第11讲:等边三角形的性质与判定1

合集下载

等边三角形性质与判定

等边三角形性质与判定

等边三角形性质与判定等边三角形是指三条边都相等的三角形。

在几何中,等边三角形具有一些特殊的性质和判定方法。

本文将介绍等边三角形的性质以及如何判定一个三角形是等边三角形。

一、等边三角形的性质1.三边相等:等边三角形的三条边长度相等,即AB=AC=BC。

2.内角相等:等边三角形的三个内角都相等,每个角都是60度。

3.内角和为180度:等边三角形的三个内角和为180度,因为三个角都是60度,所以它们的和为180度。

4.等边三角形是等腰三角形:等腰三角形是指两边长度相等的三角形。

等边三角形的三边都相等,因此也是等腰三角形。

5.等边三角形是等角三角形:等角三角形是指三个角度都相等的三角形。

等边三角形的三个内角都是60度,因此也是等角三角形。

二、判定一个三角形是否为等边三角形判定一个三角形是否为等边三角形可以通过以下方法进行:1.测量三条边的长度:通过使用测量仪器(例如尺子)或计算方法,测量三条边的长度,如果它们长度相等,则可以判定为等边三角形。

2.判定三个角度是否相等:通过使用角度测量器或计算方法,测量三个角度的大小,如果它们都是60度,则可以判定为等边三角形。

3.判定两边是否相等:通过测量任意两条边的长度,如果它们长度相等,则可以判定为等边三角形。

需要注意的是,在实际应用中,我们常常会结合多种判定方法来确定一个三角形是否为等边三角形,以增加判定结果的准确性。

三、等边三角形的应用等边三角形在几何学中有广泛的应用,下面列举了其中一些常见的应用:1.建筑与设计:等边三角形在建筑和设计中常常作为参考图形,用于规划和设计各种建筑结构。

2.三角函数:等边三角形是三角函数的重要基础。

在三角函数中,等边三角形通常用作基本的参考图形,用于推导和分析各种三角函数的性质和关系。

3.几何证明:等边三角形作为一种特殊的三角形,常常被用于几何证明中。

通过研究等边三角形的性质,可以推导和证明各种几何定理和命题。

4.图形构造:等边三角形是一种基本的图形构造元素,可以用于构造其他形状和图形。

七年级(下)数学 第11讲 全等三角形的概念和性质及判定

七年级(下)数学 第11讲 全等三角形的概念和性质及判定

本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.一、全等形、全等三角形及其相关的概念 (1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边. 如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE . 对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的概念性质和判定内容分析知识结构模块一 全等三角形的概念和性质知识精讲ABCDEF- 2 -二、全等三角形的数学语言:三角形ABC 与三角形A′B′C′全等,记作△ABC ≌△A′B′C′,读作“三角形ABC 全等于三角形A′B′C′ ”. 三、全等三角形的性质:(1)全等三角形的对应边相等,对应角相等; (2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等. 四、全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义; (2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; 五、画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素: ①两角及其夹边; ②两边及其夹角; ③三边.【例1】 下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( ) A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC例题解析21ABCD【例4】 下列各条件中,不能作出唯一的三角形的是 ( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( )A .1个B .2个C .3个D .4个【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边- 4 -【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( ) A .80° B .100° C .60° D .45°【例9】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【例10】 如图,在△ABC 中,∠ A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,使旋转前后的△A′B′C′中的顶点B′在原三角形的边AC 的延长线上,求∠BCA′的度数.【例11】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =105°,∠CAD =10°,∠ADE =25°,求∠DFB 和∠AGB 的度数.α321AB CDEP1ABCDEFABCA′B′A BCD EF G本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.【例12】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【例13】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【例14】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.模块二 全等三角形的判定知识精讲例题解析ABCDEF21AB C DEABCDE- 6 -【例15】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【例16】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【例17】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【例18】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【例19】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形?ABCDABC D EFABCD EFO ABCDEOABCDEF【例20】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【例21】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【例22】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【例23】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状.ABCDMABCDE ABC DEO2121A BCDEQP ABCDEMN PQ- 8 -【例24】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【习题2】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =39°,则AN = 厘米,NM =_________厘米,∠NAB = .随堂检测A BCDMNABCD EF【习题3】 如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据____________; (2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据____________; (3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据_____________; (4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据_______.【习题4】 如图,已知△ABC ≌△ADE , ∠CAD =15°,∠DFB =90°,∠B =25°.求∠E 和∠DGB 的度数.【习题5】 如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB ∥CD ,AB =CD .试说明:BD 平分EF .【习题6】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC .ABCEDFABC D EFG ABCDE FGABCDE FG- 10 -【习题7】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm .【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组 B .2组 C .3组 D .4组【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,则DE =_______,DF =_______,EF = _______.课后作业ABC DEFABCDPOAB CDP OABCD【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC , ∠D -∠E =20°,∠BAC =60°,求∠C 的度数.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、 CE 交于点M 、 N ,有如下结论①△ACE ≌△DCB ;② CM =CN ;③ AC =DN .其中正确的结论是 ,证明正确的结论.【作业8】 如图,AD ⊥AB ,AC ⊥AE ,且AD =AB ,AC =AE .试说明:DC =BE ,DC ⊥BE .ABCDEABCD EM NABC DEGABCDEF。

等边三角形的性质和判定 (优质课)获奖课件

等边三角形的性质和判定 (优质课)获奖课件

3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA 吗?为什么? 你从中能得到什么结论? 三个角都相等的三角形是等边三角形. 4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是 等边三角形; (2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论 还成立吗? (3)由上你可以得到什么结论? 有一个角是60°的等腰三角形是等边三角形.源自 语文小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取 扫描二维码获取更多资源
附赠 中高考状元学习方法
前言
高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
11.2 与三角形有关的角
11.2.2 三角形的外角
1.了解三角形的外角. 2.知道三角形的外角等于与它不相邻的两个内角的 和. 3.学会运用简单的说理来计算三角形相关的角.
重点 三角形外角的性质. 难点 运用三角形外角性质进行有关计算时能准确地推 理.
一、复习引入 什么是三角形的内角?它是由什么组成的? 三角形内角和定理的内容是什么? 教师提出问题,学生举手回答问题. 二、探究新知 1.探究三角形外角的概念. 教师布置学生自学教材第14页最后一段话的内容,然后完 成以下问题: (1)举例说明什么是三角形的外角.(上黑板画图说明) (2)如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三 角形的外角?
四、练习与小结 练习:教材练习. 教师布置练习,学生举手回答. 小结:谈谈你对三角形外角的认识. 教师引导学生谈谈对三角形外角的认识.主要从定义和 性质两个方面入手. 五、布置作业 习题11.2第5,6,8题,选做题:第11题.

等边三角形性质与判定

等边三角形性质与判定

等边三角形性质与判定等边三角形的定义:三条边都相等三角形叫做等边三角形;等边三角形的性质:①等边三角形的三个内角都相等,都是60°;三边都相等②等边三角形是轴对称图形,有3条对称轴。

等边三角形的判定1.三边都相等的三角形是等边三角形2.三个角都相等的三角形是等边三角形。

3.有一个角等于60°的等腰三角形是等边三角形。

题型1 等边三角形的判定三角形的三边相等的三角形是等边三角形三角形的三个内角相等的三角形是等边三角形例1. 如图:在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.试判断△ABC的形状,并证明你的结论.例3. 如图,△ABC是等边三角形,点D、E、F分别是线段AB、BC、CA上的点(1)若AD=BE=CF,问△DEF是等边三角形吗?试证明你的结论;(2)若△DEF是等边三角形,问AD=BE=CF成立吗?试证明你的结论.例4.如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.课堂练习等边三角形的性质应用及判定【例8】如图,在等边△ABC中,点D,E分别在边BC,AB上,BD=AE,AD与CE交于点F.求证:(1)AD=CE;(2)求∠DFC的度数。

【例9】如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF。

求证:BE=AF例10】(天津中考)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACD≌△DCB; ②CM=CN; ③AC=DN.其中正确结论的个数是A.3个B.2个C.1个D.0个【例11】(常州中考)如图,已知△ABC为等边三角形,D、E、F分别在边BC、AC、AB上,且△DEF也是等边三角形。

等边三角形的性质与判定(3种题型)-2023年新八年级数学(苏科版)(解析版)

等边三角形的性质与判定(3种题型)-2023年新八年级数学(苏科版)(解析版)

