八年级数学下册9.3平行四边形教案2(新版)苏科版

合集下载

最新苏教版八年级数学下册9.3平行四边形公开课优质教案(14)

最新苏教版八年级数学下册9.3平行四边形公开课优质教案(14)

9.3《平行四边形》平行四边形地判定初二班姓名学号学习目标1.理解和掌握用边地条件来识别平行四边形;2.能灵活运用平行四边形地识别方法说明一个四边形是平行四边形.教学过程:一、引入新课:木工师傅做了一个平行四边形,通过测量角或边,你能判断这个四边形就是平行四边形吗?1.如图,在四边形ABCD中,∠A+ ∠B=180°,∠B+∠C=180°,四边形ABCD是平行四边形吗?为什么?2.在四边形ABCD中,∠A =∠C,∠B =∠D,四边形ABCD是平行四边形吗?为什么?总结:根据四边形角地条件,可以转化为两组对边分别平行,从而利用定义来证明.3.在四边形ABCD中,AB∥CD,AB=CD,四边形ABCD是平行四边形吗?为什么?定理1: .4.在四边形ABCD中,AB=CD,AD=BC,四边形ABCD 是平行四边形吗?为什么?定理2: .5.在四边形ABCD中,AB∥CD,AD=BC,四边形ABCD 是平行四边形吗?为什么?二、牛刀小试:1.练习:在下列条件中,不能判定四边形是平行四边形地是( )(A) AB∥CD,AD∥BC (B) AB=CD,AD=BC (C)AB ∥CD,AB=CD (D) AB∥CD,AD=BC2.如图AB∥MN∥DC,AD∥EF∥BC,图中有几个平行四边形?3.在四边形ABCD中,AB∥CD,添加一个条件,使四边形ABCD为平行四边形(不再添加字母,辅助线) 三、典型例题:例1已知:E 、F 分别为平行四边形ABCD 两边AD 、BC 地中点,连结BE 、DF 求证:四边形BFDE 是平行四边形. 例 2 已知:如图,在 ABCD 中,E ,F 分别是边AB 、CD 地中点. 求证:EF//AD//BC 例3已知:E 、F 是平行四边形ABCD对角线AC 上地两点,并且AE=CF 求证:四边形BFDE 是平行四边形 AB D E练习:1.下列命题是真命题地有()①如果AB=CD,AB ∥ CD ,那么四边形ABCD是平行四边形②如果AB=CD,AD=BC ,那么四边形ABCD是平行四边形③如果AB=CD,AD∥BC,那么四边形ABCD是平行四边形④如果AB∥CD,AD=BC,那么四边形ABCD是平行四边形⑤如果AB∥CD,AD∥BC,那么四边形ABCD是平行四边形⑥如果AD=BC,AD∥BC,那么四边形ABCD是平行四边形A、6个B、5个C、4个D、3个2.直角坐标系内有平行四边形地三个顶点,它们地坐标分别是A(2,1)、B(-1,-2)、C(3 , -2 ),试找出第四个顶点地位置,并写出它地坐标.四、课堂小结五、课后练习1.能判断一个四边形是平行四边形地为()A、一组对边平行,另一组对边相等B、一组对边平行,一组对角相等C、一组对边平行,一组对角互补D、一组对边平行,两条对角线相等2.下列两个图形,可以组成平行四边形地是()A.两个等腰三角形B. 两个直角三角形C. 两个锐角三角形D. 两个全等三角形3.已知:四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,需添__________ (只需填一个你认为正确地条件即可)。

苏科版八年级数学下册 平行四边形 教案

苏科版八年级数学下册 平行四边形 教案

第六章平行四边形1平行四边形的性质第1课时平行四边形的边和角的性质图6-1-13活动二:实践探究交流新知对称图形;(2)发互动题板让学生亲自探究平行四边形是中心对称图形,并且让学生找到对称中心;(3)从旋转探究过程,引导学生发现平行四边形的对边和对角的关系。

【探究2】利用度量法探究平行四边形对边对角的关系:教师利用几何画板让学生去发现平行四边形对边对角的关系,教师再有特殊到一般得出对任意的平行四边形,该性质都成立。

【探究3】利用拼凑法探究平行四边形对边对角的关系教师准备好两个全等的三角形,让学生把对应相等的一边重合,拼成四边形,并小组之间讨论共能拼出不一样的四边形几个?让学生拼出后,把所拼出的情况拍照上传,教师及时检查并做好标记,把学生拼出的情况做好行四边形不是轴对称图形的互动题板,让学生亲自感受过程,提高学生的学习兴趣。

