专题三 动力学中的图象问题
高中物理之力学图像三类问题、运动图像分析物体运动规律、动力学图像与牛顿运动定律、情景描绘或者选择图像
第5讲|谙熟“三看、两法”,破解力学图像三类问题[考法·学法]运动学图像和动力学图像一直是高考的热点,考查角度一般有三个:一是会识图,理解图线、斜率、截距、面积的意义,能根据需要列出函数关系式;二是会作图,依据物理现象、物理过程、物理规律作出图像;三是会用图,能结合物理公式和图像等解决物理问题。
高考中一般考查这三类问题:①应用运动图像分析物体的运动规律②应用动力学图像考查牛顿运动定律③根据物理情景描绘或者选择物理图像用到的思想方法主要有:①图像法②等效法③作图法一、应用运动图像分析物体的运动规律1.“三看”图像(1)看清坐标轴所表示的物理量:是运动学图像(v -t、x -t、a -t),还是动力学图像(F-a、F-t、F-x),明确因变量与自变量的制约关系。
(2)看图线本身:识别两个相关量的变化趋势,进而分析具体的物理过程。
(3)看交点、斜率和“面积”:明确图线与图线的交点、图线与坐标轴的交点、图线斜率、图线与坐标轴围成的面积的物理意义。
2.解答图像问题的“两法”(1)公式与图像的转化要作出一个确定的物理图像,需要得到相关的函数关系式。
在把物理量之间的关系式转化为一个图像时,最重要的就是要明确公式中的哪个量是自变量,哪些量是常量,关系式描述的是哪两个物理量之间的函数关系。
(2)图像与情境的转化运用物理图像解题,还需要进一步建立物理图像和物理情境之间的联系,根据物理图像,想象出图像所呈现的物理现象、状态、过程和物理变化的具体情境,因为这些情境中隐含着许多解题条件,这些过程中体现了物理量相互制约的规律,这些状态反映了理论结果是否能与现实相吻合,这些正是“审题”“分析”“审视答案”等解题环节所需要解决的问题。
[全练题点]1.(2018届高三·平顶山联考)设竖直向上为y轴正方向,如图所示曲线为一质点沿y轴运动的位置—时间(y -t)图像,已知图线为一条抛物线,则由图可知()A.t=0时刻质点速度为0B.0~t1时间内质点向y轴负方向运动C.0~t2时间内质点的速度一直减小D .t 1~t 3时间内质点相对坐标原点O 的位移先为正后为负解析:选C 在t =0时刻y -t 图线斜率不为0,说明t =0时刻质点速度不为0,0~t 1时间内质点向y 轴正方向运动,故A 、B 错误。
动力学之图像问题
牛顿运动定律之图像问题【基础知识】(1)牛顿第一定律:任何物体都要保持直线运动或状态,直到外力迫使它运动状态为止。
力与运动的关系:力不是的原因,力是的原因。
(2)牛顿第二定律:物体加速度的大小跟成正比,跟物体的成反比,加速度的方向跟的方向相同。
牛顿第二定律公式:=a。
牛顿第二定律的性质:①瞬时性②矢量性③因果性④同一性。
(3)牛顿第三定律:相互作用的两个物体之间的作用力和反作用力总是相等,方向,作用在同一条直线上。
牛顿第三定律公式:=F .相互作用力的性质:同时性,同一性,异体性。
(3)物理公式在确定物理量的数量关系的同时,也确定了物理量的关系。
因此物理学中选定七个物理量的单位作为基本单位,根据物理公式中其他物理量和这几个物理量的关系,推导出其他物理量的单位。
这些推导出来的单位叫做。
基本单位和导出单位一起组成了。
国际单位制中三个力学基本单位分别是:。
(4)超重:。
失重:。
完全失重:。
判断依据:。
1.质量为0.8 kg的物体在一水平面上运动,如图a、b分别表示物体不受拉力作用和受到水平拉力作用时的v-t图像,则拉力和摩擦力之比为()A. 9∶8B. 3∶2C. 2∶1D. 4∶32.(多选)如图(1)所示,在粗糙的水平面上,物块A在水平向右的外力F的作用下做直线运动,其v-t图象如图(2)中实线所示.下列判断正确的是()A.在0~1 s内,外力F不断变化B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断变化D.在3~4 s内,外力F的大小恒定3.(多选)如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出()A.物体的质量B.物体与水平面间的滑动摩擦力C.物体与水平面间的最大静摩擦力D.在F为14 N时,物体的速度最小4.如图甲所示,一物块质量为m=2 kg,以初速度v0=10 m/s从0点沿粗糙的水平面向右运动,同时受到一水平向左的恒力F作用,物块在运动过程中速度随时间变化的规律如图乙所示,求:甲乙(1)恒力F的大小及物块与水平面的动摩擦因数μ;(2)物块在4 s内的位移大小.5.在水平地面上有一质量为10 kg的物体,在水平拉力F的作用下由静止开始运动,10 s后拉力大小减为,方向不变,再经过20 s停止运动.该物体的速度与时间的关系如图所示(g=10 m/s2).求:(1)整个过程中物体的位移大小;(2)物体与地面的动摩擦因数.6.一个物块置于粗糙的水平地面上,受到水平方向推力F的作用,推力F 随时间变化的关系如图甲所示,速度v随时间变化的关系如图乙所示.取g=10 m/s2,求:(1)第1 s末和第3 s末物块所受摩擦力的大小F f1和F f2;(2)物块与水平地面间的动摩擦因数μ;(3)若第6 s末撤去外力,物块前7.5 s内的位移大小.7.竖直运行的升降机地板上有一个质量为100 kg的物体,它对地板的压力随时间变化的图象如图所示.若升降机从静止开始向上运动,g取10 m/s2,求8 s内升降机上升的高度.8.一质量为0.25 kg的物块静止在水平地面上(图甲),从t=0 s时刻开始受到一个竖直向上的力F的作用,F随时间t的变化规律如图乙所示,重力加速度g取10 m/s2.求:(1)t=2 s时,物块速度的大小:(2)t=0到t=3 s的过程中,物块上升的高度.甲乙答案解析1.【答案】B【解析】由v-t图像可知,图线a为仅受摩擦力的运动,加速度大小a1=1.5 m/s2;图线b为受水平拉力和摩擦力的运动,加速度大小为a2=0.75 m/s2;由牛顿第二定律列方程得ma1=F f,ma2=F-F f,解得F∶F f =3∶2.2.【答案】BC【解析】在0~1 s内,直线的斜率不变,加速度不变,外力F是恒力,故A错误;在1~3 s内,速度不变,物体做匀速直线运动,加速度等于零,F等于摩擦力,外力F的大小恒定,故B正确;在3~4 s内,斜率越来越大,说明加速度越来越大,所以物体做加速度增大的减速运动;根据题意,拉力水平向右,根据a=知力F不断减小,故C正确,D错误.3.【答案】ABC【解析】根据牛顿第二定律,F-F f=ma,由题图可读出外力F和加速度a的值,有:7-F f=0.5m,14-F f=4m.联立两式解得:F f=6 N,m=2 kg.故A、B正确;由图可知,当F=7 N时物体开始滑动,所以最大静摩擦力为7 N,故C正确;F=7 N开始增大,加速度逐渐增大,物体做变加速直线运动,可知F=14 N时,物体的速度不是最小,故D错误.4.【答案】(1)7 N0.15(2)6 m【解析】(1)由题图可知,0~2 s内,物体向右做匀减速直线运动,2 s~4 s内,物体向左做匀加速直线运动.0~2 s内,a1==m/s2=5 m/s2,方向水平向左;2 s~4 s内,a2==m/s2=2 m/s2,方向水平向左;由牛顿第二定律,得到:F+μmg=ma1F-μmg=ma2代入数据解得F=7 N,μ=0.15.(2)代据图像可知,物体4 s内的位移x=×2×10 m-×2×4 m=6 m.5.【答案】(1)150 m(2)0.1【解析】(1)整个过程的位移大小等于v-t图象中三角形的面积即x=×10×30 m=150 m(2)由图象知前10 s的加速度a1=1 m/s2后20 s的加速度大小为a2=0.5 m/s2由牛顿第二定律得F-μmg=ma1μmg-=ma2解以上两方程得μ=0.1.6.