等边三角形的性质与判定(3种题型)了解等边三角形的有关概念,探索并掌握性质及判定方法。

一.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.二.等边三角形的判定(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.三.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.一.等边三角形的性质(共9小题)1.(2022秋•崇川区校级月考)如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC 于点E,且CE=1.5,则AB的长为()A.3B.4.5C.6D.7.5【分析】由在等边三角形ABC中,DE⊥BC,可求得∠CDE=30°,则可求得CD的长,又由BD平分∠ABC 交AC于点D,由三线合一的知识,即可求得答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC=AC,∵DE⊥BC,∴∠CDE=30°,∵EC=1.5,∴CD=2EC=3,∵BD平分∠ABC交AC于点D,∴AD=CD=3,∴AB=AC=AD+CD=6.故选:C.【点评】此题考查了等边三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.2.(2022秋•姜堰区月考)如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm【分析】根据等边三角形的性质解答即可.【解答】解:∵等边△ABC的边长AB=4cm,BD平分∠ABC,∴∠ACB=60°,DC=AD=2cm,∵∠E=30°,∠E+∠EDC=∠ACB,∴∠EDC=60°﹣30°=30°=∠E,∴CD=CE=2cm,故选:B.【点评】此题考查等边三角形的性质,关键是根据等边三角形的三线合一解答.3.(2022秋•常州期中)如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,则∠PAB的度数是()A.10°B.15°C.20°D.25°【分析】由已知条件AD=AP可知∠ADP=∠APD,结合∠APD=70°可得∠ADP的度数,从而得到∠P AD 的度数;根据等边三角形的性质,可以得到∠BAC=60°,结合∠PAB=∠BAC﹣∠PAD即可解答此题.【解答】解:∵AD=AP,∴∠ADP=∠APD.∵∠ADP=∠APD,∠APD=70°,∴∠ADP=70°,∠PAD=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠PAB=60°﹣40°=20°.故选:C.【点评】本题主要考查等边三角形与等腰三角形的性质,可以结合等边三角形的性质进行解答.4.(2022秋•海门市期末)如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,DF⊥BE,垂足为点F.(1)求证:CE=2CF;(2)若CF=2,求△ABC的周长.【分析】(1)根据等边三角形的性质可知∠ACB=60°,再由DF⊥BE可知∠DFC=90°,∠FDC=90°﹣∠C=30°,由直角三角形的性质即可得出结论;(2)由CF=2可得出CD=4,故可得出AC的长,进而可得出结论.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,∵DF⊥BE,∴∠DFC=90°,∠FDC=90°﹣∠C=30°,∴DC=2CF.∵CE=CD∴CE=2CF;(2)解:∵CF=2,由(1)知CE=2CF,∴DC=2CF=4.∵△ABC为等边三角形,BD是中线,∴AB=BC=AC=2DC=8,∴△ABC的周长=AB+AC+BC=8+8+8=24.【点评】本题考查的是等边三角形的性质,熟知边三角形的三个内角都相等,且都等于60°是解题的关键.5.(2022秋•启东市期末)如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=BC,则∠AFE=()A.100°B.105°C.110°D.115°【分析】根据等边三角形的性质得到∠BAC=60°,∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,根据等腰直角三角形的性质得到∠DEC=∠DCE=45°,根据三角形的内角和定理即可得到答案.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AD是BC边上的中线,∴∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,∴∠CDE=90°,∵DE=BC,∴DE=DC,∴∠DEC=∠DCE=45°,∴∠AEF=∠DEC=45°,∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°,故选:B.【点评】本题考查了等边三角形的性质,三角形的内角和定理,熟练掌握等边三角形的性质是解题的关键.6.(2022秋•大丰区期中)如图,在等边△ABC中,D为BC边上的中点,以A为圆心,AD为半径画弧,与AC边交点为E,则∠ADE的度数为()A.60°B.105°C.75°D.15°【分析】根据等边三角形三线合一的性质可求出∠DAC=30°,结合AD等于AE求出∠ADE的度数即可.【解答】解:在等边△ABC中,D为BC边上的中点,∴∠DAC=30°(三线合一),在△ADE中,AD=AE,∴∠AED=∠ADE=(180°﹣30°)=75°,故选:C.【点评】本题考查了等边三角形的性质,等腰三角形的性质,解题关键在于能够熟练掌握该知识并进行合理运用.7.(2022秋•如皋市期中)如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F,连接CF,若△AFC是等边三角形,则∠B的度数是()A.60°B.45°C.30°D.15°【分析】根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B的度数.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故选:C.【点评】本题考查了垂直平分线的性质,等边三角形的性质,三角形外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.8.(2022秋•秦淮区校级月考)如图,△ABC是等边三角形,D,E分别是AC,BC上的点,若AE=AD,∠CED=25°,则∠BAE=°.【分析】利用等边三角形的性质可得∠C=∠BAC=60°,从而利用三角形的外角性质可得∠ADE=85°,然后利用等腰三角形的性质可得∠AED=∠ADE=85°,从而利用三角形的内角和定理可得∠DAE=10°,最后利用角的和差关系进行计算即可解答.【解答】解:∵△ABC是等边三角形,∴∠C=∠BAC=60°,∵∠CED=25°,∴∠ADE=∠CED+∠C=85°,∵AE=AD,∴∠AED=∠ADE=85°,∴∠DAE=180°﹣∠AED﹣∠ADE=10°,∴∠BAE=∠BAC﹣∠DAE=60°﹣10°=50°,故答案为:50.9.(2022秋•工业园区校级月考)阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=.若不存在,请说明理由.【分析】(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.【解答】证明:(1)连接AP,BP,CP.则S△ABP+S△BCP+S△ACP=S△ABC,即,∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(2)存在.r=2.【点评】此题主要是考查了等边三角形的性质、角平分线的性质以及三角形的面积公式.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.二.等边三角形的判定(共6小题)10.(2022秋•吴江区校级月考)若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为()A.钝角三角形B.等腰三角形C.直角三角形D.正三角形【分析】根据有一个角是60°的等腰三角形是等边三角形求解.【解答】解:根据有一个角是60°的等腰三角形是等边三角形可得到该三角形一定为正三角形.【点评】此题考查学生对有一个角是60°的等腰三角形是等边三角形的运用.11.(2022秋•梁溪区期中)如图所示,在等腰△ABC中,AB=AC,AF为BC的中线,D为AF上的一点,且BD的垂直平分线过点C并交BD于E.求证:△BCD是等边三角形.【分析】根据等腰三角形的性质得出AF⊥BC,根据线段垂直平分线性质求出BD=DC,BC=CD,推出BD =DC=BC,根据等边三角形的判定得出即可.【解答】证明:∵AB=AC,AF为BC的中线,∴AF⊥BC,∴BD=DC,∵CE是BD的垂直平分线,∴BC=CD,∴BD=DC=BC,∴△BCD是等边三角形.【点评】本题考查了等边三角形的判定,等腰三角形的性质,线段垂直平分线性质的应用,能正确运用定理进行推理是解此题的关键.12.(2021秋•淮安期末)三角形的三边长a,b,c满足(a﹣b)4+(b﹣c)2+|c﹣a|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.等腰非等边三角形D.钝角三角形【分析】利用偶次方及绝对值的非负性可得出a﹣b=0,b﹣c=0,c﹣a=0,进而可得出a=b=c,再结合a,b,c是三角形的三边长,即可得出这个三角形是等边三角形.【解答】解:∵(a﹣b)4+(b﹣c)2+|c﹣a|=0,∴a﹣b=0,b﹣c=0,c﹣a=0,又∵a,b,c是三角形的三边长,∴这个三角形是等边三角形.故选:B.【点评】本题考查了等边三角形的判定、偶次方及绝对值的非负性,牢记三条边都相等的三角形是等边三角形是解题的关键.13.(2022秋•吴江区校级月考)在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?【分析】(1)由平行线的性质得∠BQP=∠C=60°,∠BPQ=∠A=60°,从而得出△BPQ是等边三角形,列方程求解即可;(2 )根据点Q所在的位置不同,分类讨论△APQ是否为等边三角形,再根据等边三角形的性质得到等量关系,列方程求解即可.【解答】解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,解得:t=3,∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时,此时△APQ不可能为等边三角形;②当点Q在边AC上时,若△APQ为等边三角形,则AP=AQ,由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.题为背景,根据等边三角形、等腰三角形以及全等三角形的性质寻找等量关系,再列方程求解,能根据题目要求进行分类讨论是解题的关键.14.(2022秋•常州期中)如图,AB=AC,∠BAC=120°,AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.【分析】(1)因为AB=AC,根据等腰三角形的性质,等腰三角形的两个底角相等,又∠BAC=120°,根据三角形内角和,可求出∠C的度数为30°.(2)AD⊥AC,AE⊥AB,∠ADE=∠AED=60°,三个角是60°的三角形是等边三角形.【解答】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,故答案为:30°.(2)证明:∵∠B=∠C=30°,AD⊥AC,AE⊥AB.∴∠ADC=∠AEB=60°,∴∠ADC=∠AEB=∠EAD=60°,∴△ADE是等边三角形.【点评】本题考查等腰三角形的性质,等腰三角形的底角相等,以及等边三角形的判定定理,三个角是60°的三角形,是等边三角形.15.(2022秋•江都区校级月考)等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.【分析】先证△ABP≌△ACQ得AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】解:△APQ证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.【点评】考查了等边三角形的判定及全等三角形的判定方法.三.等边三角形的判定与性质(共9小题)16.(2022秋•梁溪区期中)一艘轮船由海平面上A地出发向南偏西40°的方向行驶100海里到达B地,再由B地向北偏西20°的方向行驶100海里到达C地,则A,C两地相距()A.100海里B.80海里C.60海里D.40海里【分析】先求得∠CBA=60°,然后可判断△ABC为等边三角形,从而可求得AC的长.【解答】解:如图所示:连接AC.∵点B在点A的南偏西40°方向,点C在点B的北偏西20°方向,∴∠ABD=40°,∠CBD=20°,∴∠CBA=∠ABD+∠CBD=60°.又∵BC=BA,∴△ABC为等边三角形.∴AC=BC=AB=100海里.故选:A.【点评】本题主要考查的是方向角、等边三角形的性质和判定,证得△ABC为等边三角形是解题的关键.17.(2022秋•玄武区期中)如图,△ABC为等边三角形,BD⊥AC交AC于点D,DE∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.18.(2022秋•姑苏区期中)如图,在四边形ABCD中,AB=AD,CB=CD,∠A=60°,点E为AD上一点,连接BD,CE交于点F,CE∥AB.(1)判断△DEF的形状,并说明理由;(2)若AD=12,CE=8,求CF的长.【分析】(1)先证明△ABD是等边三角形,可得∠ABD=∠ADB=60°,由平行线的性质可得∠CED=∠ADB=∠DFE=60°,可得结论;(2)由等边三角形的性质和平行线的性质可求AE=CE=8,即可求解.