一次函数与平行四边形专题卷(北师大八下期末)

合集下载

北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2.已知m n >,则下列不等式中不正确的是()A .77m n +>+B .55m n >C .44m n -<-D .66m n -<-3.如图,在ABC 中,AB AC =,点D 是边AC 上一点,BC BD AD ==,则A ∠的大小是()A .72°B .54°C .38°D .36°4.一次函数y =ax+b 的图象如图所示,则不等式ax+b≥0的解集是()A .2x ≥B .2x ≤C .4x ≥D .4x ≤5.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是()A .-2B .2C .-50D .506.若代数式4xx -有意义,则实数x 的取值范围是()A .x =0B .x =4C .x ≠0D .x ≠47.在下列条件中,能判定四边形ABCD 是平行四边形的是()A .,AB BC AD DC==B .//,AB CD AD BC =C .//,AB CD AB CD =D .,A B C D∠=∠∠=∠8.如图,Rt △ABC 中,∠C=90°,AB 的垂直平分线DE 交AC 于点E ,连接BE ,若∠A=40°,则∠CBE 的度数为()A .10°B .15°C .20°D .25°9.若24x mx ++是完全平方式,则m 的值为()A .4m =B .2m =C .4m =-或4m =D .4m =-10.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的个数为()A .1B .2C .3D .4二、填空题11.若分式241x x -+的值为0,则x 的值为_______.12.多项式34a a -分解因式的结果是______.13.如图,将 ABC 绕点B 顺时针旋转60°得 DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .若AB =5,则AD =_______________________.14.如图,已知ABC 中,,AB AC AD =平分,BAC E ∠是AB 的中点,若6,AB =则DE 的长为_______________________.15.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.16.若不等式组841x x x m +<-⎧⎨>⎩的解集为x >3,则m 的取值范围___.17.已知1213435241110,S ,1,,1,a S S S S S S a S S >==--==-=,·……,(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2020S =_______________________.三、解答题18.解不等式组()12214x x -<-⎧⎨+>⎩,并求出它的最小整数解.19.先化简,21111x x x ⎛⎫-÷ ⎪+-⎝⎭,再从1,0,1-,2中选择一个合适的数代入求值.20.如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)ABC ∆的顶点都在方格纸的格点上,先将ABC ∆向右平移2个单位,再向上平移3个单位,得到111A B C ∆,其中点1A 、1B 、1C 分别是A 、B 、C 的对应点,试画出111A B C ∆;(2)连接11AA BB 、,则线段11AA BB 、的位置关系为____,线段11AA BB 、的数量关系为___;(3)平移过程中,线段AB 扫过部分的面积_____.(平方单位)21.如图,在 ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=12BC ,连结DE ,CF .(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE 的长.22.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?23.如图,在Rt ABC 中,90,ACB D ∠= 是BC 延长线上的一点,线段BD 的垂直平分线EG 交AB 于点,E 交BD 于点G .()130B ∠= 时,AE 和EF 有什么关系?请说明理由.()2当点D 在BC 的延长线上()CD BC <运动时,点E 是否在线段AF 的垂直平分线上?24.已知下面一列等式:111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…(1)请你按这些等式左边的结构特征写出它的一般性等式:(2)验证一下你写出的等式是否成立;(3)利用等式计算:11(1)(1)(2)x x x x++++11(2)(3)(3)(4)x x x x++++++.25.如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O 出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少.参考答案1.A【详解】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.2.D【分析】根据不等式的性质逐项分析即可.【详解】A.∵m n>,∴77m n+>+,故正确;B.∵m n>,∴55>,故正确;m nC.∵m n>,∴44m n-<-,故正确;D.∵m n>,∴66->-,故不正确;m n故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.D【解析】【分析】由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴设∠A=∠ABD=x,则∠C=∠CDB=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,即∠A=36°.故选:D.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.4.B【解析】【分析】利用函数图象,写出函数图象不在x轴下方所对应的自变量的范围即可.【详解】解:不等式ax+b≥0的解集为x≤2.故选:B.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A【解析】【详解】试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.考点:因式分解的应用.6.D【解析】【详解】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.7.C【解析】【分析】根据平行四边形的判定定理:对角线互相平分的四边形是平行四边形可得答案.【详解】解:A、AB=BC,AD=DC,不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB∥CD,AB=CD能判定四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故此选项正确;D、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;故选:C.【点睛】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.A【解析】【分析】根据垂直平分线的性质和等边对等角即可计算.【详解】∵∠C=90°,∠A=40°,∴∠ABC=90°-40°=50°.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=50°-40°=10°.故选A.9.C【解析】【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】解:∵x2+mx+4=x2+mx+22是完全平方式,∴m=±4,故选:C.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.a2+2ab+b2和a2-2ab+b2都是完全平方式,注意不要漏解.10.D【解析】【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】解;∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】此题主要考查了平行四边形的性质、线段垂直平分线的性质、以及等腰三角形的判定与性质等知识,正确应用等腰三角形的判定与性质是解题关键.11.2.【解析】【详解】试题分析:由分式的值为0时,分母不能为0,分子为0,可得2x-4=0,x+1≠0,解得x=2.考点:分式的值为0的条件.12.(2)(2)a a a +-【解析】【分析】先提出公因式a ,再利用平方差公式因式分解.【详解】解:a 3-4a=a (a 2-4)=a (a+2)(a-2).故答案为a (a+2)(a-2).【点睛】本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.13.5【解析】【分析】由旋转可得AB =BD ,∠ABD =60°,可得 ABD 为等边三角形,则可得出答案.【详解】解:∵将 ABC 绕点B 顺时针旋转60°得 DBE ,∴AB =BD ,∠ABD =60°,∴ ADB 是等边三角形,∴AB =AD =5.故答案为:5.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,关键是灵活运用旋转性质解决问题.14.3【解析】【分析】根据等腰三角形的性质可得AD ⊥BC ,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】解:∵AB =AC ,AD 平分∠BAC ,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=12AC=3.故答案为:3.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.15.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.16.m≤3【解析】【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的范围.【详解】解:解不等式x+8<4x−1,得:x>3,∵不等式组的解集为x>3,∴m≤3,故答案为:m≤3.【点睛】本题考查的是解一元一次不等式组,解题的关键是正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.17.11a -+【解析】【分析】根据Sn 数的变化找出Sn 的值每6个一循环,结合2020=336×6+4,即可得出S 2020=S 4,此题得解.【详解】解:S 1=1a ,S 2=﹣S 1﹣1=﹣1a ﹣1=﹣1a a+,S 3=21S =﹣1a a +,S 4=﹣S 3﹣1=1a a +﹣1=﹣11a +,S 5=41S =﹣(a+1),S 6=﹣S 5﹣1=(a+1)﹣1=a ,S 7=61S =1a,…,∴Sn 的值每6个一循环.∵2020=336×6+4,∴S 2020=S 4=﹣11a +故答案为:﹣11a +【点睛】本题考查了规律型中数字的变化类,根据数值的变化找出Sn 的值,每6个一循环是解题的关键.18.不等式组的解集为3,x >最小整数解是4x =.【解析】【分析】先分别求出两个不等式的解集,然后求出公共解集,进而可得最小整数解.【详解】()12214x x -<-⎧⎪⎨+>⎪⎩①②,解不等式①,得3x >,解不等式②,得1x >,∴不等式组的解集为3,x >则它的最小整数解是4x =.【点睛】本题主要考查了解一元一次不等式组,根据“同大取大”求出公共解集是关键.19.x -1,1【解析】【分析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个合适的数代入求值.【详解】解:原式21111x x x x+--=⨯+()()111x x x x x+-=⨯+1x =-;x 取1,0和1-时分式无意义,x \取2,当2x =时,原式211=-=.【点睛】本题考查了分式的化简求值,解题的关键是分子、分母的因式分解,以及通分、约分.20.(1)见解析;(2)平行,相等;(3)15.【解析】【分析】(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)利用平移的性质得出线段AA 1、BB 1的位置与数量关系;(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.故答案为:平行,相等;(3)平移过程中,线段AB扫过部分的面积为:2×12×3×5=15.故答案为:15.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.(1)见解析(213【解析】【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【详解】(1)证明:在▱ABCD中,AD BC,且AD=BC∵F是AD的中点∴DF=12 AD又∵CE=12 BC∴DF=CE,且DF CE∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD 中,∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=12CD=2,3在▱CEDF 中,CE=DF=12AD=3,则EH=1.∴在Rt △DHE 中,根据勾股定理知2(23)113+=.22.(1)2元;(2)至少购进玫瑰200枝.【解析】【详解】试题分析:(1)设降价后每枝玫瑰的售价是x 元,然后根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍,列分式方程求解即可,注意检验结果;(2)根据店主用不多于900元的资金再次购进两种鲜花共500枝,列不等式求解即可.试题解析:(1)设降价后每枝玫瑰的售价是x 元,依题意有=×1.5.解得x =2.经检验,x =2是原方程的解,且符合题意.答:降价后每枝玫瑰的售价是2元.(2)设购进玫瑰y 枝,依题意有2(500-y)+1.5y≤900.解得y≥200.答:至少购进玫瑰200枝.23.(1)AE=EF ,理由详见解析;(2)点E 是在线段AF 的垂直平分线上,理由详见解析【解析】(1)根据线段垂直平分线性质得出DE=BE,求出∠D=∠B=30°,根据三角形内角和定理和三角形外角性质求出∠A=∠DEA=60°,即可得出答案;(2)求出∠A=∠AFE,根据线段垂直平分线性质得出即可.【详解】解:(1)AE=EF,理由是:∵线段BD的垂直平分线EG交AB于点E,交BD于点G,∴DE=BE,∵∠B=30°,∴∠D=∠B=30°,∴∠DEA=∠D+∠B=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∴∠A=∠DEA=60°,∴△AEF是等边三角形,∴AE=EF;(2)点E是在线段AF的垂直平分线,理由是:∵∠B=∠D,∠ACB=90°=∠FCD,∴∠A=∠DFC,∵∠DFC=∠AFE,∴∠A=∠AFE,∴EF=AE,∴点E是在线段AF的垂直平分线.【点睛】本题考查了线段垂直平分线性质,等腰三角形的性质,等边三角形的性质和判定的应用,能熟记线段垂直平分线内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.(1)一般性等式为111=(+11n n n n-+);(2)原式成立;详见解析;(3)244x x+.【解析】(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.【详解】解:(1)由111122⨯=-;11112323⨯=-;11113434⨯=-;11114545⨯=-;…,知它的一般性等式为111=(+11n n n n -+);(2)1111(1)(1)n n n n n n n n +-=-+++ 111(1)1n n n n ==++,∴原式成立;(3)11(1)(1)(2)x x x x ++++11(2)(3)(3)(4)x x x x ++++++1111112x x x x =-+-+++11112334x x x x +-+-++++114x x =-+244x x=+.【点睛】解答此题关键是找出规律,再根据规律进行逆向运算.25.(1)证明见解析;(2)四边形ADEC 的周长为+.【解析】【分析】(1)连接CD 交AE 于F ,根据平行四边形的性质得到CF=DP ,OF=PF ,根据题意得到AF=EF ,又CF=DP ,根据平行四边形的判定定理证明即可;(2)根据题意计算出OC 、OP 的长,根据勾股定理求出AC 、CE ,根据平行四边形的周长公式计算即可.【详解】(1)证明:如答图,连接CD 交AE 于F.∵四边形PCOD 是平行四边形,∴CF =DF ,OF =PF.∵PE =AO ,∴AF =EF.又∵CF =DF ,∴四边形ADEC 为平行四边形.(2)解:当点P 运动的时间为32秒时,OP =32,OC =3,则OE =92.由勾股定理,得AC 22OA OC +3,CE 22OC OE +3132.∵四边形ADEC 为平行四边形,∴四边形ADEC 的周长为(33132)×2=6+13【点睛】本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.。