【答案】(1)8N (2)0.4 (3)14m【解析】(1)F f1=4 N,F f2=8 N;(2)2~4 s,由牛顿第二定律和运动学规律得F2-F f2=ma,a=,可求得m=2 kg由F f2=μF N,F N=mg得μ=0.4.(3)撤去外力后加速度a3=μg=4 m/s2,v=4 m/s,故减速到零所用时间t减==1 s,小于1.5 sx加=t加=4 mx 匀=vt 匀=8 mx 减==2 m所以x 总=x 加+x 匀+x 减=4 m +8 m +2 m =14 m.7.【答案】60 m【解析】取升降机地板上的物体为研究对象,物体受力情况如下图所示.取向上为正方向.由牛顿第三定律可知,物体对地面的压力等于地面对物体的支持力,即F =F N .在0~2 s 内,F N1=F 1>mg ,物体所受合外力竖直向上,所以物体向上做匀加速直线运动.由牛顿第二定律得F N1-mg =ma 1①a 1==5 m/s 2所以物体的位移:x 1=a 1t =10 m ②物体2 s 末的速度:v =a 1t 1=5.0×2.0 m/s =10 m/s ③ 在2~6 s 内,F N2=mg ,物体所受合外力为零,所以物体向上做匀速直线运动,则物体的位移:x 2=vt 2=10×4 m =40 m ④ 在6~8 s 内,F N3<mg ,物体所受合外力方向竖直向下,所以物体向上做匀减速直线运动,初速度为v =10 m/s.由牛顿第二定律F 3-mg =ma 3⑤a 3==-5 m/s 2所以物体的位移:x3=vt3+a3t=10 m⑥所整个过程中物体位移x=x1+x2+x3=10 m+40 m+10 m=60 m⑦8.【答案】(1)2 m/s(2)6 m【解析】(1)0-1 s内,F1<mg,物块静止1-2 s物块做匀加速直线运动,根据牛顿第二定律得,F2-mg=ma1解得a1==2 m/s2;则t=2 s时,物块的速度v=2×1 m/s=2 m/s.(2)1-2 s物块匀加速运动x1=a1t=1 m.2-3 s物块匀加速运动,根据牛顿第二定律得,F3-mg=ma2解得a2==6 m/s2;则x2=vt2+a2t=5 m.则物块上升的高度h=x1+x2=1 m+5 m=6 m.。
2024高考物理一轮复习--牛顿第二定律的应用--动力学中的图像问题
动力学中的图像问题一、动力学图像二、针对练习1、如图甲所示,水平长木板上有质量m=1.0 kg的物块,受到随时间t变化的水平拉力F 作用,用力传感器测出相应时刻物块所受摩擦力F f的大小.重力加速度g取10 m/s2.下列判断正确的是()A.5 s内拉力对物块做功为零B.4 s末物块所受合力大小为4.0 NC.物块与木板之间的动摩擦因数为0.4 D.6~9 s内物块的加速度的大小为2.0 m/s22、(多选)如图所示,蹦极运动就是在跳跃者脚踝部绑有很长的橡皮条的保护下从高处跳下,当人体落到离地面一定距离时,橡皮绳被拉开、绷紧、阻止人体继续下落,当到达最低点时橡皮再次弹起,人被拉起,随后,又落下,反复多次直到静止。
取起跳点为坐标原点O,以竖直向下为y轴正方向,忽略空气阻力和风对人的影响,人可视为质点。
从跳下至第一次到达最低点的运动过程中,用v、a、t分别表示在竖直方向上人的速度、加速度和下落时间。
下列描述v与t、a与、y的关系图像可能正确的是()A.B.C.D.3、水平地面上有一轻质弹簧,下端固定,上端与物体A相连接,整个系统处于平衡状态.现用一竖直向下的力压物体A,使A竖直向下匀加速运动一段距离,整个过程中弹簧一直处在弹性限度内.下列关于所加力F的大小和运动距离x之间的关系图象正确的是()()4、如图所示,竖直轻弹簧一端与地面相连,另一端与物块相连,物块处于静止状态。
现对物块施加一个竖直向上的拉力F,使物块向上做初速度为零的匀加速直线运动,此过程中弹簧的形变始终在弹性限度内,则拉力F随时间t变化的图像可能正确的是()A.B.C.D.5、水平力F方向确定,大小随时间的变化如图2a所示,用力F拉静止在水平桌面上的小物块,在F从0开始逐渐增大的过程中,物块的加速度a随时间变化的图象如图b所示,重力加速度大小为10 m/s2,最大静摩擦力大于滑动摩擦力,由图示可知()A.物块的质量m=2 kgB.物块与水平桌面间的动摩擦因数为0.2C.在4 s末,物体的动量为12 kg· m/sD.在2~4 s时间内,小物块速度均匀增加6、(多选)如图甲所示,物块A、B中间用一根轻质弹簧相连,放在光滑水平面上,物块A 的质量为1.2kg。
高中物理:动力学中的图像问题
高中物理:动力学中的图像问题1.常见的图像形式在动力学与运动学问题中,常见、常用的图像是位移图像(x -t 图像)、速度图像(v -t 图像)和力的图像(F -t 图像)等,这些图像反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹.2.图像问题的分析方法遇到带有物理图像的问题时,要认真分析图像,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图像给出的信息,再利用牛顿运动定律及运动学公式解题.[典例2] 如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图像分别如图中的折线所示,根据v -t 图像(g 取10 m/s 2),求:(1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2.(2)m 与M 的质量之比.(3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移.[解析] (1)由图可知,线段ac 为m 减速时的速度—时间图像,m 的加速度为 a 1=Δv 1Δt 1=4-104m /s 2=-1.5 m/s 2 对m ,由牛顿第二定律可得:-μ1mg =ma 1,所以μ1=a 1-g=0.15 由图可知,线段cd 为二者一起减速运动时的速度—时间图像,其加速度为a 3=Δv 3Δt 3=0-48m /s 2=-0.5 m/s 2 对m 和M 组成的整体,由牛顿第二定律可得:-μ2(m +M )g =(m +M )a 3所以μ2=a 3-g=0.05. (2)由图像可得,线段bc 为M 加速运动时的速度—时间图像,M 的加速度为a 2=Δv 2Δt 2=4-04m /s 2=1 m/s 2对M ,由牛顿第二定律可得:μ1mg -μ2(mg +Mg )=Ma 2把μ1、μ2代入上式,可得m ∶M =3∶2.(3)由图线acd 与横轴所围面积可求得m 对地位移:x m =12×4×6 m +(4+12)×42m =44 m 由图线bcd 与横轴所围面积可求得M 对地位移:x M =12×12×4 m =24 m. [答案] (1)0.15 0.05 (2)3∶2 (3)44 m 24 m[方法技巧]动力学中图像问题的处理技巧(1)图像信息①v -t 图像:可以从所提供图像获取运动的方向、瞬时速度、某时间内的位移以及加速度,结合实际运动情况可以确定物体的受力情况.②F -t 图像:首先应明确该图像表示物体所受的是哪个力,然后根据物体的受力情况确定加速度,从而研究它的运动情况.(2)图像问题两关注:正确认识图像的截距、斜率、面积以及正负的含义,要做到物体实际受力与运动情况的紧密结合.4.质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m解析:物体与地面间最大静摩擦力f =μmg =0.2×2×10 N=4 N .由题图知0~3 s 内,F =4 N ,说明物体在这段时间内保持静止.3~6 s 内,F =8 N ,说明物体做匀加速运动,加速度a=F -f m=2 m /s 2,6 s 末物体的速度v =at =2×3 m/s =6 m /s ,在6~9 s 内物体以6 m/s 的速度做匀速运动.9~12 s 内又以2 m/s 2的加速度做匀加速运动.