【解答】解:(1)△DEF是等边三角形,理由如下:∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°,∵CE∥AB,∴∠CED=∠A=60°,∠DFE=∠ABD=60°,∴∠CED=∠ADB=∠DFE,∴△DEF是等边三角形;(2)连接AC交BD于点O,∵AB=AD,CB=CD,∴AC是BD的垂直平分线,即AC⊥BD,∵AB=AD,∠BAD=60°,∴∠BAC=∠DAC=30°,∵CE∥AB,∴∠BAC=∠ACE=∠CAD=30°,∴AE=CE=8,∴DE=AD﹣AE=12﹣8=4,∵△DEF是等边三角形,∴EF=DE=4,∴CF=CE﹣EF=8﹣4=4.【点评】本题考查了等边三角形的判定和性质,平行线的性质,证明AE=CE是解题的关键.19.(2022秋•南通期末)已知等边△ABC的边长为5,点D为直线BC上一点,BD=1,DE∥AB交直线AC于点E,则DE的长为.【分析】分D在线段BC上,和D在线段CB的延长线上,两种情况,讨论求解即可.【解答】解:①当D在线段BC上,如图:∵等边△ABC的边长为5,∴∠A=∠B=∠C=60°,AB=AC=BC=5,∵BD=1,∴CD=BC﹣BD=4,∵DE∥AB,∴∠EDC=∠B=60°,∠DEA=∠A=60°,∴△DEC为等边三角形,∴DE=CD=4;②当D在线段CB的延长线上,如图:同法可得:△DEC为等边三角形,∴DE=CD=BC+BD=6;综上:DE的长为:4或6;故答案为:4或6.【点评】本题考查等边三角形的判定和性质.熟练掌握,两直线平行,同位角相等,证明三角形是等边三角形,是解题的关键.注意,分类讨论.20.(2022秋•鼓楼区校级月考)如图所示,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B 以2cm/s的速度移动,点Q从点B出发沿BA边向点A以5cm/s的速度移动.P,Q两点同时出发,它们移动的时间为ts.(1)你能用含的式子表示BP和BQ的长度吗?请你表示出来.(2)请问几秒后,△PBQ第一次为等边三角形?(3)若P,Q两点分别从C,B两点同时出发,并且按顺时针方向沿△ABC三边运动,请问经过几秒后点P与点Q第一次在△ABC的哪条边上相遇?【分析】(1)由等边三角形的性质可求得BC的长,用t可表示出BP和BQ的长;(2)由等边三角形的性质可知BQ=BP,可得到关于t的方程,可求得t的值;(3)设经过t秒后第一次相遇,由条件可得到关于t的方程,可求得t的值,可求得点P走过的路程,可确定出P点的位置.【解答】解:(1)∵△ABC为等边三角形,∴BC=AB=9cm,∵点P的运动速度为2cm/s,运动时间为ts,∴BP=BC﹣CP=(9﹣2t)cm,∵点Q的运动速度为5cm/s,运动时间为ts,∴BQ=5t(cm);(2)若△PBQ为等边三角形,则有BQ=BP,即9﹣2t=5t,解得t=,∴s时,△PBQ第一次为等边三角形;(3)设ts时,Q与P第一次相遇,根据题意得5t﹣2t=18,解得t=6,即6s时,两点第一次相遇.当t=6s时,P走过的路程为2×6=12cm,而9<12<18,即此时P在AB边上,∴经过6秒后点P与点Q在AB上第一次相遇.【点评】本题考查了等边三角形的性质和判定、方程思想等知识.该题为运动型题目,解决这类问题的关键是化“动”为“静”,即用时间和速度表示出线段的长.21.(2022秋•泰州月考)如图,已知点D、E在△ABC的边BC上,AB=AC,AD=AE.(1)求证:BD=CE;(2)若AD=BD=DE=CE,求∠BAE的度数.【分析】(1)作AF⊥BC于点F,利用等腰三角形三线合一的性质得到BF=CF,DF=EF,相减后即可得到正确的结论.(2)根据等边三角形的判定得到△ADE是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【解答】(1)证明:如图,过点A作AF⊥BC于F.∵AB=AC,AD=AE.∴BF=CF,DF=EF,∴BD=CE.(2)∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=∠ADE=60°.∵AD=BD,∴∠DAB=∠DBA.∴∠DAB=∠ADE=30°.∴∠BAE=∠BAD+∠DAE=90°.【点评】本题考查了等边三角形的判定与性质,熟练运用等边三角形的判定是本题的关键.22.(2022秋•沭阳县期中)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN 交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.【分析】(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△ACN≌△MCB,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.【解答】证明:(1)∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN,即∠ACN=∠MCB,在△ACN和△MCB中,∵,∴△ACN≌△MCB(SAS),∴AN=BM.(2)∵△CAN≌△CMB,∴∠CAN=∠CMB,又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,∵,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形.【点评】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握并熟练运用.23.(2022秋•启东市校级月考)数学课上,张老师举了下面的例题:例1:等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2:等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编的题目如下:变式题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答上面的变式题.(2)请继续探索,完成下面问题:等腰三角形ABC中,∠A=60°,则∠B的度数为.(3)根据以上探索,我们发现,∠A的度数不同,得到的∠B度数的个数也可能不同.请你直接写出当∠A 满足什么条件时,∠B能得到三个不同的度数.【分析】(1)∠A是顶角,则∠B是底角,根据等腰三角形的两个底角相等即可求解;∠B是顶角,则∠A 是底角,则根据等腰三角形的两个底角相等,以及三角形的内角和定理即可求解;∠C是顶角,则∠B与∠A都是底角,根据等腰三角形的两个底角相等即可求解;(2)分两种情况:①90≤x<180;0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)当∠A=80°为顶角时,∠B==50°;当∠B是顶角,则∠A是底角,则∠B=180°﹣80°﹣80°=20°;当∠C是顶角,则∠B与∠A都是底角,则∠B=∠A=80°,综上所述,∠B的度数为50°或20°或80°;(2)因为有一个角为60°的等腰三角形为等边三角形,所以∠B=60°,故答案为:60°.(3)分两种情况:设∠A=x°,①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0°<∠A<90°且x≠60°时,∠B有三个不同的度数.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.24.(2022秋•铜山区校级月考)已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:(1)AE=DB;(2)△CMN为等边三角形.【分析】(1)根据△DAC、△EBC均是等边三角形,求证△ACE≌△DCB(SAS)即可得出结论.(2)由(1)可知:△ACE≌△DCB,和△DAC、△EBC均是等边三角形,求证△ACM≌△DCN(ASA)即可得出结论.【解答】证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,∴△ACE≌△DCB(SAS).∴AE=DB.(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°﹣∠ACD﹣∠BCE=180°﹣60°﹣60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∴△ACM≌△DCN(ASA).∴CM=CN.又∠DCN=60°,∴△CMN为等边三角形.【点评】此题主要考查学生对等边三角形的性质与判定、全等三角形的判定与性质、三角形内角和定理等知识点的理解和掌握,此题难度不大,但是步骤繁琐,属于中档题.一.选择题(共5小题)1.(2022秋•梁溪区期中)下列命题不正确的是()A.等腰三角形的底角不能是钝角B.等腰三角形不能是直角三角形C.若一个三角形有三条对称轴,那么它一定是等边三角形D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形【分析】利用等腰三角形的性质和等边三角形的判定的知识,对各选项逐项分析,即可得出结果.【解答】解:本题可采用排除法;A、利用等腰三角形的性质,等腰三角形的两底角相等,若两底角均为钝角,不能构成三角形,故这种说法错误,故不选A;B、举反例:等腰直角三角形,故B不正确.即答案选B.【点评】本题主要考查了等腰三角形的性质和等边三角形的判定,要求学生在学习过程中要对所学过的知识进行总结和复习,以便灵活的运用所学的知识.2.(2022秋•鼓楼区校级月考)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出∠ABD=∠AOB=60°,进而判断出△AOC ≌△ABD,即可得出结论.【解答】解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD(SAS),∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD(SAS),∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.【点评】此题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.3.(2022秋•射阳县校级月考)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),按此方法,若点C的坐标为(2,m,m﹣2),则m=()A.2B.3C.4D.6【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,3,1),得到经过该点的三条直线对应着等边三角形三边上的三个数,依次为左,上,下,即可解答.【解答】解:由题意得:点C的坐标为(2,4,2),∴m=4,故选:C.【点评】本题考查了等边三角形的性质,规律型:数字的变化类,找出题中的规律是解题的关键.4.(2022秋•扬州期中)在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形(2)有两个外角相等的等腰三角形是等边三角形(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形(4)三个外角都相等的三角形是等边三角形其中正确的个数是()A.4个B.3个C.2个D.1个【分析】根据等边三角形的性质和定义,可得:有一个角为60°的等腰三角形是等边三角形;三个内角都相等的三角形为等边三角形;再由中线的性质和三角形内角和的定义可解答本题.【解答】解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.(4):三个外角都相等的三角形是等边三角形.正确;故选:C.【点评】本题考查等边三角形的判定,解题的关键是灵活运用的等边三角形的判定方法解决问题.5.(2022秋•邗江区月考)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB 于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.80°B.100°C.120°D.140°【分析】先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.【解答】解:∵△ABC是等边三角形,∴∠A=60°.对于△AEF,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵m∥n,∴∠2+∠DEB=180°,∴∠2=180°﹣80°=100°,故选:B.【点评】本题主要考查了等边三角形的性质,平行线的性质,三角形外角的性质,题目比较基础,熟练掌握性质是解题的关键.二.填空题(共13小题)6.(2022秋•江阴市期中)已知△ABC中,AB=AC=6,∠C=60°,则BC=6.【分析】先利用等腰三角形的性质得到∠B=∠C=60°,则可判断△ABC为等边三角形,然后根据等边三角形的性质得到BC=AB.【解答】解:∵AB=AC=6,∴∠B=∠C=60°,∴△ABC为等边三角形,∴BC=AB=6.故答案为:6.【点评】本题考查了等边三角形的性质:等边三角形的三条边都相等,三个内角都相等,且都等于60°.7.(2022秋•建邺区校级月考)如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC=.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD =30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=(180°﹣∠CAD)=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.【点评】此题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.8.(2022秋•崇川区校级月考)如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。

