极限与平均变化率

合集下载

变化率简介

变化率简介

变化率简介变化率是学习导数的前提,它在描述各种变化规律的过程中起着非常重要的作用,速度和加速度就是两个典型例子.新教材人教A 版中,对于变化率主要从以下两个方面介绍:1、平均变化率;2、瞬时变化率.一、平均变化率函数()y f x =在区间00[,]x x x +∆或(00[,]x x x +∆)上的平均变化率是商yx∆∆,其中x ∆是自变量x 在0x 处的改变量,可正可负,但不能为0,y ∆是函数值相应的改变量,即00()()y f x x f x ∆=+∆-(y ∆为正、负、零均可)所以00()()f x x f x y x x+∆-∆=∆∆,下面通过举例来进一步加深对概念的理解。

例1、求332-=x y 在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 到x x ∆+0之间变化时,函数的平均变化率为:x f∆∆=∆-∆+=x x f x x f )()(00xx x x ∆---∆+=]33[]3)(3[2020 x x xx x x ∆+=∆∆+∆⋅=36)(3602评注:此类题目只需要紧扣定义式,注意运算过程就可以了. 评注:⑴函数平均变化率的求法可分两步:①求y ∆;②求yx∆∆.⑵不论0x 、x ∆中的哪一个变化,都会引起函数平均变化率的变化。

拓展:函数()y f x =的平均变化率的几何意义为其图象上割线的斜率。

即:函数()y f x =的图象为曲线C ,曲线C 上有一点00(,)P x y 及邻近一点00(,)Q x x y y +∆+∆,则割线PQ 的斜率0000y y y yk x x x x+∆-∆==+∆-∆。

利用平均变化率的几何意义,可解决一些实际问题,举例如下:例2、某电视机厂有甲、乙两条生产流水线,产量S (单位:台)与时间t (单位:天)的关系如图所示,问:(1)0t 天内,甲、乙两条生产线的平均日产量哪个大?(2)在接近0t 天时,甲、乙两条生产线谁的日产量大?0,)x y y ∆+∆解析:(1) 0t 天内,甲、乙两条生产线的平均日产量,即函数1()S f t =与2()S f t =在0[0,]t 内的平均变化率,其都为直线OA 的斜率,所以0t 天内,甲、乙两条生产线的平均日产量相同。

高中数学变化率问题导数的概念(老师版)

高中数学变化率问题导数的概念(老师版)

变化率的“视觉化”, %越大,曲线y = f(x)在区间[X 1, X 2]上越“陡峭”,反之亦然 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数 则fx2― fx1X 2 — X 1知识点二瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s = s(t)描述,设 A 为时间改变量,在t o + A t 这段时间内,物体的位移 (即位置)改变量是A s = s(t o ^ At) — s(t 0),那么位移改变量 A s 与时间改变量A t 的比就是这段时间内物体的平均速度s s t o + A t — s t oV ,即 V = A t = A t1.1.1 变化率问题1.1.2导数的概念[学习目标]1•理解函数平均变化率、瞬时变化率的概念 .2.掌握函数平均变化率的求法 3掌握导数的概念,会用导 数的定义求简单函数在某点处的导数 . 知识梳理自主学习知识点一函数的平均变化率 1•平均变化率的概念 设函数y = f(x), X 1, X 2是其定义域内不同的两个点,那么函数的变化率可用式子f X2 — f X1我们把这个式子称 X 2 — X 1 为函数y = f(x)从X 1到X 2的平均变化率,习惯上用 A x 表示X 2 — X 1,即A x = X 2— X 1,可把A x 看作是相对于X 1的一个 “增量”,可用 X 1+ A x 代替X 2;类似地,A y = f(X 2)— f(X 1).于是,平均变化率可以表示为A y A2•求平均变化率 求函数y = f(x)在[*, x 2]上平均变化率的步骤如下: (1)求自变量的增量 A x = X 2— X 1 ; ⑵求函数值的增量 A y = f(x 2)- f(x 1); ⑶求平均变化率A x X 2 — X 1 A y f X 2 — f X 1 f X 1 + A x — f X 1 A x 思考 (1)如何正确理解 A x , A y? (2)平均变化率的几何意义是什么? 答案(1) A 是一个整体符号,而不是 △与X 相乘,其值可取正值、负值,但 时0 ;A y 也是一个整体符号,若 A x=X 1 — x 2,贝U A y = f(X 1)— f(X 2),而不是 A y = f(X 2)— f(X 1), A y 可为正数、负数,亦可取零(2)如图所示: y = f(x)在区间[X 1, X 2]上的平均变化率 “数量化”,曲线陡峭程度是平均 y = f(x)图象上有两点 A(X 1, f(X 1)) , B(X 2, f(X 2)),物理学里,我们学习过非匀速直线运动的物体在某一时刻 t o 的速度,即t o 时刻的瞬时速度,用 v 表示,物体在t o 时刻的瞬时速度 v 就是运动物体在t o 到t o +A t 这段时间内的平均变化率 s+弓+_在A t T 0时的极限,即v = limA ss t o + A t — s t o 一 一△t = ym o 石 •瞬时速度就是位移函数对时间的瞬时变化率 .思考(1)瞬时变化率的实质是什么?(2)平均速度与瞬时速度的区别与联系是什么? 答案⑴其实质是当平均变化率中自变量的改变量趋于 o 时的值,它是刻画函数值在某处变化的快慢 •⑵①区别:平均变化率刻画函数值在区间[X 1, X 2]上变化的快慢,瞬时变化率刻画函数值在 x o 点处变化的快慢;②联系:当A X 趋于o 时,平均变化率A y 趋于一个常数,这个常数即为函数在 x o 处的瞬时变化率,它是一个固定值 • 知识点三导数的概念函数y = f(x)在x = x o 处的导数一般地,函数y = f(x)在x = xo 处的瞬时变化率是 |im o 多=妁。

函数的平均变化率课件

函数的平均变化率课件

实际问题中如何应用函数的平均变化率?
运动学
速度和加速度的变化率都是平均 变化率,可以通过这些平均变化 率来了解运动学中的物理现象。
商业领域
可以通过函数的平均变化率来评 价某一产品或公司的增长速度。
时间管理
可以通过函数的平均变化率来了 解时间利用效率的变化。
平均变化率的图像解释
相邻两点之间的斜率
在图像上,平均变化率可以表示为相邻两条线段的 斜率。
函数的平均变化率的应用举例
1
应用一
在积分计算中,常用平均变化率来近似求解曲线下的面积。
2
应用二
在微分方程的求解中,平均变化率可以用于简单的数值方法计算。
3
应用三
在统计学中,业务活动的整体变化趋势可以通过平均变化率来进行分析。
函数的平均变化率在物理学中的应用
万有引力
质点在单位时间内运动的平均速 度可以用万有引力的平均变化率 来计算。
1 步骤一
首先,要知道函数在哪里发生了断裂,也就 是函数不连续的地方。
2 步骤二
判断函数在不连续点与相邻区间之间的平均 变化率是否存在。
3 步骤三
如果这一区间存在平均变化率,那么新的区 间一定就是函数的定义域。
4 步骤四
如果不存在平均变化率,则需要进一步的讨 论和推导。
如何根据函数的平均变化率推断函数 的值域?
1 步骤一
求出函数的导数。
2 步骤二
根据导数的正负来判断函数的值域。
3 步骤三
如果导数大于零,则函数单调递增;如果导数小于零,则函数单调递减;否则,需要进 一步研究函数。
函数的平均变化率的重要性
平均变化率是微积分的基础概念之一,不仅在学术研究中广泛应用,而且在 日常生活中也具有重要的意义。通过平均变化率可以揭示出事物在不同时间 段内的变化趋势,从而帮助我们做出更好的决策。

平均变化率的概念及几何意义

平均变化率的概念及几何意义
【解析】 ,
所以,所求切线的斜率为2,因此,所求的切线方程为 即
四、课堂运用
【基础】
1.求 在 到 之间的平均变化率,并求 , 时平均变化率的值.
【解析】当变量从 变到 时,函数的平均变化率为
当 , 时,平均变化率的值为: .
2.求函数y=5x2+6在区间[2,2+ ]的平均变பைடு நூலகம்率
【解析】 ,
所以平均变化率为
【巩固】
1.自由落体运动的运动方程为 ,计算t从3s到3.1s,3.01s,3.001s各段的平均速度(位移s的单位为m)。
【解析】要求平均速度,就是求 的值,为此需求出 、 。
设在[3,3.1]的平均速度为v1,则


所以 。
同理 。

2.过曲线 上两点 和 作曲线的割线,求出当 时割线的斜率.
【解析】当 时
=4Δt+4+8t0,
= (4Δt+4+8t0)=4+8t0.
【拔高】
1.函数y=f(x),当自变量x由x0改变到x0+Δx时,Δy=()
A.f(x0+Δx)B.f(x0)+Δx
C.f(x0)·ΔxD.f(x0+Δx)-f(x0)
【答案】D
【解析】Δy看作相对于f(x0)的“增量”,可用f(x0+Δx)-f(x0)代替.
一对一辅导教案
学生
性别
年级
学科
授课教师
上课时间
年 月 日
第( )次课
共( )次课
课时: 课时
教学课题
平均变化率的概念及几何意义;
教学目标
1.了解平均变化率的几何意义;
2.会求函数在某点处附近的平均变化率
教学重点与难点
平均变化率的概念,导数的几何意义

数学分析中的重要定理

数学分析中的重要定理

数学分析中的重要定理数学分析是数学的一个重要分支,研究的是函数、极限、连续性、微分和积分等概念及其性质。

在数学分析的学习过程中,有一些重要的定理对于理解和应用分析学的基本原理至关重要。

本文将介绍数学分析中的几个重要定理,包括泰勒定理、柯西—施瓦茨定理和拉格朗日中值定理。

首先,我们来介绍泰勒定理。

泰勒定理是分析学中的一个基本定理,它描述了函数在某个点附近的局部行为。

根据泰勒定理,如果一个函数在某个点处具有无穷阶可导性,那么它可以在该点的邻域内用一个无穷级数表示。

这个无穷级数称为泰勒级数,它的系数与函数在该点处的各阶导数有关。

泰勒定理在数学分析中有广泛的应用,可以用来近似计算函数的值,研究函数的性质等。

其次,我们来介绍柯西—施瓦茨定理。

柯西—施瓦茨定理是分析学中的一个重要定理,它描述了复变函数的积分性质。

根据柯西—施瓦茨定理,如果一个函数在某个闭合曲线内解析,那么它在该曲线内的积分等于零。

这个定理可以用来计算复变函数的积分,研究复变函数的性质等。

柯西—施瓦茨定理在复变函数论中有广泛的应用,是复分析的基础之一。

最后,我们来介绍拉格朗日中值定理。

拉格朗日中值定理是微分学中的一个重要定理,它描述了函数在某个区间内的平均变化率与该区间内某点的瞬时变化率之间的关系。

根据拉格朗日中值定理,如果一个函数在某个区间内连续且可导,那么在该区间内存在一个点,使得该点的瞬时变化率等于该区间内的平均变化率。

这个定理可以用来证明函数的性质,研究函数的增减性等。

拉格朗日中值定理在微分学中有广泛的应用,是微分学的基础之一。

综上所述,泰勒定理、柯西—施瓦茨定理和拉格朗日中值定理是数学分析中的几个重要定理。

它们分别描述了函数的局部行为、复变函数的积分性质和函数的平均变化率与瞬时变化率之间的关系。

这些定理在数学分析的学习和应用中起着重要的作用,对于理解和应用分析学的基本原理具有重要意义。

通过深入学习和理解这些定理,我们可以更好地掌握数学分析的基本概念和方法,为进一步研究和应用分析学打下坚实的基础。

导数1

导数1

则 : MP x, MQ y,
P
y tan .
O
x
请问:y 是割线PQ的什么? x
课前探究学习
y=f(x) Q
Δy
β
Δx
M x
斜 率!
课堂讲练互动
活页规范训练
请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点
y P逐渐转动的情况. y=f(x)

线 Q
T 切线
P

o
x
课前探究学习
课前探究学习
课堂讲练互动
活页规范训练
求平均变化率可根据定义代入公式直接求解,解题的 关键是弄清自变量的增量 Δx 与函数值的增量 Δy,求平均变化率 的主要步骤是: (1)先计算函数值的改变量 Δy=f(x1)-f(x0). (2)再计算自变量的改变量 Δx=x1-x0. (3)得平均变化率ΔΔyx=fxx11--fx0x0.
课前探究学习
课堂讲练互动
活页规范训练
想一想:函数y=f(x)在[x1,x2]内的平均变化率为0,能否说明函数 y=f(x)没有发生变化? 提示 不能说明.理由:函数的平均变化率只能粗略地描述函数 的变化趋势,增量Δx取值越小,越能准确地体现函数的变化情 况.在某些情况下,求出的平均变化率为0,并不一定说明函数没 有发生变化.如函数f(x)=x2在[-2,2]上的平均变化率为0,但f(x) 的图象在[-2,2]上先减后增.
即ΔΔyx=fxx22--fx1x1=fx1+ΔΔxx-fx1称为函数在区间[x1,x2]上的
平均变化率.
课前探究学习
课堂讲练互动
活页规范训练
名师点睛 1.关于平均变化率的理解
关于函数的平均变化率,应注意以下几点: (1)Δx 是自变量 x2 相对于 x1 处的改变量,且 x2 是 x1 附近的任意 一点,即 Δx=x2-x1≠0,但 Δx 可以为正,也可以为负. (2)注意自变量与函数值的对应关系,公式中若 Δx=x2-x1,则 Δy=f(x2)-f(x1);若 Δx=x1-x2,则 Δy=f(x1)-f(x2).