北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试卷及答案

北师大版八年级下册数学期末考试试题一、单选题1.下列图案中,不是中心对称图形的是()A .B .C .D .2.不等式32x -<-的解集是()A .23x >B .23x <-C .23x <D .23x >-3.若分式+-x yx y中的x 、y 的值都变为原来的3倍,则此分式的值()A .不变B .是原来的3倍C .是原来的13D .是原来的164.多项式223634xy x y x yz +-各项的公因式是()A .xyB .2xzC .3xyD .3yz5.如图,在四边形ABCD 中,AB=CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,若∠MPN=130°,则∠NMP 的度数为()A .10°B .15°C .25°D .40°6.如图,ABC ∆中,AB 的垂直平分线DE 交AC 于D ,如果5AC cm =,4BC cm =,那么DBC ∆的周长是()A .6cmB .7cmC .8cmD .9cm7.一个多边形的每个内角均为108º,则这个多边形是()A .七边形B .六边形C .五边形D .四边形8.若解分式方程144x mx x -=++产生增根,则m=()A .1B .0C .﹣4D .﹣59.下列命题中是真命题的是()A .若a b >,则33a b->-B .有两个角为60︒的三角形是等边三角形C .一组对边相等,另一组对边平行的四边形是平行四边形D .如果0ab =,那么0a =,0b =10.如图,在Rt ABC 中,90ABC ∠=︒,AB BC ==ABC 绕点A 逆时针旋转60︒,得到ADE ,连接BE ,则BE 的长是()A .2+B .3+C .2+D .3+二、填空题11.分解因式:22a 4a 2-+=_____.12.关于x 的不等式组22x b a x a b ->⎧⎨-<⎩,的解集为-3<x<3,则a ,b 的值分别为_______.13.对分式12x,14y ,218xy 进行通分时,最简公分母是_____14.等边三角形的两条中线所夹的锐角的度数为__________15.如图,在 ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6, ABCD 的周长为40,则S ABCD 四边形为______.16.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.17.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为_____.三、解答题18.先化简,再求值:22211a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭.其中21a =,21b =+.19.解分式方程:241244x x x x -=--+.20.解不等式组1123(1)213x x x -⎧<⎪⎨⎪-≤+⎩,把解集表示在数轴上并写出该不等式组的所有整数解.21.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2;(2)计算线段AC 从开始变换到A 1C 2的过程中扫过区域的面积(重叠部分不重复计算)23.如图,在ABC ∆中,AD 平分BAC ∠,BE AD ⊥,BE 交AD 的延长线于点E ,点F 在AB 上,且//EF AC ,求证:点F 是AB 的中点.24.如图,在四边形ABCD 中,AD ∥BC ,AD =12cm ,BC =15cm ,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为t (s ).(1)用含t 的代数式表示:AP =________cm ;DP =________cm ;BQ =________cm ;CQ =________cm .(2)当t 为何值时,四边形APQB 是平行四边形?(3)当t 为何值时,四边形PDCQ 是平行四边形?25.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A B ,两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(2m/个)使用农户数(户/个)造价(万元/个)A15182B20303365m,该村农户共有492户.已知可供建造沼气池的占地面积不超过2(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.26.已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.参考答案1.C【详解】解:A、是中心对称图形,故A错误;B 、是中心对称图形,故B 错误;C 、不是中心对称图形,故C 正确;D 、是中心对称图形,故D 错误;故选:C .2.A 【详解】−3x <−2,不等式两边同除以−3,得23x >,故选:A .3.A 【详解】解:∵分式+-x yx y中的x 、y 的值都变为原来的3倍∴()()333333x y x y x yx y x y x y+++==---∴此分式的值不变.故应选A 【点睛】本题主要考查了分式的基本性质,解题的关键是把x 、y 的值都变为原来的3倍后代入.4.A 【解析】【分析】根据公因式的定义可求解.【详解】解:()2233=634634xy x y x yz xy x xz+-+-故多项式223634xy x y x yz +-各项的公因式是xy .故选A .【点睛】本题主要考查公因式,掌握公因式的定义是解题的关键.5.C 【解析】【详解】分析:根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.详解:∵在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM=12AB ,PN=12DC ,PM ∥AB ,PN ∥DC .∵AB=CD ,∴PM=PN ,∴△PMN 是等腰三角形.∵∠MPN=130°,∴∠PMN=1801302︒-︒=25°.故选C .点睛:本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.6.D 【详解】DE 垂直平分AB ,549DBC AD BD C DB DC BC AC BC ∴=∴=++=+=+= 故选D 【点睛】本题考查垂直平分线的性质,是重要常见考点,难度易,掌握相关知识是解题关键.7.C 【详解】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.8.D 【详解】解:方程两边都乘()4x +,得1x m-=原方程增根为4x =-∴把4x =-代入整式方程,得5m =-故选D .【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.B 【解析】【分析】由不等式的基本性质判断A ,由等边三角形的判定判断B ,由平行四边形的判定判断C ,由两数之积为0,则两数中至少一个为0判断D .【详解】解:由a b >,所以a -<,b -所以:3a -<3,b -故A 错误;有两个角为60︒的三角形是等边三角形,此命题是真命题,故B 正确;一组对边相等,另一组对边平行的四边形不一定是平行四边形,这样的四边形可以是等腰梯形,故C 错误;如果0ab =,那么0a =或0b =,故D 错误.故选B .【点睛】本题考查的命题的真假的判断,同时考查了不等式的基本性质,等边三角形的判定,平行四边形的判定,两数之积为0,则两数中至少一个为0,掌握命题真假的判断方法是解题的关键.10.C 【解析】【分析】如图(见解析),先利用勾股定理、旋转的性质可得4,60AE AC CAE ==∠=︒,再根据等边三角形的判定与性质可得AE CE =,然后根据垂直平分线的判定与性质可得12,2OA AC OA BE ==⊥,最后利用勾股定理分别可得2,OB OE ==由此即可得出答案.【详解】如图,设AC 与BE 的交点为点O ,连接CE ,90,ABC AB BC ∠=︒==4AC ∴==,由旋转的性质得:4,60AE AC CAE ==∠=︒,ACE ∴ 是等边三角形,AE CE ∴=,BE ∴是线段AC 的垂直平分线,12,2OA AC OA BE ∴==⊥,在Rt AOB 中,2OB ==,在Rt AOE 中,OE =,则2BE OB OE =+=+,故选:C .【点睛】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、垂直平分线的判定与性质等知识点,通过作辅助线,构造等边三角形是解题关键.11.()22a 1-【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-.12.-3,3【解析】【详解】22x b a x a b ->⎧⎨-<⎩,,22x a bx b a >+⎧⎨<+⎩,所以2323a b b a +=-⎧⎨+=⎩,解得33a b =-⎧⎨=⎩.13.8xy 2【解析】【分析】由于几个分式的分母分别是2x 、4y 、8xy 2,首先确定2、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【详解】根据最简公分母的求法得:分式12x,14y ,218xy 的最简公分母是8xy 2,故答案为8xy 2.【点睛】此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.14.60°【解析】【分析】如图,等边三角形ABC 中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC =30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC ,AD 、BE 分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故答案为60°【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.15.48【解析】【分析】首先根据平行四边形的性质可得AB=CD,AD=BC,可得AB+BC=20,再利用其面积的求法S=BC×AE=CD×AF,可得4AE=6CD,列出方程组,求出平行四边形的各边长,再求其面积.【详解】解:设BC=x,CD=y,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵▱ABCD的周长为40,∴x+y=20,∵AE=4,AF=6,S ABCD四边形=BC×AE=CD×AF,∴4x=6y,得方程组:20 46x yx y+⎧⎨⎩==,解得:128x y =⎧⎨=⎩∴S 平行四边形ABCD =BC×AE =12×4=48.故答案为:48.【点睛】此题主要考查了平行四边形的性质与其面积公式,解题的关键是根据性质得到邻边的和,根据面积公式得到方程,再解方程组即可.16.36【解析】【分析】首先求得正五边形内角∠C 的度数,然后根据CD =CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【详解】解:∵正五边形的外角为360°÷5=72°,∴∠C =180°﹣72°=108°,∵CD =CB ,∴∠CDB =36°,∵AF ∥CD ,∴∠DFA =∠CDB =36°,故答案为36.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.17.58【解析】【分析】根据矩形的性质求出△AOB 的面积等于矩形ABCD 的面积的14,求出△AOB 的面积,再分别求出1ABO ∆、2ABO ∆、3ABO ∆、4ABO ∆的面积,即可得出答案【详解】解:∵四边形ABCD 是矩形,∴AO=CO ,BO=DO ,DC ∥AB ,DC=AB ,∴11201022ADC ABC ABCD S S S ∆∆===⨯=矩形,∴1110522AOB BCO ABC S S S ∆∆===⨯=,∴11155222ABO AOB S S ∆∆==⨯=,∴21524ABO ABQ S S ∆∆==,321528ABO ABO S S ∆∆==,4315216ABO AB S S ∆∆==,∴4435522168ABO AO C B S S ==⨯= 平行四边形故答案为:58.【点睛】本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.18.ab ,1.【解析】【分析】根据分式的除法和减法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:22211a ab b a b ba -+⎛⎫÷- ⎪-⎝⎭2()a b a b a b ab--=÷-1a b ab a b -=⋅-ab =,当1a =,1b =+时,原式1)1)1=⨯=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.x=4【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,得到x 的值,经检验即可得到分式方程的解.【详解】解:241244x x x x -=--+,方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x=4,检验:当x=4时,220x ≠(﹣).所以原方程的解为x=4.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.﹣2、﹣1、0、1、2.【解析】【分析】根据不等式组的计算方法,首先单个计算不等式,在采用数轴的方法,求解不等式组即可.【详解】解:11(1)23(1)213(2)x x x -⎧<⎪⎨⎪-≤+⎩解不等式(1)得:x <3,解不等式(2)得:x≥﹣2,它的解集在数轴上表示为:∴原不等式组的解集为:﹣2≤x <3,∴不等式组的整数解为:﹣2、﹣1、0、1、2.【点睛】本题主要考查不等式组的整数解,关键在于数轴上等号的表示.21.(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品【分析】(1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;(2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.【详解】解:(1)设每件乙种商品价格为x 元,则每件甲种商品价格为(10x +)元,根据题意得:35030010x x=+解得:60x =.经检验,60x =是原方程的解,则1070x +=.答:每件甲种商品价格为70元,每件乙种商品价格为60元.(2)设购进甲种商品a 件,则购进乙种商品(50a -)件,根据题意得:7060(50)3200a a +-≤,解得:20a ≤.∴该商店最多可以购进20件甲种商品.【点睛】本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解决本题的关键.22.见解析【解析】【详解】试题分析:(1)根据图形平移及旋转的性质画出△A 1B 1C 1及△A 1B 2C 2即可;(2)根据图形平移及旋转的性质可知,将△ABC 向下平移4个单位AC 所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC 扫过的面积是以3为底以2为高的平行四边形的面积;当△A 1B 1C 1绕点A 1顺时针旋转90°到△A 1B 2C 2时,A 1C 1所扫过的面积是以A 1为圆心以以2为半径,圆心角为90°的扇形的面积,再减去重叠部分的面积,根据平行四边形的面积及扇形面积公式进行解答即可.解:(1)如图所示:(2)∵图中是边长为1个单位长度的小正方形组成的网格,∴AC==2,∵将△ABC向下平移4个单位AC所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC扫过的面积是以3为底以2为高的平行四边形的面积;当△A1B1C1绕点A1顺时针旋转90°到△A1B2C2时,A1C1所扫过的面积是以A1为圆心以2为半径,圆心角为90°的扇形的面积,重叠部分是以A1为圆心,以2为半径,圆心角为45°的扇形的面积,∴线段AC在变换到A1C2的过程中扫过区域的面积=4×2+3×2+﹣=14+π.点评:本题考查的是旋转变换及平移变换,扇形的面积公式,熟知图形旋转、平移不变性的特点是解答此题的关键.23.见解析【解析】【分析】由AD为角平分线,利用角平分线定义得到一对角相等,再由EF与AC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠AEF=∠BAE,利用等角对等边得到AF=EF,再由AE与AD垂直,利用垂直的定义及直角三角形的两锐角互余,得到两对角之和为90°,由∠AEF=∠BAE,利用等角的余角相等可得出∠BEF=∠ABE,利用等角对等边得到BF=EF,等量代换得到AF=BF,即F为AB的中点,得证.【详解】证明:∵AD平分∠BAC,∴∠BAE=∠CAE,∵EF∥AC,∴∠AEF=∠CAE,∴∠AEF=∠BAE,∴AF=EF,又∵BE⊥AD,∴∠BAE+∠ABE=90°,∠BEF+∠AEF=90°,又∠AEF=∠BAE,∴∠ABE=∠BEF,∴BF=EF,∴AF=BF,∴F为AB中点.【点睛】此题考查了等腰三角形的判定与性质,平行线的性质,利用了转化及等量代换的思想,其中等腰三角形的判定方法简称“等角对等边”;等腰三角形的性质简称“等边对等角”.24.(1)t,(12﹣t),(15﹣2t),2t;(2)当t=5为何值时,四边形APQB是平行四边形;(3)当t=4时,四边形PDCQ是平行四边形【解析】【分析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ 的长;(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.【详解】解:(1)t,(12﹣t),(15﹣2t),2t;(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP =BQ 时,四边形APQB 是平行四边形.∴t =15﹣2t ,解得t =5.∴t =5时四边形APQB 是平行四边形;(3)由AP =tcm ,CQ =2tcm ,∵AD =12cm ,BC =15cm ,∴PD =AD ﹣AP =12﹣t ,如图1,∵AD ∥BC ,∴当PD =QC 时,四边形PDCQ 是平行四边形.即:12﹣t =2t ,解得t =4,∴当t =4时,四边形PDCQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质的应用,题目是一道综合性比较强的题目,难度适中,解题的关键是把握“化动为静”的解题思想.25.(1)满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个;方案二建造A 型沼气池8个,B 型沼气池12个;方案三建造A 型沼气池9个,B 型沼气池11个,见解析;(2)方案三最省钱,见解析【解析】【分析】(1)关系式为:A 型沼气池占地面积+B 型沼气池占地面积≤365;A 型沼气池能用的户数+B 型沼气池能用的户数≥492;(2)由(1)得到情况进行分析.【详解】解(1)设建设A 型沼气池x 个,B 型沼气池()20x -个,根据题意列不等式组得()()152020365183020492x x x x ⎧+-≤⎪⎨+-≥⎪⎩解不等式组得:79x ≤≤∴满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个方案二建造A 型沼气池8个,B 型沼气池12个方案三建造A 型沼气池9个,B 型沼气池11个(2)方案一的造价为:2731353⨯+⨯=万元方案二的造价为2812352⨯+⨯=万元方案三的造价为:2×9+3×11=51万元所以选择方案三建造9个A ,11个B 最省钱【点睛】此题考查一元一次不等式的应用,解题关键在于根据题意列出不等式.26.(1)证明见解析;(2)证明见解析;(3)△CFH 是等边三角形,理由见解析.【解析】【分析】(1)利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;(2)利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .(3)由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.【详解】解:(1)∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .(2)∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH .又BC=AC ,∴△BCF≌△ACH.∴CF=CH.(3)∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.【点睛】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.。

【】北师大版八年级下册数学《期末考试卷》含答案

【】北师大版八年级下册数学《期末考试卷》含答案
A.x>2B.x<2C.x=2D.x≠2
【答案】D
【解析】
【分析】
分式有意义时分母不等于0,据此即可解题.
【详解】解:∵分式 有意义,
∴4-2x≠0
解得:x≠2,
故选D.
【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义时分母不等于零是解题关键.
2.如图,下列是4个城市的地铁标志,其中是中心对称图形的是( )
A. B. C. D.
6.关于x的方程 =2+ 有增根,则k的值是( )
A. 3B. 2C. -2D. ﹣3
7.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段CE的长度为( )
A 2B. 3C. 1D. 4
8.小明要从甲地到乙地,两地相距千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为( )
A. B. C. D.
3.如果a<0,那么下列各式一定成立的是( )
A. 3a<4aB. πa>C. ﹣2a<﹣3aD. a>﹣ a
4.如图,将△ABC沿BC方向平移3cm得到△DEF.若△ABC的周长为15cm,则四边形ABFD的周长等于( )
A 21cmB.19cmC.20cmD.18cm
5.不等式组 的解集在数轴上表示为( )
(1)将△ABC向右平移8个单位长度,得到△A1B1C1,请直接画出△A1B1C1;
(2)将△ABC以原点为中心旋转180°,得到△A2B2C2,请直接画出△A2B2C2,并写出点M的对应点M’的坐标.
20.如图,直线 与直线 在同一平面直角坐标系内交于点P.

北师大版八年级下册数学期末考试卷(含答案)及复习提纲+练习题

北师大版八年级下册数学期末考试卷(含答案)及复习提纲+练习题

八年级下册数学期末测试题一.选择题1、-3x <-1的解集是( )A 、x <31B 、x <-31C 、x >31D 、x >-312、下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1) 3、下列命题是真命题的是( )A 、相等的角是对顶角B 、两直线被第三条直线所截,内错角相等C 、若n m n m ==则,22D 、有一角对应相等的两个菱形相似4、分式222b ab a a +-,22b a b -,2222b ab a b ++的最简公分母是( )A 、(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B 、(a+b )²(a -b )²C 、(a+b )²(a-b )²(a²-b²)D 、44b a -5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( )A 、八(1)班B 、八(2)班C 、两个班成绩一样稳定D 、无法确定6、如图1,能使BF∥DG 的条件是( ) A 、∠1=∠3 B 、∠2=∠4 C 、∠2=∠3 D 、∠1=∠47、如图2,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为( )A 、4:1B .2:1C .1:2D .1:4图1图28、如图3,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G ,H ,M ,N 四点中的( )A 、H 或MB 、G 或HC 、M 或ND 、G 或M9、如图4,DE∥BC,则下列不成立的等式是( )A 、EC AE BD AD = B 、AE ACAD AB = C 、DBEC AB AC = D 、BC DEBD AD =10、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图5所示,则关于x 的不等式12k x b k x +>的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定二.填空题11、计算:(1)(-x )²÷y·y1=____________。

北师大版八年级数学 一次函数测试题

北师大版八年级数学 一次函数测试题

北师大版八年级数学一次函数测试题一次函数是初中阶段数学学习的重要内容之一,它是一种非常基础的函数类型,对于学生来说十分重要。

下面是一份北师大版八年级数学一次函数测试题,希望对大家有所帮助。

一、选择题1. 下列函数中是一次函数的是()A. y = 2x^2 + 3x + 1B. y = 3x + 5C. y = 2/xD. y = √x2. 若函数y=2x-3,则当x=4时,y的值是()A. 5B. 6C. 7D. 83. 求函数y=5x-2的自变量x为1时,函数值y=()A. 3B. 4C. 5D. 64. 若直线y=3x+m与x轴交点为(4,0),则m的值是()A. 4B. -3C. -12D. -45. 已知函数y=kx+b的图象通过点P(-2,1),则k,b的值是()A. k=-2,b=-1B. k=1,b=-1C. k=-1,b=1D. k=2,b=1二、填空题1. 函数 y=3x-5 的图象是(直线/抛物线)。

2. 若函数 y=kx+b 的图象过点 A(3,5),则 k=(),b=()。

3. 直线 y=2x-4 与 x 轴交于点(),与 y 轴交于点()。

4. 若一次函数的斜率为 0,那么这条直线与 x 轴(平行/垂直)。

5. 当 x=2 时,函数 y=4x-3 的函数值为()。

三、应用题1. 甲乙两地相距120千米,甲地有一辆汽车以每小时40千米的速度向乙地开去,问经过多少小时两地相遇?解:设经过 t 小时后相遇,则甲地的距离为40t,乙地的距离为120-40t。

根据题意可列出一次函数方程:40t+40t=120,求得 t=1.5,所以经过1.5小时两地相遇。

2. 某商品原价为 x 元,现在在打八五折的优惠活动中,问现价为多少?解:打八五折即折扣为15%,所以现价为 x × (1-15%),即0.85x元。

3. 一条直线上共有15个点,设第1个点的横坐标为3,第15个点的横坐标为10,问相邻两点的横坐标之差是多少?解:相邻两点的横坐标之差为(10-3)/(15-1)=7/14=1/2。