作v -t 图像如图所示,故0~12 s 内的位移s =12×3×6×2 m +6×6 m =54 m .故B 项正确.答案:B5.(多选)如图甲所示,用一水平外力F 拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,重力加速度g 取10 m/s 2.根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .加速度由2 m /s 2增加到6 m/s 2的过程中,物体通过的位移D .加速度为6 m/s 2时物体的速度解析:由题图乙可知,当水平外力F =0时,物体的加速度a =-6 m /s 2,此时物体的加速度a =-g sin θ,可求出斜面的倾角θ=37°,选项B 正确;当水平外力F =15 N 时,物体的加速度a =0,此时F cos θ=mg sin θ,可得m =2 kg ,选项A 正确;由于不知道加速度与时间的关系,所以无法求出物体在各个时刻的速度,也无法求出物体加速度由2 m/s 2增加到6 m/s 2过程中的位移,选项C 、D 错误.答案:AB6.在水平地面上有一质量为2 kg 的物体在水平拉力F 的作用下由静止开始运动,10 s 后拉力大小减为F 3,该物体的运动速度随时间t 的变化规律如图所示(g 取10 m/s 2),求:(1)物体受到的拉力F 的大小.(2)物体与地面之间的动摩擦因数.解析:由v -t 图像可知,物体的运动分两个过程,设匀加速运动过程的加速度为a 1,匀减速运动过程的加速度为a 2,则由题图知a 1=8-010m /s 2=0.8 m/s 2 a 2=0-814-10m /s 2=-2 m/s 2 两过程物体受力分别如图甲、乙所示.加速过程:F -μmg =ma 1减速过程:F 3-μmg =ma 2(或μmg -F 3=m |a 2|) 联立以上各式解得F =8.4 N ,μ=0.34. 答案:(1)8.4 N (2)0.34。
动力学中的图像问题-高中物理第三章专项练习
第三章运动和力的关系动力学中的图像问题1.两类问题:一类问题是从图像中挖掘信息,再结合题干信息解题;另一类是由题干信息判断出正确的图像.2.两种方法:一是函数法:列出所求物理量的函数关系式,理解图像的意义,理解斜率和截距的物理意义;二是特殊值法:将一些特殊位置或特殊时刻或特殊情况的物理量值与图像对应点比较.1.(多选)如图甲所示,物体原来静止在水平面上,用一水平力F 拉物体,在F 从0开始逐渐增大的过程中,物体先静止后做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,g =10m/s 2.根据图乙中所标出的数据可计算出()A .物体的质量为1kgB .物体的质量为2kgC .物体与水平面间的动摩擦因数为0.3D .物体与水平面间的动摩擦因数为0.5答案BC 解析物体受重力、地面的支持力、向右的拉力和向左的摩擦力,根据牛顿第二定律得F -μmg =ma ,解得a =F m -μg ,由a 与F 图线,得到0.5=7m -10μ,4=14m-10μ,以上各式联立得m =2kg ,μ=0.3,故B 、C 正确,A 、D 错误.2.如图甲所示,地面上有一物体,物体上端连接一劲度系数为k 的轻质弹簧,用力F 向上提弹簧,物体加速度a 与力F 的关系如图乙所示,则下列说法正确的是()A .如果弹簧形变量x <p k,物体保持静止B .当力F >q 后,物体做匀加速直线运动C .物体的质量m =-q pD .当地重力加速度g =p答案C 解析当拉力F =q 时,物体开始离开地面,此时弹簧形变量x =q k ,因此当x <q k,时,物体保持静止,A 错误;由图像可知,当力F >q 之后,随着力的增加,加速度逐渐增加,物体做变加速直线运动,B 错误;根据F -mg =ma ,整理可得a =1m F -g ,因此物体的质量m =-q p,当地的重力加速度g =-p ,C 正确,D 错误.3.一物块在固定的粗糙斜面底端以初速度v 0沿斜面向上运动,又返回底端.能够描述物块速度v 随时间t 变化关系的图像是()答案C 解析根据牛顿第二定律,上滑过程:mg sin θ+μmg cos θ=ma 1,下滑过程:mg sin θ-μmg cos θ=ma 2,比较可知加速度大小a 1>a 2,则物块上滑过程v -t 图像的斜率的绝对值比下滑过程的大.由于存在摩擦力,所以物体滑到斜面底端时的速度v t 小于初速度v 0,上滑过程有x =v 0t 02,下滑过程有x =v t t 12,可得t 1>t 0,选项C 正确,A 、B 、D 错误.4.(多选)某运动员做跳伞训练,他从悬停在空中的直升机上由静止跳下,跳离飞机一段时间后打开降落伞减速下落,他打开降落伞后的速度图线如图(a)所示.降落伞用8根对称的绳悬挂运动员,每根绳与中轴线的夹角均为α=37°,如图(b)所示.已知运动员的质量为50kg ,降落伞的质量也为50kg ,不计运动员所受的阻力,打开伞后伞所受阻力F f 与速度v 成正比,即F f =k v (g =10m/s 2,sin 37°=0.6,cos 37°=0.8).则下列判断中正确的是()A.阻力系数k=100N·s/mB.打开伞瞬间运动员的加速度a=30m/s2,方向竖直向上C.悬绳能够承受的拉力至少为312.5ND.悬绳能够承受的拉力至少为625N答案BC解析由题图可知,当速度为5m/s时,做匀速直线运动,对整体,根据平衡条件有2mg=k v,解得k=200N·s/m,A错误;打开伞瞬间,对整体,根据牛顿第二定律得k v′-2mg=2ma,解得a=200×20-1000100m/s2=30m/s2,方向竖直向上,B正确;向上的加速度最大时,绳子的拉力最大,由题图可知,打开伞瞬间有最大加速度,对运动员分析,有8F T cos37°-mg=ma,解得F T=mg+ma8cos37°=20008×0.8N=312.5N,所以悬绳能够承受的拉力至少为312.5N,C正确,D错误.5.随着2022年北京冬奥会成功举办,我国北方掀起一股滑雪运动的热潮,有一倾角为θ=37°的斜面雪道如图甲.假设一爱好者和他的雪橇总质量m=75kg,沿足够长的雪道向下滑去,已知他和雪橇所受的空气阻力F与滑雪速度v成正比,比例系数k未知,雪橇与雪道间的动摩擦因数均相同.从某时刻开始计时,测量得雪橇运动的v-t图像如图乙中的曲线AD所示,图中AB是曲线AD在A点坐标为(0,5)的切线,切线上点B的坐标为(4,15),CD是曲线AD 的渐近线.(g取10m/s2,sin37°=0.6,cos37°=0.8).下列说法正确的是()A.开始运动时雪橇的加速度大小为a=3.75m/s2B.0~4s内雪橇做加速度变小的曲线运动C.雪橇与雪道间的动摩擦因数μ未知,无法计算出比例系数k值D.比例系数为k=37.5N·s/m答案D解析在v-t图像中,图像的斜率表示加速度,因此开始运动时雪橇的加速度大小为a=Δv Δt=15-54m/s2=2.5m/s2,A错误;0~4s内雪橇做加速度变小的直线运动,B错误;根据牛顿第二定律,开始运动时mg sinθ-μmg cosθ-k v0=ma,足够长时间后,滑雪爱好者匀速运动mg sinθ=μmg cosθ+k v m,联立解得k=37.5N·s/m,C错误,D正确.6.如图,轻弹簧的下端与物块Q连接,上端与物块P连接.已知P、Q质量相等,P静止时弹簧压缩量为x0,现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动,至Q恰好离开地面.