高考数学极限与导数知识点复习卷

高考数学极限与导数知识点复习卷

高考数学极限与导数知识点复习卷一、极限(一)数列的极限1、定义:对于数列{an},如果当 n 无限增大时,数列的项 an 无限趋近于一个常数 A,那么就称 A 为数列{an} 的极限,记作limn→∞ an = A 。

2、运算法则:如果limn→∞ an = A ,limn→∞ bn = B ,那么(1)limn→∞ (an ± bn) =limn→∞ an ± limn→∞ bn = A ± B ;(2)limn→∞ (an · bn) =limn→∞ an · limn→∞ bn = A · B ;(3)limn→∞ (an / bn) =limn→∞ an /limn→∞ bn = A / B (B ≠ 0 )。

(二)函数的极限1、当x → x0 时函数 f(x) 的极限(1)定义:当自变量 x 无限趋近于 x0 (但x ≠ x0 )时,如果函数f(x) 无限趋近于一个常数 A,就说当 x 趋近于 x0 时,函数 f(x) 的极限是 A,记作limx→x0 f(x) = A 。

(2)左极限:当 x 从 x0 的左侧(即 x < x0 )无限趋近于 x0 时,函数 f(x) 无限趋近于一个常数 A,就说 A 是函数 f(x) 在点 x0 处的左极限,记作limx→x0- f(x) = A 。

(3)右极限:当 x 从 x0 的右侧(即 x > x0 )无限趋近于 x0 时,函数 f(x) 无限趋近于一个常数 A,就说 A 是函数 f(x) 在点 x0 处的右极限,记作limx→x0+ f(x) = A 。

函数 f(x) 在点 x0 处的极限存在的充要条件是左极限和右极限都存在且相等,即limx→x0 f(x) 存在⇔ limx→x0- f(x) =limx→x0+ f(x) 。

2、当x → ∞ 时函数 f(x) 的极限(1)定义:当自变量 x 无限增大时,如果函数 f(x) 无限趋近于一个常数 A,就说当 x 趋向于无穷大时,函数 f(x) 的极限是 A,记作limx→∞ f(x) = A 。

拉格朗日中值定理在函数极限运算中的应用

拉格朗日中值定理在函数极限运算中的应用

拉格朗日中值定理在函数极限运算中的应用《拉格朗日中值定理在函数极限运算中的应用》拉格朗日中值定理(Lagrange's Mean Value Theorem)是微积分中的经典定理之一,广泛应用于函数的极限运算中。

通过该定理,我们可以更加准确地计算函数的极限,并更好地理解函数的性质和变化。

在极限运算中,我们通常需要求解函数在某一点处的导数。

然而,直接计算导数往往非常困难。

这时,拉格朗日中值定理便提供了一种简便的计算方法。

拉格朗日中值定理表述为:如果函数f(x)在闭区间[a, b]上连续,并且在开区间(a, b)上可导,那么在这个区间内必然存在一个点c,使得f'(c)等于函数在区间[a, b]上的平均变化率,即:f'(c) = (f(b) - f(a))/(b - a)从这个公式我们可以看出,函数在区间[a, b]上的变化率与某一点c处的导数是相等的。

通过这个等式,我们可以利用已知的函数值,来求解导数的值,进而计算函数的极限。

举一个具体的例子来说明应用。

假设我们要计算函数f(x) = 2x + 1在点x = 2处的导数。

根据拉格朗日中值定理,我们可以找到一个点c,满足:f'(c) = (f(2) - f(0))/(2 - 0)为了找到这个点c,我们需要先计算函数在这两个点上的函数值。

代入函数f(x),我们可以得到:f(2) = 2 * 2 + 1 = 5f(0) = 2 * 0 + 1 = 1将这些值代入公式,我们可以求解得到c:f'(c) = (5 - 1)/(2 - 0)= 4/2= 2因此,函数f(x) = 2x + 1在点x = 2处的导数为2。

通过这个简单的例子,我们可以看出拉格朗日中值定理在函数极限运算中的应用。

它提供了一种可行的计算方法,使我们能够更加准确地计算函数的导数,进而帮助我们分析函数的性质和变化。

不仅如此,拉格朗日中值定理还在微积分的其他领域中发挥着重要的作用,如优化问题和积分学中的定理证明等。

《平均变化率》教案及教案说明

《平均变化率》教案及教案说明

《平均变化率》教案及教案说明教案说明:本教案旨在帮助学生理解平均变化率的概念,掌握平均变化率的计算方法,并能应用于实际问题中。

通过本教案的学习,学生将能够:1. 理解平均变化率的定义和意义;2. 掌握平均变化率的计算公式;3. 应用平均变化率解决实际问题。

教案内容:一、引言1. 引入话题:讨论物体速度的变化,引导学生思考如何描述速度的变化。

2. 引入平均变化率的概念:速度的变化可以用平均变化率来描述,平均变化率的定义是速度的变化量与时间的比值。

二、平均变化率的定义与计算1. 讲解平均变化率的定义:平均变化率是变化量与变化时间的比值,表示变化的快慢。

2. 给出平均变化率的计算公式:平均变化率= 变化量/ 变化时间。

3. 举例说明:假设一个物体在时间t1时的速度为v1,在时间t2时的速度为v2,速度的平均变化率为(v2 v1) / (t2 t1)。

三、平均变化率的应用1. 问题情境:给出一个物体在不间点的速度,要求学生计算平均变化率。

2. 学生分组讨论:学生分组讨论并计算给定情境下的平均变化率。

3. 集体讨论:各组汇报计算结果,集体讨论并解释结果的意义。

四、巩固练习1. 给出一些实际问题,要求学生计算平均变化率。

2. 学生独立完成练习,教师进行解答和讲解。

五、总结与反思1. 总结平均变化率的定义、计算方法和应用。

2. 学生反思学习过程中的困难和问题,提出疑问并进行解答。

教学资源:1. 教学PPT:用于展示平均变化率的定义、计算公式和应用实例。

2. 练习题:用于巩固学生对平均变化率的理解和应用能力。

教学评估:1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况。

2. 练习题完成情况:检查学生完成练习题的正确性和解题思路。

3. 学生反馈:收集学生对教学内容的反馈和建议,以便进行教学改进。

六、实际情境分析1. 引入实际情境:讨论商品价格的变化,引导学生思考如何描述价格的变化。

2. 应用平均变化率的概念:商品价格的变化可以用平均变化率来描述,平均变化率的定义是价格的变化量与时间的比值。

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)