人教版数学八年级上册《等边三角形的性质和判定》教学设计2

人教版数学八年级上册《等边三角形的性质和判定》教学设计2

人教版数学八年级上册《等边三角形的性质和判定》教学设计2一. 教材分析等边三角形的性质和判定是初中数学八年级上册的教学内容,这部分内容在教材中占据重要的地位。

等边三角形是特殊类型的三角形,具有独特的性质。

本节课的教学内容主要包括等边三角形的性质及其应用,以及等边三角形的判定方法。

通过学习本节课的内容,学生能够更深入地了解等边三角形的性质,提高他们的空间想象能力和逻辑思维能力。

二. 学情分析学生在学习本节课之前,已经学习了三角形的性质、分类和判定等基础知识,对于三角形的概念和性质有一定的了解。

但等边三角形作为一种特殊的三角形,其性质和判定方法与普通三角形有所不同,需要学生进行进一步的学习和理解。

此外,学生需要通过观察、操作、推理等过程,发现等边三角形的性质和判定方法,因此,学生的观察能力、操作能力和推理能力有待提高。

三. 教学目标1.知识与技能目标:学生能够掌握等边三角形的性质及其应用,了解等边三角形的判定方法,提高他们的空间想象能力和逻辑思维能力。

2.过程与方法目标:通过观察、操作、推理等过程,学生能够发现等边三角形的性质和判定方法,培养他们的观察能力、操作能力和推理能力。

3.情感态度与价值观目标:学生能够积极参与课堂学习,对数学产生浓厚的兴趣,培养他们的团队协作能力和自主学习能力。

四. 教学重难点1.重点:等边三角形的性质及其应用,等边三角形的判定方法。

2.难点:发现等边三角形的性质和判定方法,理解等边三角形性质之间的联系。

五. 教学方法1.情境教学法:通过实物模型、图片等引导学生观察和操作,激发学生的学习兴趣。

2.问题驱动法:设置问题引导学生思考和讨论,培养学生的问题解决能力。

3.小组合作法:学生进行小组讨论和合作,培养学生的团队协作能力。

4.归纳总结法:引导学生总结等边三角形的性质和判定方法,提高学生的归纳能力。

六. 教学准备1.教学素材:准备等边三角形的模型、图片等教学素材。

2.教学工具:准备黑板、粉笔、投影仪等教学工具。

等腰三角形和等边三角形的性质

等腰三角形和等边三角形的性质

等腰三角形和等边三角形的性质一、等腰三角形的性质1.1 定义:等腰三角形是指有两边相等的三角形。

1.2 两边相等:在等腰三角形中,两个底角相等,两条底边相等。

1.3 底角平分线:在等腰三角形中,底边的垂直平分线同时也是底角平分线。

1.4 顶角平分线:在等腰三角形中,顶角的平分线、底边的中线和底角的平分线三线合一。

1.5 面积公式:等腰三角形的面积公式为:S=12absinC,其中 a 和 b 分别为等腰三角形的底边,C 为顶角。

二、等边三角形的性质2.1 定义:等边三角形是指三边相等的三角形。

2.2 内角相等:在等边三角形中,三个内角都相等,每个内角为60∘。

2.3 外角相等:在等边三角形中,每个外角都相等,每个外角为120∘。

2.4 中线相等:在等边三角形中,三条中线相等,且都垂直于对边。

2.5 高线相等:在等边三角形中,三条高线相等,且都垂直于对边。

2.6 面积公式:等边三角形的面积公式为:S=√34a2,其中 a 为等边三角形的边长。

2.7 圆周角定理:在等边三角形中,每个圆周角都等于60∘。

2.8 圆心对称:等边三角形具有圆心对称性,即三角形的三条高线、三条中线、三条角平分线都相交于同一点,称为三角形的垂心。

2.9 稳定性:等边三角形是稳定的,不会因为外力的作用而变形。

总结:等腰三角形和等边三角形是特殊的三角形,它们具有独特的性质。

通过掌握这些性质,我们可以更好地理解和解决与等腰三角形和等边三角形相关的问题。

习题及方法:1.习题:判断以下三角形是否为等腰三角形。

解答:根据等腰三角形的性质,只需要判断两边是否相等即可。

如果两边相等,则为等腰三角形。

2.习题:已知等腰三角形的底边长为8cm,腰长为5cm,求该三角形的面积。

解答:根据等腰三角形的性质,底边上的高也是腰长的垂直平分线。

因此,可以将三角形分成两个直角三角形,每个直角三角形的底边为4cm,高为5cm。

面积公式为S=12×底边×高,所以面积为12×4cm×5cm=10cm2。

八年级上册数学第11、12、13章知识要点

八年级上册数学第11、12、13章知识要点

第十一章三角形知识要点1、三角形的定义:不在同一直线上的三条线段首尾顺次连接而成的平面图形。

记为△ABC2、三角形的有关重要线段:⑴三角形的三边:三角形的两边之和大于第三边;①组成三角形的条件:较小的两边之和大于第三边②若两边为a、b,则第三边取值范围是: a-b <c< a+b⑵三角形的高线、中线、角平分线:都是线段3、三角形的分类:按边分可分为不等边三角形与等腰三角形(含等边三角形)解有关等腰三角形的问题时,通常要对等腰三角形的腰与底边进行分类讨论。