以x表示P离开静止位置的位移,下列表示F和x之间关系的图像,可能正确的是()答案B解析设物块P的质量为m,加速度为a,静止时弹簧的压缩量为x0,弹簧的劲度系数为k,由力的平衡条件得mg=kx0,物块的位移为x,当x<x0时,弹簧对P的弹力为F1=k(x0-x);对物块P,由牛顿第二定律得F+F1-mg=ma,即F=kx+ma;当x>x0后,弹簧拉伸F-k(x -x0)-mg=ma,仍可得F=kx+ma,F与x是线性关系,且F随x的增大而增大,当Q对地面压力为零时弹簧被拉伸,拉力等于Q的重力,因此形变量也为x0,所以P上升的距离为2x0,所以B正确,A、C、D错误.7.(多选)一物块静止在粗糙程度均匀的水平地面上,在0~4s内所受水平拉力F随时间t的变化关系图像如图甲所示,在0~2s内的速度图像如图乙所示,最大静摩擦力大于滑动摩擦力.关于物块的运动,下列说法正确的是()A.物块的质量为2kgB .在4s 内物块的位移为8mC .在4s 内拉力F 做功为16JD .在4s 末物块的速度大小为4m/s答案BC 解析由题图乙可知,1~2s 内物块做匀速运动,故说明摩擦力大小F f =F =2N ;0~1s 内做匀加速运动,加速度a =v t =41m/s 2=4m/s 2,由牛顿第二定律可得F -F f =ma ,其中F =6N ,解得m =1kg ,故A 错误;2s 后受到的合力大小F 合=F +F f =2N +2N =4N ,方向与运动方向相反,物块做匀减速运动,加速度大小a ′=F 合m =41m/s 2=4m/s 2,匀减速至停止的时间t =va ′=44s =1s ,则t =3s 末速度减为零,此后保持静止,故4s 内的位移x =1+32×4m =8m ,故B 正确;根据动能定理可知W F -F f x =0,解得W F =2×8J =16J ,故C 正确;由B 中分析可知,4s 末的速度大小为零,故D 错误.8.在用DIS 探究超重和失重的实验中,某同学蹲在压力传感器上完成一次起立动作,在计算机屏幕上得到压力传感器示数F 随时间t 变化的图像如图所示,则此过程该同学重心的运动速度v 随时间t 变化的图像最接近图()答案A 解析人在起立时,先向上加速后向上减速,先超重后失重;由F -t 图像可知,超重阶段(加速阶段)水平面对人的支持力先增加后减小,则根据F -mg =ma 可知,加速度大小先增大后减小,则v -t 图像的斜率先增大后减小;同理由F -t 图像可知,失重阶段(减速阶段)水平面对人的支持力先减小后增加,则根据mg -F =ma 可知,加速度大小先增大后减小,则v -t 图像的斜率的绝对值先增加后减小,故选A.9.如图甲所示为一倾角θ=37°足够长的固定斜面,将一质量m=1kg的物体(可视作质点)放在斜面上由静止释放,同时施加一沿斜面向上的拉力F,拉力F随时间t变化关系的图像如图乙所示,物体与斜面间动摩擦因数μ=0.25.取g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)2s末物体的速度大小;(2)前16s内物体发生的位移.答案(1)5m/s(2)30m,方向沿斜面向下解析(1)对物体受力分析,受重力、支持力、拉力、摩擦力,假设在0~2s时间内物体沿斜面方向向下运动因为mg sinθ-μmg cosθ-F1>0,所以假设成立,物体在0~2s内沿斜面向下做初速度为零的匀加速直线运动,由牛顿第二定律可得mg sinθ-F1-μmg cosθ=ma1,解得a1=2.5m/s2,v1=a1t1,代入数据可得v1=5m/s.(2)物体在前2s内发生的位移为x1=1a1t12=5m,2当拉力为F2=4.5N时,由牛顿第二定律可得mg sinθ-μmg cosθ-F2=ma2,代入数据可得a2=-0.5m/s2,设物体经过t2时间速度减为零,则0=v1+a2t2,解得t2=10s,物体在t2时间内发生的位移为a2t22=25m,x2=v1t2+12由于mg sinθ-μmg cosθ<F2<mg sinθ+μmg cosθ,则物体在剩下4s时间内处于静止状态.故物体在前16s内发生的位移x=x1+x2=30m,方向沿斜面向下.10.如图甲所示,可视为质点的质量m1=1kg的小物块放在质量m2=2kg的长木板正中央位置,长木板静止在水平地面上,连接物块的轻质细绳与水平方向的夹角为37°.现对长木板施加水平向左的拉力F =18N ,长木板运动的v -t 图像如图乙所示,sin 37°=0.6,g =10m/s 2,求:(1)长木板的长度L ;(2)长木板与地面间的动摩擦因数μ2;(3)物块与长木板间的动摩擦因数μ1.答案(1)2m (2)0.5(3)819解析(1)由题图乙可知,木板运动2s 离开小物块,在0~2s ,木板的位移x =2×12m =1m ,所以长木板的长度L =2x =2m.(2)在2~3s ,由题图乙可得长木板的加速度a 2=ΔvΔt =4m/s 2,由牛顿第二定律得F -μ2m 2g =m 2a 2,解得μ2=0.5.(3)在0~2s ,对小物块受力分析,竖直方向有F N +F T sin 37°=m 1g ,水平方向有F T cos 37°=F f1,又F f1=μ1F N ,在0~2s ,长木板的加速度a 1=Δv ′Δt ′=0.5m/s 2,对木板由牛顿第二定律得F -F f1′-μ2(m 2g +F N ′)=m 2a 1由牛顿第三定律得F f1=F f1′,F N =F N ′联立解得μ1=819.。
高中物理【动力学图像问题】
专题课6动力学图像问题题型一由运动学图像求物体受力1.常见的图像有:v-t图像,a-t图像,F-t图像,F-x图像,a-F图像等。
2.图像间的联系:加速度是联系v-t图像与F-t图像的桥梁。
3.图像的应用(1)已知物体在一过程中所受的某个力随时间变化的图像,要求分析物体的运动情况。
(2)已知物体在一运动过程中速度、加速度随时间变化的图像,要求分析物体的受力情况。
(3)通过图像对物体的受力与运动情况进行分析。
4.解题策略(1)弄清图像斜率、截距、交点、拐点、面积的物理意义。
(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体运动”间的关系,以便对有关物理问题作出准确判断。
一质量为m的乘客乘坐竖直电梯上楼,其位移x与时间t的关系图像如图所示。
乘客所受支持力的大小用F N表示,速度大小用v表示。
重力加速度大小为g。
以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg[解析]由x-t图像的斜率表示速度,可知在0~t1时间内速度增大,即乘客的加速度向上,F N>mg;在t1~t2时间内速度不变,即乘客匀速上升,F N=mg;在t2~t3时间内速度减小,即乘客减速上升,F N<mg,故A正确,B、C、D错误。
[答案] A两物块A、B并排放在水平地面上,且两物块接触面为竖直面。
现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图甲所示。
在A、B的速度达到6 m/s时,撤去推力F。
已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平地面间的动摩擦因数为μ=0.3,B与地面没有摩擦,B物块运动的v-t图像如图乙所示。
g取10 m/s2,求:(1)推力F的大小;(2)A物块刚停止运动时,物块A、B之间的距离。
动力学的图象问题和连接体问题课件
动力学的图象问题 1.常见的图象形式 在动力学与运动学问题中,常见、常用的图象是位移图象(x -t 图象)、速 度图象(v-t 图象)和力的图象(F-t 图象)等,这些图象反映的是物体的运动规律、 受力规律,而绝非代表物体的运动轨迹. 2.图象问题的分析方法 遇到带有物理图象的问题时,要认真分析图象,先从它的物理意义、点、 线段、斜率、截距、交点、拐点、面积等方面了解图象给出的信息,再利用 共点力平衡、牛顿运动定律及运动学公式解题.