2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形专项测试练习题(名师精选)

2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形专项测试练习题(名师精选)

北师大版八年级数学下册第六章平行四边形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知正多边形的一个外角等于45°,则该正多边形的内角和为()A.135°B.360°C.1080°D.1440°2、如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(8,6).若直线l经过点(2,0),且直线l将平行四边形OABC分割成面积相等的两部分,则直线l对应的函数解析式是()A.y=x-2 B.y=3x-6 C.332y x=-D.2433y x=-3、已知一个正多边形的内角是120°,则这个正多边形的边数是()A.3 B.4 C.5 D.64、如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD相交于点G,则下列关系正确的是()A .AG DG =B .AD EF ⊥且EG FG =C .DE DF ⊥D .DE AC ∥5、下列多边形中,内角和与外角和相等的是( )A .三角形B .四边形C .五边形D .六边形6、如图,平行四边形ABCD 的周长为16,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( )A .4B .6C .8D .107、如图,在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( )A .AB BC = B .AD BC = C .A C ∠=∠ D .180B C ∠+=︒8、如图,点O 是▱ABCD 的对称中心,l 是过点O 的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是( )A.甲大B.乙大C.一样大D.无法确定9、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为()A.16 B.24 C.32 D.4010、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.2、如图,ABC中,D为AC中点,E为BC上一点,连接DE,且2∠=∠,若7ABC DECAB=,CE=,则BC的长度为______.123、如图,在▱ABCD中,BC=3,CD=4,点E是CD边上的中点,将△BCE沿BE翻折得△BGE,连接AE,A、G、E在同一直线上,则AG=______,点G到AB的距离为______.4、若正n边形的内角和是1980°,则n的值是________.5、如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(-3,0)点C的坐标为______.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明BE=DF.2、如图,在ABCD中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)ABCD的面积;(2)△AOD的周长.3、如图1,MN ∥PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H ,请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;(3)若直线AD 的位置如图3所示,()2中的结论是否成立?若成立,请证明;若不成立,请直接写出CBG ∠与AHB ∠的数量关系.4、在Rt ABC 中,∠ABC =90°,∠A =α,O 为AC 的中点,将点O 沿BC 翻折得到点O ',将ABC 绕点O '顺时针旋转,使点B 与C 重合,旋转后得到ECF .(1)如图1,旋转角为 .(用含α的式子表示)(2)如图2,连BE ,BF ,点M 为BE 的中点,连接OM ,①∠BFC 的度数为 .(用含α的式子表示)②试探究OM 与BF 之间的关系.(3)如图3,若α=30°,请直接写出OM BE的值为 .5、已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).-参考答案-一、单选题1、C【分析】先利用正多边形的每一个外角为45︒,求解正多边形的边数,再利用正多边形的内角和公式可得答案. 【详解】解:正多边形的一个外角等于45°,∴这个正多边形的边数为:3608, 45∴这个多边形的内角和为:821801080,【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.2、C【分析】根据直线l 将平行四边形OABC 分割成面积相等的两部分,可得直线l 过OB 的中点,又根据中点公式可得OB 的中点为()4,3,然后设直线l 的解析式为()0y kx b k =+≠,将点(2,0),()4,3 代入,即可求解.【详解】解:∵直线l 将平行四边形OABC 分割成面积相等的两部分,∴直线l 过平行四边形的对称中心,即过OB 的中点,∵顶点B 的坐标为(8,6), ∴86,22⎛⎫ ⎪⎝⎭,即()4,3, 设直线l 的解析式为()0y kx b k =+≠,将点(2,0),()4,3 代入,得:2043k b k b +=⎧⎨+=⎩, 解得:323k b ⎧=⎪⎨⎪=-⎩, ∴直线l 的解析式为332y x =-, 故选:C .本题主要考查了求一次函数解析式,平行四边形的性质,明确题意,得到直线l过平行四边形的对称中心是解题的关键.3、D【分析】设该正多边形为n边形,根据多边形的内角和公式,代入求解即可得出结果.【详解】解:设该正多边形为n边形,由题意得:n n,(2)180120-︒=︒n=,解得:6故选:D.【点睛】题目主要考查多边形内角和,掌握多边形的内角和公式是解题的关键.4、B【分析】证明△ADE≌△ADF(HL),利用全等三角形的性质以及线段的垂直平分线的判定一一判断即可.【详解】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE= DF,在△ADE和△ADF中,AD AD DE DF=⎧⎨=⎩, ∴△ADE ≌△ADF (HL ),∴AE = AF ,∴AD 是线段EF 的垂直平分线,∴AD ⊥EF 且EG =FG ,故选项B 正确;∵DE ⊥AB ,DF ⊥AC ,∴∠AED =∠AFD =90°,∴∠BAC +∠EDF =360°-∠AED -∠AFD =180°,∵∠BAC 不一定等于90°,∴∠EDF 也不一定等于90°,故选项C 错误;∵∠EDF ≠90°,而∠AFD =90°,∴∠EDF +∠AFD ≠180°,∴DE 与AC 不一定平行,故选项D 错误;∵∠AED =90°,DE 与AE 不一定相等,∴AG 与DG 也不一定相等,故选项A 错误;故选:B .【点睛】本题考查了全等三角形的判定和性质,线段垂直平分线的判定和性质,四边形内角和定理,熟记各图形的性质并准确识图是解题的关键.5、B【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n-2)•180°=360°,解得n=4.故选:B.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.6、C【分析】先证明AE=EC,再求解AD+DC=8,再利用三角形的周长公式进行计算即可.【详解】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8,故选:C.【点睛】本题考查的是平行四边形性质,线段垂直平分线的性质,证明AE=EC是解本题关键.7、C【分析】由平行线的性质得180A D +=︒∠∠,再由A C ∠=∠,得180C D ∠+∠=︒,证出//AD BC ,即可得出结论.【详解】解:一定能判定四边形ABCD 是平行四边形的是A C ∠=∠,理由如下://AB CD ,180A D ∴∠+∠=︒,A C ∠=∠,180C D ∴∠+∠=︒,//AD BC ∴,又//AB CD ,∴四边形ABCD 是平行四边形,故选:C .【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出//AD BC .8、C【分析】如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N H 则O 为,AC BD 的中点,,,,OA OC OB OD AD BC ∥再证明,ANO CHO ≌ ,,DNO BHO AOB COD ≌≌ 可得,ANHB CHND S S 四边形四边形 从而可得答案.【详解】解:如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N HO 为▱ABCD 的对称中心,O 为,AC BD 的中点,,,,OA OC OB OD AD BC ∥,,NAO HCO ANO CHO,ANO CHO ≌同理:,,DNO BHO AOB COD ≌≌,ANHB CHND S S 四边形四边形所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.9、C【分析】由中点的定义可得AE =CE ,AD =BD ,根据三角形中位线的性质可得DE //BC ,DE =12BC ,根据平行线的性质可得∠ADE =∠ABC =90°,利用ASA 可证明△MBD ≌△EDA ,可得MD =AE ,DE =MB ,即可证明四边形DMBE 是平行四边形,可得MD =BE ,进而可得四边形DMBE 的周长为2DE +2MD =BC +AC ,即可得答案.【详解】∵D ,E 分别是AB ,AC 的中点,∴AE =CE ,AD =BD ,DE 为△ABC 的中位线,∴DE //BC ,DE =12BC ,∵∠ABC =90°,∴∠ADE =∠ABC =90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD =AE ,DE =MB ,∵DE //MB ,∴四边形DMBE 是平行四边形,∴MD =BE ,∵AC =18,BC =14,∴四边形DMBE 的周长=2DE +2MD =BC +AC =18+14=32.故选:C .【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.10、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A 和∠C 是对角,∠B 和∠D 是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D 符合条件.故选:D .【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.二、填空题1、720°720度【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为()()180218062720n ︒⨯-=︒⨯-=︒;故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.2、17【分析】取BC 的中点F ,连接DF ,由三角形中位线定理可得1722DF AB ,DF ∥AB , 再由2ABC DEC ∠=∠可得△DFE 是等腰三角形,且EF =DF ,则CF 可求出来,从而可求得BC 的长度.【详解】如图,取BC 的中点F ,连接DF则BC =2CF∵D 点是AC 的中点∴DF 是△ABC 的中位线∴1722DF AB,DF∥AB∴∠CFD=∠ABC∵2ABC DEC∠=∠∴∠CFD=2∠DEC∵∠CFD=∠DEC+∠FDE ∴∠DEC=∠FDE∴72 EF DF==∴7171222 CF CE EF=-=-=∴1722172BC CF==⨯=故答案为:17【点睛】本题考查了等腰三角形的判定,三角形中位线定理,取BC的中点F得到等腰△DEF是关键.3、2【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,AGB DBAG AED BG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=118,∴GF2=AG2-AF2=4-12164=13564,∴GF,故答案为2.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.4、13【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】n-⋅︒=︒解:由题意得:()21801980解得n=13.故答案为:13.【点睛】n-⋅︒.主要考查了多边形的内角和公式,解题的关键在于熟记多边形内角和公式:()21805、(8,4)【分析】先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.【详解】解:∵点A的坐标为(-3,0),在Rt△ADO中,AD=5,AO=3,90=,∠︒AOD∴OD4,∴D(0,4),∵平行四边形ABCD,∴AB=CD=8,AB∥CD,∵AB在x轴上,∴CD ∥x 轴,∴C 、D 两点的纵坐标相同,∴C (8,4) .故答案为(8,4).【点睛】本题考查平行四边形性质,勾股定理,平行x 轴两点坐标特征,解答本题的关键是熟练掌握平行于x 轴的直线上的点的纵坐标相同,平行于y 轴的直线上的点的横坐标相同.三、解答题1、见详解【分析】由题意易得AB =CD ,AB ∥CD ,AE =CF ,则有∠BAE =∠DCF ,进而问题可求证.【详解】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∵E ,F 是对角线AC 的三等分点,∴AE =CF ,在△ABE 和△CDF 中,AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS ),∴BE =DF .【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.2、(1)48(2)11【分析】(1)利用勾股定理先求出高AC ,故可求解面积;(2)根据平行四边形的性质求出AO ,再利用勾股定理求出OB 的长,故可求解.【详解】解:(1)∵四边形ABCD 是平行四边形,且AD =8∴BC =AD =8∵AC ⊥BC∴∠ACB =90°在Rt △ABC 中,由勾股定理得AC 2=AB 2-BC 2∴6AC∴8648ABCD S BC AC =⋅=⨯=(2)∵四边形ABCD 是平行四边形,且AC =6 ∴13,2OA OC AC OB OD ====∵∠ACB =90°,BC =8∴OB =∴OD OB ==∴8311AOD C AD AO OD =++=+=【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.3、(1)见解析;(2)290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒,证明见解析;(3)不成立,存在:2270AHB CBG ∠+∠=︒;2270AHB CBG ∠-∠=︒,理由见解析【分析】()1根据//MN PQ ,内错角相等MAG BDG ∠=∠,根据BG AD ⊥,可得∠AGB =90°,根据三角形外角性质得出90AGB BDG PBG ∠=∠+∠=︒,可得90MAG PBG ∠+∠=︒;(2) 过H 作HK∥MN ,由//MN PQ ,MAC BDC ∠=∠,由三角形外角性质可得ACB BDC DBC MAC DBC ∠=∠+∠=∠+∠,根据AH 平分MAC ∠,BH 平分DBC ∠,可得2MAC MAH ∠=∠,2DBC DBH ∠=∠,得出()2ACB MAH DBH ∠=∠+∠,由HK∥MN ,//MN PQ ,可得HK∥MN∥PQ ,可得AHB AHK KHB MAH DBH ∠=∠+∠=∠+∠,得出()22ACB MAH DBH AHB ∠=∠+∠=∠,根据点C 的位置分两种情况①如图,当点C 在AG 上时,利用三角形外角性质90ACB CBG ∠=∠+︒,②如图,当点C 在DG 上时, 根据Rt BCG 中,90ACB CBG ∠=︒-∠即可;()3过H 作HK∥MN ,根据//MN PQ ,可得HK∥MN∥PQ ,利用平行线性质可得∠MAH =∠AHK ,∠PBH =∠KHB ,可推得AHB AHK KHB MAH DBH ∠=∠+∠=∠+∠,根据角平分线得出MAH CAH ∠=∠,PBH CBH ∠=∠,根据四边形内角和∠ACB +∠HAC +∠AHB +∠HBC =360°,得出∠ACB =360°-2∠AHB ,根据点C 的位置分两种情况①如图,当点C 在AG 上时,根据外角性质90ACB CBG ∠=︒+∠,②如图,当C 在DG 上时,根据直角三角形两锐角互余可得,90ACB CBG ∠=︒-∠即可.【详解】解:()1如图1,//MN PQ ,MAG BDG ∴∠=∠,∵BG AD ⊥,∴∠AGB =90°AGB ∠是BDG 的外角,90AGB BDG PBG ∴∠=∠+∠=︒,90MAG PBG ∴∠+∠=︒;()2290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒,证明:过H 作HK∥MN ,//MN PQ ,MAC BDC ∴∠=∠,ACB ∠是BCD △的外角,ACB BDC DBC MAC DBC ∴∠=∠+∠=∠+∠, AH 平分MAC ∠,BH 平分DBC ∠,2MAC MAH ∴∠=∠,2DBC DBH ∠=∠,()2ACB MAH DBH ∴∠=∠+∠,∴HK∥MN∥PQ ,∴∠MAH =∠AHK ,∠PBH =∠KHB ,∴AHB AHK KHB MAH DBH ∠=∠+∠=∠+∠,()22ACB MAH DBH AHB ∴∠=∠+∠=∠,①如图,当点C 在AG 上时,又ACB ∠是BCG 的外角,90ACB CBG ∴∠=∠+︒,290AHB CBG ∴∠=∠+︒,即290AHB CBG ∠-∠=︒;②如图,当点C 在DG 上时,又Rt BCG 中,90ACB CBG ∠=︒-∠,290AHB CBG ∴∠=︒-∠,即290AHB CBG ∠+∠=︒;()()32中的结论不成立.存在:2270AHB CBG ∠+∠=︒;2270AHB CBG ∠-∠=︒.过H 作HK∥MN ,∴HK∥MN∥PQ ,∴∠MAH =∠AHK ,∠PBH =∠KHB ,∴AHB AHK KHB MAH DBH ∠=∠+∠=∠+∠, AH 平分MAC ∠,BH 平分DBC ∠,MAH CAH ∴∠=∠,PBH CBH ∠=∠,∵∠ACB +∠HAC +∠AHB +∠HBC =360°,∴∠ACB +2∠AHB =360°,∴∠ACB =360°-2∠AHB ,①如图,当点C 在AG 上时,又ACB ∠是BCG 的外角,90ACB CBG ∴∠=︒+∠,360290AHB CBG ∴︒-∠=︒+∠,即2270AHB CBG ∠+∠=︒;②如图,当C 在DG 上时,又Rt BCG 中,90ACB CBG ∠=︒-∠,360290AHB CBG ∴︒-∠=︒-∠,2270AHB CBG ∴∠-∠=︒.【点睛】本题考查平行线性质,三角形外角性质,角平分线定义,直角三角形两锐角互余,四边形内角和,本题有一定难度,特别分类讨论思想的运用,使问题复杂化,掌握相关知识是解题关键.4、(1)2α;(2)①α;②12OM BF =;(3 【分析】(1)连接OB ,O B ',O C ',由=90ABC ∠,O 为BC 的中点,得到12OB OA OC AC ===, 则OBA A α∠=∠=,90CBO ABC OBA α∠=∠-=-∠,再由旋转的性质可得=O B O C '',90BCO CBO α''∠==-∠,由此求解即可;(2)①连接O C ',O F ',由(1)可知=2CO F α'∠(因为CO F '∠也是旋转角),由旋转的性质可得O C O F ''=,BC FC =,则90O CF O FC α''==-∠∠,可以得到1802BCF O CB O CF α''∠=∠+∠=-,再由BC FC =可以得到()1==1802BFC FBC BCF -∠∠∠,由此即可求解; ②连接OB ,OE 延长OM 交EF 于N ,由①得BFC FBC A α∠=∠=∠=,由旋转的性质可得CFE BCA =∠∠,AC EF =,然后证明90BFC CFE BFE ∠+∠=∠=,=90CBF OBC OBF ∠+∠=∠,得到OB EF ∥,则OBM NEM ∠=∠,再证明△OBM ≌△NEM 得到EN BO =,12OM MN ON ==,1122EN AC EF ==从而推出MN 为△BFE 的中位线,得到12MN BF =,则12OM BF =; (3)连接O C '与BF 交于H ,由=90O CF O CB α''=-∠∠,BC FC =,可得CH BF ⊥,2BF HF =,由含30度角的直角三角形的性质可以得到2CF CH ===,2EF CF ==,再由勾股定理可以得到BE ===,由此即可得到答案. 【详解】解:(1)如图所示,连接OB ,O B ',O C ', ∵=90ABC ∠,O 为BC 的中点,∴12OB OA OC AC ===, ∴OBA A α∠=∠=, ∴90CBO ABC OBA α∠=∠-=-∠,∵将点O 沿BC 翻折得到点O ',∴==90CBO CBO α'-∠∠,由旋转的性质可得=O B O C '',90BCO CBO α''∠==-∠,∴1802BO C BCO CBO α'''=-∠-=∠∠,∴旋转角为2α,故答案为:2α;(2)①如图所示,连接O C ',O F ',由(1)可知=2CO F α'∠(因为CO F '∠也是旋转角),由旋转的性质可得O C O F ''=,BC FC =, ∴()1=180902O CF O FC CO F α'''=-=-∠∠∠,∴1802BCF O CB O CF α''∠=∠+∠=-,∵BC FC =, ∴()1==180=2BFC FBC BCF α-∠∠∠, 故答案为:α;②如图所示,连接OB ,OE 延长OM 交EF 于N ,由①得BFC FBC A α∠=∠=∠=,由旋转的性质可得CFE BCA =∠∠,AC EF =,∵=90ABC ∠,∴90A BCA ∠+∠=,∴90BFC CFE BFE ∠+∠=∠=,∵OC OB =,∴OBC BCA ∠=∠,∴90A OBC ∠+∠=,∴=90CBF OBC OBF ∠+∠=∠,∴OB EF ∥,∴OBM NEM ∠=∠∵M 为BE 的中点,∴BM ME =,在△OBM 和△NEM 中,OBM NEM BM EMOMB NME ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBM ≌△NEM (SAS ),∴EN BO =,12OM MN ON ==, ∴1122EN AC EF ==, ∴N 为EF 的中点,∴MN 为△BFE 的中位线, ∴12MN BF =, ∴12OM BF =;(3)如图所示,连接O C '与BF 交于H ,∵=90O CF O CB α''=-∠∠,BC FC =,∴CH BF ⊥,2BF HF =,∴OM HF =,∵30a =,∴=30BFC ∠,∴2FC CH =,∵222FC CH HF =+,∴2CF CH ===, ∵===30CEC A α∠∠,90FCE CBA ∠=∠=,∴2EF CF ==,∵BE ===,∴OMBE ==.【点睛】本题主要考查了旋转的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,三角形中位线定理,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,解题的关键在于能够熟练掌握旋转的性质.5、见解析【分析】将不规则图形面积分为面积相等的两部分,将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件.【详解】解:(1)如图所示,将图形分成两个平行四边形,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;(2)如图所示,将图形分成两个平行四边形,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;(3)如图所示,将不规则图形补全,然后按照(1)(2)方法,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;【点睛】题目主要考查中心对称图形的应用及平行四边形的性质,理解题意,掌握中心对称图形的应用是解题关键.。