利用优学派智慧课堂平台给学生发平行四边形旋转的互动题板,让学生亲自动手旋转,发现平行四边形是中心对称图形,培养学生的动手能力和激发学生的学习兴趣,教师再引导学生去发现平行四边形对边对角之间的关系。

让学生借助学具动手探究平行四边形的性质,将动手实践得出的猜想,再加以理论验证,归纳成数学结论,使学生亲身参与数学研究的过程,并在此过程中体会数学研究的乐趣,对平行四边形性质探索与归纳,使学生对平行四边形的特征再认识,是知识的一次升华,活动三:开放训练体现应用教学引入解决:学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?【当堂测评】1.如图,在▱ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形()A. 6个B. 7个C. 8个D. 9个2.下列不是轴对称图形,而是中心对称图形的是()A.角B. 等腰三角形C.平行四边形D.直角三角形3.如图,在▱ABCD中,AB=3,AD=2,则CD=( )进一步巩固加强学生对知识的掌握,从而提高对知识的运用能力;同时查缺补漏,为以后教师的教和学生的学指明方向.利用优学派智慧课堂平台给学生发当堂测评,让学生做了及时提交,通过平台的统计功能,统计出学生的正确率和做错的学生,让教师及时掌握学生对知识的掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高.A. 3B. 2C. 1D. 54.已知一个平行四边形两邻边的长分别为10和6,那么它的周长为( ).A. 16B. 60C. 32D. 305.若平行四边形中两个内角的度数比为1:2,则其中较小的内角是()A. 90°B. 60°C. 120°D. 45°活动四:课堂总结反思【课堂总结】活动内容:同学们走入生活,我们会发现数学无处不在,走进数学课堂我们会收获许多乐趣,今天这节课你有哪些收获?作业:平板作业按时做完。

平行四边形(第2课时)(课件)八年级数学下册(苏科版)

平行四边形(第2课时)(课件)八年级数学下册(苏科版)

探究新知 证明猜想
猜想1.两组对边分别相等的四边形是平行四边形.
已知:如图,四边形ABCD中,AD=BC,AB=DC. 求证:四边形ABCD是平行四边形.
A
分析:先证△ABD≌△CDB,再证AD∥BC,AB∥DC,
得四边形ABCD是平行四边形.
B
D C
探究新知
证明: 如图,连接BD. ∵AB=CD,AD=CB,BD=DB, ∴△ABD≌△CDB, ∴∠1=∠2,∠3=∠4, ∴AB∥CD,AD∥CB, ∴四边形ABCD是平行四边形.
D
F
C A.2个
C.4个
G
H
B.3个 D.5个
A
E
B
分析:▱ABCD 、▱DEBF 、▱AECF 、▱EHFG
课堂练习
3.如图,四边形AEFD和EBCF都是平行四边形. 求证: 四边形ABCD是平行四边形.
A E
B
证明:∵四边形AEFD是平行四边形, D
∴AD//EF,ADEF. F
∵四边形EBCF是平行四边形, C
课堂练习
2.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,
BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的
选法是
(C )
A.AB∥CD,AB=CD
B.AB∥CD,BC∥AD
C.AB∥CD,BC=AD
D.AB=CD,BC=AD
课堂练习
2.如图,E,F分别是▱ABCD的边AB,CD的中点,则图 中平行四边形的个数共有( C).
A
B
C
方法一:
探究新知
A
D
B
C
方法依据:两组对边分别平行的四边形是平行四边形.

苏科版数学八年级下册教学设计9.3 平行四边形(3)

苏科版数学八年级下册教学设计9.3 平行四边形(3)

苏科版数学八年级下册教学设计9.3 平行四边形(3)一. 教材分析苏科版数学八年级下册第9.3节“平行四边形(3)”的内容,是在学生已经掌握了平行四边形的性质、平行四边形的判定、平行四边形的性质定理等知识的基础上进行的一节实践性较强的课程。

本节课主要让学生通过观察、操作、思考、交流等活动,探索并掌握平行四边形的对角相等的性质,培养学生的空间想象能力和逻辑思维能力。

二. 学情分析学生在学习本节课之前,已经具备了以下基础:1.掌握了平行四边形的定义、性质、判定等基本知识;2.具备一定的观察、操作、思考、交流的能力;3.了解平行四边形的性质定理。

但学生在解决实际问题时的应用能力和空间想象能力还有待提高。

三. 教学目标1.让学生掌握平行四边形的对角相等的性质;2.培养学生的空间想象能力和逻辑思维能力;3.提高学生解决实际问题的能力。

四. 教学重难点1.平行四边形的对角相等的性质的理解和应用;2.平行四边形性质定理在解决实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生自主探究;2.运用操作验证法,让学生通过实际操作体验平行四边形的性质;3.利用交流讨论法,培养学生合作解决问题的能力。