一弹簧一端固定在倾角为 37°的光滑斜面的底端,另一端拴住质 量为 m1=4 kg 的物块 P,Q 为一重物,已知 Q 的质量为 m2=8 kg,弹簧的质 量不计,劲度系数 k=600 N/m,系统处于静止,如图 3 所示,现给 Q 施加一 个方向沿斜面向上的力 F,使它从静止开始沿斜面向上做匀加速运动,已知 在前 0.2 s 时间内,F 为变力,0.2 s 以后,F 为恒力,求:力 F 的最大值与最 小值.(sin 37°=0.6,g 取 10 m/s2)
图3
思路点拨:①0.2 s 时 P、Q 两物块恰好分离.②两物块分离瞬间加速度 仍相同,而相互作用力恰好为零.
【解析】 从受力角度看,两物体分离的条件是两物体间的正压力恰好
为 0,从运动学角度看,一起运动的两物体恰好分离时,两物体在沿斜面方 向上的加速度和速度仍相等.
设刚开始时弹簧压缩量为 x0.
思路点拨:①恒力 F 的方向不变,而摩擦力的方向随速度方向的改变而 改变.②v-t 图象的斜率表示物体的加速度.③v-t 图象与 t 轴所围面积表示物 体的位移.
【解析】 (1)设物体向右做匀减速直线运动的加速度大小为 a1,则由 v-t 图象得 a1=2 m/s2
连接体问题动力学中的图像问题
D.在3~4 s内,外力F的大小恒定
3、连接体问题的解法: (1)整体法
①定义:就是把几个物体视为一个整体,作为研究对象,进 行受力分析和运动分析。
②优点:
②优点: 整体法的优点是研究对象少,未知量少,方程数 少,求解简洁。
③条件:连接体中各物体如果有共同的加速度,求加速度可把 连接体作为一个整体,运用牛顿第二定律列方程求解.
(2) 隔离法 ①定义:是把要分析的物体从连接体中隔离出来,作为研究
nm 作用在每个小立方体上的合力:F0
ma
F n
②
以从第4个立方体到第n个立方体的n-3个立方体组成的系统为
研究对象,则第3个立方体对第4个立方体的作用力:
(n 3)F F34 (n 3)ma n
例2. 物体A和B的质量分别为1.0kg和2.0kg,用F=12N的水平力推
动A,使A和B一起沿着水平面运动,A和B与水平面间的动摩擦因
例题讲解
例1.(2011·全国新课标)如图所示,在光滑水平面上有一质量为m1的足够长
的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦
力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常
数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图
A 线中正确的是 (
)
例2.
例2.原来静止的物体受到外力F的作用,如图所示为力F随时间变化
的图象,则与F t图象对应的v t图象是下图中的 ( B )
巩固练习
1、 (2011·天津高考)如图所示,A、B两物块叠放在一起,在粗糙的水 平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的
摩擦力( A )
高三物理高考哦题型——动力学图像问题
高三物理高考哦题型——动力学图像问题知识梳理1.基本思路(1)解读图象的坐标轴,理清横轴和纵轴代表的物理量和坐标点的意义.(2)解读图象的形状、斜率、截距和面积信息.2.解题技巧(1)可以采用解析法和排除法分析a -t 图象和F -t 图象.(2)要树立图象的函数思想,即图象反映的是两个变量间的函数关系,应用物理规律找到两个变量之间的关系是解题关键.例3 (多选)(2019·河南驻马店市第一学期期末)如图5甲所示,一质量m =1 kg 的物体置于水平地面上,在水平外力F 作用下由静止开始运动,F 随时间t 的变化情况如图乙所示,物体运动的速度v 随时间t 的变化情况如图丙所示(4 s 后的图线没有画出).重力加速度g 取10 m/s 2,则下列说法正确的是( )图5A .物体在第3 s 末的加速度大小是2 m/s 2B .物体与水平面间的动摩擦因数为0.4C .物体在前6 s 内的位移为10 mD .物体在前6 s 内的位移为12 m答案 BD解析 由题图丙可知,物体在前4 s 内做匀变速直线运动,所以物体在第3 s 末的加速度a 1等于前4 s 内的加速度,a 1=Δv Δt =44m /s 2=1 m/s 2,选项A 错误; 在0~4 s 内,F 1-μmg =ma 1,解出:μ=0.4,选项B 正确;设前4 s 内的位移为x 1,x 1=12a 1t 12=12×1×16 m =8 m ;设4 s后物体运动时的加速度为a2,则:F2-μmg=ma2,解得,a2=-2 m/s2;物体在4 s末时的速度为v′=4 m/s,设物体从4 s末运动时间t2速度减为0,则:0=v′+a2t2,解得:t2=2 s;所以物体在6 s末速度恰好减为0.,故后2 s内的位移:x2=v′t2+12a2t22解得,x2=4 m;所以物体在前6 s内的位移x=x1+x2=8 m+4 m=12 m,选项C错误,D 正确.拓展训练3(2019·河北张家口市上学期期末)如图6所示,一足够长的水平传送带以恒定的速度顺时针转动.将一物体轻轻放在传送带左端,则物体速度大小v、加速度大小a、所受摩擦力的大小F f以及位移大小x随时间t的变化关系正确的是()图6答案A解析在前t1内物体受到向右的滑动摩擦力而做匀加速直线运动,加速度不变,F f恒定,速,x-t图象度与时间的关系为v=at,v-t图象是倾斜的直线;位移与时间的关系为x=12at2是抛物线;物体的速度与传送带速度相同后,不受摩擦力而做匀速直线运动,速度不变,摩擦力F f为0,加速度为0.故A正确,B、C、D错误.拓展训练4(多选)(2019·山东淄博市3月模拟)如图7所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上.一质量为m的小球,从距离弹簧上端高h处由静止自由下落,接触弹簧后继续向下运动.小球从开始下落到小球第一次运动到最低点的过程中,下列关于小球的速度v、加速度a随时间t变化的图象中符合实际情况的是()图7答案AD解析在小球由静止自由下落未接触弹簧阶段,小球做自由落体运动,加速度为g;接触弹簧后,刚开始重力大于弹力,加速度方向向下,随着小球的不断下降,弹力逐渐变大,故小球做加速度减小的加速运动,当小球所受弹簧弹力等于重力时,加速度为零,此时速度最大;小球继续下落时,弹力大于重力,加速度方向变为向上,且加速度逐渐变大,直到速度减小到零,到达最低点,由对称知识可知,到达最低点的加速度大于g,故A、D正确.。
高考物理(热点+题型全突破)专题3.3 动力学中的两大类基本问题与图像问题(含解析)
专题3.3 动力学中的两大类基本问题与图像问题一动力学两类基本问题1.已知受力情况求运动情况方法:已知物体的受力情况,根据牛顿第二定律,可以求出物体的加速度;再知道物体的初始条件,根据运动学公式,就可以求出物体物体在任一时刻的速度和位置,也就求出了物体的运动情况.2.已知物体的运动情况,求物体的受力情况方法:根据物体的运动情况,由运动学公式可以求出物体的加速度,再根据牛顿第二定律可确定物体的合外力,从而求出未知力或与力相关的某些量.可用程序图表示如下:3.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。
4.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”。
【典例1】航模兴趣小组设计出一架遥控飞行器,其质量m =2㎏,动力系统提供的恒定升力F =28 N。
试飞时,飞行器从地面由静止开始竖直上升。
设飞行器飞行时所受的阻力大小不变,g取10m/s2。
(1)第一次试飞,飞行器飞行t1 = 8 s 时到达高度H = 64 m。
求飞行器所阻力f的大小;(2)第二次试飞,飞行器飞行t2 = 6 s 时遥控器出现故障,飞行器立即失去升力。
求飞行器能达到的最大高度h;(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3。