4、三角形的稳定性: 三角形具有稳定性5、三角形有关的角:⑴三角形内角和等于180°;⑵三角形的一个外角等于与它不相邻的两个内角的和,⑶三角形的一个外角大于与它不相邻的任何一个内角。

6、多边形:⑴对角线:多边形中不相邻的两个顶点之间的连线。

n边形从一个顶点出发有 n-3 对角线,这些对角线把n边形分成了n-2 三角形,n边形共有(3)2n n-条对角线;⑵n边形的内角和等于 (n-2)180°,⑶多边形的外角和都等于 360°,正n边形外角360n︒,因此内角180°-内角第十二章全等三角形知识要点1、能够完全重合的两个三角形叫,全等三角形。

全等三角形的性质:全等三角形对应边相等、对应角相等。

2、全等三角形的判定:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边(HL)。

方法与思路:要证明两条线段或两个角相等时,通常证这两条线段或这两个角分别所在的三角形全等。

3、角平分线的性质:角平分线上的点到角两边的距离相等。

4、角平分线推论:角的内部到角的两边的距离相等的点在这个角的平分线上。

第十三章轴对称知识要点1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形轴对称图形;这条直线叫做对称轴。

2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3、重直平分线的性质:线段垂直平分线上的任意一点到线段两个端点的距离相等。

人教版八年级数学上册第11章《三角形》说课稿

人教版八年级数学上册第11章《三角形》说课稿

人教版八年级数学上册第11章《三角形》说课稿一. 教材分析人教版八年级数学上册第11章《三角形》是学生在学习了平面几何基本概念和性质之后,进一步深入研究三角形的相关性质和应用。

本章主要包括三角形的概念、三角形的性质、三角形的判定和三角形的中线、高线、角平分线等知识。

通过本章的学习,使学生掌握三角形的的基本性质和判定方法,提高学生的空间想象能力和逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的几何基础知识,对平面几何的概念和性质有一定的了解。

但学生在学习过程中,对于一些抽象的概念和定理,仍然存在一定的困难。

因此,在教学过程中,需要教师引导学生通过观察、操作、思考、交流等途径,自主探究三角形的性质和判定方法,提高学生的几何素养。

三. 说教学目标1.知识与技能:理解三角形的概念,掌握三角形的性质和判定方法,学会使用三角形的性质解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等途径,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 说教学重难点1.教学重点:三角形的性质和判定方法。

2.教学难点:三角形性质的证明和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、积极参与。

2.教学手段:利用多媒体课件、教具模型等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过复习平面几何的基本概念,引导学生进入三角形的学习。

2.自主学习:让学生通过观察、操作、思考,探究三角形的性质和判定方法。

3.合作交流:学生分组讨论,分享各自的探究成果,解决存在的问题。

4.教师讲解:针对学生的探究结果,进行点评和讲解,引导学生深入理解三角形的性质和判定方法。

5.巩固练习:布置相关的练习题,让学生巩固所学知识。

6.课堂小结:对本节课的主要内容进行总结,强调三角形的性质和判定方法。

七. 说板书设计板书设计要简洁明了,突出三角形的性质和判定方法。

三角形的性质

三角形的性质
2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一) 。
3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线 。
等边三角形的判定:(首先考虑判断三角形是等腰三角形)
(1)三边相等的三角形是等边三角形(定义)
(2)三个内角都相等的三角形是等边三角形
[编辑本段]关系
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角之和;
(3)三角形的一个外角大于任何一个和它不相邻的内角;
(4)三角形两边之和大于第三边,两边之差小于第三边;
(5)在同一个三角形内,大边对大角,大角对大边.
三角形面积计算公式
S(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半
[编辑本段]梅涅劳斯定理
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
从A点出发的旅游方案共有四种,下面逐一说明:
方案 ① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。
按照这个方案,可以写出关系式:
(AF:FB)*(BD:DC)*(CE:EA)=1。
[编辑本段]勾股定理
在Rt三角形ABC中,〈A=90度,则
AB·AB+AC·AC=BC·BC
A>90度,则

等边三角形PPT课件

等边三角形PPT课件

②得出300 角所对的直角边与斜边之间的数量关系,说明理由.
第34页/共50页
• 探究2
操 作探 究
①当将两个同样大小的三角板(含30 °和60 °的角)摆在一起,
新得到的三角形是特殊的三角形吗?请说明理由;
②得出300 角所对的直角边与斜边之间的数量关系,说明理由.
第35页/共50页
验证:我们可以用两个同样大小的三角尺
二、 等边三角形的判定
1.三个边都相等的三角形是等边三角形; 2.三个角都相等的三角形是等边三角形; 3.有一个内角等于60 °的等腰三角形是等边三角形.
第31页/共50页
• 探究1
操 作探 究
用直尺量一量含30°角的直角三角板的最短直角边(即300 角所
对的直角边)与斜边,记录下数据,你有什么发现?
第14页/共50页
(3)等边三角形各边上中线,高
A
和所对角的平分线都三线合一. D
E
O
(4)等边三角形是轴对称 B F C
图形,有三条对称轴.
A
B
C
第15页/共50页
△ABC是等边三角形,D为AC的中点,延长BC到 E,使CE=CD, 求证:BD=DE A
证明:∵ △ABC是等边三角形
∴ AB=AC=BC,
B
C
第25页/共50页
1.三边都相等的三角形是等边三角形.(定义)
A ∵AB=BC=AC
一般三角形
∴△ABC是等边三角形 等边三角形
B
C
2. 三个角都相等的三角形是 ∵ ∠A= ∠ B= ∠ C
等边三角形.
A
∴△ABC是等边三角形
等腰三角形
等边三角形
B

青岛版数学八年级上册《等边三角形性质和判定》说课稿1

青岛版数学八年级上册《等边三角形性质和判定》说课稿1

青岛版数学八年级上册《等边三角形性质和判定》说课稿1一. 教材分析《等边三角形性质和判定》是青岛版数学八年级上册的一章内容。

本章主要介绍了等边三角形的性质和判定方法。

通过学习本章,学生能够理解等边三角形的性质,掌握等边三角形的判定方法,并能够运用这些性质和判定方法解决实际问题。

二. 学情分析学生在学习本章之前,已经学习了三角形的性质和判定方法,对三角形的基本概念有一定的了解。

但是,学生可能对于等边三角形的特殊性质和判定方法还不够熟悉。

因此,在教学过程中,需要引导学生通过观察和推理来发现等边三角形的性质,并通过实际例题来巩固和应用这些性质。

三. 说教学目标1.知识与技能目标:学生能够理解等边三角形的性质,掌握等边三角形的判定方法,并能够运用这些性质和判定方法解决实际问题。

2.过程与方法目标:学生通过观察、推理和实际操作,培养直观思维和逻辑思维能力,提高解决几何问题的能力。

3.情感态度与价值观目标:学生通过学习等边三角形的性质和判定方法,培养对数学的兴趣和好奇心,提高自信心和自主学习能力。

四. 说教学重难点1.教学重点:等边三角形的性质和判定方法。

2.教学难点:等边三角形的判定方法的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。

通过提出问题,引导学生观察和推理,激发学生的思维和兴趣。

同时,学生进行合作学习,促进学生之间的交流和合作。

2.教学手段:利用多媒体课件和实物模型进行教学。

通过课件的展示和实物模型的操作,增强学生对等边三角形性质和判定方法的理解和记忆。

六. 说教学过程1.导入:通过提出问题,引导学生回顾三角形的基本性质和判定方法。

激发学生对等边三角形的性质和判定方法的好奇心。

2.探究等边三角形的性质:引导学生观察等边三角形的模型,通过实际操作和小组讨论,发现等边三角形的性质。

鼓励学生用自己的语言表达和解释这些性质。

3.学习等边三角形的判定方法:引导学生通过观察和推理,探索等边三角形的判定方法。

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(一)