5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。

高考数学 导数 知识汇总

高考数学 导数 知识汇总

知识点1.函数的平均变化率一般地,已知函数y=f(x),f (x 2)−f(x 1)x 2−x 1称作函数y=f(x)在[x 1,x 2]上的平均变化率. x 2−x 1表示自变量x 的改变量,计作∆x ;y 2−y 1表示函数值的改变量,计作∆y .于是平均变化率也可用Δy Δx表示.这里∆x ,∆y 可为正值,也可为负值,但∆x ≠0,∆y 可以为0.函数的平均变化率f (x 2)−f(x 1)x 2−x 1表示函数值的改变量与对应的自变量的改变量之间的比例,它表示函数图像上(x 1,f(x 1)),( x 2,f(x 2))两点连线的斜率,近似地刻画了曲线在区间[x 1,x 2]上的变化趋势.在式子Δy Δx=f (x 2)−f(x 1)x 2−x 1=f (x 1+Δx )−f(x 1)Δx中,当x 1取定值,Δx 取不同的数值时,函数的平均变化率不同;当Δx 取定值,x 1取不同的数值时,函数的平均变化率也不同.平均变化率的几何意义:设函数y=f(x)的图像如下图所示.PQ 是曲线的一条割线,其斜率为tan β=∆y ∆x =f (x 0+∆x )−f(x 0)∆x可知曲线割线的斜率就是函数的平均变化率.2.平均速度设物体运动路程与时间的关系是s=f(t),在t 0到t 0+Δt 这段时间内,物体的平均速度是v ̅=f (t 0+Δt )−f(t 0)Δt=ΔsΔt在匀速直线运动中,比值ΔsΔt 是恒定的.在非匀速直线运动中,比值ΔsΔt 是不恒定的.要精确地描述非匀速直线运动,就要知道物体在每一时刻运动的快慢程度,即瞬时速度.3.瞬时速度作变速直线运动的物体在不同时刻的速度是不同的,把物体在某一时刻的速度叫做瞬时速度.设物体运动的路程与时间之间的关系是s=f(t),当∆t →0时,函数f(t)在t 0到t 0+∆t 之间的平均变化率f (t 0+Δt )−f(t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.即V=lim ∆t→0Δs Δt=lim∆t→0f (t 0+∆t )−f(t 0)∆t同理,对于速度函数y=v(t) 其在t 0的瞬时变化率就是在t 0时刻的瞬时加速度,即当t 0→0,v (t 0+∆t )−v(t 0)∆t表示t 0时刻的瞬时加速度.瞬时速度实质是平均速度当Δt →0时的极限值.瞬时速度的计算必须先求出平均速度v ̅=Δs Δt,再对平均速度取极限.Δt →0,是指时间间隔Δt 越来越短,能超过任意小的时间间隔,但始终不能为零. Δt 、Δs 在变化中都趋近月0,但它们的比值却趋近于一个确定的常数. 4.导数的概念 4.1导数设函数y=f(x)在x 0及其附近有定义,当自变量在x=x 0附近改变量为∆x 时,函数值相应地改变∆y=f(x 0+∆x)-f(x 0).当∆x 趋近于0时,平均变化率Δy Δx =f (x 0+∆x )−f(x 0)∆x趋近于一个常数l,那么常数l称为函数f (x )在点x 0的瞬时变化率,计作当∆x →0时,f (x 0+∆x )−f(x 0)∆x→l,或lim ∆x→0f(x0+∆x)−f(x0)∆x=l.一般地,函数y=f(x)在点x0处的瞬时变化率,称为f(x)在点x0处的导数,并计作,f´(x0)或y′|x=x.这时又称f(x)在点x0处是可导的.于是上述变化过程又可计作当∆x→0时,f(x0+∆x)−f(x0)∆x→f´(x0).或lim ∆x→0f(x0+∆x)−f(x0)∆x= f´(x0).∆x是自变量x在x0处的改变量,所以∆x可正、可负,但不能为0.当∆x >0(或<0)时,∆x→0表示x0+∆x从右边(或从左边)趋近于x0.∆y是相应函数的改变量,∆y可正、可负、也可为0.求函数y=f(x)在点x0处的导数的步骤如下:(1)求函数的增量∆y=f(x0+∆x)-f(x0);(2)求函数的平均变化率:ΔyΔx =f(x0+∆x)−f(x0)∆x;(3)取极限,求得f´(x0)=lim∆x→0∆y∆x.4.2导函数如果f(x)在区间(a,b)内每一点x都是可导的,则称f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x).于是,在区间(a,b)内,f´(x)构成一个新的函数,叫做y= f (x)的导函数,计作f´(x)或y´.导函数通常简称导数.求函数在某一点处的导数,一般是先求处函数的导函数,再计算这点的导函数值.注意区分函数y=f(x)“在x0处的导数”、“导函数”、“导数”.函数在x0处的导数表示在点x0函数的改变量与自变量的比的极限,它是一个数值,不是变数;导函数是如果函数f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x),而构成一个新的函数y= f´(x);导函数简称导数,于是导数{f (x )在点x 0处的导数导函数.5.导数的几何意义设函数y=f(x)的图像如下图所示.P P 0是曲线的一条割线,其斜率为可知曲线割线的斜率就是函数的平均变化率.当点P 0沿曲线趋近于点P 时,其最终位置为曲线在点P 的切线,此时,切线的斜率为由导数意义可知,曲线y=f(x)在点(x 0,f(x 0) )的切线的斜率等于f ´(x 0).我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线是切线”.以前我们学过圆的切线:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线.圆是一种特殊的曲线,如果将圆的切线定义推广到一般曲线,显然是不合适的.观察下图虽然直线l与曲线有唯一公共点,但是我们不能说l与曲线相切;而尽管直线m与曲线有不止一个公共点,我们却可以说直线m与曲线相切.因此,对于一般曲线不能以公共点个数来界定直线与曲线相切与否.6.利用导数的几何意义求曲线的切线方程6.1利用导数的几何意义求曲线的切线方程的步骤第一步:求出函数y=f(x)在点x0处的导数f´(x0);第二步:根据直线的点斜式方程,得切线方程为y-y0=f´(x0)(x-x0).特别地,若切线平行于y轴(即倾斜角为π2),此时导数不存在,曲线在点(x0,f(x0) )处的切线方程是x=x0.观察图像易知,f´(x0)>0则切线的倾斜角为锐角;f´(x0)<0则切线与x轴正向的夹角为钝角;f´(x0)=0则切线与x轴平行.函数在某点可导是曲线在该点存在切线的充分不必要条件,如果函数在某一点不可导,则可利用切线的定义来求切线方程.过某一点P的切线与在点P处的切线是不同的概念,过点P的切线不一定以点P为切点,在点P处的切线是以点P为切点的直线,注意不要混淆.6.2几种常见曲线的切线方程(1)过圆(x-a)²+(y-b)²=r²上过一点P0(x0,y0)的切线方程为(x0-a)(x-a)+( y0-b)(y-b)=r².特例,当a=b=0时,即圆心在坐标原点,此时,过点P0(x0,y0)的切线方程为x0x+y0y=r².(2)过椭圆x²a²+y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²+y0yb²=1.(3)过双曲线x²a²−y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²−y0yb²=1.(4)过抛物线y²=2px上的一点P0(x0,y0)的切线方程为y0y=p(x+x0).7.几个常用函数的导数7.1常数函数y=f(x)=c的导数y´=lim∆x→0ΔyΔx=lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0c−cΔx=0.y ´=0的几何意义为函数y=c 图像上每一点处的切线的斜率都为0,.其物理意义为若y=c 表示路程关于时间的函数,则y´=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.7.2函数y=x 的导数 y´=lim∆x→0Δy Δx=lim∆x→0(x+∆x )−x∆x=lim ∆x→01=1.同理,对于y=2x ,y´=2;对于y=3x ,y´=3……对于y=x ,y´=1表示函数y=x 图像上每一点处的切线斜率都是1.函数y=kx (k >0)增加的快慢与k 有关,即与函数的导数有关系.k 越大,函数增加得越快;k 越小,函数增加的越慢.函数y=kx (k <0)减少的快慢与|k|有关系,即与函数导数的绝对值有关系. |k|越大,函数减少得越快;|k|越小,函数减少得越慢.7.3函数y=f(x)=x ²的导数. y´=lim∆x→0Δy Δx =lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0(x+∆x )²−x ²∆x=lim∆x→0x ²+2x·∆x+(∆x )2−x ²∆x=lim ∆x→0(2x+∆x )+2x7.4函数y=f(x)=1x的导数 y´=lim∆x→0Δy Δx=lim∆x→0f (x+∆x )−f(x)∆x =lim∆x→01x+Δx −1xΔx=lim∆x→0x−(x+∆x )x(x+∆x)∆x =lim ∆x→0[−1x(x+∆x)]=-1x ².函数y=1x的图像如:结合函数图像及其导数y´=-1x²发现,当x<0时,随着x的增加,函数y=1x减少的越来越快;当x>0时,随着x的增加,函数减少得越来越慢;7.5函数y=√x的导数设y=f(x)=√x(x>0),y´=lim∆x→0ΔyΔx =lim ∆x→0f(x+∆x)−f(x)∆x=lim∆x→0√x+Δx−√xΔx=limΔx(√x+Δx+√x)=lim√x+Δx+√x=2√x(x>0)由y´=2√x可知,函数y=√x的图像上没一地啊n的切线斜率都大于零(不包括原点).以上公式是进行导数运算的基础,务必要熟练掌握.上述公式可划分为四类,第一类是幂函数y ´=(x μ )´ =μx μ−1;第二类为指数函数y ´=(a x )′a x ln a ,(e x )′=e x 是一个特例;第三类为对数函数y ´=(log a x)′=1x ln a ,(ln x)′=1x 是对数函数的一个特例;第四类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.对于公式(ln x )´=1x 和(e x )´=e x 很好记,但对于(log a x )´=1x log a e 和 (a x )´=a x ln a 的记忆就比较难,应从以下几个方面加深对公式的理解和记忆:(1)区分公式的结构特征,从纵的方面区分(ln x )´与(log a x )´,和(e x )´与(a x )´,找出差异,记忆公式;(2)对公式(log a x )´,用(ln x )´和复合函数求导法则证明来帮助记忆,即求证对数函数求导公式(log a x )´=1x log a e证明如下: (log a x )´=(ln x ln a)´=1ln a ·1x=1xlog a e这样知道了(log a x )´=1x log a e 中log a e 的来历,对于公式的记忆和区分是很有必要的.9.导数的四则运算9.1函数和或差的求导法则设函数f(x),g(x)是可导的,则(f(x)±g(x))´=f ´(x) ±g ´(x).即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差).这个法则可以推广到任意有限个函数,即(f 1±f 2±⋯±f n )′=f 1′±′f 2′±⋯±f n ′.9.2函数积的求导法则设函数f(x),g(x)是可导的,则(f(x) g(x))´= f ´(x) g(x)+ f(x) g ´(x).即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.另,[Cf(x)]´=Cf ´(x).(C 为常数)切忌与函数和(或差)的公式混淆,(f(x) g(x))´≠f ´(x)g ´(x),与(f(x)±g(x))´=f ´(x) ±g ´(x)要分清.9.3函数的商的求导法则设函数f(x),g(x)是可导的,g(x) ≠0,则[f(x)g(x)]′=g (x )f ′(x )−f (x )g ′(x)g ²(x).特别地,当f(x) ≡1时,有[1g(x)]′=g ′(x)g ²(x).注意f ´(x 0)与(f (x 0)) ´的区别.f ´(x 0)代表函数f(x)在x= x 0处的导数值,不一定为0;而(f(x 0)) ´是函数值f(x 0)的导数,而f(x 0)是一个常量,其导数值一定为0,即(f(x 0))´=0.9.4复合函数的求导法则由几个函数复合而成的函数,叫做复合函数.由函数y=f(u)与u=φ(x)复合而成的函数一般形式是y=f(φ(x)),其中,u 称为中间变量.设函数u=φ(x)在点x 处可导,函数y=f(u)在点x 对应点u 处也可导,则复合函数y=f(φ(x))在点x 处也可导,且y´x =y´u ·u´x 或f´x (φ(x))=f ´(u) φ′(x).注意:(1)要弄清复合函数的结构关系,分清它是由哪些基本函数复合而成的,选择合适的中间变量;判断复合函数复合关系时,一般是从外向里分析,最外层的主题函数结构是以基本函数为主要形式,各层的中间变量结构也都是基本函数关系,直到最里层应是关于自变量的基本函数或关于自变量的基本函数经过有限次四则运算而得到的函数.(2)复合函数求导方法:①将复合函数的复合关系一一分解;②分步计算,每一步都要清楚是对哪个变量求导,特别要注意中间变量的导数;③根据基本初等函数的求导公式以及运算法则求出个函数的导数,并把中间变量转换成自变量的函数;④熟练掌握复合函数的求导后,中间步骤可以省略不写.(3)上述复合函数的求导公式可以推广到有限次的复合函数求导,如:y=f(u),u=u(t),t=t(w),w=w(x),则y´x =f´u ·u´t ·t´w ·w´x .复合函数求导法则的应用.利用复合函数的求导法则可以求出抽象函数的导数.例:求证存在导函数的奇函数的导数是偶函数.证明:设f(x)是奇函数,即f(-x)=f(x).两边分别对x求导数,得f´(-x)·(-x)´=-f´(-x),即-f´(x)= -f´(-x),∴f´(x)= f´(-x),故命题成立.10.利用导数判断函数的单调性10.1对于函数f(x),在区间(a,b)内,如果f′(x)>0,那么函数f(x)在这个区间内单调递增;如果f′(x)<0,那么函数f(x)在这个区间内单调递减.注意:(1)用曲线的切线的斜率来理解法则,当切线斜率非负时,切线的倾斜角小于90°,函数曲线呈向上增加趋势;当切线斜率为负时,切线的倾斜角大于90°,小于180°,函数曲线呈向下减少趋势;(2)如果在某个区间内恒有f(x)=0.则f(x)在这个区间内等于常数;(3)对于可导函数f(x)来说,f′(x)>0是f(x)在(a,b)上单调递增的充分不必要条件,f′(x)<0是f(x)在(a,b)上单调递减的充分不必要条件.例如f(x)=x3在R 上为增函数,但f′(0)=0,所以在x=0处不满足f′(x)>0.函数单调性的必要条件是:函数f(x)在(a,b)内可导,若f(x)在(a,b)上单调递增(或递减),则f′(x)≥0(或f′(x)≤0)且f′(x)在(a,b)的任意子区间上都不恒为0.10.2求可导函数单调区间的一般步骤和方法:第一步,确定函数f(x)的定义域;第二步,求f′(x);第三步,在定义域内,f′(x)>0的解集对应的区间为f(x)的增区间;f′(x)<0的解集对应的区间为f(x)的减区间.注意:(1)利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内通过讨论导数的符号来判断函数的单调区间;(2)除了讨论f′(x)>0或f′(x)<0外,还要注意定义域内不连续和不可导点.10.3用导数判断函数单调性的应用(1)证明不等式若证明不等式f(x)>g(x),x∈(a,b),可以转化为证明f(x)-g(x)>0.如果(f(x)-g(x))´>0,说明函数F(x)=f(x)-g(x)在(a,b)上是增函数.若f(a)-g(a)≥0,由增函数的定义可知,当x∈(a,b)时,f(x)-g(x)>0,即f(x)>g(x).(2)证明有关函数根的问题用求导的方法确定方程根的个数,是一种很有效的方法,它是通过函数的变化情况,运用数形结合的思想来确定函数的图像与x轴的交点个数,最简单的一种是只有一个交点(即一个根)的情况,即函数在整个定义域内是单调函数,再结合某一个特殊值来确定f(x)=0.(3)求函数的值域有些函数的值域用以前学的方法有时不简便,这时我们可以考虑研究函数的单调性,特别是函数的自变量定义在某一区间上时,这时可用单调性来研究值域.(4)求参数的值(或取值范围)求函数y=f(x)的单调增区间、减区间分别是解不等式f´(x)>0,f´(x)<0所得的x的取值集合.反过来,若已知f(x)在区间D上单调递增,求f(x)中的参数值的问题,这类问题往往转化为不等式的恒成立问题,即f´(x)≥0在D上恒成立,求f(x)中的参数值.11.利用导数研究函数的极值11.1函数的极值已知函数y=f(x),设点a是定义域(a,b)内任一点,如果对a附近的所有点=f(a).并把a x,都有f(x)<f(a),则称函数f(x)在点a处取极大值,计作y极大称为函数f(x)的一个极大值点.同样,如果在点b附近都有f(x)>f(b),则称函=f(b).并把b称为函数f(x)的一个极小值数f(x)在点b处取极小值,计作y极小点. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值.对于极大值点a,f′(a)=0;而且在点x=a附近的左侧f′(x)>0,右侧f′(x)<0.类似地,对于小值点b,f′(b)=0;而且在点x=b附近的左侧f′(x)<0,右侧f′(x)>0.注意:(1)极值必须在区间内的连续点处取得.一个函数的定义域内可能出现许多个极小值和极大值点,某一点的极小值可能大于另一点的极大值,也即极小值和极大值之间没有必然的大小关系.极值是一个局部性概念.(2)函数的极值点的导数为0,但导数为0的点可能不是函数的极值点.即,f′(c)=0是f(x)在x=c处取极值的必要条件,但不是充分条件.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内一定不是单调函数,即在区间上单调的函数没有极值.(4)如果函数y=f(x)在区间[a,b]内有极值,则极值点的分布是有规律的.相邻两个极大值点之间必然会有一个极小值点,同样相邻两个极小值点之间必然会有一个极大值点.通常当函数y=f(x)在区间[a,b]内有有限个极值点时,其极大值点与极小值点是交替出现的.11.2函数y=f(x)极值的求解方法第一步:求导数f′(x);第二步:求方程f′(x)=0的根;第三步:检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.注意:(1)对于使f′(x)无意义的点也可能是极值点,因此和f′(x)=0的根对应的点一样,都是可疑点,也要进行讨论.(2)极大值点可以看做函数单调递增区间与单调递减区间的分界点,同样极小值点是函数单调递减区间与单调递增区间的分界点.12.利用导数研究函数的最值12.1函数的最大值与最小值对于函数y=f(x),如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数在定义域I上的最大值.如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数在定义域I上的最小值.函数的最大值与最小值是一个整体性概念,是比较整个定义区间的函数值得出.一般地,若函数f(x)在闭区间上的图像是一条连续不间断的曲线,那么它必有最大值与最小值,且最值必在极值点或端点处取得.函数的极值可以有多个.对于最值,若存在最大值,则最大值唯一;若存在最小值,则最小值唯一;极值有可能是最值,最值只要不在端点处必定是极值.在开区间(a,b)内连续的函数不一定存在最大值与最小值.如函数y=tan x,在区间(-π2,π2)内连续,但没有最大值与最小值. 12.2函数最值的求解方法求可导函数f(x)在区间[a ,b ]上的最大值与最小值的步骤:第一步:求f(x)在(a,b)内的极值;第二步:将f(x)的各极值与f(a)、f(b)比较,其中最大的是最大值,最小的是最小值.如果函数f(x)在[a ,b ]上是单调时,可利用函数的单调性求得函数的最值,即,若f(x)在[a ,b ]上单调递增,则其最大值为f(b),最小值为f(a);若f(x)在[a ,b ]上单调递减,则其最大值为f(a),最小值为f(b).与求函数极值不同,求最值时不需要对各导数为零的点讨论其是最大值还是最小值,只需将导数为零的点的函数值和端点的函数值进行比较就行了.13.函数极值的应用:(1)确定参数的值,这里一般用待定系数法(2)求参数的取值范围(3)判断方程的根的变化,这里一般是利用数形结合的思想来讨论方程的根,即先根据函数的极值情况画出函数f (x )的图像,再观察方程的根(4)证明不等式,这里一般是先构造函数,再根据函数的最值来证明不等式(5)求含参数的值域问题时,通常对参数进行分类讨论,然而当函数有极值,需要确定参数值或其范围时,利用逆向思维较容易解决问题.14.导数的实际应用——最优问题14.1解决优化问题的基本思路(1)在解决实际最优化问题时,不难发现基本思路是:上述解决最优化问题的过程是一个典型的数学建模过程.(2)实际应用问题的解题程序:读题(文学语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答) 函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,确定自变量的定义域.14.2用导数解决最优问题的一般步骤:第一步:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);第二步:求函数的导数f ′(x ),解方程f ′(x )=0;第三步:比较函数在区间端点和使f ′(x )=0的点的数值的大小,最大(小)者为最大(小)值.第四步:将结果代回原问题中,根据实际问题的现实意义判断取舍.注意:应用导数解决实际问题,关键是要建立恰当的数学模型(函数关系).函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,并确定自变量的定义区间以及其他限制条件.如果函数在定义区间内只有一个点使f ′(x )=0,此时函数在这点有极大(小)值,那么不与端点比较也可以知道这就是最大(小)值.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.15.曲边梯形的面积以及变速直线运动行驶的路程曲边梯形面积的求法主要是用了“以直代曲”的思想,即用直边图形(如矩形)代替曲边梯形的面积,再用求极限的方法求曲边梯形的面积.求曲边梯形的面积可分为四步:分割→近似代替→求和→取极限.把变速直线运动的路程问题划归为求匀速直线运动的路程问题,采用的方法仍然是分割、近似代替、求和、取极限,它与曲边梯形的面积可以归纳为求一个特定形式和的极限.分割的目的在于更精确地“以直代曲”.以“矩形”代替“曲边梯形”,随着分割的等分越来越多,这种“代替”就越精确,所有小矩形的面积和就越逼近曲边梯形的面积.16.定积分的概念设函数y=f(x)定义在区间[a ,b ]上,用分点a=x 0<x 1<x 2<⋯<x n−1<x n <b .把区间[a ,b ]分为n 个小区间,其长度依次为∆x i =x i+1-x i ,i=0,1,2,…,n-1.计λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点ξi ,作和式I n =∑f(ξi )n−1i=0∆x i .当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f(x)在区间[a ,b ]上的定积分,计作∫f (x )dx ba, 即∫f (x )dx b a =lim λ→0∑f(ξi )n−1i=0∆x i . 其中,f(x)叫做被积函数,a 叫做积分下限,b 叫做积分上限,f(x)dx 叫做被积式.此时称函数f(x)在区间[a ,b ]上可积.注意:(1)定积分∫f (x )dx ba 是一个常数.它的数值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即∫f (x )dx b a =∫f (u )du b a =∫f (t )dt b a =……(称为积分形式不变性); 另外,定积分∫f (x )dx b a 与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上、下限不同,所得的值也不同.(2)用定义求定积分的一般方法是:①分割,将区间[a ,b ]n 等分;②近似替代,取点ξi ∈[x i−1,x i ];③求和,∑f(ξi )n i=0b−a n ;④取极限,∫f (x )dx b a =lim n→∞∑f(ξi )b−a n i=0;(3)函数f(x)在区间[a ,b ]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件).17.定积分的性质(1)∫kf (x )dx b a =k ∫f (x )dx b a(k 为常数); (2)∫[f 1(x )±f 2(x )]dx b a =∫f 1(x )dx b a ±∫f 2(x )dx b a;(3)∫f (x )dx b a =∫f (x )dx c a +∫f (x )dx b c (其中a<c<b ).注意:(1)性质(1)、(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.(2)性质(2)对于有限个函数(两个以上)也成立,性质(3)对于把区间[a ,b ]分成有限个(两个以上)区间也成立.18.定积分的几何意义当函数f(x)在区间[a ,b ]上恒为正时,定积分∫f (x )dx b a的几何意义是由直线x=a,x=b,y=f(x),y=0围成的曲边梯形的面积.一般情况下,定积分∫f (x )dx b a 的几何意义是介于x 轴、函数f(x)的图像以及x=a ,x=b 之间的部分面积的代数和,在x 轴上方的取正好,在x 轴下方的取负号.如上图所示,321)(A A A dx x f ba +-=⎰则(1A 、2A 、3A 表示各阴影部分的面积).注意:(1)定积分∫f (x )dx b a 不一定表示面积,也可能是面积的相反数;定积分也可以是体积,可以是功,可以是路程、压力等,总之定积分还有更多的实际意义.(2)∫f (x )dx b a 、∫|f (x )|dx b a 、|∫f (x )dx ba | 在几何意义上有不同的含义.由于被积函数f(x)在[a ,b ]上可正可负,即它的图像可以在x 轴上方,也可以再x 轴下方,还可以在x 轴的上、下两侧,所以∫f (x )dx ba表示由x 轴,函数f(x)的曲线以及直线x=a ,x=b (a ≠b )围成的图像各部分面积的代数和;而|f (x )|是非负的,所以∫|f (x )|dx ba表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|∫f (x )dx b a |则是∫f (x )dx ba 的绝对值.三者的值一般情况下是不同的.19.微积分基本定理如果F ′(x )=f (x ),且f(x)在[a ,b ]上可积,则其中F (x )叫做f(x)的一个原函数.由于[F (x )+c ]′=f(x), F (x )+c 也是f(x)的原函数,其中c 为常数.一般,原函数在[a ,b ]上的改变量F(b)-F(a)简记作因此微积分基本定理(又称牛顿——莱布尼兹公式)可以写成注意:(1)利用微积分基本定理计算定积分的关键是找到满足F ′(x )=f (x )的函数F(x).通常我们用基本初等函数的求导公式和倒数的四则运算法则从反方向求出F(x).(2)这项定理揭示了导数与定积分之间的关系,即求积分与求导数是互为逆运算,这也是计算定积分的重要方法,是微积分学中最重要的定理.(3)若F (x )是f(x)的一个原函数,则F (x )+c 也是f(x)的原函数,即f(x)的原函数有无数个.一般只写最简单的一个,不用再加任意常数c 了.20.定积分的简单应用20.1几种典型平面图形面积的计算(1)求由一条曲线y=f(x)和直线x=a ,x=b(a <b)及y=0所围成的平面图形的面积S .常见有以下三种类型: ()ba F x①②③如图①,f(x)>0,∫f (x )dx b a >0,∴S =∫f (x )dx b a如图②,f(x)<0, ∫f (x )dx b a<0,∴S =|∫f (x )dx b a |=-∫f (x )dx b a . 如图③,当a ≤x ≤c 时,f(x)<0,∫f (x )dx c a<0;当c ≤x ≤b 时,f(x)>0,∫f (x )dx bc >0, ∴S =|∫f (x )dx c a |+|∫f (x )dx b c |=-∫f (x )dx c a +∫f (x )dx bc . (2)由两条曲线f(x)和g(x),直线x=a ,x=b ,(a <b )所围成的平面图形的面积S .①②如图①,当f(x)>g(x)>0时,S =∫[f (x )−g(x)]dx b a; 如图②,当f(x)>0,g(x)<0时,S =∫f (x )dx b a +|∫g (x )dx ba |=∫[f (x )−g(x)]dxb a . 求由两条曲线围成的平面图形的面积的解题步骤:第一步:画出图形;第二步:确定图形范围,通过解方程组求出交点的横坐标,确定积分上、下限;第三步:确定被积函数,特别要注意分清被积函数上、下位置; 第四步:写出平面图形面积的定积分表达式;第五步:运用微积分基本公式计算定积分,求出平面图形的面积.20.2作变速直线运动的物体所经过路程S ,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a ,b ]上的定积分,即S=∫v (t )dt b a. 20.3变力做功物体在恒力F (单位:N )的作用下作直线运动,如果物体沿着与F 相同的方向移动了s (单位:m ),则力F 所做的功为:W=Fs.如果物体在变力F (x )的作用下作直线运动,并且物体沿着与F (x )相同的方向从x=a 移动到x=b (a <b ),那么变力F (x )所做的功为:W=∫f (x )dx b a .求变力做功的步骤:第一步:根据物理学的实际意义求出变力F(x)的表达式;第二步:求出起始位置与终止位置;第三步:根据变力做功公式W=∫f (x )dx b a 求出变力F(x)所做的功.。