【答案】⑴4N ⑵42m ⑶2.1S【解析】(2)第二次飞行中,设失去升力时的速度为1v ,上升的高度为1s 匀加速运动221121t a s =设失去升力后的速度为2a ,上升的高度为2s 由牛顿第二定律2ma f mg =+211t a v =22122a v s = 解得)(4221m s s h =+=(3)设失去升力下降阶段加速度为3a ;恢复升力后加速度为4a ,恢复升力时速度为3v 由牛顿第二定律 3ma f mg =-F+f-mg=ma 4且22333422v v h a a += V 3=a 3t 3解得t 3(s)(或2.1s) 【典例2】如图所示,一个竖直固定在地面上的透气圆筒,筒中有一劲度系数为k 的轻弹簧,其下端固定,上端连接一质量为m 的薄滑块,圆筒内壁涂有一层新型智能材料——ER 流体,它对滑块的阻力可调。
高三物理大二轮复习专题突破课件:专题3+动力学中的图象问题(17张PPT)
拦索中间位置,其着舰到停止的速度—时间图线如图乙所
示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约
为1 000 m.已知航母始终静止(jìngzhǐ),重力加速度的大
小为g.则
( ).
精品资料
甲
乙
图1
精品资料
A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦 索时的1/10 B.在0.4 s~2.5 s时间内,阻拦索的张力几乎不随时间变 化 C.在滑行过程(guòchéng)中,飞行员所承受的加速度大 小会超过2.5g D.在0.4 s~2.5 s时间内,阻拦系统对飞机做功的功率几 乎不变
专题(zhuāntí)三 动力学中的图象问题
精品资料
物理公式与物理图象的结合是一种重要题型,也是高考 的重点及热点. 1.常见的图象有:v-t 图象,a-t 图象,F-t 图象,F-a
图象等. 2.图象间的联系:加速度是联系 v-t 图象与 F-t 图象的桥
梁.
精品资料
3.图象的应用 (1) 已 知 物 体 在 一 过 程 中 所 受 的 某 个 力 随 时 间 变 化 (biànhuà)的图线,要求分析物体的运动情况. (2) 已 知 物 体 在 一 运 动 过 程 中 速 度 、 加 速 度 随 时 间 变 化 (biànhuà)的图线,要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
精品资料
4.解题策略 (1)弄清图象斜率、截距、交点、拐点(ɡuǎi diǎn)的物理意 义. (2)应用物理规律列出与图象对应的函数方程式,进而明 确“图象与公式”、“图象与物体”间的关系,以便对有 关物理问题作出准确判断.
5.分析图象问题时常见的误区 (1)没有看清纵、横坐标所表示的物理量及单位. (2)不注意坐标原点是否从零开始. (3)不清楚图线的点、斜率、面积等的物理意义. (4)忽视对物体的受力情况和运动情况的分析.
专题3.1 高考中的图像问题(解析版)
第三部分 专项提能优化训练 专题3.1 高考中的图像问题目录一、运动学图像问题 .................................................................................................................................................. 1 二、动力学图像问题 .................................................................................................................................................. 4 三、功能关系与图像 .................................................................................................................................................. 7 四、电场中的图像 .................................................................................................................................................... 10 五、恒定电流中的图像问题 .................................................................................................................................... 13 六、电磁感应中的图像问题 .................................................................................................................................... 15 七、专题跟踪检测 . (19)一、运动学图像问题高考试题中常涉及的运动学图像有三种,分别是x t 图像、v t 图像、a t 图像,由图像分析计算物体运动的位移、速度、加速度、间距变化及追及相遇问题。
衔接点30 动力学中的图像问题和临界问题(解析版)2023年初升高物理无忧衔接(通用版)
衔接点30动力学中的图像问题和临界问题课程标准初中初中无该知识点高中 1.综合应用牛顿第二定律、运动学规律,结合F-t图像、v-t图像、a-F图像等信息解决动力学问题.2.能够将图像与实际受力情况和运动情景相结合,应用牛顿运动定律解决实际问题.3.掌握动力学临界问题的分析方法.4.会分析几种典型临界问题的临界条件.高中物理新知识、新模型知识点一动力学常见图像和分析方法1.常见的图像形式在动力学问题中,常见的图像是v-t图像、F-t图像、a-F图像等,这些图像反映的是物体的运动规律、受力规律,而不是物体的运动轨迹.2.图像问题的分析方法(1)把图像与具体的题意、情景结合起来,明确图像的物理意义,明确图像所反映的物理过程.(2)特别注意图像中的一些特殊点,如图线与横、纵轴的交点,图线的转折点,两图线的交点等所表示的物理意义.注意图线的斜率、图线与坐标轴所围图形面积的物理意义.知识点二动力学临界问题1.临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态.2.关键词语:在动力学问题中出现的“最大”“最小”“刚好”“恰好”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件.3.临界问题的常见类型及临界条件(1)接触与脱离的临界条件:两物体间的弹力恰好为零.(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断裂的临界条件是实际张力等于它所能承受的最大张力,绳子松弛的临界条件是张力为零.(4)加速度最大、最小与速度最大、最小的临界条件:当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度.当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值.4.解答临界问题的三种方法(1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而找出临界条件.(2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再根据实际情况处理.(3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角函数等,然后根据数学中求极值的方法,求出临界条件.初、高中物理衔接点1.所谓临界问题,是指物体的某种状态恰能维持而又未被破坏的一种特殊状态,这是从量变到质变的哲学思想在物理学中的生动表现,这种分界线,通常以临界值和临界状态的形式出现在不同的问题中。
小专题4.3 动力学中图像问题(解析版)
第四章力和运动的关系小专题3动力学中图像问题【知识清单】动力学的图象是力与运动的关系问题,求解这类问题关键是理解图像的物理意义,从图象的“、、、、、”六个角度着手,通过牛顿第二定律将物体所受外力与物体的运动情况联系起来,从而由已知情况来分析解决待求情况。