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(一)

2021年九年级数学中考复习分类专题:等边三角形的判定与性质(一)一.选择题1.关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形2.如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.3.如图,半径为1的半圆O上有两个动点A,B,CD为直径,若AB=1,则四边形ABCD 的面积的最大值为()A.B.4C.D.4.如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC 边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a5.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2a B.8+a C.6+a D.6+2a6.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4 C.D.4.57.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④8.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3 B.4 C.5 D.69.如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F 分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.10.如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,1),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,…,按此规律继续作下去,得到等边三角形O2018A2018A2019,则点A2019的纵坐标为()A.()2016B.()2017C.()2018D.()2019二.填空题11.已知半径为2的⊙O中,弦AC=2,弦AD=,则∠AOD=,∠COD =.12.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC 平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为.13.如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC=米.14.如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.15.如图,在矩形ABCD中,AB=3,∠ACB=60°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠FDE=60°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是.三.解答题16.如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.17.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP =AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.18.如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE绕着A点顺时针旋转60°到△ABF的位置(如图2),分别连接DF、EF.①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;②试判断四边形CDFE的形状,并说明理由.19.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC =α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.20.已知在平面直角坐标系内A(4,0)、B(2,0),点P是y轴正半轴上一个动点,联结AP.过点O作OD⊥PA,垂足为D.联结BD并延长交y轴于点F.(1)如果OD=2,求PF的长;(2)如果PD=PF,求OP的长.21.如图所示,已知一个面积为S的等边三角形,现将其各边n等分(n为大于2的整数),并以相邻等分点为顶点向外作小等边三角形.(1)当n=5时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含S的式子表示)(2)当n=k时,共向外作出了个小等边三角形,每个小等边三角形的面积为,这些小等边三角形的面积和为;(用含k和S的式子表示)(3)若大等边三角形的面积为100,则当n=10时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?参考答案一.选择题1.解:A、等边三角形中,各边都相等,此选项正确;B、等边三角形是特殊的等腰三角形,此选项错误;C、两个角都等于60°的三角形是等边三角形,此选项正确;D、有一个角为60°的等腰三角形是等边三角形,此选项正确;故选:B.2.解:∵四边形ABCD为菱形,AB=2,∠DAB=60°∴AB=BC=CD=2,∠DCB=60°∵CE=CD,CF=CB∴CE=CF=∴△CEF为等边三角形∴S△CEF==故选:D.3.解:过点O作OH⊥AB于点H,连接OA,OB,分别过点A、H、B作AE⊥CD、HF ⊥CD,BG⊥CD于点E、F、G,∵AB=1,⊙O的半径=1,∴OH=,∵垂线段最短,∴HF<OH,∴HF=(AE+BG),∴S四边形ABCD=S△AOC+S△AOB+S△BOD=×=,=,,故选:C.4.解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.5.解:∵△MNP中,∠P=60°,MN=NP∴△MNP是等边三角形.又∵MQ⊥PN,垂足为Q,∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN,∴QG=MQ=a,∵△MNP的周长为12,∴MN=4,NG=2,∴△MGQ周长是6+2a.故选:D.6.解:如图,以CD为边作等边△CDE,连接AE.∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,∴在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.又∵∠ADC=30°,∴∠ADE=90°.在Rt△ADE中,AE=5,AD=3,于是DE=,∴CD=DE=4.故选:B.7.解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.8.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.9.解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.10.解:∵三角形OAA1是等边三角形,∴OA1=OA=1,∠AOA1=60°,∴∠O1OA1=30°.在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,∴O1A1=OA1=,即点A1的纵坐标为;同理,O2A2=O1A2=()2,O3A3=O2A3=()3,即点A2的纵坐标为()2,点A3的纵坐标为()3,…∴点A2019的纵坐标为()2019.故选:D.二.填空题(共5小题)11.解:如图,在△AOD中,∵OA2+OD2=22+22=8,AD2=(2)2=8,∴OA2+OD2=AD2,∴∠AOD=90°;连接OC,∵OA=OC=AC=2,∴△AOC是等边三角形,∴∠AOC=60°.∴∠COD=∠AOC+∠AOD=60°+90°=150°或∠COD=∠AOD﹣∠AOC=90°﹣60°=30°.故答案为:90°;150°或30°.12.解:如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M.由题意可知,四边形EDHF,四边形MNCF,四边形MKGJ是平行四边形,∵∠A=∠B=60°,△ABC是等边三角形,∴ED=FM+MK+KH=CN+JG+HK,EC=EF+FC=JN+KG+DH,∴“九曲桥”的总长度是AE+EB=2AB=200m.故答案为:200m.13.解:∵∠ABC=60°,∠ACB=60°,∴∠BAC=60°,∴△ABC是等边三角形,∵BC=48米,∴AC=48米.故答案为:48.14.解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=1.8,BC=3.9,∴CD=BC﹣BD=3.9﹣1.8=2.1.故答案为:2.1.15.解:E的运动路径是线段EE'的长;∵AB=3,∠ACB=60°,∴BC=,当F与A点重合时,在Rt△ADE'中,AD=,∠ADE'=60°,∴DE'=AD=,∠CDE'=30°,当F与C重合时,∠EDC=60°,∴∠EDE'=90°,∠DEE'=30°,在Rt△DEE'中,EE'===;故答案为.三.解答题(共6小题)16.证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.17.解:(1)∵△ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠MAC+∠PAC=∠PAB+∠PAC=60°,∵AP=AM,∴△APM为等边三角形∴PA=PM.18.证明:(1)∵△ABC是正三角形,∴BC=CA,∠B=∠ECA=60°,又∵BD=CE,∴△BCD≌△CAE,∴CD=AE.(2)①图中有2个正三角形,分别是△BDF,△AFE.由题设,有△ACE≌△ABF,∴CE=BF,∠ECA=∠ABF=60°,又∵BD=CE,∴BD=CE=BF,∴△BDF是正三角形,∵AF=AE,∠FAE=60°,∴△AFE是正三角形.②四边形CDFE是平行四边形.∵∠FDB=∠ABC=60°,∴FD∥EC,又∵FD=FB=EC,∴四边形CDFE是平行四边形.19.解:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.20.解:(1)∵OD⊥PA,∴∠ADO=90°,∵OD=2,OA=4,∴OD=OA,∴∠OAP=30°,∴∠AOD=60°,∵OB=2,∴OD=OB,∴△ODB是等边三角形,∴∠OBF=60°,∴OF=OB=2,∵OP=OA=,∴PF=OF﹣OP=;(2)∵PF=PD,∴∠PFD=∠PDF,∵OB=2,OA=4,∴OB=AB,∵OD⊥AP,∴BD=AB,∴∠ADB∠BAD,∵∠PDE=∠ADB,∴∠PFD=∠PDF=∠ADB=∠BAD,∵∠POD+∠AOD=AOD+∠OAD=90°,∴∠POD=∠OAD,∴∠POD=∠OFD,∴OD=DF,∴OD=BD=2,∴OD=OA,∴∠OAD=30°,∴OP=OA=.21.解:(1)当n=5时,共有3×(5﹣2)=9个小等边三角形,∴每个小三角形与大三角形边长的比=,∵大三角形的面积是S,∴每个小三角形的面积为S,这些小等边三角形的面积和为S;(2)由(1)可知,当n=k时,共有3×(k﹣2)=3(k﹣2),每个小等边三角形的面积为S,每个小三角形的面积和为S.故答案为:(1)9,S,S;(2)3(k﹣2),S,S;(3)当S=100,n=10时,3(n﹣2)=3×(10﹣2)=24(个),S =×100=24.即共向外作出了24个小等边三角形,这些小等边三角形的面积和为24.21 / 21。