高中数学 第1章 1.1第1课时 函数的平均变化率课件 新人教B版选修2-2

高中数学 第1章 1.1第1课时 函数的平均变化率课件 新人教B版选修2-2

(3)平均变化率是指函数值的“增量”(即“改变量”)Δy与 相应的自变量的“增量”Δx的比,这也给出了平均变化率的 求法,可得平均变化率可正、可负,也可为零.
2.求函数平均变化率的步骤: 求函数y=f(x)在点x0附近的平均变化率: (1)确定函数自变量的改变量Δx=x1-x0; (2)求函数的增量Δy=f(x1)-f(x0); (3)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0.当求函数在某点附近 的平均变化率时,可在函数图象上表示出来.
)
A.3
B.3Δx-(Δx)2
C.3-(Δx)2
D.3-Δx
[答案] D
[解析] ∵Δy=f(-1+Δx)-f(-1) =-(-1+Δx)2+(-1+Δx)-(-2) =-(Δx)2+3Δx, ∴ΔΔyx=-ΔxΔ2x+3Δx=-Δx+3. 故选D.
求运动物体的平均速度
以初速度v0竖直上抛一物体的位移(单位:m)与 时间(单位:s)的关系为:s(t)=v0t-12gt2.
成才之路 ·数学
人教B版 ·选修2-2
路漫漫其修远兮 吾将上下而求索
导数及其应用 第一章
研究函数,从量的方面研究事物运动变化是微积分的基本 方法.
从微积分成为一门学科来说,是在十七世纪,但是,微分 和积分的思想在古代就已经产生了.公元前三世纪,古希腊的 阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线面 积和旋转双曲体的体积的问题中,就隐含着近代积分学的思 想.作为微分学基础的极限理论来说,早在古代以有比较清楚 的论述.比如《庄子》一书中,记有“一尺之棰,日取其半, 万世不竭”.
二、平均速度 设物体运动路程与时间的关系是s=f(t),如图,从t0到t0+ Δt这段时间内,物体的平均速度是v0=ft0+ΔΔtt-ft0=ΔΔst. 可见平均速度v0就是函数f(t)在区间[t0,t0+Δt]上的平均变 化率.