若利用图线的斜率、截距时,有明确物理意义的直可接使用,无明确物理意义的可通过相应的定理、定律、公式等推导两物理量间的函数关系表达式,从表达式上确定图线斜率、截距的物理意义。
当利用图线面积时,图线面积一般表示两坐标轴上物理量的乘积,不一定都有物理意义。
在利用图线上点的坐标时,包括数据点、交点、拐点等的坐标,仍然利用牛顿第二定律联系物体的运动情况与受力情况。
【答案】轴、点、线、截、斜、面【考点题组】【题组一】v-t图像1.图甲中的塔吊是现代工地必不可少的建筑设备,图乙为150 kg的建筑材料被吊车竖直向上提升过程的简化运动图象,g取10 m/s2,下列判断正确的是()图甲图乙A.前10 s的悬线的拉力恒为1 500 NB.46 s末塔吊的材料离地面的距离为22 mC.0~10 s材料处于失重状态D.在30~36 s钢索最容易发生断裂【答案】B【解析】由题图可知前10 s内物体的加速度a=0.1 m/s2,由F-mg=ma可解得悬线的拉力为1 515 N,选项A错误;由题图象面积可得整个过程上升高度是28 m,下降的高度为6 m,46 s末塔吊的材料离地面的距离为22 m,选项B正确;0~10 s加速度向上,材料处于超重状态,F>mg,钢索最容易发生断裂,选项C错误;因30~36 s物体加速度向下,材料处于失重状态,F<mg,在30~36 s 钢索最不容易发生断裂,选项D错误.2.如图所示、一个质量为m的圆环套在一根固定的水平长直杆上、环与杆的摩擦因数为 ,现给环一个向右的初速度0v ,同时对环加一个竖直向上的作用力F ,并使F 的大小随v 的大小变化,两者关系为F kv =,其中k 为常数、则环运动过程中的速度图像可能是图中的【答案】ABD【解析】当mg kv =0时物体与直杆间无挤压,物体不受摩擦力的作用而匀速运动,对应于图象A;当mg kv <0时,竖直方向上mg kv N=+,水平方向上ma N =μ,可知随着物体速度的减小物体的加速度增大,直到速度减小到零,对应于图象B;当mg kv >0时,竖直方向上N=+mg kv ,水平方向上ma N =μ,可知随着物体速度的减小物体的加速度减小,直到速度减小到使mg kv =时加速度也减小到零,此后物体匀速运动,对应于图象D,故ABD正确。
专题强化 瞬时加速度问题和动力学图像问题 高一物理(人教版2019必修第一册)
力学单位制:基本量与基本单位、导出单位、单位制的应用
应用
两类基本问题
从运动情况确定受力 从受力确定运动情况
超重和失重
超重:加速度a 向上,FN>G
失重:加速度a 向下 ,FN<G 完全失重:加速度方向竖直向下,且a= g ,FN=0
(3)他向下加速时的距离为
x1
1 2
a1t12
2m ,他向下减速运动的距离
x2
v1
v2 2
t2
3.75m。
课堂练习
1.(2022全国高一课时训练)如图所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状
态,现将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是( )
A.弹簧的拉力F=
以烧断后的瞬间,小球的合力为mgtanθ,根据牛顿第二定律,加速度a=gtanθ.故A正确,BCD错误.故选A.
2.(2022.辽宁.高三毕业考试)(多选)质量均为m的A,B两球之间系着一个不计质量的轻弹簧并放在光滑水平台
面上,A球紧靠墙壁,如图所示,今用水平力F推B球使其向左压弹簧,平衡后,突然将力F撤去的瞬间( )
新人教版 高中物理 必修一
第四章 运动和力的关系
专题强化3 瞬时加速度问题 和动力学图像问题
学习目标
01 会分析物体受力的瞬时变化,掌握瞬时变化问题的两种模型. 02 会分析物体受力随时间的变化图像和速度随时间的变化图像,会结
合图像解答动力学问题.
知识点 1 瞬时加速度问题
物体的加速度与合力存在瞬时对应关系,所以分析物体在某一时刻的瞬时加速度, 关键是分析该时刻物体的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度, 解决此类问题时,要注意两类模型的特点: (1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离) 后,恢复形变几乎不需要时间,故认为弹力立即改变或消失. (2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,恢复形变需要较长时间,在瞬 时问题中,其弹力往往可以看成是不变的.
动力学中的图象问题学生版
动力学中的图象问题图象问题是近年高考命题的热点,动力学问题的图象在高考中也频频出现,常见的有v -t 图象、a -t 图象、F -t 图象、F -a 图象.1.雨滴从空中由静止落下,若雨滴下落时空气对其的阻力随雨滴下落速度的增大而增大,如下图所示的图象中,能正确反映雨滴下落运动情况的是( )2.如图1所示其小球所受的合力与时间的关系,各段的合力大小相同,作用时间相同,设小球从静止开始运动.由此可判定( )A .小球向前运动,再返回停止B .小球向前运动再返回不会停止C .小球始终向前运动D .小球向前运动一段时间后停止3 A 、B 两物体叠放在一起,放在光滑水平面上,如图3甲所示,它们从静止开始受到一个变力F 的作用,该力与时间关系如图乙所示,A 、B 始终相对静止.则( )A.在t 0时刻A 、B 两物体间静摩擦力最大B.在t 0时刻A 、B 两物体的速度最大C.在2t 0时刻A 、B 两物体的速度最大D.在2t 0时刻A 、B 两物体的位移最大4.质量为m 的物体放在A 地的水平面上,用竖直向上的力F 拉物体,物体的加速度a 与拉力F 的关系如图4中直线①所示,用质量为m ′的另一物体在B 地做类似实验,测得a -F 关系如图中直线②所示,设两地的重力加速度分别为g 和g ′,则(B )A .m ′>m ,g ′=gB .m ′<m ,g ′=gC .m ′=m ,g ′>gD .m ′=m ,g ′>g【例1】 (2009·全国Ⅱ·15)两物体甲和乙在同一直线上运动,它们在0~0.4 s 时间内的v -t 图象如图7所示.若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t 1分别为( )A .13和0.30 sB .3和0.30 sC .13和0.28 s D .3和0.28 s【例2】(2010·福建理综·16)质量为2 kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图8所示.重力加速度g取10 m/s2,则物体在t=0至t=12 s这段时间的位移大小为()A.18 m B.54 m C.72 m D.198 m【例3】(2009·上海单科·22)如图19(a)所示,质量m=1 kg的物体沿倾角θ=37°的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v成正比,比例系数用k表示,物体加速度a与风速v的关系如图(b)所示,求:图9(1)物体与斜面间的动摩擦因数μ;(2)比例系数k.(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)【例4】(2011·上海十二校联考)如图10(a)所示,用一水平外力F推着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F变化的图象如图(b)所示,若重力加速度g 取10 m/s2.根据图(b)中所提供的信息计算不出()A.物体的质量B.斜面的倾角C.物体能静止在斜面上所施加的最小外力D.加速度为6 m/s2时物体的速度.习题1.(天津高考题)一个静止的质点,在0~4 s时间内受到力F的作用,力的方向始终在同一直线上,力F 随时间t的变化如图14所示,则质点在(D)A.第2 s末速度改变方向B.第2 s末位移改变方向C.第4 s末回到原出发点D.第4 s末运动速度为零2.(2010·山东理综·16)如图15所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.下图中v、a、f和s分别表示物体速度大小、加速度大小、摩擦力大小和路程.下列图象中正确的是(C )3(2010·威海模拟)质量为1.0 kg的物体静止在水平面上,物体与水平面之间的动摩擦因数为0.30.对物体施加一个大小变化、方向不变的水平拉力F,作用了3t0的时间.为使物体在3t0时间内发生的位移最大,力F随时间的变化情况应该为下图中的(B)6.。