六. 教学准备1.准备平行四边形的模型或图片;2.准备剪刀、彩纸等操作材料;3.准备与本节课相关的问题及解答。

七. 教学过程1. 导入(5分钟)教师通过展示一些平行四边形的图片,让学生观察并思考:平行四边形有哪些性质?你能发现哪些规律?从而引出本节课的主题——平行四边形的对角相等的性质。

2. 呈现(10分钟)教师通过PPT或黑板,呈现平行四边形的性质定理,让学生阅读并理解定理的内容。

同时,教师可以举例说明性质定理的应用。

3. 操练(10分钟)教师分发操作材料,让学生分组进行实际操作,验证平行四边形的对角相等的性质。

学生在操作过程中,可以互相交流、讨论,共同解决问题。

4. 巩固(10分钟)教师提出一些与本节课相关的问题,让学生独立思考并解答。

苏科版八下数学:9.3《平行四边形(3)》教案

苏科版八下数学:9.3《平行四边形(3)》教案

OA=OC ,

∠AOB= ∠ CO
∴AB=CD.

同理 AD=CB
∴四边形 ABCD 是平行四边形 究
(两组对边 分别相等的四边形是平行
四边形) . 定理: 对角线互相平分的四边形
是平行四边形. 几何语言:
∵ OA= OC, OB=OD, ∴四边形 ABCD 是平行四边形.
A D
O
B
C
合作探究
如图,直线 AC、 BD 相交于点 O, OA 通过学生自主探索,
=OC,OB=OD.求证:四边形 ABCD 利 用平形四边形的
是平行四边形.
概念和判定条件证
明了四边形是平行
A D
四边形,从而得到对
O
B
C
角线互相平分的四 边形是平行四边形.
证明 : 在 ΔAOB 和 ΔCOD 中,
使学生能够运用平 行四边形的概念和 定理证明四边形是 平行四边形, 从而加 深学生的理解
新知应用 已知:如图,在 □ABCD 中,点 E、F 在 AC 上,且 AE=CF. 求证:四边形 EBFD 是平行四边形.
A D
E
F
B
C
证明: 连接 BD, BD 交 AC 于点 O. ∵四边形 ABCD 是平行四边形, ∴ OA=OC ,OB=OD(平行四边形的对 角线互相平分 ). ∵ AE=CF , ∴OA-AE=OC-CF , 即 OE=OF. ∴四边形 EBFD 是平行四边形(对角 线互相平分的四边形是平行四边形) . 思考 :你还有其他方法证明吗?

合 作 探 究
9.3 平行四边形( 3)
学生自学共研的内容方法 (按环节 设计自学、讨论、训练、
探索、创新等内容) 操作思考

苏科版数学八年级下册9.3《平行四边形(1)》教学设计

苏科版数学八年级下册9.3《平行四边形(1)》教学设计

《平行四边形(1)》教学设计(教材:苏科版数学八年级下册)【教学内容分析】平行四边形是我们常见的一种基本图形,它具有和谐的对称美,它也是矩形、菱形、正方形的基础,同时它与梯形又有所区别,本节课教参的要求是以中心对称为主线,让学生通过:操作——观察——探索——交流、归纳——有条理地表达,从而获得平行四边形的性质;让学生通过经历知识的形成与应用过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。

【教学目标分析】1、知识与技能:结合现实生活中的具体情境,以中心对称为主线,了解平行四边形的概念及其基本性质。

2、过程与方法:经历探索平行四边形的概念、性质的过程,通过操作、观察、探索等活动,发展主动探究意识和有条理的表达能力,培养观察、分析、归纳、概括、判断的能力以及动手操作的能力。