导数平均变化率课件

导数平均变化率课件
波动方程
导数可以用来描述波动的过程,例如在波动方程中,位移 u与时间t的导数描述了波的传播。
平均变化率在统计学中的应用
平均变化率的定义
平均变化率是函数在某段时间内变化的平均值,可以用导数来计算。
平均变化率的应用
平均变化率可以用于统计学中的回归分析、时间序列分析和方差分析等。例如 在回归分析中,平均变化率可以帮助我们了解自变量和因变量之间的关系。
定义
平均变化率是函数在某区间上 的增量与区间的比值。
计算公式
平均变化率 = (f(b) - f(a)) / (b - a)。
意义
平均变化率描述函数在某区间 上的变化趋势。
局限性
平均变化率只能描述函数在一 个区间的整体变化趋势,不能 描述函数在某一点的局部变化

导数与平均变化率综合应用示例
例1
一个工厂生产某种产品,其总成 本函数为C(x) = 20 + 3x + 4x^2 ,求生产100个产品的平均成本 。
生产量、在成本函数中求得最低成本等。
预测模型
03
导数可以用于预测模型,例如时间序列分析中的ARIMA模型,
通过对数据的导数分析来预测未来的变化趋势。
导数在物理学中的应用
速度与加速度
导数可以用来描述物体的速度和加速度,例如在牛顿第二 定律F=ma中,加速度a就是速度v的导数。
热传导
导数可以用来描述热传导的过程,例如在热传导方程中, 热流密度q与温度T的导数有关。
导数与平均变化率的关系
导数是平均变化率的极限
当函数在某一点的变化时间趋于0时,导数就是该点在单位时间内 的平均变化率。
导数与平均变化率的联系
导数和平均变化率都是描述函数变化的量度,它们之间存在密切的 联系。

拉格朗日中值定理在极限的应用

拉格朗日中值定理在极限的应用

拉格朗日中值定理在极限的应用拉格朗日中值定理是微积分中的一个重要定理,它描述了一个函数在某个区间内的平均变化率与该函数在该区间内的某个点上的导数之间的关系。

在许多数学问题中,拉格朗日中值定理是一种非常有用的工具,可以帮助我们更好地理解函数的性质和解决各种数学难题。

一、拉格朗日中值定理的基本概念拉格朗日中值定理是由法国数学家拉格朗日(Joseph Louis Lagrange)在18世纪提出的。

它的基本思想是:如果一个函数在某个区间内的平均变化率等于该函数在该区间内的某个点上的导数,那么在该区间内一定存在一个点,使得该函数在该点上的导数等于该函数在该区间内的平均变化率。

具体来说,设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且a<b,则存在一个点c∈(a,b),使得:f(b)-f(a)=f'(c)(b-a)其中,f'(c)表示函数f(x)在点c处的导数,也就是函数在该点上的切线斜率。

该式子描述了函数在该区间内的平均变化率与函数在该区间内某个点上的导数之间的关系,即平均变化率等于导数。

这就是拉格朗日中值定理的基本概念。

二、拉格朗日中值定理的应用拉格朗日中值定理在数学中有着广泛的应用,下面我们来介绍一些常见的例子。

1、证明函数单调性在证明一个函数的单调性时,我们可以利用拉格朗日中值定理来帮助我们进行推导。

具体来说,如果我们要证明一个函数在某个区间内单调递增,那么我们可以利用拉格朗日中值定理来得到该函数在该区间内的导数的正负性。

如果导数恒大于零,则该函数单调递增;如果导数恒小于零,则该函数单调递减。

例如,对于函数f(x)=x^2,在区间[0,1]上,我们可以利用拉格朗日中值定理来证明该函数在该区间内单调递增。

具体来说,我们有: f(1)-f(0)=f'(c)(1-0)即1-0=2c因此,c=0.5,即在区间[0,1]内存在一个点0.5,使得f'(0.5)=2*0.5=1>0。

拉格朗日中值求极限

拉格朗日中值求极限

拉格朗日中值求极限
拉格朗日中值定理是微积分中的一个重要定理,它可以用于求解函数的极限。

根据拉格朗日中值定理,如果一个函数在一个闭区间上连续,在这个区间内可导,那么在这个区间内必然存在一个点,使得该点的导数等于函数的平均变化率。

这个中间点就叫做拉格朗日中值点。

此时,我们可以利用拉格朗日中值定理来求解函数的极限。

具体来说,如果我们要求函数f(x)在x=a处的极限,那么我们可以设一个新的函数g(x)=f(x)-f(a),然后使用拉格朗日中值定理,我们可以得到g(x)/x-a=f'(c),其中c是在a和x之间的某个点。

根据这个式子,我们可以解出f'(c),然后用f'(c)来计算极限。

这就是利用拉格朗日中值定理求解函数极限的方法。

- 1 -。

江苏省数学优课评比说课课件---平均变化率江苏省南通第一中学葛红娟

江苏省数学优课评比说课课件---平均变化率江苏省南通第一中学葛红娟

教学技巧
01
02
03
有效提问
教师提出的问题应具有针 对性、层次性和启发性, 能够引导学生深入思考, 促进他们的思维发展。
多媒体辅助
教师利用多媒体技术,如 PPT、几何画板等,制作 生动形象的课件,帮助学 生更好地理解数学知识。
实例应用
教师引入生活中的实例, 让学生感受到数学的实用 性和趣味性,提高他们的 学习兴趣。
平均变化率的应用
总结词
广泛、实用
详细描述
平均变化率概念在数学、物理、工程等多个领域都有应用。例如,在物理学中 ,平均速度的定义实际上就是平均变化率在时间上的应用。在经济学中,平均 变化率可以用来分析成本、收益随时间的变化趋势。
平均变化率与其他数学概念的关联
总结词
深入、复杂
详细描述
平均变化率与导数、积分等高级数学概念有密切联系。导数实际上就是函数在某点的切线斜率,而这个斜率可以 看作是函数在该点附近的小区间上的平均变化率。积分则可以看作是对函数在某个区间上的平均变化率的求和。
在课堂互动环节,部分学生未能积极参与讨论,需要改进教学方法,提 高课堂氛围。
对未来教学的展望
深入研究教材和教法 ,不断更新教学理念 和手段。
注重培养学生的数学 思维能力和应用能力 ,加强数学与其他学 科的联系。
加强与学生的沟通和 互动,提高课堂氛围 和教学效果。
对学生数学学习的建议
注重基础知识的学习和掌握, 不要忽视细节和基本概念。
江苏省数学优课评比说课课件---平 均变化率江苏省南通第一中学葛红

目 录
• 课程介绍 • 平均变化率概念解析 • 教学方法与技巧 • 教学案例分析 • 教学反思与展望
01
课程介绍

极限与平均变化率

极限与平均变化率

· · ·
函数的极限
y
O
x
1 y 当x 趋向于负无穷大时,函数 的极限是0,记作 x 1 lim 0 x x
函数的极限
一般地,当自变量x 取正值并且无限增大时,如果函数
f ( x ) 无限趋近于一个常数a , 就说当x 趋向于正无穷大时,
函数 f ( x )的极限是a ,记作 lim f ( x ) a
1
y
M
求曲线在某点处的切线方程 的基本步骤: ①求出P点的坐标; ②利用切线斜率的定义求 出切线的斜率; ③利用点斜式求切线方程.
j
x
-1 O
1
小结:
• 1.函数的平均变化率
f ( x ) f(x2 ) f ( x1 ) x2 x1 x
• 2.求函数的平均变化率的步骤: (1)求函数的增量Δf=Δy=f(x2)-f(x1);
练习:
1.质点运动规律s=t2 +3,则在时间(3,3+t)中 相应的平均速度为( A ) A. 6+t C.3+t 9 B. 6+t+ t D.9+t
2.物体按照s(t)=3t2+t+4的规律作直线 运动,求在4s附近的平均变化率.
25 3t
3:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程. f ( x 0 x ) f ( x 0 ) 解 : k lim y x 0 Q x (1 x ) 2 1 (1 1) lim 2 x 0 x y = x +1 2 x ( x ) 2 lim 2. x 0 x P 因此,切线方程为y-2=2(x-1), x 即y=2x.
x