一次函数与平行四边形专题卷(北师大八下期末)

一次函数与平行四边形专题卷(北师大八下期末)

八年级数学(下)压轴题专题1.在直角坐标系xOy中,▱ABCD四个顶点的坐标分别为A(1,1),B(4,1),C(5,2),D(2,2),直线l:y=kx+b与直线y=﹣2x平行.(1)k=;(2)若直线l过点D,求直线l的解析式;(3)若直线l同时与边AB和CD都相交,求b的取值范围;(4)若直线l沿线段AC从点A平移至点C,设直线l与x轴的交点为P,问是否存在一点P,使△PAB为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.3.如图1,在直角坐标系中,点A坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B(m,n)(1)若m=9,n=3,求直线l1和l2的解析式;(2)将△BAO绕点B顺时针旋转180°得△BFE,如图2,连接AE,OF;①证明:四边形OFEA是平行四边形;②若四边形OFEA是正方形,则m=,n=.4.已知:如图平面直角坐标系xOy中,C在x轴上,四边形OABC为菱形,且A 点坐标为(﹣3,4),过A、C的直线交y轴于点M,连接BM(1)求直线AC的解析式(2)一动点P从A出发,以每秒2个单位长度沿A→B→C向C点运动,设运动过程中△PBM的面积为S,运动时间为t(秒),试求出S关于t的函数关系式.(3)在(2)的条件下,试求出当t为何值时,△PBM的面积的最大值?最大值是多少?5.如图,在直角坐标系中,点O是坐标原点,四边形OABC是平行四边形,且OA=AB,点A 的坐标为(3,4),点C在x轴的正半轴上,连接AC、OB.(1)求直线AC的解析式;(2)若点P、Q分别是OB、OC上的动点,连接CP、PQ,试探究:CP+PQ是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.6.如图,在平面直角坐标系中,直线y=﹣x+8分别交两轴于点A、B,点C为线段AB的中点,点D在线段OA上,且CD的长是方程的根.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A、C、D、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,不必说明理由.7、如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B 的坐标分别A (,0)、B(,2),∠CAO=30°.(1)求对角线AC所在的直线的函数表达式;(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.8.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点C,过点C的直线y=﹣x+b与x轴交于点B.(1)b的值为;(2)若点D的坐标为(0,﹣1),将△BCD沿直线BC对折后,点D落到第一象限的点E处,求证:四边形ABEC是平行四边形;(3)在直线BC上是否存在点P,使得以P、A、D、B为顶点的四边形是平行四边形?如果存在,请求出点P的坐标;如果不存在,请说明理由.。

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。

最新北师大版 八年级(下)期末数学试卷(含答案) (7)

最新北师大版 八年级(下)期末数学试卷(含答案) (7)

八年级(下)期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在应题号的答题下上1.(4分)下列各式中,最简二次根式是()A.B.C.D.2.(4分)已知一次函数y=(k﹣1)x+2,若y随x的增大而增大,则k的取值范围是()A.k>1B.k<1C.k<0D.k>03.(4分)菱形ABCD的对角线AC=5,BD=10,则该菱形的面积为()A.50B.25C.D.12.54.(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁5.(4分)估计的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.无法确定6.(4分)一组数据为:31,30,35,29,30,则这组数据的方差是()A.22B.18C.3.6D.4.47.(4分)如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF 8.(4分)关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.9.(4分)下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,…,照此规律排列下去,则第个8图中小正方形的个数是()A.48B.63C.80D.9910.(4分)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.211.(4分)从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1B.2C.3D.412.(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).点P(x,0)在边AB上运动,若过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则x的值为()A.或B.或C.或D.或二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上13.(4分)如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.14.(4分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=cm.15.(4分)仪征市某活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如表所示:则全体参赛选手年龄的中位数是岁.16.(4分)设的整数部分为a,小数部分为b,则的值等于.17.(4分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.18.(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是元.三、解答题:(本大题2个小题,每题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应过程或推理步骤的位置上19.(8分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.20.(8分)计算:(1)××(﹣)(2)+3﹣﹣.四、解答题:(本大题5个小题,每题10分,共50解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?22.(10分)如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.23.(10分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,两人一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程y (米)与小明出发的时间x(秒)的函数图象,请根据题意解答下列问题:(1)在跑步的全过程中,小明共跑了米,小明的速度为米/秒.(2)求小亮跑步的速度及小亮在途中等候小明的时间;(3)求小亮出发多长时间第一次与小明相遇?24.(10分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.(1)若AB=2,求四边形ABFG的面积;(2)求证:BF=AE+FG.25.(10分)已知m和n是两个两位数,把m和n中任意一个两位数的十位数字放置于另一个两位数的十位数字与个位数字之间,再把其个位数字放置于另一个两位数的个位数字的右边,就可以得到两个新四位数,把这两个新四位数的和除以10的商记为W(m,n).例如:当m=36,n=10时,将m十位上的3放置于n的1、0之间,将m个位上的6放置于n中0的右边,得到1306;将n十位上的1放置于m的3、6之间,将n个位上的0放置于m中6的右边,得到3160.这两个新四位数的和为1306+3160=4466,4466÷11=406,所以W(36,10)=406.(1)计算:W(20,18);(2)若a=10+x,b=10y+8(0≤x59,1≤y≤9,x,y都是自然数).①用含x的式子表示W(a,36);用含y的式子表示W(b,49);②当150W(a,36)+W(b,49)=62767时,求W(5a,b)的最大值.五、解答题:(本大题共1个小题,共12分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.2017-2018学年重庆市九龙坡区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分),在每个小题的下面都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填涂在应题号的答题下上1.【解答】解:A、=,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,符合题意;D、=|a|,故此选项错误;故选:C.2.【解答】解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,∴k﹣1>0,解得k>1,故选:A.3.【解答】解:菱形的面积=AC•BD=×5×10=25.故选:B.4.【解答】解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.5.【解答】解:=10﹣,∵2<<3,∴7<10﹣<8,即的值在7和8之间.故选:B.6.【解答】解:这组数据的平均数为=31,所以这组数据的方差为×[(31﹣31)2+(30﹣31)2+(35﹣31)2+(29﹣31)2+(30﹣31)2]=4.4,故选:D.7.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.8.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.9.【解答】解:∵第1个图中小正方形的个数3=12+2×1,第2个图中小正方形的个数8=22+2×2,第3个图中小正方形的个数15=32+2×3,第4个图中小正方形的个数24=42+2×4,……∴第n个图中小正方形的个数为n2+2n,则第8个图中小正方形的个数为82+2×8=80,故选:C.10.【解答】解:如图1,直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.11.【解答】解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.12.【解答】解:如图,∵AB的中点与原点O重合,在矩形ABCD中,AB=2,AD=1,∴A(﹣1,0),B(1,0),C(1,1).当点P在OB上时.易求G(,1)∵过点Q、P的直线将矩形ABCD的周长分成2:1两部分,则AP+AD+DG=3+x,CG+BC+BP=3﹣x,由题意可得:3+x=2(3﹣x),解得x=.由对称性可求当点P在OA上时,x=﹣.故选:D.二、填空题:(本大题6个小题,每小题4分,共24分),请将答案直接填在答题卡中对应的横线上13.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣414.【解答】解:∵▱ABCD∴∠ADE=∠DEC∵DE平分∠ADC∴∠ADE=∠CDE∴∠DEC=∠CDE∴CD=CE∵CD=AB=6cm∴CE=6cm∵BC=AD=8cm∴BE=BC﹣EC=8﹣6=2cm.故答案为2.15.【解答】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为14岁,∴全体参赛选手的年龄的中位数为14岁.故答案为:14.16.【解答】解:∵2<<3,∴a=2,b=﹣2,∴===2﹣.故答案为:2﹣.17.【解答】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=4,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:18.【解答】解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,∵购进的每一种衬衫的数量都不少于90件,∴a≥90,∴当a=90时,y取得最大值,此时y=﹣50×90+44000=39500,故答案为:39500.三、解答题:(本大题2个小题,每题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应过程或推理步骤的位置上19.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20.【解答】解:(1)原式=﹣=﹣;(2)原式=2+2﹣﹣=0.四、解答题:(本大题5个小题,每题10分,共50解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上21.【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:(2)由条形图可知,捐款10元人数最多,故众数是10;这组数据的平均数为:=13.1;(3)捐款20元及以上(含20元)的学生有:(人);故答案为:(1)50,(2)10,13.1.22.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.23.【解答】解:(1)由图象可得,在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(2)当x=500时,y=1.5×500=750,当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),故小亮的速度为:750÷(400﹣100)=2.5米/秒,小亮在途中等候小明的时间是:500﹣400=100(秒),即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)设小亮出发t秒时第一次与小明相遇,2.5t=1.5(t+100),解得,t=150,答:小亮出发150秒时第一次与小明相遇.24.【解答】解:(1)∵四边形ABCD是菱形,∴AB∥CD,∴∠BAE=∠DEA=90°,BD平分∠ABC,∴∠ABD=30°.∴∠DAE=30°.在Rt△ABF中,tan30°=,即,解得AF=.在Rt△AFG中,FG=AF=,∴AG=1.所以四边形ABFG的面积=×2×+×1×=;(2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=.在Rt△AFG中,FG=AF=.在Rt△ADE中,AE=.∴AE+FG=+=.∴BF=AE+FG.25.【解答】解:(1)W(20,18)=(1280+2108)÷11=3388÷11=308;(2)①W(a,36)=[3160+x+1306+10x)÷11;W(b,49)=(489+1000y+4098+100y)÷11;②∵当150W(a,36)+W(b,49)=62767∴150([3160+x+1306+10x)÷11]+(489+1000y+4098+100y)÷11=627673x+2y=29,∴x=5,y=7,x=7,y=4,x=9,y=1,∴a=15,b=78,a=17,b=48,a=19,b=18,∴W(75,78)=1413,W(85,48)=1213,W(95,18)=1013,∴W(5a,b)最大值为1413.五、解答题:(本大题共1个小题,共12分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.【解答】解:(1)①∵矩形OABC,OA=3,OC=2∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2∵△APD为等腰直角三角形∴∠P AD=45°∵AO∥BC∴∠BP A=∠P AD=45°∵∠B=90°∴∠BAP=∠BP A=45°∴BP=AB=2∴P(1,2)设直线AP解析式y=kx+b,过点A,点P∴∴∴直线AP解析式y=﹣x+3②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小.∵G'(﹣2,0),G''(3,1)∴直线G'G''解析式y=x+当x=0时,y=,∴N(0,)∵G'G''=∴△GMN周长的最小值为(2)如图:作PM⊥AD于M∵BC∥OA∴∠CPD=∠PDA且∠CPD=∠APB∴PD=P A,且PM⊥AD∴DM=AM∵四边形P AEF是平行四边形∴PD=DE又∵∠PMD=∠DOE,∠ODE=∠PDM ∴△PMD≌△ODE∴OD=DM,OE=PM∴OD=DM=MA∵PM=2,OA=3∴OE=2,OM=2∴E(0,﹣2),P(2,2)设直线PE的解析式y=mx+n∴∴直线PE解析式y=2x﹣2。

(完整版)八下一次函数与四边形综合题

(完整版)八下一次函数与四边形综合题

一次函数综合题1、(2012•沈阳)已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.2、(2013•济南)如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC 于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.3、如图,一次函数24y x =+的图像与x y 、轴分别相交于点A 、B ,以AB 为边作正方形ABCD 。

(1)求点A 、B 、D 的坐标;(2)设点M 在x 轴上,如果△ABM 为等腰三角形,这样的点M 共有几个?请分别求出A ,B 为等腰三角形顶角时M 的坐标。

4、(2011•河池)已知直线l 经过A (6,0)和B (0,12)两点,且与直线y=x 交于点C .(1)求直线l 的解析式;(2)若点P (x ,0)在x 轴上运动,是否存在点P ,使得△PCA 成为等腰三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系中,直线L 1:621+-=x y 分别与x 轴、y 轴交于点B 、C ,与直线L 2:x y 21=交于点A 。

(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且△COD 的面积为12,求直线CD 的函数表达式;(3)在(2)的条件下,设P 是射线DC 上的点,在平面内是否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由。