3、情感、态度和价值观:在对平行四边形性质的探索过程中,理解特殊与一般的关系,领会特殊事物的本质属性与其特殊性质的关系。

在数学学习活动中获得成功的体验,建立自信心,认识数学与人类生活的密切联系,感受数学的严谨性以及数学结论的确定性,形成实事求是的态度及独立思考的习惯。

【重难点分析】重点:平行四边形的概念、性质及其简单应用。

难点:发展主动探究意识和有条理的表达能力。

设计意图:本课课前通过预习导学案的指导让学生充分预习,让学生对本课的重难点在自学过程中作一定程度的探索和学习。

本课对于平行四边形性质的探索从两方面入手,一是操作验证,二是理论论证,让学生从直观感知过渡到说理论证,加强了学生对性质的理解和记忆。

课件中生活情境的创设以及直观动态的演示也帮助了本课重难点的突破。

【教学过程】一、课堂导入,检查预习:(一)让学生从图片中寻找“平行四边形”,感受平行四边形在生活中的应用。

设计意图:苏科版教材强调“生活数学”和“做数学”,本课导入环节从生活出发,激发学生的兴趣,让学生感受到数学源于生活用于生活。

苏科版数学八年级下册9.3《平行四边形》教学设计2

苏科版数学八年级下册9.3《平行四边形》教学设计2

苏科版数学八年级下册9.3《平行四边形》教学设计2一. 教材分析《平行四边形》是苏科版数学八年级下册第9章第3节的内容,本节课主要让学生掌握平行四边形的性质。

教材通过生活实例引入平行四边形的概念,接着引导学生探究平行四边形的性质,最后通过巩固练习,使学生熟练掌握平行四边形的性质。

二. 学情分析学生在学习本节课之前,已经掌握了多边形的基本概念,如四边形、五边形等,并了解了四边形的分类。

同时,学生已经学习了平行线的性质,对于平行线有一定的认识。

但是,学生对于平行四边形的性质还不够了解,需要在课堂上进行探究和学习。

三. 教学目标1.知识与技能:使学生掌握平行四边形的性质,能够识别和判断平行四边形。

2.过程与方法:通过观察、操作、探究等方法,培养学生的动手能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:平行四边形的性质。

2.难点:如何证明平行四边形的性质。

五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。

2.探究教学法:引导学生动手操作,自主探究平行四边形的性质。

3.合作学习法:分组讨论,培养学生的团队合作精神。

六. 教学准备1.教具:多媒体课件、平行四边形模型、彩笔、黑板。

2.学具:学生手册、练习题、剪刀、彩纸。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活实例,如篮球场、教室窗户等,引导学生观察并提问:“这些图形是什么图形?它们有什么共同的特点?”从而引入平行四边形的概念。

2.呈现(5分钟)教师展示平行四边形的模型,引导学生观察并提问:“平行四边形有哪些性质?你能找出它们的特征吗?”学生回答后,教师进行总结。

3.操练(10分钟)学生分组讨论,利用彩纸剪出平行四边形,并观察其性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生完成学生手册上的练习题,教师及时批改,指出错误并讲解。

5.拓展(10分钟)教师提出拓展问题:“平行四边形和矩形、菱形有什么关系?你能举例说明吗?”学生分组讨论,教师巡回指导。

八年级数学下册9.3平行四边形教案3(新版)苏科版

八年级数学下册9.3平行四边形教案3(新版)苏科版

平行四边形教学目标:进一步经历探索平行四边形条件的过程;平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用.教学重点:四边形是平行四边形的条件的灵活的运用教学难点:发展学生的探究意识和有条理的表达能力.教学过程:1.操作思考画两条相交直线a、b,设交点为O.在直线a上截取OA=OC,在直线b上截取OB=OD,连接AB、BC、CD、DA.你能证明所画的四边形ABCD是平行四边形吗?2.如图,直线AC、BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.定理:对角线互相平分的四边形是平行四边形.几何语言:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.3.例题讲解例1.已知:如图,在□ABCD中,点E、F在AC上,且AE=CF.求证:四边形EBFD是平行四边形.证明:连接BD, BD交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD(平行四边形的对角线互相平分).∵AE=CF,∴OA-AE=OC-CF,即OE=OF.∴四边形EBFD是平行四边形(对角线互相平分的四边形是平行四边形)思考:你还有其他方法证明吗?例2.如图,□ABCD的对角线相交于点O,直线EF过点O分别交BC, AD于点E,F,G,H分别为OB,OD的中点,四边形GEHF是平行四边形吗?为什么?4.讨论交流如图,如果OA=OC,OB≠OD,那么四边形ABCD不是平行四边形.试证明这个结论.证明:假设四边形ABCD是平行四边形,那么OA=OC,OB=OD,这与条件OB≠OD矛盾.所以四边形ABCD不是平行四边形我们在以上的证明中,不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出矛盾的结果,说明假设是错误的,因为命题的结论成立.这样证明的方法称为反证法.5.新知应用1.如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,已知AB=25,BC=30,AC=28,BD=46,∠ABC=70°。

最新苏科版初中数学八年级下册《9.3 平行四边形》精品教案 (2)

最新苏科版初中数学八年级下册《9.3 平行四边形》精品教案 (2)