变化率问题举例

变化率问题举例

变化率问题举例前面我们从实际问题中抽象出了导数的概念,并利用导数的定义求一些函数的导数,这当然是很重要的一方面, 但另一方面,我们还应使抽象的概念回到具体的问题中去,在科学技术中常把导数称为变化率. 因为, 对于一个未赋予具体含义的一般函数)(x f y =来说x x f x x f x y ∆-∆+=∆∆)()(00是表示自变量x 在以0x 与x x ∆+0为端点的区间中每改变一个单位时,函数y 的平均变化量. 所以把x y∆∆称为函数)(x f y =在该区间中的平均变化率;把平均变化率当0→∆x 时的极限)('0x f 或0x x dx dy=称为函数0x 处的变化率. 变化率反映了函数y 随着自变量x 在0x 处的变化而变化的快慢程度. 显然,当函数有不同实际含义时,变化率的含义也不同. 如曲线上某一点处切线的斜率是曲线的纵坐标y 对横坐标x 的变化率;瞬时速度是物体位移s 对时间t 的变化率.下面我们通过实例来说明变化率在实际问题中的应用.一、变化率在工程技术上的几种常见类型例1 (电流模型)设在[0,t]这段时间内通过导线横截面的电荷为)(t Q Q =,求0t 时刻的电流.解 如果是恒定电流, 在t ∆时间段内通过导线横截面的电荷为Q ∆,那么它的电流为 t Q i ∆∆==时间电荷电流如果电流是非恒定电流,就不能直接用上面的公式求0t 时刻的电流,此时 t t Q t t Q t Q i ∆-∆+=∆∆=)()(00称为在t ∆这段时间内的平均电流.当t ∆很小时,平均电流i 的极限(如果极限存在),就称为时刻0t 的电流)(0t i ,即 )(')()(lim lim )(0000000t Q dt dQ t t Q t t Q t Q t i t t t t ==∆-∆+=∆∆==→∆→∆例2 (细杆的线密度模型)设一根质量非均匀分布的细杆放在x 轴上,在[0,x]上的质量m 是x 的函数m=m(x),求杆上0x 处的线密度.解 如果细杆质量分布是均匀的, 长度为x ∆的一段的质量为m ∆,那么它的线密度为x m ∆∆==长度质量ρ O如果细杆是非均匀的,就不能直接用上 面的公式求0x 处的线密度(如图2—3). 图2—3 设细杆[0,0x ]的质量m=m(x 0),在[0,x x ∆+0]的质量)(0x x m m ∆+=,于是在x ∆这段长度内,细杆的质量为)()(00x m x x m m -∆+=∆平均线密度为x x m x x m x m ∆-∆+=∆∆=)()(00ρ 当x ∆很小时,平均线密度ρ可作为细杆在0x 处的线密度的近似值,x ∆越小近似的程度越好.我们令0→∆x ,细杆的平均线ρ线的极限(如果极限存在),就称为细杆在0x 处的线密度,即)(')()(lim)(000000x m dx dm x x m x x m x x x x ==∆-∆+==→∆ρ例3 例3 (化学反应速度模型)在化学反应中某种物质的浓度N 和时间t 的关系为N=N(t)求在t 时刻该物质的瞬时反应速度.解 当时间从t 变到t t ∆+时,浓度的改变量为)()(t N t t N N -∆+=∆此时,浓度函数的平均变化率为t t N t t N t N ∆-∆+=∆∆)()(令0→∆t ,则该物质在t 时刻时瞬时反应速度为t t N t t N t N t N t t ∆-∆+=∆∆=→∆→∆)()(lim lim )('00二、变化率在经济分析中的应用(一)边际分析边际概念是经济学中的一个重要概念,一般指经济函数的变化率. 利用导数研究经济变量的边际变化的方法,称为边际分析法.边际分析法是经济理论中的一个重要方法.1.1.边际成本 在经济学中,边际成本定义为产量增加一个单位时所增加的成本. 设某产品产量为x 单位时所需的总成本为C=C(x),称C(x)为总成本函数,简称成本函数. 当产量由x 变为x x ∆+时,总成本函数的改变量为)()(x C x x C C -∆+=∆这时,总成本函数的平均变化率为x x C x x C x C ∆-∆+=∆∆)()(它表示产量由x 变到x x ∆+时,在平均意义下的边际成本.当总成本函数C (x )可导时,其变化率x x C x x C x C x C x x ∆-∆+=∆∆=→∆→∆)()(l i m l i m )('00表示该产品量为x 时的边际成本,即边际成本,即边际成本为成本函数关于产量的导数.2.2.边际收入 在经济学中,边际收入定义为多销售一个单位产品所增加的销售收入.设某产品的销售量为q 时的收入函数为)(q R R =.则收入函数关于销售量q 的导数就是该产品的边际收入)('q R .3.边际利润 设某产品的销售量为q 时的利润函数为)(q L L =,当)(q L 可导时,称)('q L 为销售量为q 时边际利润,它近似等于销售量为q 时再多销售一个单位产品所增加(或减小)的利润.由于利润函数为收入函数与总成本函数之差,即),()()(q C q R q L -=由导数运算法则可知).(')(')('q C q R q L -=即边际利润为边际收入与边际成本之差.例4 设某产品产量为q (单位:吨)时的总成本函数(单位:元)为.5071000)(q q q C ++=求:(1) 产量为100吨时的总成本;(2) 产量为100吨时的平均成本;(3) 产量从100吨增加到225吨时,总成本的平均变化率;(4) 产量为100吨时,总成本的变化率(边际成本).解(1)产量为100吨时的总成本为22001005010071000)100(=+⨯+=C (元).(2)产量为100吨时的平均成本为22100)100()100(==C C (元/吨).(3)产量从100吨增加到225吨时,总成本的平均变化率为912522003325100225)100()225(=-=--=∆∆C C q C (元/吨).(4)产量为100吨时,总成本的变化率即边际成本为|100)'5071000()100('=++=q q q C= 5.9257|100=⎪⎪⎭⎫ ⎝⎛+=q q (元).这个结论的经济含义是:当产量为100吨时,再多生产一吨所增加的成本为9.5元. 例5 设某产品的需求函数为p q 5100-=,求边际收入函数以及20=q 、50和70时的边际收入.解 收入函数为pq q R =)(,式中的销售价格p 需要从需求函数中反解出来,即)100(51q p -=,于是收入函数为,)100(51)(q q q R -=边际收入函数为 ),2100(51)('q q R -=.8)70(',0)50(',12)20('-===R R R由所得结果可知,当销售量即需求量为20个单位时,再增加销售可使总收入增加,再多销售一个单位产品,总收入约增加12个单位;当销售量为50个单位时,在增加销售总收入不会再增加;当销售量为70个单位时,再多销售一个单位产品,反而使总收入大约减少8个单位.(二)弹性分析弹性概念是经济学中的另一个重要概念, 用来定量地描述一个经济变量对另一个经济变量变化的反应程度, 或者说一个经济变量变动百分之一时会使另一个经济变量变动百分之几.弹性分析也是经济分析中常用的一种方法,主要用于对生产、供给、需求等问题的研究.给定变量,它在某处的改变量称作绝对改变量.给定改变量与变量在该处的值之比称作相对改变量.定义 对于函数)(x f y =,如果极限x x y y x //l i m 0∆∆→∆存在,则)('lim //lim00x f y x dx dy y x y x x y x x y y x x =⋅=⋅∆∆=∆∆→∆→∆ 称作函数)(x f 在点x 处的弹性,记作E ,即.dx dy y x E =从定义可以看出, 函数)(x f 的弹性是函数相对改变量与自变量相对改变量比值的极限,它是函数的相对变化率,或解释成当自变量变化百分之一时函数变化的百分数.由需求函数)(p Q Q =可得需求弹性为.dp dQ Q p E Q =需求弹性Q E 表示某商品需求量Q 对价格p 的变动的反应程度. 根据经济理论,需求函数是单调减少函数,所以需求弹性一般为负值.利用供给函数)(p S S =,同样定义供给弹性.dp dS S p E S =例6 例6 设某商品的需求函数为,300002.0p e Q -= 求价格为100时的需求弹性, 并解释其经济含义.解 )'3000(300002.002.0p p Q e e p dp dQ Q p E --⋅==)02.0()3000(300002.002.0-⋅⋅=--p p e e p p 02.0-= 所以 .2)100(-=Q E它的经济意义是:当价格为100时,若价格增加1%,则需求减少2%.。