2025届高考物理复习:经典好题专项(动力学中的图像问题)练习(附答案)
2025届高考物理复习:经典好题专项(动力学中的图像问题)练习1.(多选)一物体静止在粗糙程度均匀的水平地面上,在0~4 s内所受水平拉力F随时间t的变化关系图像如图甲所示,在0~2 s内的速度与时间关系图像如图乙所示,最大静摩擦力大于滑动摩擦力。
关于物体的运动,下列说法正确的是()A.物体的质量为2 kgB.0~4 s内物体的位移为8 mC.0~4 s内拉力F做功为16 JD.在4 s末物体的速度大小为4 m/s2.(2023ꞏ内蒙古包头市二模)水平力F方向确定,大小随时间变化的图像如图a所示,用力F 拉静止在水平桌面上的小物块,在F从0开始逐渐增大的过程中,物块的加速度a随时间变化的图像如图b所示,重力加速度大小为10 m/s2,最大静摩擦力大于滑动摩擦力,由图示可知()A.物块的质量m=2 kgB.物块与水平桌面间的动摩擦因数为0.2C.在4 s末,物块的动量大小为12 kgꞏm/sD.在2~4 s时间内,小物块速度均匀增加3. 在用DIS探究超重和失重的实验中,某同学蹲在压力传感器上完成一次起立动作,在计算机屏幕上得到压力传感器示数F随时间t变化的图像如图所示,则此过程该同学重心的运动速度v随时间t变化的图像最接近图()4.(多选)如图甲所示,用一水平力F 拉着一个静止在倾角为θ的光滑固定斜面上的物体。
逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,g =10 m/s 2,sin 37°=0.6,最大静摩擦力等于滑动摩擦力。
根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .物体能静止在斜面上所施加的最小外力D .加速度为6 m/s 2时物体的速度5.(多选)如图甲所示,一倾角θ=30°的足够长斜面体固定在水平地面上,一个物块静止在斜面上。
现用大小为F =kt (k 为常量,F 、t 的单位分别为N 和s)的拉力沿斜面向上拉物块,物块受到的摩擦力F f 随时间变化的关系图像如图乙所示,物块与斜面间的最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可知最大静摩擦力为7 N;再由图象可知,当F=7 N时,加 速度为0.5 m/s2,当F=14 N时,加速度为4 m/s2,即F1-
μmg=ma1,F2-μmg=ma2,可求得动摩擦因数及物体的质
量;物体运动为变加速运动,且不知随时间如何变化,则不 能算出拉力为14 N时物体的速度,本题应选B. 答案 B
即学即练2 用一水平力F拉静止在水 平面上的物体,在F从0开始逐渐
增大的过程中,加速度a随外力F
变化的图象如图4所示,g=10 m/s2, 则不可以计算出
图4
( ).
A.物体与水平面间的最大静摩擦力
B.F为14 N时物体的速度
C.物体与水平面间的动摩擦因数 D.物体的质量
解析
由a-F图象可知,拉力在7 N之前加速度都是0,因此
停止.某次降落,以飞机着舰为计时零点,飞机在t=0.4
s时恰好钩住阻拦索中间位置,其着舰到停止的速度-时 间图线如图乙所示.假如无阻拦索,飞机从着舰到停止 需要的滑行距离约为1 000 m.已知航母始终静止,重力 加速度的大小为g.则
(
).
甲
乙 图1
1 A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的 5 B.在 0.4 s~2.5 s 时间内,阻拦索的张力几乎不随时间变化 C.在滑行过程中,飞行员所承受的加速度大小会超过 2.5g D.在 0.4 s~2.5 s 时间内,阻拦系统对飞机做功的功率几乎不变
4.解题策略
(1)弄清图象斜率、截距、交点、拐点的物理意义.
(2)应用物理规律列出与图象对应的函数方程式,进而明 确“图象与公式”、“图象与物体”间的关系,以便对有 关物理问题作出准确判断. 5.分析图象问题时常见的误区 (1)没有看清纵、横坐标所表示的物理量及单位. (2)不注意坐标原点是否从零开始.
2+4×4 (2)由题图(b)知物块在前 6 s 内的位移大小 x= m=12 m 2 (3)从题图(b)中可以看出,在 t=2 s 至 t=4 s 的过程中,物块做匀 Δv 4 加速运动,加速度大小为 a= = m/s2=2 m/s2 Δt 2
由牛顿第二定律得 F2-μmg=ma,F3=Ff3=μmg F2-F3 12-8 F3 8 所以 m= a = kg=2 kg,μ=mg= =0.4 2 2×10 答案 (1)4 N (2)12 m (3)0.4
解析
由 v-t 图象面积可知,飞机从着舰到停止发生的位移约为
1 1 x= ×3×70 m=105 m,即约为无阻拦索时的 ,选项 A 错误; 2 10 由 v-t 图象斜率知,飞机与阻拦索作用过程中(0.4 s~2.5 s 时), 其 F 合恒定,在此过程中阻拦索两段间的夹角变小,而合力恒定, 则阻拦索张力必减小,选项 B 错误;在 0.4 s~2.5 s 时间内,加速 67-10 度 a= m/s2≈27.1 m/s2>2.5g,选项 C 正确;在 0.4 s~2.5 s 2.1 时间内,阻拦系统对飞机的作用力 F 合不变,但 v 减小,所以功 率减小,选项 D 错误. 答案 C
0~t1时间内,物体先做匀加速直线运动,然后做加速度
减小的加速运动,由F1-Ff=ma1,a1先恒定不变后减小,可知 外力先恒定不变后不断减小,A错;由图线斜率可知t1时刻的加 速度为零,故外力大小等于摩擦力大小,B错;t1~t2时间内, 物体做加速度增大的减速运动,若外力方向与物体运动方向相
同,由Ff-F2=ma2,a2增大,可知外力逐渐减小,若外力方向
与物体运动方向相反,由Ff+F3=ma2,a2增大,可知外力逐渐 增大,又由于在t1时刻,外力F大小等于摩擦力Ff的大小,所以 F可能先与物体运动方向相同,大小逐渐减小,减小到0后再反 向逐渐增大,故C错、D对.
答案
D
类型二
F-t或a -t和v-t图象的综合应用
【典例2】 一个物块置于粗糙的水平地面上,受到的水平拉
即学即练1 受水平外力F作用的物体,
在粗糙水平面上做直线运动,其
v-t 图线如图2所示,则下列说法 正确的是 图2 ( A.在0~t1时间内,外力F大小不断增大 B.在t1时刻,外力F为零 C.在t1~t2时间内,外力F大小一定不断减小 ).
D.在t1~t2时间内,外力F大小可能先减小后增大
解析
专题要题型,也是高考 的重点及热点.
1.常见的图象有:v-t图象,a-t图象,F-t图象,F-a图象 等. 2.图象间的联系:加速度是联系v-t图象与F-t图象的桥梁. 3.图象的应用
(1)已知物体在一过程中所受的某个力随时间变化的图线,要求
分析物体的运动情况. (2)已知物体在一运动过程中速度、加速度随时间变化的图线, 要求分析物体的受力情况. (3)通过图象对物体的受力与运动情况进行分析.
力F随时间t变化的关系如图3(a)所示,速度v随时间t变化 的关系如图(b)所示.取g=10 m/s2,求:
图3
(1)1 s 末物块所受摩擦力的大小 Ff1; (2)物块在前 6 s 内的位移大小 x; (3)物块与水平地面间的动摩擦因数 μ. 解析 (1)从题图(a)中可以读出,当 t=1 s 时,Ff1=F1=4 N
(3)不清楚图线的点、斜率、面积等的物理意义.
(4)忽视对物体的受力情况和运动情况的分析.
类型一
v-t图象的应用
【典例1】 2012年11月,“歼15”舰载机在“辽宁号”航空
母舰上着舰成功.图1甲为利用阻拦系统让舰载机在飞行 甲板上快速停止的原理示意图.飞机着舰并成功钩住阻 拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦 索对飞机施加一作用力,使飞机在甲板上短距离滑行后