北师大版八年级下册数学一次函数与平行四边形的存在性问题

北师大版八年级下册数学一次函数与平行四边形的存在性问题

因平行四边形的存在性问题(与一次函数)一、找点方法(1)三个定点找一个动点类:以其中任意两点所连线段为对角线,分三种情况(2)以两定点找两动点类:以两定点所连线段充当边和对角线,分两类情况二、求点方法(1)对角线法——利用对角线互相平分原理及中点坐标公式求解各点坐标(2)相对位置法——在平行四边形ABCD中,A,D两点的水平距离及垂直距离确定,则C,B两点的水平距离及垂直距离与其对应相等1.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA-8|+(OB-6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2-6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;(3)点M在坐标轴上,平面是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,直线y=-x+8分别交两轴于点A、B,点C为线段AB的中点,点D在线段OA上,且CD的长是方程2x+1=1x-2的根.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面是否存在这样的点F,使以A、C、D、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,不必说明理由.4、如图,将矩形OABC 放置在平面直角坐标系中,点D 在边0C 上,点E 在边OA 上,把矩形沿直线DE 翻折,使点O 落在边AB 上的点F 处,且AF AE=43 .若线段OA =8,又2AB =30A .请解答下列问题:(1)求点B 、F 的坐标:(2)求直线ED 的解析式:(3)在直线ED 、FD 上是否存在点M 、N ,使以点C 、D 、M 、N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.5、如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E,F分别在BC,AB边上且F(1,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在坐标轴上,直线EF上是否存在点M,使以M,N,F,G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,说明理由.6、如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),其中m<2,过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.(1)图中AB=;BE=(用m的代数式表示).(2)若▱DEFA为矩形,求m的值。

(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)

(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)

北师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a 为常数,且a≠0)相交于点P,则不等式kx+b<ax的解集是()A.x>1B.x<1C.x>2D.x<22、如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC 与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线,作过C点且与AC垂直的直线,交于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3、下列命题:(1)如果a<0,b>0,那么;(2)同角的补角相等;(3)同位角相等;(4)如果,那么;(5)有公共顶点且相等的两个角是对顶角。

其中正确的个数是()A.1B.2C.3D.44、如图,AD是正五边形ABCDE的一条对角线,则∠BAD等于()A.72°B.108°C.36°D.62°5、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<46、已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.47、下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是()A. B. C. D.8、若将分式中的x和y都扩大到原来的2倍,那么分式的值()A.扩大到原来的4倍B.扩大到原来的2倍C.不变D.缩小到原来的.9、如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )A. B. C. D.10、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.511、如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=()A. B. C. D.12、如图,中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A. B. C.D.13、如图,△ABC的顶点都在⊙O上,∠BAO=50°,则∠C的度数为()A.30°B.40°C.45°D.50°14、如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是( )A.42°B.40°C.36°D.32°15、若整数使得关于的不等式组的解集为,且关于的分式方程的解为负数,则所有符合条件的整数的和为()A.0B.-3C.-5D.-8二、填空题(共10题,共计30分)16、因式分解:________ .17、若m+n=2,计算6﹣2m﹣2n=________.18、如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有________个.19、如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为________.20、如图,在矩形中,,,那么的度数为________.21、若关于的分式方程有增根,则=________ .22、在函数y=中,自变量x的取值范围是________.23、在□ABCD中,若∠A=50°,则∠D的度数为________。

部编数学八年级下册专题29一次函数与平行四边形结合(解析版)含答案

部编数学八年级下册专题29一次函数与平行四边形结合(解析版)含答案

专题29 一次函数与平行四边形结合1.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数(0)y x m m =+>的图象,直线PB 是一次函数3()y x n n m =-+>的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点.若四边形PQOB 的面积是5.5,且:1:2CQ AO =,若存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形,则点D 的坐标为________.2.已知:在平面直角坐标系中,点A(1,0),点B(4,0),点C在y轴正半轴上,且OB=2OC.(1)试确定直线BC的解析式;(2)在平面内确定点M,使得以点M、A、B、C为顶点的四边形是平行四边形,请直接写出点M 的坐标.考点:一次函数综合题.3.已知直线1l :y 1=34x +m 与直线2l :y 2=2x +n 相交于点A (2,3).(1)求m ,n 的值;(2)请在所给坐标系中画出直线1l 和2l ,并根据图像回答:当x 满足____时,12y y <.(3)设1l 交x 轴于点B ,2l 交y 轴于点C ,若点D 与点A ,B ,C 能构成平行四边形,则点D 的坐标为_____.由函数图象得:当x >2时12y y <.故答案为:x >2;(3)当133042y x =+=时,解得:2x =-,∴B (-2,0),在221y x =-中,当x =0时,y =-1,∴C (0,-1),如图,当BC 是平行四边形的边时,【点睛】本题考查待定系数法,画一次函数图象,一次函数图象的交点与不等式的关系,平行四边形的判定等知识,解题关键是通过数形结合分类讨论.4.如图,已知函数12y x b =-+的图象与x 轴、y 轴分别交于点A 、B ,与函数y x =的图象交于点M ,点M 的坐标为()2,m .(1)直接写出b 和m 的值:b =______,m =______.(2)在x 轴上有一动点(),0P a (其中2a >),过点P 作x 轴的垂线,分别交函数12y x b =-+和y x =的图象于点C 、D .①若2OB CD =,求a 的值;②是否存在这样的点P ,使以B 、O 、C 、D 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.5.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2对应的函数解析式;(2)求△ABC的面积;(3)请你找到图象中直线l1在直线l2上方的部分,直接写出此时自变量x的取值范围;(4)在坐标平面内是否存在点P,使以点A、B、C、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.当y=0时,x+3=0,解得∴B(﹣3,0),又A(3,0),∴AB=6,∵C(1,4),∴CD=4,11∴33122 00422mn-++ì=ïïí++ï=ïî,解得14mn=-ìí=-î,同理可得:3132204022mn+-+ì=ïïí++ï=ïî,解得:74mn=ìí=î,∴P(7,4);③以AP、BC为对角线,如图:同理可得:33122 00422mn+-+ì=ïïí++ï=ïî,解得:54mn=-ìí=î,∴P(﹣5,4);综上所述:以点A、B、C、P6.已知点A(4,0),B(0,﹣4),C(a,2a)及点D是一个平行四边形的四个顶点,则线段CD 的长的最小值为( )AB C.D.故选B .【点睛】本题考查了一次函数与平行四边形的综合题,解本题的关键是找到何时CD 最短.7.如图,在同一平面直角坐标系中,直线1:3l y x =-+与x 轴交于点A ,与y 轴交于点B ,直线2:2l y x =与直线1l 交于点P .(1)求P 点的坐标.(2)设直线1l 与直线2l 在第一象限内的图象为G ,若直线x m =与图象G 只有两个交点,请写出m 的取值范围.(3)在平面内是否存在一点Q ,使得以点O ,A ,B ,Q 为顶点的四边形是平行四边形,若存在请直接写出Q 点的坐标,若不存在请说明理由.【答案】(1)点P 的坐标为(1,2)(2)01m <<或13m <<.(03m <<且1m ¹)(3)存在,1(3,3)Q ;2(3,3)Q -;3(3,3)Q -【分析】(1)联立二元一次方程组求解即可;(2)根据图像判断即可;(3)如图,分别过点A ,B ,O 点作y 轴,x 轴,直线AB 的平行线,交点分别为123,,Q Q Q ,则点123,,Q Q Q 即为所求作的点.【详解】(1)解:根据题意,得32y x y x=-+ìí=î解得12x y =ìí=î∴点P 的坐标为(1,2).(2)解:如图,把y =0代入3y x =-+得,03x =-+,解得,3x =,\点A 的坐标为(3,0),由点P 的坐标为(1,2),01m \<<或13m <<.(03m <<且1m ¹)(3)解:存在Q ,使得以点O ,A ,B ,Q 为顶点的四边形是平行四边形,如图,分别过点A ,B ,O 点作y 轴,x 轴,直线AB 的平行线,交点分别为123,,Q Q Q ,则点123,,Q Q Q 即为所求作的点,Q 点A 的坐标为(3,0),点B 的坐标为(0,3),\ 1(3,3)Q ,2(3,3)Q -,3(3,3)Q -【点睛】本题考查了一次函数与几何的综合题,一次函数的交点坐标,一次函数与坐标轴的交点,一次函数与二元一次方程组,一次函数与不等式,正确理解一次函数的相关性质是解本题的关键.8.如图,Rt OAB V 的两直角边OA 、OB 分别在x 轴和y 轴上,()4,0A -,()0,8B ,将OAB V 绕O 点顺时针旋转90°得到OCD V ,直线AC 、BD 交于点E .点M 为直线BD 上的动点,点N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边,则符合条件的点M 的坐标为______.【答案】(4,4)或(8,−4).【分析】由A 、B 的坐标可求得AO 和OB 的长,由旋转的性质可求得OC 、OD 的长,由B 、D 坐标可求得直线BD 解析式,当M 点在x 轴上方时,则有CM ∥AN ,则可求得M 点纵坐标,代入直线BD 解析式可求得M 点坐标,当M 点在x 轴下方时,同理可求得M 点纵坐标,则可求得M 点坐标.【详解】解:∵()4,0A -,()0,8B ,∴OA =4,OB =8,∵将△OAB 绕O 点顺时针旋转90°得△OCD ,∴OC =OA =4,OD =OB =8,AB =CD ,∵OD =OB =8,∴D (8,0),且B (0,8),∴直线BD 解析式为y =−x +8,当M 点在x 轴上方时,则有CM ∥AN ,即CM ∥x 轴,∴M 点到x 轴的距离等于C 点到x 轴的距离,∴M 点的纵坐标为4,在y =−x +8中,令y =4可得x =4,∴M (4,4);当M 点在x 轴下方时,同理可得M 点的纵坐标为−4,在y =−x +4中,令y =−4可求得x =8,∴M 点的坐标为(8,−4);综上可知M 点的坐标为(4,4)或(8,−4),故答案为:(4,4)或(8,−4).【点睛】本题考查了平行四边形的判定和性质,旋转的性质、掌握平行四边形的判定和性质,进行分类讨论,是解题的关键.9.在平面直角坐标系中,已知(6,0)A -,(0,8)B ,(a,a)C ,D 是平面内的一点,以A ,B ,C ,D 为顶点的四边形是平行四边形,则CD 的最小值是___________.∵(6,0)A -,(0,8)B ,由平行四边形的性质,点F 为AB 的中点,∴点F 为(-3,4),∵CF ⊥直线y x =,∴CD=AB=226810+=;∵7210<,∴CD 的最小值为:72;三、解答题(共0分)10.如图,在平面直角坐标系xOy 中,直线1y x =+与24y x =-+交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AC 上的一动点,E 是直线AB 上的一动点.若以E ,D ,O ,A 为顶点的四边形恰好为平行四边形,则点E 的坐标为________.∵OE ∥AC ,所以直线OE 的解析式为y =-2x ,联立OE 、AB ,得12y x y x =+ìí=-î,解得1323x y ì=-ïïíï=ïî,12∵OD ∥AB ,∴直线OD 的解析式为y =x ,联立OD 、AC ,得24y x y x =ìí=-+î解得4343x y ì=ïïíï=ïî,11.如图,在平面直角坐标系中,直线142y x=-+交x轴于点A,交y轴于点B.点C为OB的中点,点D在线段OA上,OD3AD=,点E为线段AB上一动点,连接CD、CE、DE.(1)求线段CD的长;V的面积为4,求点E的坐标;(2)若CDE(3)在(2)的条件下,点P在y轴上,点Q在直线CD上,是否存在以D、E、P、Q为顶点的四边形为平行四边形.若存在,直接写出点Q坐标;若不存在,请说明理由.12.如图,在平面直角坐标系中,直线y=52x+5与x轴交于点A,与y轴交于点B,过点B的另一直线交x轴正半轴于C,且△ABC面积为15.(1)求点C的坐标及直线BC的表达式;(2)若M为线段BC上一点,且△ABM的面积等于△AOB的面积,求M的坐标;(3)在(2)的条件下,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C 为顶点的四边形为平行四边形?若存在,直接写出点D的坐标;若不存在,请说明理由.∵B(0,5),BE∥CD,BE=CD,∴点E的纵坐标是5,∵点E为直线AM上一动点,直线AM的表达式为:y=x+2.∴x+2=5,解得:x=3,∴E(3,5),∴BE=CD=3,∵C(4,0),∴D(7,0);②当BC为平行四边形的边,四边形BDEC为平行四边形时,如图:过点E作EF⊥x轴于F,∵四边形BDEC为平行四边形,∴BC=ED,∠DBC=∠CED,BD=EC,∴△BDC≌△ECD(SAS),∴EF=OB,∵B(0,5),∴EF=OB=5,∴点E的纵坐标是﹣5,∵点E 为直线AM 上一动点,直线AM 的表达式为:y =x +2.∴x +2=﹣5,解得:x =﹣7,∴OF =7,在Rt △BOC 和Rt △EFD 中,BC ED OB FE=ìí=î∴Rt △BOC ≌Rt △EFD (HL ),∴DF =OC ,∵C (4,0),∴DF =4,∴OD =4+7=11,∴D (﹣11,0);③当BC 为平行四边形的对角线时,∵B (0,5),BE ∥CD ,BE =CD ,∴点E 的纵坐标是5,∵点E 为直线AM 上一动点,直线AM 的表达式为:y =x +2.∴x +2=5,解得:x =3,∴E (3,5),∴BE =CD =3,∵C (4,0),∴D (1,0).综上,存在,满足条件的点D 的坐标为(7,0)或(﹣11,0)或(1,0).【点睛】本题主要考查了一次函数的综合题,待定系数法求一次函数解析式,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.13.如图,直线 y =-2x +4分别与 y 轴、x 轴交于点 A 、点 B ,点 C 的坐标为(-2,0),D 为线段 AB 上一动点,连接 CD 交 y 轴于点 E .(1)求出点 A 、点 B 的坐标;(2)若COE ADE S S D =V ,求点 D 的坐标;(3)在(2)的条件下,点 N 在 x 轴上,直线 AB 上是否存在点 M ,使以 M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出 M 点的坐标;若不存在,请说明理由.过E作EF∥OB交AB于点F,∵点F在直线y=-2x+4上,同理:BN=EF=43,∴ON=2+43=103,∴点N 的坐标为(103,0),设直线MN 的解析式为123y x n =+,14.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =3+a c ,y =3+b d ,那么称点T 是点A ,B 的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x=173-+=2,y=573+=4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.。

北京师范大学附属中学八年级数学下册第四单元《一次函数》测试题(答案解析)

北京师范大学附属中学八年级数学下册第四单元《一次函数》测试题(答案解析)