新高考A版 导数:第1节 导数的概念及其意义

新高考A版 导数:第1节 导数的概念及其意义

第1节 导数的概念及其意义要点一:变化率问题和导数的概念知识点一 瞬时速度 瞬时速度的定义(1)物体在某一时刻的速度称为瞬时速度.(2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为 Δs Δt =s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时,Δs Δt 无限趋近于某个常数v ,我们就说当Δt 无限趋近于0时,ΔsΔt 的极限是v ,这时v 就是物体在时刻t =t 0时的瞬时速度即:v =lim Δt →0ΔsΔt =lim Δt →0 s (t 0+Δt )-s (t 0)Δt. 知识点二 函数的平均变化率对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,相应地,函数值y 就从f (x 0)变化到f (x 0+Δx ).这时,x 的变化量为Δx ,y 的变化量为Δy =f (x 0+Δx )-f (x 0).我们把比值ΔyΔx ,即Δy Δx =f (x 0+Δx )-f (x 0)Δx叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率. 知识点三 函数在某点处的导数如果当Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称为瞬时变化率), 记作f ′(x 0)或0=|x x y',即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx.1.在平均变化率中,函数值的增量为正值.( × )2.瞬时变化率是刻画某函数值在区间[x 1,x 2]上变化快慢的物理量.( × ) 3.函数y =f (x )在x =x 0处的导数值与Δx 的正、负无关.( √ )4.设x =x 0+Δx ,则Δx =x -x 0,当Δx 趋近于0时,x 趋近于x 0,因此,f ′(x 0)= lim Δx →0 f (x 0+Δx )-f (x 0)Δx =0lim x x → f (x )-f (x 0)x -x 0.( √ )一、函数的平均变化率例1 (1)函数y =1x 从x =1到x =2的平均变化率为( )A .-1B .-12 C .-2 D .2解析 平均变化率为Δy Δx =12-12-1=-12.(2)已知函数y =3x -x 2在x 0=2处的增量为Δx =0.1,则ΔyΔx的值为( ) A .-0.11 B .-1.1 C .3.89 D .0.29解析 ∵Δy =f (2+0.1)-f (2)=(3×2.1-2.12)-(3×2-22)=-0.11,∴Δy Δx =-0.110.1=-1.1.(3)汽车行驶的路程s 和时间t 之间的函数图象如图,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为__________________.解析 由平均变化率的几何意义知:v 1=k OA ,v 2=k AB ,v 3=k BC , 由图象知:k OA <k AB <k BC ,即v 1<v 2<v 3. 反思感悟 求平均变化率的主要步骤 (1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.跟踪训练1 已知函数f (x )=3x 2+5,求f (x ):(1)从0.1到0.2的平均变化率;(2)在区间[x 0,x 0+Δx ]上的平均变化率.解 (1)因为f (x )=3x 2+5,所以从0.1到0.2的平均变化率为3×0.22+5-3×0.12-50.2-0.1=0.9.(2)f (x 0+Δx )-f (x 0)=3(x 0+Δx )2+5-(3x 20+5)=3x 20+6x 0Δx +3(Δx )2+5-3x 20-5=6x 0Δx +3(Δx )2.函数f (x )在区间[x 0,x 0+Δx ]上的平均变化率为6x 0Δx +3(Δx )2Δx=6x 0+3Δx .二、求瞬时速度例2 一做直线运动的物体,其位移s 与时间t 的关系是s (t )=3t -t 2. (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度.解 (1)当t =0时的速度为初速度.在0时刻取一时间段[0,0+Δt ],即[0,Δt ], ∴Δs =s (Δt )-s (0)=[3Δt -(Δt )2]-(3×0-02)=3Δt -(Δt )2,Δs Δt =3Δt -(Δt )2Δt =3-Δt ,lim Δt →0 Δs Δt =lim Δt →0 (3-Δt )=3.∴物体的初速度为3. (2)取一时间段[2,2+Δt ],∴Δs =s (2+Δt )-s (2)=[3(2+Δt )-(2+Δt )2]-(3×2-22)=-Δt -(Δt )2, Δs Δt =-Δt -(Δt )2Δt =-1-Δt ,lim Δt →0 Δs Δt =lim Δt →0 (-1-Δt )=-1, ∴当t =2时,物体的瞬时速度为-1. 反思感悟 求运动物体瞬时速度的三个步骤 (1)求位移改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =Δs Δt.(3)求瞬时速度,当Δt 无限趋近于0时,Δs Δt 无限趋近于的常数v 即为瞬时速度,即v =lim Δt →0 ΔsΔt . 跟踪训练2 (1)一物体的运动方程为s =7t 2-13t +8,且在t =t 0时的瞬时速度为1,则t 0=________.解析 因为Δs =7(t 0+Δt )2-13(t 0+Δt )+8-7t 20+13t 0-8=14t 0·Δt -13Δt +7(Δt )2,所以lim Δt →0ΔsΔt =lim Δt →0(14t 0-13+7Δt )=14t 0-13=1,所以t 0=1. (2)一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.解 质点M 在t =2 s 时的瞬时速度即为函数在t =2处的瞬时变化率.∵质点M 在t =2附近的平均变化率为Δs Δt =s (2+Δt )-s (2)Δt =a (2+Δt )2-4aΔt =4a +a Δt ,∴lim Δt →0ΔsΔt=4a =8,即a =2. 三、求函数在某点处的导数例3 求函数y =x -1x在x =1处的导数.解 ∵Δy =(1+Δx )-11+Δx -⎝⎛⎭⎫1-11=Δx +Δx 1+Δx ,∴Δy Δx =Δx +Δx 1+Δx Δx =1+11+Δx ,∴lim Δx →0 Δy Δx =limΔx →0⎝⎛⎭⎫1+11+Δx =2.从而y ′|x =1=2.反思感悟 用导数定义求函数在某一点处的导数的步骤 (1)求函数的增量Δy =f (x 0+Δx )-f (x 0).(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)求极限lim Δx →0Δy Δx. 跟踪训练3 (1)f (x )=x 2在x =1处的导数为( ) A .2x B .2 C .2+Δx D .1解析 lim Δx →0 ΔyΔx =lim Δx →0 f (1+Δx )-f (1)Δx =lim Δx →0 1+2Δx +(Δx )2-1Δx =lim Δx →0 (2+Δx )=2. (2)已知f (x )=2x ,且f ′(m )=-12,则m 的值等于( )A .-4B .2C .-2D .±2解析 因为Δy Δx =f (m +Δx )-f (m )Δx =2m +Δx -2mΔx =-2m (m +Δx ),所以f ′(m )=lim Δx →0 -2m (m +Δx )=-2m 2,所以-2m 2=-12,m 2=4,解得m =±2.要点二:导数的几何意义知识点一 导数的几何意义 1.割线斜率与切线斜率设函数y =f (x )的图象如图所示,直线AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是Δy Δx =f (x 0+Δx )-f (x 0)Δx.点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,直线AD 叫做此曲线在点A 处的切线.于是,当Δx →0时,割线AB 的斜率无限趋近于过点A 的切线AD 的斜率k ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx.2.导数的几何意义函数y =f (x )在点x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是f ′(x 0).相应地,切线方程为 y -f (x 0)=f ′(x 0)(x -x 0). 知识点二 导函数的定义从求函数f (x )在x =x 0处导数的过程可以看出,当x =x 0时,f ′(x 0)是一个唯一确定的数.这样,当x 变化时,y =f ′(x )就是x 的函数,我们称它为y =f (x )的导函数(简称导数). y =f (x )的导函数记作f ′(x )或y ′,即f ′(x )=y ′=lim Δx →0 f (x +Δx )-f (x )Δx.特别提醒:区别联系f ′(x 0)f ′(x 0)是具体的值,是数值 在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这一点的函数值f ′(x )f ′(x )是函数f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数1.函数在某点处的导数f ′(x 0)是一个常数.( √ )2.函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( √ ) 3.函数f (x )=0没有导数.( × )4.直线与曲线相切,则直线与该曲线只有一个公共点.( × )一、求切线方程例1 已知曲线C :y =f (x )=x 3+x . (1)求曲线C 在点(1,2)处切线的方程;(2)设曲线C 上任意一点处切线的倾斜角为α,求α的取值范围. 解 因为Δy Δx =(x +Δx )3+(x +Δx )-x 3-xΔx =3x 2+3x ·Δx +1+(Δx )2,所以f ′(x )=lim Δx →0ΔyΔx =lim Δx →0[3x 2+3x ·Δx +1+(Δx )2]=3x 2+1. (1)曲线C 在点(1,2)处切线的斜率为k =f ′(1)=3×12+1=4.所以曲线C 在点(1,2)处的切线方程为y -2=4(x -1),即4x -y -2=0.(2)曲线C 在任意一点处切线的斜率为k =f ′(x )=tan α, 所以tan α=3x 2+1≥1.又α∈[0,π),所以α∈⎣⎡⎭⎫π4,π2. 反思感悟 求曲线在某点处的切线方程的步骤跟踪训练1 曲线y =x 2+1在点P (2,5)处的切线与y 轴交点的纵坐标是________. 解析 ∵y ′|x =2=lim Δx →0 Δy Δx =lim Δx →0 (2+Δx )2+1-22-1Δx =lim Δx →0 (4+Δx )=4,∴k =y ′|x =2=4. ∴曲线y =x 2+1在点P (2,5)处的切线方程为y -5=4(x -2),即y =4x -3. ∴切线与y 轴交点的纵坐标是-3. 二、求切点坐标例2 过曲线y =x 2上某点P 的切线满足下列条件,分别求出P 点.(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角. 解 f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0 (x +Δx )2-x 2Δx =2x ,设P (x 0,y 0)是满足条件的点. (1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点. (2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94,即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线与x 轴成135°的倾斜角,∴其斜率为-1.即2x 0=-1,得x 0=-12,y 0=14,即P ⎝⎛⎭⎫-12,14是满足条件的点. 反思感悟 求切点坐标的一般步骤 (1)设出切点坐标.(2)利用导数或斜率公式求出斜率.(3)利用斜率关系列方程,求出切点的横坐标.(4)把横坐标代入曲线或切线方程,求出切点纵坐标.跟踪训练2 已知曲线f (x )=x 2-1在x =x 0处的切线与曲线g (x )=1-x 3在x =x 0处的切线互相平行,求x 0的值.解 对于曲线f (x )=x 2-1,k 1=lim Δx →0 f (x 0+Δx )-f (x 0)Δx=2x 0.对于曲线g (x )=1-x 3,k 2=lim Δx →0g (x 0+Δx )-g (x 0)Δx =lim Δx →0 1-(x 0+Δx )3-(1-x 30)Δx=-3x 20. 由题意得2x 0=-3x 20,解得x 0=0或x 0=-23.经检验,均符合题意. 三、利用图象理解导数的几何意义例3 已知函数f (x )的图象如图所示,则下列不等关系中正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(2)<f (3)-f (2)<f ′(3)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3) 解析 k AB =f (3)-f (2)3-2=f (3)-f (2), f ′(2)为函数f (x )的图象在点B (2,f (2))处的切线的斜率, f ′(3)为函数f (x )的图象在点A (3,f (3))处的切线的斜率, 根据图象可知0<f ′(3)<f (3)-f (2)<f ′(2).反思感悟 导数的几何意义就是切线的斜率,所以比较导数大小的问题可以用数形结合思想来解决.(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的. (2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.跟踪训练3 若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )解析 依题意,y =f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项的图象,只有A 满足.过某点的曲线的切线典例 求过点(-1,0)与曲线y =x 2+x +1相切的直线方程.解 设切点为(x 0,x 20+x 0+1),则切线的斜率为k =lim Δx →0 (x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=2x 0+1. 又k =(x 20+x 0+1)-0x 0-(-1)=x 20+x 0+1x 0+1,∴2x 0+1=x 20+x 0+1x 0+1.解得x 0=0或x 0=-2.当x 0=0时,切线斜率k =1,过(-1,0)的切线方程为y -0=x +1,即x -y +1=0.当x 0=-2时,切线斜率k =-3,过(-1,0)的切线方程为y -0=-3(x +1),即3x +y +3=0. 故所求切线方程为x -y +1=0或3x +y +3=0.[素养提升] (1)首先要理解过某点的含义,切线过某点,这点不一定是切点. (2)过点(x 1,y 1)与曲线y =f (x )相切的直线方程的求法步骤 ①设切点(x 0,f (x 0)). ②建立方程f ′(x 0)=y 1-f (x 0)x 1-x 0.③解方程得k =f ′(x 0),x 0,y 0,从而写出切线方程.(3)本例考查了切线的含义及切线方程的求法.体现了直观想象和数学运算的数学核心素养.变化率问题和导数的概念1.已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy 等于( )A.12 B .-12 C .1 D .-1 答案 B解析 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 2.函数f (x )=5x -3在区间[a ,b ]上的平均变化率为( ) A .3 B .4 C .5 D .6 答案 C解析 平均变化率为f (b )-f (a )b -a =5(b -a )b -a=5.3.一质点的运动方程为s =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度是( ) A .-3 B .3 C .6 D .-6 答案 D解析 由平均速度和瞬时速度的关系可知,质点在t =1时的瞬时速度为lim Δt →0(-3Δt -6)=-6. 4.已知f (x )=x 2-3x ,则f ′(0)等于( ) A .Δx -3 B .(Δx )2-3Δx C .-3 D .0答案 C解析 f ′(0)=lim Δx →0 (0+Δx )2-3(0+Δx )-02+3×0Δx =lim Δx →0 (Δx )2-3Δx Δx=lim Δx →0 (Δx -3)=-3. 5.(多选)设f (x )=t 2x ,若f ′(1)=4,则t 的值是( ) A .-2 B .-1 C .1 D .2 答案 AD解析 因为f ′(1)=lim Δx →0 t 2(1+Δx )-t 2Δx =t 2=4, 所以t =±2.6.函数f (x )=x 2-x 在区间[-2,t ]上的平均变化率是2,则t =________. 答案 5解析 因为函数f (x )=x 2-x 在区间[-2,t ]上的平均变化率是2, 所以f (t )-f (-2)t -(-2)=(t 2-t )-[(-2)2-(-2)]t +2=2,即t 2-t -6=2t +4, 从而t 2-3t -10=0, 解得t =5或t =-2(舍去).7.一物体位移s 和时间t 的关系是s =2t -3t 2,则物体的初速度是________. 答案 2解析 由题意知, lim Δt →0s (t +Δt )-s (t )Δt=lim Δt →0 2(t +Δt )-3(t +Δt )2-2t +3t 2Δt =lim Δt →0 2Δt -6t Δt -3(Δt )2Δt =2-6t . 当t =0时,v =2-6×0=2, 即物体的初速度是2.8.若可导函数f (x )的图象过原点,且满足lim Δx →0 f (Δx )Δx=-1,则f ′(0)=__________. 答案 -1解析 ∵f (x )的图象过原点,∴f (0)=0, ∴f ′(0)=lim Δx →0f (0+Δx )-f (0)Δx=lim Δx →0 f (Δx )Δx =-1. 9.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值. 解 ∵f (1+Δx )-f (1)=a (1+Δx )2+c -a -c =a (Δx )2+2a Δx , ∴f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →0 a (Δx )2+2a (Δx )Δx=lim Δx →0(a Δx +2a )=2a ,即2a =2, ∴a =1.10.某物体按照s (t )=3t 2+2t +4(s 的单位:m)的规律做直线运动,求自运动开始到4 s 时物体的运动的平均速度和4 s 时的瞬时速度. 解 自运动开始到t s 时,物体运动的平均速度 v (t )=s (t )t =3t +2+4t,故前4 s 物体的平均速度为v (4)=3×4+2+44=15(m/s).由于Δs =3(t +Δt )2+2(t +Δt )+4-(3t 2+2t +4) =(2+6t )Δt +3(Δt )2. ΔsΔt =2+6t +3·Δt , lim Δt →0ΔsΔt=2+6t , 当t =4时,lim Δt →0ΔsΔt=2+6×4=26,所以4 s 时物体的瞬时速度为26m/s.11.(多选)如图显示物体甲、乙在时间0到t 1范围内,路程的变化情况,下列说法正确的是( )A .在0到t 0范围内,甲的平均速度大于乙的平均速度B .在0到t 0范围内,甲的平均速度等于乙的平均速度C .在t 0到t 1范围内,甲的平均速度大于乙的平均速度D .在t 0到t 1范围内,甲的平均速度小于乙的平均速度答案 BC解析 在0到t 0范围内,甲、乙的平均速度都为v =s 0t 0,故A 错误,B 正确;在t 0到t 1范围内,甲的平均速度为s 2-s 0t 1-t 0,乙的平均速度为s 1-s 0t 1-t 0.因为s 2-s 0>s 1-s 0,t 1-t 0>0,所以s 2-s 0t 1-t 0>s 1-s 0t 1-t 0,故C 正确,D 错误. 12.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大答案 B解析 由题图可知,A ,B 两机关用电量在[0,t 0]上的平均变化率都小于0,由平均变化率的几何意义知,A 机关用电量在[0,t 0]上的平均变化率小于B 机关的平均变化率,从而A 机关比B 机关节能效果好.13.设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( ) A .f ′(1) B .3f ′(1) C.13f ′(1) D .f ′(3) 答案 C解析 lim Δx →0 f (1+Δx )-f (1)3Δx =13lim Δx →0 f (1+Δx )-f (1)Δx =13f ′(1). 14.如图所示,函数y =f (x )在[x 1,x 2],[x 2,x 3],[x 3,x 4]这几个区间内,平均变化率最大的一个区间是________.答案 [x 3,x 4]解析 由平均变化率的定义可知,函数y =f (x )在区间[x 1,x 2],[x 2,x 3],[x 3,x 4]上的平均变化率分别为f (x 2)-f (x 1)x 2-x 1,f (x 3)-f (x 2)x 3-x 2,f (x 4)-f (x 3)x 4-x 3, 结合图象可以发现函数y =f (x )的平均变化率最大的一个区间是[x 3,x 4].15.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀率为28π3,则m 的值为________.答案 2解析 体积的增加量ΔV =4π3m 3-4π3=4π3(m 3-1), 所以ΔV ΔR =4π3(m 3-1)m -1=28π3, 所以m 2+m +1=7,所以m =2或m =-3(舍).16.若一物体的运动方程如下:(位移单位:m ,时间单位:s)s =f (t )=⎩⎪⎨⎪⎧29+3(t -3)2,0≤t <3,3t 2+2,t ≥3. 求:(1)物体在t ∈[3,5]内的平均速度;(2)物体在t =1时的瞬时速度.解 (1)因为物体在t ∈[3,5]内的时间变化量为Δt =5-3=2,位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48,所以物体在t ∈[3,5]内的平均速度为Δs Δt =482=24 m/s. 即物体在t ∈[3,5]内的平均速度为24 m/s.(2)物体在t =1时的瞬时速度即为物体在t =1处位移的瞬时变化率,因为物体在t =1附近位移的平均变化率为 Δs Δt =f (1+Δt )-f (1)Δt=29+3[(1+Δt )-3]2-29-3(1-3)2Δt =3Δt -12,所以物体在t =1处位移的瞬时变化率为lim Δt →0 ΔsΔt =lim Δt →0 (3Δt -12)=-12,即物体在t =1时的瞬时速度为-12 m/s.导数的几何意义1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案 B解析 因为f ′(x 0)=0,所以曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0.2.已知曲线y =2x 2上一点A (2,8),则在点A 处的切线斜率为( )A .4B .16C .8D .2答案 C解析 k =y ′|x =2=lim Δx →0 2(2+Δx )2-2×22Δx =8.3.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为() A .4x -y -4=0 B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0答案 A解析 设切点为(x 0,y 0), 因为f ′(x )=lim Δx →0 (x +Δx )2-x 2Δx=lim Δx →0(2x +Δx )=2x . 由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.4.已知函数f (x )满足f ′(x 1)>0,f ′(x 2)<0,则在x 1和x 2附近符合条件的f (x )的图象大致是( )答案 D解析 由f ′(x 1)>0,f ′(x 2)<0可知,f (x )的图象在x 1处切线的斜率为正,在x 2处切线的斜率为负.5.(多选)下列各点中,在曲线y =x 3-2x 上,且在该点处的切线倾斜角为π4的是( ) A .(0,0)B .(1,-1)C .(-1,1)D .(1,1)答案 BC解析 设切点坐标为(x 0,y 0),则0=|x x y'=lim Δx →0 (x 0+Δx )3-2(x 0+Δx )-(x 30-2x 0)Δx=3x 20-2=tan π4=1, 所以x 0=±1,当x 0=1时,y 0=-1.当x 0=-1时,y 0=1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________. 答案 3解析 因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3.7.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.答案 2解析 由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.8.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )在点(1,f (1))处的切线斜率为______.答案 -1解析 lim Δx →0 f (1)-f (1-2Δx )2Δx =lim Δx →0 f (1-2Δx )-f (1)-2Δx =f ′(1)=-1.9.在抛物线y =x 2上哪一点处的切线平行于直线4x -y +1=0?哪一点处的切线垂直于这条直线?解 y ′=lim Δx →0 (x +Δx )2-x 2Δx=lim Δx →0 (2x +Δx )=2x . 设抛物线上点P (x 0,y 0)处的切线平行于直线4x -y +1=0,则0=|x x y'=2x 0=4,解得x 0=2,所以y 0=x 20=4,即P (2,4),经检验,符合题意.设抛物线上点Q (x 1,y 1)处的切线垂直于直线4x -y +1=0,则1=|x x y'=2x 1=-14,解得x 1=-18, 所以y 1=x 21=164,即Q ⎝⎛⎭⎫-18,164,经检验,符合题意. 故抛物线y =x 2在点(2,4)处的切线平行于直线4x -y +1=0,在点⎝⎛⎭⎫-18,164处的切线垂直于直线4x -y +1=0.10.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2,求直线l 2的方程.解 因为y ′=lim Δx →0 Δy Δx=lim Δx →0 (x +Δx )2+(x +Δx )-2-(x 2+x -2)Δx=2x +1, 所以y ′|x =1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3,设直线l 2过曲线y =x 2+x -2上的点P (x 0,x 20+x 0-2),则直线l 2的方程为y -(x 20+x 0-2)=(2x 0+1)(x -x 0).因为l 1⊥l 2,所以2x 0+1=-13,x 0=-23, 所以直线l 2的方程为3x +9y +22=0.11.若曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( ) A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)答案 C解析 y =x +1x上任意一点P (x 0,y 0)处的切线斜率为 k =0=|x x y'=lim Δx →0 (x 0+Δx )+1x 0+Δx -⎝⎛⎭⎫x 0+1x 0Δx =lim Δx →0 ⎝⎛⎭⎫1-1x 20+x 0Δx =1-1x 20<1. 即k <1.12.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则a =________,b =________. 答案 1 2解析 由题意知a +b =3,又y ′|x =1=lim Δx →0 a (1+Δx )2+b -(a +b )Δx=2a =2, ∴a =1,b =2.13.若点P 是抛物线y =x 2上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 728解析 由题意可得,当点P 到直线y =x -2的距离最小时,点P 为抛物线y =x 2的一条切线的切点,且该切线平行于直线y =x -2,设y =f (x )=x 2,由导数的几何意义知y ′=f ′(x )= lim Δx →0 f (x +Δx )-f (x )Δx =2x =1,解得x =12,所以P ⎝⎛⎭⎫12,14,故点P 到直线y =x -2的最小距离为d =⎪⎪⎪⎪12-14-22=728.14.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.答案 4解析 y ′=lim Δx →0Δy Δx =2x -1,在点P 处的切线斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2, 根据题意有-6+c 2=-5,解得c =4.15.已知函数f (x )=x 3,过点P ⎝⎛⎭⎫23,0作曲线f (x )的切线,则其切线方程为________________.答案 y =0或3x -y -2=0解析 设切点为Q (x 0,x 30),得切线的斜率为k =f ′(x 0)=lim Δx →0 (x 0+Δx )3-x 30Δx=3x 20, 切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.因为切线过点P ⎝⎛⎭⎫23,0,所以2x 20-2x 30=0, 解得x 0=0或x 0=1,从而切线方程为y =0或3x -y -2=0.16.点P 在曲线f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标.解 设P (x 0,y 0),则y 0=x 20+1,f ′(x 0)=lim Δx →0=(x 0+Δx )2+1-(x 20+1)Δx=2x 0, 所以过点P 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x +1-x 20,而此直线与曲线y =-2x 2-1相切,所以切线与曲线y =-2x 2-1只有一个公共点,由⎩⎪⎨⎪⎧y =2x 0x +1-x 20,y =-2x 2-1, 得2x 2+2x 0x +2-x 20=0,则Δ=4x 20-8(2-x 20)=0,解得x 0=±233,则y 0=73,所以点P 的坐标为⎝⎛⎭⎫233,73或⎝⎛⎭⎫-233,73.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习:
1.质点运动规律s=t2 +3,则在时间(3,3+t)中 相应的平均速度为( A ) A. 6+t C.3+t 9 B. 6+t+ t D.9+t
2.物体按照s(t)=3t2+t+4的规律作直线 运动,求在4s附近的平均变化率.
25 3t
3:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程. f ( x 0 x ) f ( x 0 ) 解 : k lim y x 0 Q x (1 x ) 2 1 (1 1) lim 2 x 0 x y = x +1 2 x ( x ) 2 lim 2. x 0 x P 因此,切线方程为y-2=2(x-1), x 即y=2x.
1
y
M
求曲线在某点处的切线方程 的基本步骤: ①求出P点的坐标; ②利用切线斜率的定义求 出切线的斜率; ③利用点斜式求切线方程.
j
x
-1 O
1
小结:
• 1.函数的平均变化率
f ( x ) f(x2 ) f ( x1 ) x2 x1 x
• 2.求函数的平均变化率的步骤: (1)求函数的增量Δf=Δy=f(x2)-f(x1);
• 当V从0增加到1时,气球半径增加了 r (1) r (0) 0.62(dm) 气球的平均膨胀率为 r (1) r (0)
1 0 0.62(dm / L)
• 当V从1增加到2时,气球半径增加了 r (2) r (1) 0.16(dm) 气球的平均膨胀率为 r (2) r (1)
x
也可记作:当 x 时,f ( x ) a
当自变量x 取负值并且绝对值无限增大时,如果函数 f ( x ) 无限趋近于一个常数a , 就说当x 趋向于负无穷大时, 函数 f ( x ) 的极限是a ,记作 lim f ( x ) a
x
也可记作: 当 x 时,f ( x ) a
f ( x ) 1; 当 x 时,f ( x ) 的值保持为-1,即 xlim
二、 平均变化率
导数研究的问题
变化率问题
研究某个变量相对于另一个变量变化 的快慢程度.
二、 平均变化率
变化率问题 • 问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的 过程,可以发现,随着气球内空气容量的增 加,气球的半径增加越来越慢.从数学角度, 如何描述这种现象呢?
称为函数f(x)从x1到x2的平均变化率
• 若设Δx=x2-x1, Δf=f(x2)-f(x1)
这里Δx看作是对于x1的一个 “增量”可用x1+Δx代替x2 同样Δf=Δy==f(x2)-f(x1)
则平均变化率为
f x
f(x2 ) f ( x1 ) x2 x1
思考?
• 观察函数f(x)的图象
请计算
o
t
0 t 0.5和1 t 2时的平均速度v :
0 t 0.5 和 1 t 2 时的平均速度 v : 请计算
h(t)=-4.9t2+6.5t+10
h
o
t
平均变化率定义:
f(x ) f ( x ) 2 1 上述问题中的变化率可用式子 表示 x2 x1
x
x
结论:当0 a 1时,都有 lim a 0
x x
函数的极限
( x 0时) 1 f ( x ) ( x 0时) 0 (2) 1 ( x 0时)
f ( x ) 的值保持为1.即 lim f ( x ) 1; 解:当 x 时, x
• 气球的体积V(单位:L)与半径r 4 3 (单位:dm)之间的函数关系是 V (r ) r
3 3V 3 • 如果将半径r表示为体积V的函数,那么 r (V ) 4
我们来分 析一下:
3V r (V ) 4
3
• 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球 的过程,可以发现,随着气球内空气容 量的增加,气球的半径增加越来越慢. 从数学角度,如何描述这种现象呢?
一、 函数的极限
O
x
当自变量x 取正值并无限增 1 大时,函数 y 的值无限趋近 x 于0,即|y-0|可以变得任意小.
当x 趋向于正无穷大时,函数 1 1 y 的极限是0,记作 lim 0 x x x x 1 10 100 1000 10000 100000 · · ·
y
1
0.1 0.01 0.001 0.0001 0.00001
x
f ( x ) 无限趋 近于常数a
lim f ( x ) a
x
函数的极限
例1、分别就自变量x 趋向于 和 的情况,讨论下列 函数的变化趋势: x 1 (1) y 2
1 y 解:当 x 时, 无限趋近于0, 2 1 lim 即 x 0; 2 x 1 y 趋近于 . 当 x 时, 2
(2)计算平均变化率
f x
f(x2 ) f ( x1 ) x2 x1
也有
lim f ( x) C
x
函数的极限
自变量x的变化趋势 x取正值并且无限增大 x取负值并且绝对值无限增大 x 取正值并且无限增大, x 取 负值并且绝对值无限增大
f ( x ) 值的变 化趋势 f ( x ) 无限趋
近于常数a f ( x ) 无限趋 近于常数a极限表示 Nhomakorabeax
lim f ( x ) a lim f ( x ) a
函数的极限
f ( x ) a且 lim f ( x ) a 那就是说当x 趋向于 如果 xlim x
无穷大时,函数 f ( x )的极限是a ,记作 lim f ( x ) a 也可记作: 当 x 时,f ( x ) a
x
对于常数函数
f ( x) C ( x R)
· · ·
函数的极限
y
O
x
1 y 当x 趋向于负无穷大时,函数 的极限是0,记作 x 1 lim 0 x x
函数的极限
一般地,当自变量x 取正值并且无限增大时,如果函数
f ( x ) 无限趋近于一个常数a , 就说当x 趋向于正无穷大时,
函数 f ( x )的极限是a ,记作 lim f ( x ) a
2 1 0.16(dm / L)
显然 0.62>0.16
二、 平均变化率
思考?
• 当空气容量从V1增加到V2时,气球的平 均膨胀率是多少?
r (V2 ) r (V1 ) V2 V1
问题2 高台跳水
在高台跳水运动中,运动员相对于水面 的高度h(单位:米)与起跳后的时间t(单 位:秒)存在函数关系 h 2 h(t)=-4.9t +6.5t+10. 如何用运动员在某些时 间段内的平均速度粗略 地描述其运动状态?
设切线的倾斜角为α ,那 么当Δx→0时,割线PQ的斜 率,称为曲线在点P处的切 线的斜率.
即: k切线
y
y= Q f( x) P