人教版初二数学上册:等边三角形(提高)知识讲解

人教版初二数学上册:等边三角形(提高)知识讲解

等边三角形(提高)【学习目标】1. 掌握等边三角形的性质和判定.2. 掌握含30°角的直角三角形的一个主要性质.3. 熟练运用等边三角形的判定定理与性质定理进行推理和计算. 【要点梳理】【高清课堂:389303 等边三角形,知识要点】 要点一、等边三角形 等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质 等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°. 要点三、等边三角形的判定 等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形. 要点四、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半. 要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系. 【典型例题】类型一、等边三角形1、(2015秋·黄冈期中)如图,已知点B 、C 、D 在同一条直线上,ABC ∆和DCE ∆都是等边三角形,BE 交AC 于F ,AD 交CE 于H. (1)求证:△BCE ≌△ACD ; (2)求证:FH ∥BD.【答案与解析】(1)证明: ABC ∆和DCE ∆都是等边三角形 ∴BC =AC ,CE =CD ,∠BCA =∠ECD =60°∴∠BCA+∠ACE=∠ECD+∠ACE ,即∠BCE=∠ACD在△BCE 和△ACD 中BCE ACD CE B A D C C C ∠=∠==⎧⎪⎨⎪⎩∴△BCE ≌△ACD (SAS )(2)由(1)知△BCE ≌△ACD 则∠CBF=∠CAH ,BC=AC又∵ABC ∆和DCE ∆都是等边三角形,且点B 、C 、D 在同一条直线上, ∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF , 在△BCF 和△ACH 中CBE CAH BC ACBCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (ASA ) ∴CF=CH ,又∵∠FCH =60°∴△CHF 是等边三角形 ∴∠FHC =∠HCD=60°, ∴FH ∥BD【总结升华】本题考查等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键。

等边三角形的性质和判定

等边三角形的性质和判定

等边三角形的性质与判定知识点1 等边三角形的性质1.如图,△ABC 是等边三角形,点D 在AC 边上,∠DBC =35°,则∠ADB 的度数为( )A.25°B.60°C.85°D.95°2.如图,在△ABC 中D ,E 是BC 的三等分点,且△ADE 是等边三角形,则∠BAC = °.3.如图,将等边△ABC 的边BC 延长至D ,使得CD =AC ,若点E 是AD 的中点,则∠DCE 的度数为60°.4.如图,△ABC 、△ADE 是等边三角形,B ,C ,D 在同一直线上.求证:(1)CE =AC +DC ;(2)∠ECD =60°.知识点2 等边三角形的判定 5.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④三边的高又是它的中线的三角形.其中是等边三角形的个数为( )A.1B.2C.3D.46.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA =OB =18cm ,若衣架收拢时,∠AOB =60°,如图2,则此时A ,B 两点之间的距离是 cm.7.如图,△ABC 中,∠A =60°,分别以A ,B 为圆心,大于AB 长的一半为半径画弧交于两点,过两点的直线交AC 于点D ,连接BD ,则△ABD是 三角形.8.如图,已知△ABC 是等边三角形,且∠1=∠2=∠3. (1)求∠BEC 的度数.(2)△DEF 是等边三角形吗?请简要说明理由.9.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状 10.如图,△ABC 是等边三角形,DE ∥BC ,若AB =5,BD =3,则△ADE 的周长为( )A.2B.6C.9D.1511.三角形中任意一角的平分线都是这角对所边上的中线,对这个三角形最准确的判断是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形12.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ的周长是( )A.8+2aB.8+aC.6+aD.6+2a13.如图,AB=AC=8 cm,DB=DC,若∠ABC=60°,则BE=cm..14.(2016·泰州中考)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于°.15.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的度数.16.如图,已知△ABC和△BDE都是等边三角形,求证:AE=C D.17.如图,△ABD和△BCD均是边长为2的等边三角形,E,F分别是AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由.18.如图,已知点B,C,D在同一条直线上,△ABC 和△CDE都是等边三角形.BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥B D.。

等边三角形性质和判定

等边三角形性质和判定
A
D
E
B
C
若将DE ∥ BC改为AD=AE呢?
若 将DE ∥ BC改为∠ADE=600呢?
第6页,共14页。
运用新知
1、△ABC是等边三角形,以下三种分法分别得到的 △ADE是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=600,D、E分别在边AB、AC上.
③过边AB上一点D作DE∥BC,交边AC于E点.
上的一点,且△PAB、△PBC、△PCA都是等腰三
角形,那么这样的点P的位置共有几个?试一一
画出。
· P1
A
B
C
第12页,共14页。
探究判定
有一个内角等于60°的等腰三角形是等边三
角形?
(1))当顶角为60°时,两个底角各为60°.
(2))当底角为60°时,顶角为60°.
A
B
C
第13页,共14页。
等边三角形性质和判定
第1页,共14页。
回顾
1、什么是等腰三角形?
A
2、等腰三角形有什么性质?
从边看:等腰三角形的两腰相等
AB=AC
B
从角看: 等腰三角形的两底角相等
D
C
∠B=∠C
从重要线段看: 等腰三角形顶角的平分线、底边上 的中线和底边上的高线互相重合
从对称性看:
等腰三角形是轴对称图形
第2页,共14页。
3.等边三角形各边上中线,高和所对角的平分
线都三线合一。 4.等边三角形是轴对称图形,有三条对称轴。
第4页,共14页。
怎样判断三角形ABC是等边三角形?
1.三边都相等的三角形是等边三角形.(定义)
A
∵AB=BC=AC

等边三角形性质与判定

等边三角形性质与判定

请你说一说这节课的收获和体 验让大家与你一起分享 ?
等边三角形的性质:
名 称
等 边 三 角 B 形
图 形
性 三条边都相等

A
三个角都相等,且都为60°
C
三线合一 轴对称图形,有三条对称轴
等边三角形的判定:
名 称
等 边 三 角 B 形
图 形


三条边都相等的三角形
A
三个角都等于60°的三角形
C
有一个角等于60°的等腰
等边三角形的判定(重点) 例 2:如图 2,△ABC 是等边三角形,且∠1=∠2=∠3.判 断△DEF 的形状,并简要说明理由.
图2 思路导引:观察发现△DEF 是等边三角形.由于已知角的
关系,可考虑利用“三个角都相等的三角形是等边三角形”进
行证明.
解:△DEF 是等边三角形.理由如下: ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=∠CAB=60°. ∵∠1=∠2=∠3, ∴∠DFE=∠3+∠FAC=∠1+∠FAC=∠CAB=60°. 同理∠DEF=∠EDF=60°.∴△DEF 是等边三角形. 【规律总结】在证明等边三角形时,若已知三边关系,则 先选用判定方法(1);若已知三角关系,则先选用判定方法(2); 若已知等腰三角形,则先选用判定方法(3).
2、有一个内角等于60°的等腰三角形是等边三角形?
A
当顶角为60°时,两个底角各为60°. 当底角为60°时,顶角为60°.
B
C
等边三角形的判定方法:
一般三角形
等边三角形
1.三边相等的三角形是等边三角形. 2.三个内角都等于60 °的三角ቤተ መጻሕፍቲ ባይዱ是等边三角 形.
等腰三角形