一、选择题1.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D .2.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,1) C .(0,103) D .(0,2)3.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ; ②小王走完全程需要36分钟; ③图中B 点的横坐标为22.5; ④图中点C 的纵坐标为2880. 其中错误..的个数是( ) A .1 B .2C .3D .44.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定5.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .6.下列一次函数中,y 的值随着x 值的增大而增大的是( ) A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-7.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <8.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 234······应交电费y (元)0.55 1.1 1.65 2.2 ······x y x y x ②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( ) A .4个B .3个C .2个D .1个9.如图,边长为2的正方形ABCD 中,点P 从点A 出发沿路线A B C D →→→匀速运动至点D 停止,已知点P 的速度为1,运动时间为t ,以P .A .B 为项点的三角形面积为S ,则S 与t 之间的函数图象可能是( )A .B .C .D .10.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5, max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1B .3C .43D .5311.已知,整数x 满足1266,1,24x y x y x -≤≤=+=-+,对任意一个x ,p 都取12,y y 中的大值,则p 的最小值是( ) A .4B .1C .2D .-512.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②162±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( ) A .1B .2C .3D .4二、填空题13.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.14.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.15.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________. 16.甲,乙两人都要从A 仓库运送货物到B 仓库.甲从A 仓库出发匀速行驶,1小时后乙也从A 仓库出发沿同一线路匀速行驶,当乙先到达B 仓库送完货物后(不考虑货物交接的时间)立刻以原速一半的速度返回并在途中与甲第二次相遇.设甲行驶的时间为()h x ,甲和乙之间的距离为()km y 与甲出发的时间x 的函数关系式如图所示.则甲与乙第二次相遇时到A 仓库的距离为______km .17.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.18.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案19.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.20.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.三、解答题21.某剧院的观众席的座位为扇形,已知座位数与排数之间的关系如下: 排数()x 1234…座位数()y50 53 56 59 …(2)按照上表所示的规律,当x 每增加1时,y 如何变化? (3)写出座位数y 与排数x 之间的关系式;(4)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.22.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值.(2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.23.周末了,小红带弟弟一起荡秋千,秋千离地面的高度()m h 与摆动时间()s t 之间的关系如图所示.(1)根据函数的定义,请判断变量h 是否为t 的函数? (2)当 2.8s t =时,h 的值是多少?并说明它的实际意义; (3)秋千摆动第二个来回需要多少时间?24.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC 关于y 轴的对称图形111A B C △,并写出点1A ,1B ,1C 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,是否存在一点P ,使PA PB +的值最小,若存在,请在图中标出点P 的位置;(3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN 沿直线MN 翻折,点A 的对称点为点A ',当点A '落在ABC 的内部(包含边界)时,点M 的横坐标m 的取值范围是________.25.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中1l ,2l 分别表示使用租书卡和会员卡时每本书的租金y (元)与租书时间x (天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y (元)与租书时间x (天)之间的函数(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?26.去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元.(2)求出自变量的取值范围;(3)选择怎样的租车方案所需的费用最低?最低费用多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置. 【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B . 【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.2.B解析:B 【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴, B 点坐标为(-2,0), D 是OB 的中点, ∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3), 设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩,∴A 'D 的直线解析式为y =x +1, 当x =0时,y =1 ∴E (0,1). 故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.3.B解析:B 【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否. 【详解】解:由图可知,点C 表示小张到达终点,用时36min , 点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=, 点B 表示两人相遇,∴3600(10080)20(min)÷+=, ∴两人20min 相遇,(20,0)B ,故③错误; ∵362016(min)-=,∴从两人相遇到小张到终点过了16min , ∴16(10080)2880()m ⨯+=, ∴小张到达终点时,两人相距2880m , ∴点C 的纵坐标为2880,故④正确, ∴错误的是②③, 故选:B . 【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答.4.B解析:B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可. 【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱. 故选:B . 【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.5.D解析:D 【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限. 【详解】解:∵直线y kx b =+经过第一、三、四象限, ∴0k >,0b <, ∴0k -<,∴直线y bx k =-经过第二、三、四象限. 故选:D . 【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.6.B解析:B 【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可. 【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确; C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误. 故选:B . 【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.7.D解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x >0,∴211+2y x =>12,此选项正确;C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误, 故选:D . 【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.8.B解析:B 【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性. 【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55, ∴y 是x 的一次函数,故①正确,②正确, 设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 9.C解析:C【分析】需分0≤t≤2、2<t≤4、4<t≤6三种情况分别分析即可.【详解】解:当0≤t≤2时,P 在AB 上运动,P .A .B 为项点的三角形AB 边上的高为0,即面积s=0;当2<t≤4时,P 在BC 上运动,P .A .B 为项点的三角形AB 边上的高为逐渐增大,即面积s 逐渐增大;当4<t≤6时,P 在DC 上运动,P .A .B 为项点的三角形AB 边上的高恒为2,即面积s 为1222⨯⨯=2; 综上可以发现C 满足题意.故答案为C .【点睛】本题主要考查的是动点图象问题,弄清楚不同时间段、函数图象和图形的对应关系成为解答本题的关键.10.D解析:D【分析】分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1, ∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53,当-x+3<2x-1,∴x>43,即:x>43时,y=2x-1,∵x>43,∴2x>83,∴2x-1>53,∴y>53,∴y的最小值=53,故选:D.【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段.11.C解析:C【分析】先画出两个函数的图象,然后联立解析式即可求出两个函数的交点坐标,然后根据图象对x分类讨论,分别求出对应p的取值范围,即可求出p的最小值.【详解】11y x=+,224y x=-+的图象如图所示联立124y xy x=+⎧⎨=-+⎩,解得:12xy=⎧⎨=⎩∴直线11y x=+与直线224y x=-+的交点坐标为(1,2),∵对任意一个x,p都取1,y2y中的较大值由图象可知:当61x -≤<时,1y <2y ,2y >2∴此时p=2y >2;当x=1时,1y =2y =2,∴此时p=1y =2y =2;当16x <≤时,1y >2y ,1y >2∴此时p=1y >2.综上所述:p≥2∴p 的最小值是2.故选:C .【点睛】此题考查的是画一次函数的图象、求两个一次函数的交点坐标和比较函数值的大小,掌握一次函数的图象的画法、联立函数解析式求交点坐标、根据图象比较函数值大小是解决此题的关键.12.A解析:A【分析】根据关于y 轴对称的坐标特征判断①;根据平方根定义判断②;根据直线与x 轴交点坐标判断③;根据方程的解的定义判断④.【详解】解:①()1,2A -关于y 轴的对称点为(1,2);②±;③2y x =-+与x 轴交于点(2,0);④21x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解. ∴正确的是:③,1个故选:A【点睛】本题考查关于y 轴对称的坐标特征、平方根定义、直线与x 轴交点坐标、方程的解,考查学生的辨析能力,熟知以上知识点是解答此题的关键.二、填空题13.【分析】一次函数中k=-1<0y 将随x 的增大而减小根据-1<2即可得出答案【详解】解:∵在一次函数中k=-1<0y 将随x 的增大而减小又∵-1<2∴y1>y2故答案为:y1>y2【点睛】本题考查一次函解析:12y y >【分析】一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,根据-1<2即可得出答案.【详解】解:∵在一次函数6y x =-+中,k=-1<0,y 将随x 的增大而减小,又∵-1<2,∴y 1>y 2.故答案为:y 1>y 2.【点睛】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b (k 、b 为常数,k≠0),当k >0,y 随x 增大而增大;当k <0时,y 将随x 的增大而减小.14.【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数的图象在一次函数的图象上方时且两者的函数图象都在x 轴上方时x 的取值范围【详解】解:(1)方程组的解就是一次函数解析:34x y =⎧⎨=⎩35x << 【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围.【详解】解:(1)方程组y kx b y mx n=+⎧⎨=+⎩的解就是一次函数y kx b =+与y mx n =+的交点坐标的横纵坐标,由图知,34x y =⎧⎨=⎩; (2)不等式0kx b mx n <+<+的解就是找到图中一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围,由图知,35x <<.【点睛】本题考查一次函数与二元一次方程组和不等式的关系,解题的关键是能够理解方程组的解就是函数图象的交点坐标的横纵坐标,以及利用函数图象解不等式的方法.15.0≤a≤2【分析】当a≠0时根据一次函数的图象不经过第四象限可得图象经过一三象限或一二三象限列出关于a 的不等式组求出a 的取值范围当a=0时y=2不经过第四象限综上即可得答案【详解】当a≠0时不经过第解析:0≤a≤2【分析】当a≠0时,根据一次函数的图象不经过第四象限可得图象经过一、三象限或一、二、三象限,列出关于a 的不等式组,求出a 的取值范围,当a=0时,y=2不经过第四象限,综上即可得答案.【详解】当a≠0时,2y ax a =-+不经过第四象限,∴经过一、三象限或一、二、三象限,∴020a a >⎧⎨-+⎩, 解得:02a <,当a=0时,直线方程为y=2,不经过第四象限,符合题意,∴a 的取值范围为0≤a≤2.故答案为:0≤a≤2【点睛】本题考查一次函数图象与系数的关系,熟练掌握一次函数图象与系数的关系并运用分类讨论的思想是解题关键.16.72【分析】根据题意和函数图象中的数据可以求得甲乙的速度然后即可求得甲乙第二次相遇的时刻进而求得乙第二次与甲相遇时距离A 地多少千米【详解】解:从图象可以看出A 点表示乙从A 仓库出发B 点表示甲乙第一次相 解析:72【分析】根据题意和函数图象中的数据可以求得甲乙的速度,然后即可求得甲乙第二次相遇的时刻,进而求得乙第二次与甲相遇时,距离A 地多少千米.【详解】解:从图象可以看出,A 点表示乙从A 仓库出发,B 点表示甲乙第一次相遇,C 点表示乙到达B 码头,D 点表示甲乙第二次相遇.设甲的速度为akm/h ,乙的速度为bkm/h ,()()1.5 1.517 1.5403a b b a ⎧-⎪⎨⎛⎫-⨯- ⎪⎪⎝⎭⎩== 解得,2472a b ⎧⎨⎩== 设甲乙第二次相遇的时间为t 小时,()74024363t ⎛⎫=+⨯- ⎪⎝⎭, 解得,t=3,则乙第二次与甲相遇时,甲距离A 仓库:24×3=72(km ),故答案为:72.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.17.【分析】先求出y=2x+3与y 轴交点坐标为(03)代入y=3x ﹣2b 即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y 轴交点为(03)将(03)代入y=3x ﹣2b 中得-2b= 解析:32- 【分析】先求出y=2x+3与y 轴交点坐标为(0,3),代入y=3x ﹣2b ,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y 轴交点为(0,3),将(0,3)代入y=3x ﹣2b 中,得-2b=3,解得b=32-, 故答案为:32-. 【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键. 18.【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】∵y ax b y mx =+⎧⎨=⎩, ∴ax b mx +=, 解得:b x m a=-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n , ∴2bm a =-,由ax b mx -=,得:b x m a=--,∴2bx m a =-=--,∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.19.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】 由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等. 20.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.三、解答题21.(1)56;(2)y 增加3;(3)y=3x+47;(4)不能,理由见解析.【分析】(1)根据表格中的数据可以解答本题;(2)根据表格中的数据可以得到当x 每增加1时,y 如何变化;(3)根据表格中的数据可以得到座位数y 与排数x 之间的关系式;(4)根据题意和表格中的数据,先判断,然后说明理由即可解答本题.【详解】解:(1)由表格可知,此剧院第三排有56个座位;(2)由表格可知,当排数x 每增加1时,座位y 增加3;(3)由题意可得,y=50+3(x-1)=3x+47,即座位数y 与排数x 之间的关系式是y=3x+47;(4)按照上表所示的规律,某一排不可能有90个座位,理由:当y=90时,90=3x+47,得x=1413, ∵x 为正整数,∴此方程无解.即某一排不可能有90个座位.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22.(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】(1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论.【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6),∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2,把点C 坐标代入上式,解得:k=1,故:k=1,b=2,(2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点, 此时PA PC -最大, ()2,0A ',PA PA '=,设A C '的解析式为y ax m =+,将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE ,则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点, 则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小, 而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值,把点B 、F 点坐标代入一次函数表达式:y=nx+b′,解得:BF 所在的直线表达式为:y=-4x+2,令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】 此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.23.(1)变量h 是t 的函数;(2)当 2.8t s =时,h 的值约是1.25m ,它的实际意义是秋千摆动2.8s 时,离地面的高度约是1.25m ;(3)秋千来回摆动第二个来回需要2.6s .【分析】(1)由函数的定义可以解答本题;(2)根据函数图象和题意可以解答本题;(3)根据函数图象中的数据可以解答本题.【详解】(1)由图象可知,对于每一个摆动时间t ,h 都有唯一确定的值与其对应,所以变量h 是t 的函数.(2)由函数图象可知,当 2.8t s =时,h 的值约是1.25m ,它的实际意义是秋千摆动2.8s 时,离地面的高度约是1.25m .(3)由函数图象可知,秋千摆动第二个来回需5.4-2.8 2.6s =,秋千来回摆动第二个来回需要2.6s .【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)见解析,1(1,3)A -,1(3,1)B -,1(4,5)C -;(2)见解析;(3)194m <≤【分析】(1)根据轴对称与坐标变化的规律,由(1,3)A ,点(3,1)B ,点(4,5)C 可得1(1,3)A -,1(3,1)B -,1(4,5)C -,描点、连线后即可得到△ABC 关于y 轴的对称图形△A 1B 1C 1; (2)作点A 关于x 轴的对称点A 2,连接A 2B 与x 轴相交于点P ,即可使PA PB +的值最小;(3)先求出AB 的解析式,再求出当点A 落在BC 边上时的点A '的坐标,根据轴对称的性质可得,点M 的横坐标m 等于点A 与点A'的横坐标之和的一半,进而得到点M 的横坐标m 的取值范围.【详解】解:(1)如图所示,△A 1B 1C 1即为所求,1(1,3)A -,1(3,1)B -,1(4,5)C -;(2)如上图所示,点P 为所求作的点.作点A 关于x 轴的对称点A 2,连接A 2B ,交x 轴于点P ,则(AP +BP )此时有最小值; (3)设AB 的解析式为y =kx +b ,依题意得:3145k b k b +=⎧⎨+=⎩, 解得:411k b =⎧⎨=-⎩. ∴y =4x -11.令y =3,则x =72. ∴当点A 关于直线MN 的对称点A '落在BC 上时,点A '的坐标为(72,3). 此时m =12(1+72)=94. 又∵点M 不与点A 重合, ∴点M 的横坐标m 的取值范围是:194m <≤. 故答案为:194m <≤. 【点睛】本题考查了一次函数的应用,熟练掌握轴对称与坐标变化的规律,准确找出对应顶点的位置是解题的关键.25.(1)10.3y x =,2200.2y x =+;(2)当50x =时,选择使用租书卡比较合算,当90y =时,选择会员卡比较合算.【分析】(1)利用待定系数进行求解即可;(2)分别算出当50x =时y 的值,与当90y =时x 的值,然后选择符合题意的即可.【详解】(1)设l 1的函数解析式为y 1=k 1x ,将x=200,y=60代入y 1=k 1x 得:60=200k 1,解得k 1=0.3,∴设l 1的函数解析式为:10.3y x =,设l 2的函数解析式为y 2=k 2x+b 2,将x=0,y=20与x=200,y=60分别代入y 2=k 2x+b 2得:2222020060b k b =⎧⎨+=⎩, 解得220.220k b =⎧⎨=⎩, ∴l 2的函数解析式为2200.2y x =+;(2)当50x =时,10.35015y =⨯=,2200.25030y =+⨯=,∴12y y <,∴选择使用租书卡比较合算;当90y =时,1300x =,2350x =,∴12x x <,∴选择会员卡比较合算.【点睛】本题主要考查一次函数的实际应用,解此题的关键在于根据一次函数图象利用待定系数法确定函数关系式.26.(1)y =﹣80x +1680;(2)0≤x ≤2且x 为整数;(3)租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【分析】(1)根据题意和表格中的数据,可以得到y (元)与x (辆)之间函数关系式; (2)根据题意和表格中的数据,可以计算出自变量的取值范围;(3)根据一次函数的性质和x 的取值范围,可以得到选择怎样的租车方案所需的费用最低,最低费用多少元.【详解】解:(1)由题意可得,y =200x +280(6﹣x )=﹣80x+1680,即y(元)与x(辆)之间函数关系式是y=﹣80x+1680;(2)由题意可得,30x+45(6﹣x)≥240,解得,x≤2,又∵x≥0,∴自变量的取值范围是0≤x≤2且x为整数;(3)由(1)知y=﹣80x+1680,故y随x的增大而减小,∵0≤x≤2且x为整数,∴当x=2时,y取得最小值,此时y=1520,6﹣x=4,即租甲种客车2辆,乙种客车4辆费用最低,最低费用为1520元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.。

北师大版初二数学一次函数练习题

北师大版初二数学一次函数练习题

xyO3 2y xa =+1y kx b =+第一学期期末复习试卷初 二 数 学 (一次函数)总分:120分 时间:120分钟 日期:2015-1-8审核人:胡 娜 班级 学号 姓名 得分一、选择题(3分×9=27分)1.一次函数y=kx+2经过点(1,1),那么这个一次函数( ). A 、y 随x 的增大而增大 B 、y 随x 的增大而减小 C 、图像经过原点 D 、图像不经过第二象限2.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A 、 P(2,0)B 、 P(-2,0)C 、 P(0,2)D 、 P(0,-2)3.直线 y=43x +4与 x 轴交于 A,与y 轴交于B, O 为原点,则△AOB 的面积4.直线y =-43x +4和x 轴、y 轴分别相交于点A 、B ,在平面直角坐标系内,A 、B 两点到直线a 的距离均为2,则满足条件的直线a 的条数为( ) A .1 B .2 C. 3 D .45.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知x 满足-5≤x≤5,y1=x+1,y2=-2x+4对任意一个x ,m 都取y1,y2中的较小值,则m 的最大值是( ) A 、1 B 、2 C 、24 D 、-97.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A.0k >,0b > B.0k >,0b < C.0k <,0b > D.0k <8.一次函数y1=kx+b 与y2=x+a 的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0 B .1 C .2D .39.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,右图中12l l 、分别表示甲、乙两辆摩 托车与A 地的距离s(千米)与行驶时间t(小时)之 间的函数关系.则下列说法: ①A 、B 两地相距24千米;l 1l 2②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢8千米/小时;④两车出发后,经过311小时两车相遇.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(2分×11空=22分)10. 一次函数y=-2x+4的图象经过的象限是____,它与x轴的交点坐标是____,与y轴的交点坐标是____.11.直线bkxy+=与15+-=xy平行,且经过(2,1),则k= ,b= .。