割 线 T 切 线 x
o
f ( x0 x) f ( x0 ) y lim lim x 0 x x 0 x
这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质——函数在x=x0处的导数. 要注意,曲线在某点处的切线: 1) 与该点的位置有关; 2) 要根据割线是否有极限位置来判断与求解.如有极限,则在 此点有切线,且切线是唯一的;如不存在,则在此点处无切线; 3) 曲线的切线,并不一定与曲线只有一个交点, 可以有多个,甚至可以无穷多个.
y f(x2 ) f ( x1 ) 平均变化率 x x2 x1
y
Y=f(x)
表示什么?
f(x2) f(x2)-f(x1)=△y A f(x1)
B
直线AB 的斜率
x2-x1=△x x x1 x2
O
三、平均变化率的极限的几何意义:
y
y=f(x)
Q
割 线
T 切线
P

o
x 我们发现,当点Q沿着曲线无限接近点P即 Δ x→0时,割线PQ如果有一个极限位置PT.则我 们把直线PT称为曲线在点P处的切线.
导数的预备知识 ——极限与平均变化率
教学目标
• 了解函数的极限和平均变化率 • 教学重点:函数的平均变化率
一、 函数的极限
1 观察函数y 的图象, 当x 时的变化趋势。 x
无论x+ 或x-
1 函数y 的值无限趋近于0. x
1 即 当x 时, 0. x
1 y 考察函数 当x 无限增大时的变化趋势. x y
相关文档
最新文档