第十三章 第11课 等边三角形的判定

第十三章 第11课 等边三角形的判定
求∠BAC 的度数.
解:∵PQ=AQ=AP, ∴△APQ是等边三角形, ∴∠APQ=∠PAQ=∠AQP=60°. 又∵BP=AP,AQ=QC, ∴∠B=∠C= ×60°=30°. ∴∠BAC=180°-30°-30°=120°.
5.如图,△ABC 是等边三角形,点 D 是 AC 上一点,BD=CE, ∠1=∠2.试判断△ADE 形状,并证明你的结论.
1.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为
Q,延长 MN 至点 G,取 NG=NQ.若△MNP 的周长为 12,MQ
=a,则△MGQ 的周长是( D )
A.8+2a
B.8+a
C.6+a
D.6+2a
2.如图,在四边形 ABCD 中,AB=AD,AB⊥BC,AD⊥DC,∠ BAD=60°,点 M,N 分别在 AB,AD 边上,MC=NC.求证:△ AMN 是等边三角形.
证明:连接 BD ∵AB=AD,∴∠ABD=∠ADB 又∵AB⊥BC,AD⊥DC ∴∠ABC=∠ADC=90° ∴∠CBD=∠CDB.∴CB=CD
答案图
又∵MC=NC,∴△MBC≌△NDC ∴∠BMC=∠DNC 又∵MC=NC ∴∠CMN=∠CNM ∴∠AMN=∠ANM ∴△AMN 是等腰三角形 又∵∠BAD=60° ∴△AMN 是等边三角形
3.如图,在△ABC 中,点 D 是 AB 上的一点,且 AD=DC=DB, ∠B=30°.求证:△ADC 就等边三角形. 证明:∵DC=DB,∠B=30° ∴∠DCB=∠B=30°, ∴∠ADC=∠DCB+∠B=60° 又∵AD=DC, ∴△ADC 是等边三角形.
4.如图,P,Q 在 BC 上,且 BP=PQ=QC=AP=AQ.
证明:∵(1)AE∥BC,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
A B C E F
4、一个六边形的每个内角都是120 °,连 续四边的长依次是2.7、3、5、2,则该六 边形的周长是 20.7 。
5、在等边△ABC中,D,E分别是AB,AC上 的点,且AD=CE,则∠BCD+∠CBE= 60 度.
6、P是正△ABC内的一点,且PA=6, PB=8,PC=10,若将△PAC绕点A旋转 后,得到△QAB,则点P与Q之间的距 离为 6 ,∠APB= 150 度。
等边三角形(1)
等边三角形的定义
三条边都相等的三角形叫做等边
三角形(也叫正三角形). A
B
C
等腰三角形
轴对称图形
等边三角形
轴对称图形
两腰相等 两个底角相等
三线合一 对称轴1条
三边都相等 三个角都相等,都是60º
三线合一 对称轴3条
等边三角形是
一类特殊的 等腰三角形
知识探究二
如图,△ADE中,已知AD=AE,∠A=60°,
A
A. 4个
B. 5个
C. 6个
D. 7个
D B
O
E C
3.如图,等边三角形ABC中,BD是AC边上
的中线,BD=BE,求∠EDA的度数.
B
E C
D
A
4.如图是由15根火柴组成的两个等边 三角形,你能只移动三根火柴将此图 变成含有四个等边三角形的图形吗?
链接中考
5.如图,△ABC和△CDE是 两个全等的等边三角形, D、O、A共线,求∠AEB的 大小.
7、△ABC和△CDE都是等边三角形,且 ∠EBD=62度,则∠AEB的度数是122度。
设∠EAC=x,∠BAE=60-x,
△ACE≌△BCD,
∠DBC=x,
∠EBC=62-x, ∠ABE=60-(62-x)=x-2,
∠AEB=180-(60-x)-(x-2)=122
8、点D为等边三角形ABC内的一点, BD是 30 度。
C
E O
B
B
D
A
6.如图,若△OAB和△OCD是 两个不全等的等边三角形, D、O、A共线,你还能求出 ∠AEB的大小吗?
C E
D
O
A
链接中考
7.如图,若△OAB和△OCD是 两个不全等的等边三角形, D、O、A共线,你能得到哪 些有意思的结论呢?
B
C
E
F
D O
G
A
C为线段AE上一动点(不与A、E重合),在AE 同侧作正△ABC和正△CDE,AD与BE交于点O, AD与BC交于点P,BE与CD交于点Q,连接PQ. 以下5个结论:①AD=BE;②PQ∥AE;③ AP=BQ;④CQ=CP;⑤∠AOB=60°.恒成立的 有 ①②③④⑤ 。
9、如图,设P是等边三角形ABC内的 一点,PA=3,PB=4,PC=5,则∠APB 的度数是 150 度。
10、在等边三角形ABC中,AC=9,点O在AC上, 且AO=3,点P是AB上一动点,连接OP,将线段OP 绕点O逆时针旋转60度得到线段OD,要使点D恰 好落在BC上,则AP的长是 6 .
以AC为边作等边△ADC,再 连接DB
可证明△ABD≌△CBD
再证明△ABD≌△AMC 所以, AB=AM
15.如图所示,P是等边三角形ABC内的一点, 连结PA、PB、PC,以BP为边作∠PBQ=60°
,且BQ=BP,连接CQ,PQ.
(1)若PB=2,求P点到Q点的距离.
(2)若PB:PA:PC=3:4:5,判断△PQC的形状.
△ADE是等边三角形吗?
一个角是
60
+等腰三角形
等边三角形
三个内角都相等的三角形
等边三角形
两个内角角是60的三角形
等边三角形
等边三角形的判定
三边都相等的三角形 三个内角都相等的三角形
有两个内角等于
有一个内角等于
60的三角形 60 的等腰三角形
是等边三角形
满足什么条件的三角 形是等腰三角形?
D
B E C
例:如图,在等边三角形ABC中,DE∥BC, 请问△ADE是等边三角形吗?试说明理由.
A
变式练习 B
D
E C
上题中,若将条件DE∥BC改为AD=AE,
△ADE还是等边三角形吗?试说明理由.
1.已知△ABC中,∠A=∠B=60°,
9 AB=3cm,则△ABC的周长为______cm
2.如图:等边三角形ABC的三条角平分线 交于点O,DE∥BC,则这个图形中的等腰 三角形共有( D )
A
P B Q C
16.如图所示:D是△ABC 外一点,AB=AC=BD+CD, ∠ABD=60°,∠BAC=40°,求∠ACD和∠BCD的度数.
延长BD至点E,使得DE=CD.连接AD,AE.
① △ABE是等边三角形
② △ADC≌△ADE
③∠ACD=60°
④∠BCD=110度
三个角都相等的三角形是等边三角形。
∵ ∠A= ∠ B= ∠ C ∴△ABC是等边三角形
有一个角是60°的等腰三角形是等边三角形。
∵ ∠A=600 , AB=BC ∴△ABC是等边三角形
等边三角形
一、 等边三角形的定义:
三条边都相等的三角形叫做等边三角形. 二、 等边三角形的性质: 1.等边三角形的内角都相等,且等于60 ° 2.等边三角形是轴对称图形,有三条对称轴.
CD=CE=DE,∠DCE=6 0度,∠DCB=120度,∠D CE+∠DCB=180度,所以 B、C、E三点在同一条直线上。 BA=DA,∠BAD=60度, △ABD为等边三角形,BD=A D,∠ADC=∠BDE,△AD C≌△BDE,BE=AC,AC =BC+DC
14.如图所示:在△ABC中,∠BAC=∠BCA=44° M为△ABC 内一点,使得∠MCA=30°, ∠MAC =16°.求证: AB=AM
8.如图,在等边△ABC中,AF=BD=CE
,请说明△DEF也是等边三角形的理由.
A E
F B D C
9.ΔABC为正三角形,点M是射线BC上一点,点N是射线 CA上一点,BM=CN,BN与AM交于Q点。就下面给出 的三种情况,猜测∠BQM在点M、N的变化中的取值情 况,并利用图③证明你的结论。
3.等边三角形各边上中线,高和所对角的平分线都三线合一.
三、 等边三角形的判定: 1.三边都相等的三角形是等边三角形. 2.三个角都相等的三角形是等边三角形. 3.有一个内角等于60 °的等腰三角形是等边三角形.
小试牛刀! 如图,△ABC和△ADE都是等边三角形, 已知△ABC的周长为18cm,EC =2cm,求 △ADE的周长. A
△OCD≌△PAO
11、如图,在△ABC中,AB=AC=5, BC=6,点M为BC的中点,MN⊥AC 于点N,则MN等于 2.4 .
12、如图,B是线段AC的中点,过点C的直 线l与AC成60度的角,在直线l上取一点P, 使∠APB=30度,则满足条件的点P的个 数是 2 。
13、如图,已知四边形ABCD中,AB=AD, ∠BAD=60度,∠BCD=120度,求证: BC+DC=AC。 连接BD,以DC为边作 一个等边三角形DCE。
方法一:从边看
满足什么条件的三角 形是等边三角形
方法一:

有两边相等的三角形是 等腰三角形(定义)
方法二:从角看
三边都相等的三角形是 等边三角形(定义)
方法二:
有两个角相等的三角 形是等腰三角形。
三个角都相等的三角 形是等边三角形。
三边都相等的三角形是等边三角形。
∵AB=BC=AC ∴△ABC是等边三角形
练习
1.如图,点E是BC的中点,点A在DE上, 且∠BAE=∠CDE。求证:AB=CD D A A C D
F
B
E
B
E
C
G
2.已知:如图,△ABC中,AB=BC=CA, AE=CD,AD、BE相交于P,BQ⊥AD于Q. 求证:BP=2PQ
A P E Q B D C
3. 如图,已知D在等边△ABC的边BA 的延长线上,点E在BC的延长线上, 且AD=BE, 求证:CD=DE
相关文档
最新文档