最新八年级下数学期末复习培优:平行四边形、特殊四边形,一次函数综合(含答案)经典题目

最新八年级下数学期末复习培优:平行四边形、特殊四边形,一次函数综合(含答案)经典题目

八年级下数学期末复习培优:平行四边形、特殊四边形,一次函数综合一.填空题(共15小题)1.如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC 于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为.2.在边长为4的正方形ABCD中,点E,F是AD上两点,且AE=DF,∠BCE=60°,CE交对角线BD于G,交BF于点P,连接AP.则四边形ABGP的面积为.3.如图,直线y=x+2交y轴于点A,交x轴于点B,点C和点B关于y轴对称,连接AC,点D是△ABC外一点,∠BDC=60°,点E是BD上一点,点F是CD上一点,且CF=BE,连接FE,FB.若∠BFE=30°,则BF2+EF2的值为.4.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.5.如图,在矩形ABCD中,AB=2,AD=3,E为BC边上一动点,作EF⊥AE,且EF=AE.连接DF,AF.当DF⊥EF时,△ADF的面积为.6.如图,△ABC是边长为2的等边三角形,将△ABC沿直线AC翻折,得到△AB′C,再将△AB′C在直线AC上平移,得到△A′B″C′,则△BB″C′的周长的最小值为.7.如图,在正方形ABCD中,AB=9,E,F分别是AB,CD上的点,连接EF,将四边形BCFE沿EF折叠得到四边形B′C′FE,点B′恰好在AD上,若DB′=2AB′,则折痕EF的长是.8.如图,在等腰Rt△ABC和等腰Rt△BDE中,AC=BC=,BE=DE=2,连接CD,以AC、CD为邻边作平行四边形ACDF,连接CE,当平行四边形ACDF为菱形时,线段CE的长度为.9.如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,A(﹣2,0),B(0,4),将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为.10.如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F分别为AB,AD边上的动点,满足BE =AF,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC;③若BE=3,则BM=MN=DN;④EF2=BE2+DF2;⑤△ECF面积的最小值为.其中所有正确结论的序号是.11.如图,在平面直角坐标系中,点P坐标(3,0),有一长度为的线段AB在直线y=x+1的图象上滑动,则P A+PB的最小值为.12.如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是.13.如图,△ABC和△ADE均为等腰直角三角形,AB=3,AD=2,连接CE、BE,点F、G分别为DE、BE的中点,连接FG,在△ADE旋转的过程中,当D、E、C三点共线时,线段FG的长为.14.在一个长为3,宽为m(m<3)的矩形纸片上,剪下一个面积最大的正方形(称为第一次操作);再在剩下的矩形上剪下一个面积最大的正方形(称为第二次操作);如此反复操作下去.若在第n次操作后,剩下的矩形为正方形,则操作终止.当n=2时,m的值为.15.如图,已知点P是正方形ABCD外一点,对角线AC,BD相交于O,且P A=4,PB=3,则PO的最大值是.二.解答题(共45小题)16.如图1,在▱ABCD中,∠ABC=60°,AB:AD=7:8,E为CD边上一点,CE=8,连接AE,BE,且AE=AB.(1)求证:EB平分∠AEC;(2)当CE:ED=2:5时,在AD上找一点P,使PB+PE的和最小,并求出最小值;(3)如图2,过点E作EF⊥BE交AD于点F,求的值.17.已知在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D.(1)如图1,将线段CD绕点C顺时针旋转90°得到CF,连接AF交CD于点G.求证:AG=GF;(2)如图2,点E是线段CB上一点(CE<CB).连接ED,将线段ED绕点E顺时针旋转90°得到EF,连接AF交CD于点G.①求证:AG=GF;②若AC=BC=7,CE=2,求DG的长.18.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.19.如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.(1)求证AE=MN;(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(3)如图3,若该正方形ABCD边长为10,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG⊥MN,垂足分别为G,若AG=6,请直接写出AC′的长.20.已知四边形ABCD为矩形,对角线AC、BD相交于点O,∠CDO=30°.点E、F为矩形边上的两个动点,且∠EOF=60°.(1)如图1,当点E、F分别位于AB、AD边上时.①求证:∠DOF=∠AOE;②若∠OEB=75°,求证:DF=AE.(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试探究线段AF与线段BE的数量关系,并说明理由.21.已知:如图,在矩形ABCD中,AB=8,BC=5.在AD上取一点E,AE=2,点F是AB边上的一个动点,以EF为一边作菱形EFMN,使点N落在CD边上,点M落在矩形ABCD内或其边上.若AF=x,△BFM的面积为S.(1)当四边形EFMN是正方形时,求x的值;(2)当四边形EFMN是菱形时,求S与x的函数关系式;(3)当x=时,△BFM的面积S最大;当x=时,△BFM的面积S 最小;(4)在△BFM的面积S由最大变为最小的过程中,请直接写出点M运动的路线长:.22.在正方形ABCD中,线段EF交对角线AC于点G.(1)如图1,若点E、F分别在AB、CD边上,且AE=CF,求证:FG=EG;(2)如图2,若点E在AB边上,点F在BC边的延长线上,且AE=CF.(1)中结论是否依然成立?请说明理由;(3)在(2)的条件下,连接DG并延长交BC于点H,若BH=5,BE=12.求正方形ABCD的面积.23.(1)如图1,在△ABC中,AB=5,AC=3,AD为BC边上的中线.延长AD到点E,使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是.(2)如图2,在Rt△ABC中,∠A=90°,D为BC的中点,E、F分别在边AB、AC上,且DE⊥DF,若BE=2,CF=5,求EF的长.(3)如图3,四边形ABCD中,∠A=90°,∠D=120°,E为AD中点,F、G分别边AB、CD上,且EF⊥EG,若AF=4,DG=,求GF长.24.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.25.如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.26.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积27.已知:AC,BD为菱形ABCD的对角线,∠BAD=60°,点EF分别在AD,CD边上,且∠EBF=60°.(1)求证:△BEF是等边三角形;(2)当∠ABE=15°时,AB=1+,求BE.28.等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.29.在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.30.已知点P,Q分别在菱形ABCD的边BC,CD上滑动(点P不与B、C重合),且∠P AQ=∠B,(1)如图1,若AP⊥BC,求证:AP=AQ;(2)如图2.若AP与BC不垂直,(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由;(3)如图3,若AB=4,∠B=60°,请直接写出四边形APCQ的面积.31.如图,已知:△ABC为等边三角形,D、F分别为射线BC、射线AB边上的点,BD=AF,以AD为边作等边△ADE.(1)如图①所示,当点D在线段BC上时:①试说明:△ACD≌△CBF;②判断四边形CDEF的形状,并说明理由;(2)如图②所示,当点D在BC的延长线上时,判断四边形CDEF的形状,并说明理由.(3)当点D在射线BC上移动到何处时,∠DEF=30°,并说明理由.32.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE的某一边上时,直接写出正方形PRQS的面积.33.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=4,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.34.在正方形ABCD中,AE⊥EF,EF⊥CF,AE=9cm,EF=5cm,CF=3cm.求正方形ABCD的面积.35.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.36.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.37.在正方形ABCD中,点P是射线BC上任意一点(不与点B、C重合),连接AP,过点P作AP的垂线交正方形的外角∠DCF的平分线于点E.(1)如图1,当点P在BC边上时,判断线段AP、PE的大小关系,并说明理由;(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立,若成立,请证明;若不成立,请说明理由;(3)如图3,在(2)的条件下,连接AE交CD的延长线于点G,连接GP,请写出三条线段GP、BP、GD的数量关系并证明.38.如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH ∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.39.在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.40.如图,在平面直角坐标系中,O为坐标原点,矩形OABC的顶点A(12,0)、C(0,9),将矩形OABC 的一个角沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与x轴交于点D.(1)线段OB的长度为;(2)求直线BD所对应的函数表达式;(3)若点Q在线段BD上,在线段BC上是否存在点P,使以D,E,P,Q为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.41.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l函数表达式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP沿着y 轴方向平移,使得点P落在直线AB上的点P'处,求点P'到直线CD的距离;(3)若点E为直线CD上的一点,在平面直角坐标系中是否存在点F,使以点A、D、E、F为顶点的四边形为菱形,若存在请直接写出点F的坐标;若不存在,请说明理由.42.如图,在平面直角坐标系xOy中,直线y=x+4与y=kx+4分别交x轴于点A、B,两直线交于y轴上同一点C,点D的坐标为(﹣,0),点E是AC的中点,连接OE交CD于点F.(1)求点F的坐标;(2)若∠OCB=∠ACD,求k的值;(3)在(2)的条件下,过点F作x轴的垂线l,点M是直线BC上的动点,点N是x轴上的动点,点P 是直线l上的动点,使得以B,P,M、N为顶点的四边形是菱形,求点P的坐标.43.如图1,在平面直角坐标系中,直线y=﹣x+n分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),点C为线段AB的中点.(1)求点B的坐标;(2)点P为直线AB上的一个动点,过点P作x轴的垂线,与直线OC交于点Q,设点P的横坐标为m,△OPQ的面积为S,求S与m的函数解析式;(3)当点P在直线AB上运动时,在平面直角坐标系内是否存在一点N,使得以O,B,P,N为顶点的四边形为矩形,若存在,求出N点的坐标;若不存在,请说明理由.44.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E 的坐标.45.如图,直线y=﹣2x+4分别与y轴、x轴交于点A、点B,点C的坐标为(﹣2,0),D为线段AB上一动点,连接CD交y轴于点E.(1)求出点A、点B的坐标;(2)若S△COE=S△ADE,求点D的坐标;(3)在(2)的条件下,点N在x轴上,直线AB上是否存在点M,使以M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.46.如图1,直线y=﹣2x+b(b为常数)交x轴的正半轴于点A(2,0).交y轴正半轴于点B.(1)求直线AB的解析式;(2)点C是线段AB中点,点P是x轴上一点,点Q是y轴上一点,若以A、C、P、Q为顶点的四边形恰好是平行四边形,请直接写出点P的坐标;(3)如图2,若点P是x轴负半轴上一点,设点P的横坐标为t,以AP为底作等腰△APM(点M在x 轴下方),过点A作直线l∥PM.过点O作OE⊥AM于E,延长EO交直线l于点F,连接PF、OM,若2∠PFO+∠AFE=180°,请用含t的代数式表示△PMO的面积.47.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到线段CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)请直接写出点D的坐标,并求出直线BC的函数关系式;(3)若点P是x轴上的一个动点,点Q是线段CB上的点(不与点B、C重合),是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的P点坐标.若不存在,请说明理由.48.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式.(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边,点G为直角顶点向右侧作Rt△FGQ,且FG:GQ=1:2,在G点的运动过程中,当顶点Q落在直线BC上时,求点G 的坐标.(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.49.如图1,将矩形OABC放在直角坐标系中,O为原点,点C在x轴上,点A在y轴上,OA=4,OC=8.把矩形OABC沿对角线OB所在直线翻折,点C落到点D处,OD交AB于点E.(1)求点E坐标.(2)如图2,过点D作DG∥BC,交OB于点G,交AB于点H,连接CG,试判断四边形BCGD的形状,并说明理由.(3)在(2)的条件下,点M是坐标轴上一点,直线OB上是否存在一点N,使以O、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N坐标;若不存在,请说明理由.50.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且△ABC面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;(3)如图2,若M为线段BC上一点,且满足S△AMB=S△AOB,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.51.如图,在平面直角坐标系xOy中,直线AB:y=kx+3k(k≠0)交x轴于点B,交y轴于点A,AB=3.(1)求点A的坐标;(2)点C为x轴正半轴上一点,∠BAO=∠ACO,点M为线段AC上一动点,设M的纵坐标为a(a ≠0),请用含a的代数式表示点M到y轴的距离d;(3)在(2)的条件下,过点M作MN∥AB交x轴于点N,连接BM,AN,当△ABM为等腰三角形时,求△AMN的面积.52.在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.(1)求直线BC的解析式.(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.53.如图,在平面直角坐标系xOy,直线y=x+1与y=﹣2x+4交于点A,两直线与x轴分别交于点B和点C,D是直线AC上的一个动点,直线AB上是否存在点E,使得以E,D,O,A为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.54.如图,已知平面直角坐标系中,A(1,0)、C(0,2),现将线段CA绕A点顺时针旋转90°得到点B,连接AB(1)求出直线BC的解析式;(2)若动点M从点C出发,沿线段CB以每分钟个单位的速度运动,过M作MN∥AB交y轴于N,连接AN设运动时间为t分钟,当四边形ABMN为平行四边形时,求t的值.(3)P为直线BC上一点,在坐标平面内是否存在一点Q使得以O、B、P、Q为顶点的四边形为菱形?若存在,求出此时Q的坐标;若不存在请说明理由.55.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,点B(5,n)在直线y=x+2上,点C是线段AB上的一个动点,过点C作CP⊥x轴交直线点P,设点C的横坐标为m.(1)n的值为;(2)用含有m的式子表示线段CP的长;(3)若△APB的面积为S,求S与m之间的函数表达式,并求出当S最大时点P的坐标;(4)在(3)的条件下,把直线AB沿着y轴向下平移,交y轴于点M,交线段BP于点N,若点D的坐标为,在平移的过程中,当∠DMN=90°时,请直接写出点N的坐标.56.如图1,在平面直角坐标系中,直线l1:y=﹣x+5与x轴,y轴分别交于A,B两点.直线l2:y=﹣4x+b 与l1交于点D(﹣3,8)且与x轴,y轴分别交于C,E.(1)求出点A坐标,直线l2解析式;(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间时点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得S△CEG=S△CEB,求点G坐标.57.如图1.在平面直角坐标系中,四边形OBCD是正方形,D(0,3),点E是OB延长线上一点,M是线段OB上一动点(不包括O、B),作MN⊥DM,交∠CBE的平分线于点N.(1)①直接写出点C的坐标;②求证:MD=MN;(2)如图2,若M(2,0),在OD上找一点P,使四边形MNCP是平行四边形,求直线PN的解析式;(3)如图,连接DN交BC于F,连接FM,下列两个结论:①FM的长为定值;②MN平分∠FMB,其中只有一个正确,选择并证明.58.某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件.已知每件服装的收入和所需工时如下表:服装名称西服休闲服衬衣工时/件收入(百元)/件321设每周制作西服x件,休闲服y件,衬衣z件.(1)请你分别从件数和工时数两个方面用含有x,y的代数式表示衬衣的件数z.(2)求y与x之间的函数关系式.(3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?59.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.60.已知:如图,在平面直角坐标系中,O为坐标原点.直线AB:y=mx+8m(m≠0)交x轴负半轴于A,交y轴正半轴于B,直线BC:y=nx+2n(n≠0)交x轴负半轴于C,且∠OAB=2∠OBC.(1)求m、n的值;(2)点P(t,0)是x轴上一动点,过P作y轴的平行线,交AB于Q,交BC于R,设QR=d,求d 与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,当点P在线段OA上,且d=9时,作点Q关于y轴的对称点T,连接CT,过B作BH⊥CT于H,在直线AB上取点M,过M作MN∥OH交直线BC于点N,若以O、H、M、N为顶点的四边形是平行四边形,求点N的坐标.参考答案与试题解析一.填空题(共15小题)1.如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC 于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为2.【解答】解:过C作CM⊥DE于M,过E作EN⊥BC于N,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BFE=∠DFC=∠ADE,∵将边AD绕点D逆时针旋转60°得到DE,∴∠BFE=∠DFC=∠ADE=60°,∴∠FCM=∠FEN=30°,∵∠DCF+∠BEF=150°,∴∠DCM+∠BEN=90°,∵∠BEN+∠EBN=90°,∴∠DCM=∠EBN,∴△DCM∽△EBN,∴==,∴CM=BN,DM=EN,在Rt△CMF中,CM=FM,∴FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,∴CF=2x,EF=y,∵BC=AD=DE,∴y+x+y=2x+y+x,∴x=y,∵x2+y2=4,∴y=,x=,∴BC=2,方法二:连接AE,过E作EG⊥AB于G,∵四边形ABCD是平行四边形,∴AB=CD=2,∠BAD=∠C,∵将边AD绕点D逆时针旋转60°得到DE,∴DE=DA,∠ADE=60°,∴△ADE是等边三角形,∴AE=AD,∴AE=BC,∵∠C+∠BEF=150°,∴∠DAB+∠BEF=150°,∴∠ABE=360°﹣(∠ADE+∠BEF+∠DAB)=150°,∴∠GBE=30°,∴GE=BE,BG=,∴GE=1,BG=,∴AG=3,∴BC=AE==2.故答案为:2.2.在边长为4的正方形ABCD中,点E,F是AD上两点,且AE=DF,∠BCE=60°,CE交对角线BD于G,交BF于点P,连接AP.则四边形ABGP的面积为24﹣24.【解答】解:如图,过点P作PH⊥A于H,过点G作GM⊥CD于M,过点B作BN⊥EC于N.∵四边形ABCD是正方形,∴AB=BC=CD=4,∠BAF=∠CDE=90°,∵AE=DF,∴AF=DE,∴△BAF≌△CDE(SAS),∴∠ABF=∠DCE,∵∠ABC=∠DCB=90°,∴∠PCB=∠PBC=60°,∴△PBC是等边三角形,∴PB=BC=PC=4,∵GM⊥CD,∠GDM=45°,∴DM=GM,设DM=GM=x,在Rt△GCM中,∵∠GCM=30°,∴CM=GM=x,CG=2GM=2x,∴x+x=4,∴x=6﹣2,∴CG=12﹣4,PG=PC﹣CG=4﹣(12﹣4)=8﹣12,在Rt△BCN中,BN=BC•sin60°=4×=6,在Rt△PBH中,PH=PB•sin30°=2∴S四边形ABGP=S△ABP+S△PBG=•AB•PH+•PG•BN=××+×(8﹣12)×6=24﹣24.方法二:连接AG交BP于O,证明AG⊥BP.根据四边形的面积=•BP•AG计算即可.由△BGC≌△BGA,推出∠BAG=∠BCG=60°,可得∠AOB=90°.故答案为24﹣24.3.如图,直线y=x+2交y轴于点A,交x轴于点B,点C和点B关于y轴对称,连接AC,点D是△ABC外一点,∠BDC=60°,点E是BD上一点,点F是CD上一点,且CF=BE,连接FE,FB.若∠BFE=30°,则BF2+EF2的值为16.【解答】解:∵直线y=x+2交y轴于点A,交x轴于点B,∴B(﹣2,0),A(0,2),∵点C和点B关于y轴对称,∴C(2,0),∴AB=AC,∴BC=OB+OC=4,∵AB==4,∴AB=AC=BC,∴△ABC是等边三角形,∴∠BAC=60°,如图,连接AE、AF,∵∠BDC=60°,∴∠BDC=∠BAC,根据三角形的外角,得∠ABD+∠BDC=∠ACD+∠CAB,∴∠ABD=∠ACD,∴在△ABE和△ACF中,,∴△ABE≌△ACF(SAS),∴AE=AF,∠BAE=∠CAF,∴∠BAE+∠BAF=∠CAF+∠BAF=∠BAC=60°,∴∠EAF=60°,∴△AEF是等边三角形,∴∠AFE=60°,AF=EF,∵∠BFE=30°,∴∠BF A=90°,∴在Rt△ABF中,根据勾股定理,得BF2+AF2=AB2=16,∴BF2+EF2=16.故答案为:16.4.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【解答】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.5.如图,在矩形ABCD中,AB=2,AD=3,E为BC边上一动点,作EF⊥AE,且EF=AE.连接DF,AF.当DF⊥EF时,△ADF的面积为3﹣.【解答】解:如图,过D作DH⊥AE于H,过E作EM⊥AD于M,连接DE,∵EF⊥AE,DF⊥EF,∴∠DHE=∠HEF=∠DFE=90°,∴四边形DHEF是矩形,∴DH=EF=AE,∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠AME=90°,∴四边形ABEM是矩形,∴EM=AB=2,设AE=x,则S△ADE=,∴3×2=x2,∴x=±,∵x>0,∴x=,即AE=,由勾股定理得:BE==,过F作PQ∥CD,交AD的延长线于P,交BC的延长线于Q,∴∠Q=∠ECD=∠B=90°,∠P=∠ADC=90°,∵∠BAE+∠AEB=∠AEF=∠AEB+∠FEQ=90°,∴∠FEQ=∠BAE,∵AE=EF,∠B=∠Q=90°,∴△ABE≌△EQF(AAS),∴FQ=BE=,∴PF=2﹣,∴S△ADF===3﹣.6.如图,△ABC是边长为2的等边三角形,将△ABC沿直线AC翻折,得到△AB′C,再将△AB′C在直线AC上平移,得到△A′B″C′,则△BB″C′的周长的最小值为2+2.【解答】解:连接AB″.∵AB=B″C′,AB∥B″C′,∴四边形ABC′B″是平行四边形,∴AB″=BC′,∴△BC′B″的周长=BB″+BC′+B″C′=AB″+BB″+2,∵AB″+BB″最小时,△BC′B″的周长最小,作点A关于直线B′B″的对称点T,连接BT交B′B″于B′″,连接AB″′,此时AB′″+BB′″的值最小,设AT交B′B″于E.则AE=AB′•sin60°=,∴AT=2AE=2,过点T作TP⊥AB交BA的延长线于P.则AP=AT•coS30°=3,PT=AT=,∴AB′″+BB″′=BB′″+B″′T=BT===2.∴BB″+BC′+B″C′的最小值为2+2,故答案为:2+2.7.如图,在正方形ABCD中,AB=9,E,F分别是AB,CD上的点,连接EF,将四边形BCFE沿EF折叠得到四边形B′C′FE,点B′恰好在AD上,若DB′=2AB′,则折痕EF的长是3.【解答】解:如图,连接BB',B'F,BF,过点F作FH⊥AB于H,∵四边形ABCD是正方形,∴AB=AD=CD=BC=9,∠A=∠D=∠C=∠ABC=90°,∵将四边形BCFE沿EF折叠得到四边形B′C′FE,∴EF是BB'的垂直平分线,∴BF=B'F,BE=B'E,∵DB′=2AB′,∴AB'=3,DB'=6,∵B'E2=AE2+B'A2,∴BE2=(9﹣BE)2+9,∴BE=5,∵B'F2=BF2=B'D2+FD2=BC2+CF2,∴36+(9﹣CF)2=81+CF2,∴CF=2,∵FH⊥AB,∠C=∠ABC=90°,∴四边形BCFH是矩形,∴FH=BC=9,CF=BH=2,∴EH=3,∴EF===3,故答案为:3.8.如图,在等腰Rt△ABC和等腰Rt△BDE中,AC=BC=,BE=DE=2,连接CD,以AC、CD为邻边作平行四边形ACDF,连接CE,当平行四边形ACDF为菱形时,线段CE的长度为.【解答】解:延长CE与BD交于点H,∵四边形ACDF是菱形,∴CD=AC,∵AC=BC,∴CB=CD=,∵BE=DE,∴CE垂直平分BD,∴DH==,EH=DH=BH=,∵,∴,故答案为:.9.如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,A(﹣2,0),B(0,4),将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为(2,2)或(6,﹣2).【解答】解:∵A(﹣2,0),B(0,4),∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得△OCD,∴OC=OA=2,OD=OB=4,AB=CD,∴∠ACO=∠ECB=∠CBE=45°,∴∠CEB=90°,∴∠AEB=∠CED,且CE=BE,在Rt△ABE和Rt△DCE中,∴Rt△ABE≌Rt△DCE(HL),∴OD=OB=4,∴D(4,0),且B(0,4),∴直线BD解析式为y=﹣x+4,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴M点到x轴的距离等于C点到x轴的距离,∴M点的纵坐标为2,在y=﹣x+4中,令y=2可得x=2,∴M(2,2);当M点在x轴下方时,同理可得M点的纵坐标为﹣2,在y=﹣x+4中,令y=﹣2可求得x=6,∴M点的坐标为(6,﹣2);综上可知M点的坐标为(2,2)或(6,﹣2),故答案为:(2,2)或(6,﹣2).10.如图,已知边长为6的菱形ABCD中,∠ABC=60°,点E,F分别为AB,AD边上的动点,满足BE =AF,连接EF交AC于点G,CE、CF分别交BD于点M,N,给出下列结论:①△CEF是等边三角形;②∠DFC=∠EGC;③若BE=3,则BM=MN=DN;④EF2=BE2+DF2;⑤△ECF面积的最小值为.其中所有正确结论的序号是①②③⑤.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF=∠BCA=60°,故①正确;∵∠ECF=∠ACD=60°,∴∠ECG=∠FCD,∵∠FEC=∠ADC=60°,∴∠DFC=∠EGC,故②正确;若BE=3,菱形ABCD的边长为6,∴点E为AB中点,点F为AD中点,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,∴AO=AB=3,BO=AO=3,∴BD=6,∵△ABC是等边三角形,BE=AE=3,∴CE⊥AB,且∠ABO=30°,∴BE=EM=3,BM=2EM,∴BM=2,同理可得DN=2,∴MN=BD﹣BM﹣DN=2,∴BM=MN=DN,故③正确;∵△BEC≌△AFC,∴AF=BE,同理△ACE≌△DCF,∴AE=DF,∵∠BAD≠90°,∴EF2=AE2+AF2不成立,∴EF2=BE2+DF2不成立,故④错误,∴△ECF面积的EC2,∴当EC⊥AB时,△ECF面积有最小值,此时,EC=3,△ECF面积的最小值为,故⑤正确;故答案为:①②③⑤.11.如图,在平面直角坐标系中,点P坐标(3,0),有一长度为的线段AB在直线y=x+1的图象上滑动,则P A+PB的最小值为.【解答】解:根据垂线段最短,当PM⊥AB时PM最小,当PM平分AB时,P A=PB的值最小,此时P A+PB 的值最小,∵直线y=x+1,∴C(﹣1,0),D(0,1),∴OC=OD=1,∴∠ACP=45°,∵点P坐标(3,0),∴PC=4,∵PM⊥AB,∴PM=PC=2,∵AM=BM=AB=,。

