 C.x-2 D.x+8
5、某月日历一个竖列上相邻的三个日期的和为75,那么这三个日期分别是
6、某月日历一个竖列上相邻的三个日期的和为21,那么这三个日期分别是
7、某月日历一个竖列上相邻的三个日期的和为55,那么这三个日期分别是
8、小彬假期外出旅行一周,这一周各天的日期之和是84,小彬是号回家的
9、在某月日历上用一个2×3的矩形圈出6个数,使它们的和是81,求这6天分别是号
10有一些分别标有6,12,18,24.....的卡片,后一张卡片上的数比前一张卡片上的数大6,小明拿到了相邻的3张卡片,且这些卡片上的数之和为342.
问:1:小明拿到哪3张卡片?
2:你能拿到相邻的3张卡片,使得这些卡片上的数之和是86吗?
11在这个日历中,如果正方 形所圈出的4个数的和是76,这4天分别是几号?星期日星期一星期二星期三星期四星期五星
期
六
123456789101112
13141516171819
20212223242526
2728293031
12
右边给出的是2004年3
月份的日历表,任意圈出一
竖列上相邻
的三个数,请你运用方程思想来研究,发现这三个数的和不可
能是( )(A )69(B )54(C )27(D )4013下列数阵是由偶数排列成的:
第 1列 2列 3列 4列 5列
第一排 2 4 6 8 10
第二排第三排第四排 32 34 36 38 40
… … … … … …
(1)图中框内的四个数有什么关系(用式子表示): ;
(2)在数阵中任意作一类似的框,如果这四个数的和为172
,能否求出这四个数,怎样求
14全体奇数排成下图形式,十字框框出的5个数,要使这5个数的和等于2003,可能吗?如果可能请求出这5个数.如果不可能,请说明理由.
1357911
131517192123
252729313335
373941434547
495153555759
………………
把十字框框换成如下面的各种形式。
继续探求用其他形式方框圈出的数字之和
能等于2003,。