北师大版八年级下册数学期末测试卷及含答案

北师大版八年级下册数学期末测试卷及含答案

北师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在图示的四个汽车标志图案中,能用一个基本元素平移得到的是()A. B. C. D.2、若一次函数的图象如图所示,则不等式的解集为()A. B. C. D.3、若,则下列不等式中一定成立的是()A. B. C. D.4、在下列图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.5、函数的自变量的取值范围是()A. B. C. D.全体实数6、已知a<b,下列四个不等式中,不正确的是()A.2a<2bB.﹣2a<﹣2bC.a+2<b+2D.a﹣2<b﹣27、如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3B.﹣2<x<3C.x<﹣2D.x>﹣28、如图,在中,,,,将沿向右平移得到.若四边形的面积等于8,则平移距离等于A.2B.4C.8D.169、如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.710、在正三角形、等腰梯形、矩形和圆这四种图形中,既是轴对称图形又是中心对称图形的有()种.A.1B.2C.3D.411、下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.12、若分式:的值为0,则()A.x=1B.x=﹣1C.x=±1D.x≠113、下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个14、如图,已知在中,,的垂直平分线交于点E,的垂直平分线正好经过点B,与相交于点F,则的度数是()A.30°B.36°C.45°D.35°15、如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC.则下列四种不同方法的作图中正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、八年级师生组织捐款,共捐得2100元,这个年级有教师35名,14个教学班.各班学生人数都相同且多于30人,不超过40人.若平均每人捐款的金额恰好是整数元,则平均每人捐款________元.17、如图,在△ABC中,∠ACB=90°,AC=6,AB=10,AB的垂直平分线DE交AB 于点D,交BC于点E,则CE的长等于________.18、在实数范围内分解因式:=________19、不等式3x-6≤9的解是________.20、如图是某中学某班的班徽设计图案,其形状可以近似看作正五边形,则每一个内角为________度;21、如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为________.22、化简:________.23、若▱ABCD的三条边分别为8cm,(x﹣2)cm,(x+3)cm,则该▱ABCD的周长是________ cm.24、已知关于x的分式方程﹣=1的解为负数,则k的取值范围是________ .25、如图,AB∥EG,EF∥BC,AC∥FG,图中有________个平行四边形,它们分别是________.三、解答题(共5题,共计25分)26、先化简,再求值:﹣÷,其中x=﹣3.27、如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.28、请写出所有使(3x+2)(3x﹣4)>9(x﹣2)(x+3)成立的非负整数解.29、如图,△ABC中∠ACB=90°,点D、E分别是AC,AB的中点,点F在BC 的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.30、解不等式组并把它的解集在数轴上表示出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(下)压轴题专题
1.在直角坐标系xOy中,▱ABCD四个顶点的坐标分别为A(1,1),B(4,1),C(5,2),D(2,2),直线l:y=kx+b与直线y=﹣2x平行.
(1)k=;
(2)若直线l过点D,求直线l的解析式;
(3)若直线l同时与边AB和CD都相交,求b的取值范围;
(4)若直线l沿线段AC从点A平移至点C,设直线l与x轴的交点为P,问是否存在一点P,使△PAB为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
2.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)
(1)求B、C两点的坐标;
(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.
3.如图1,在直角坐标系中,点A坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B(m,n)
(1)若m=9,n=3,求直线l1和l2的解析式;
(2)将△BAO绕点B顺时针旋转180°得△BFE,
如图2,连接AE,OF;
①证明:四边形OFEA是平行四边形;
②若四边形OFEA是正方形,则m=,n=.
4.已知:如图平面直角坐标系xOy中,C在x轴上,四边形OABC为菱形,且A 点坐标
为(﹣3,4),过A、C的直线交y轴于点M,连接BM
(1)求直线AC的解析式
(2)一动点P从A出发,以每秒2个单位长度沿A→B→C向C点运动,设运动过程中△PBM的面积为S,运动时间为t(秒),试求出S关于t的函数关系式.(3)在(2)的条件下,试求出当t为何值时,△PBM的面积的最大值?最大值是多少?
5.如图,在直角坐标系中,点O是坐标原点,四边形OABC是平行四边形,且OA=AB,点A 的坐标为(3,4),点C在x轴的正半轴上,连接AC、OB.(1)求直线AC的解析式;
(2)若点P、Q分别是OB、OC上的动点,连接CP、PQ,试探究:CP+PQ是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
6.如图,在平面直角坐标系中,直线y=﹣x+8分别交两轴于点A、B,点C为线段AB的中点,点D在线段OA上,且CD的长是方程的根.
(1)求点D的坐标;
(2)求直线CD的解析式;
(3)在平面内是否存在这样的点F,使以A、C、D、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,不必说明理由.
7、如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B 的坐标分别A (,0)、B(,2),∠CAO=30°.
(1)求对角线AC所在的直线的函数表达式;
(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;
(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
8.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点C,过点C的直线y=﹣x+b与x轴交于点B.
(1)b的值为;
(2)若点D的坐标为(0,﹣1),将△BCD沿直线BC对折后,点D落到第一象限的点E处,求证:四边形ABEC是平行四边形;
(3)在直线BC上是否存在点P,使得以P、A、D、B为顶点的四边形是平行四边形?如果存在,请求出点P的坐标;如果不存在,请说明理由.。

相关文档
最新文档