9.3 平行四边形(2)教学目标1.经历探索平行四边形条件的过程,会利用定理判定四边形是平行四边形;2.在探索平行四边形条件的过程中能够进行有条理的思考并进行简单的推理;3.经历操作、探索、合作、交流等活动,营造和谐、平等的学习氛围.教学重点平行四边形条件的过程的探索及应用.教学难点平行四边形条件的探索.教学过程(教师)学生活动设计思路问题情境(1)回忆平行四边形的概念;(2)在方格纸上画两条互相平行并且相等的线段AD、BC,连接AB、DC.你能证明所画四边形ABCD是平行四边形吗?1.学生直接回答第一个问题.2.学生自己画图独立思考.利用网格画图,学生能够容易得出结论.最新初中数学精品资料设计1讨论交流已知:如图,在四边形ABCD中,AD//BC,AD=BC.求证:四边形ABCD是平行四边形.定理:一组对边平行且相等的四边形是平行四边形.几何语言:∵AD//BC,AD=BC,∴四边形ABCD是平行四边形.1.学生利用全等证明结论成立.2.学生可以得到平行四边形的一个判定条件.通过学生操作、思考,利用平行四边形的概念,进一步证明了一组对边平行且相等的四边形是平行四边形,从而加深学生的理解.A D CB最新初中数学精品资料设计2探索活动在四边形ABCD中,AB=CD,AD=BC.四边形ABCD是平行四边形吗?证明你的结论.定理:两组对边分别相等的四边形是平行四边形.几何语言:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.学生独立思考完成.使学生能够运用平行四边形的概念和定理证明四边形是平行四边形,从而得到两组对边分别相等的四边形是平行四边形.A D CB最新初中数学精品资料设计3最新初中数学精品资料设计4 新知应用已知:如图,在□ABCD 中,点E 、F 分别在AD 、BC 上,且AE =CF .求证:四边形BFDE 是平行四边形.你还有其他方法证明例题吗? 小组讨论,代表回答,小组间相互补充. 培养学生运用几何语言进行说理的规范性.拓展延伸如图,在□ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F ,求证:四边形AECF 是平行四边形.FADCBE学生经历分析题目的过程.1.通过问题分散难点,引导学生分清题中直接给出的条件和根据平行四边形的性质找出隐含的条件.2.通过练习设置,使学生在运用新知识的过程中能够进行有条理的思考并进行简单的推理.体会小结通过本节课的学习你有什么体会?说出来告诉大家.学生自由表述,其他学生补充.通过学生小结,学生建构了自己的知识系统,同时锻炼学生EF BADC的口头表达能力,培养学生勇于发表自己看法的能力.课堂作业习题9.3第5、6题.课后学生独立完成.巩固新知识,让不同层次的学生发挥不同的水平.最新初中数学精品资料设计5。

苏科初中数学八年级下册《9.3 平行四边形》word教案 (2)

苏科初中数学八年级下册《9.3 平行四边形》word教案 (2)
新知应用
已知:如图,在□ABCD中,点E、F分别在AD、BC上,且AE=CF.
求证:四边形BFDE是平行四边形.
你还有其他方法证明例题吗?
小组讨论,代表回答,小组间相互补充.
培养学生运用几何语言进行说理的规范性.
拓展延伸
如图,在□ABCD中,AE⊥BD,CF⊥BD,垂足分别是E、F,求证:四边形AECF是平行四边形.
9.3平行四边形(2)
教学目标
1.经历探索平行四边形条件的过程,会利用定理判定四边形是平行四边形;
2.在探索平行四边形条件的过程中能够进行有条理的思考并进行简单的推理;
3.经历操作、探索、合作、交流等活动,营造和谐、平等的学习氛围.
教学重点
平行四边形条件的过程的探索及应用.
教学难点
平行四边形条件的探索.
学生经历分析题目的过程.
1.通过问题分散难点,引导学生分清题中直接给出的条件和根据平行四边形的性质找出隐含的条件.
2.通过练习设置,使学生在运用新知识的过程中能够进行有条理的思考并进行简单的推理.
体会小结
通过本节课的学习你有什么体会?说出来告诉大家.
学生自由表述,其他学生补充.
通过学生小结,学生建构了自己的知识系统,同时锻炼学生的口头表达能力,培养学生勇于发表自己看法的能力.
求证:四边形ABCD是平行四边形.
定理:
一组对边平行且相等的四边形是平行四边形.
几何语言:
∵AD//BC,AD=BC,
∴四边形ABCD是平行四边形.
1.学生利用全等证明结论成立.
2.学生可以得到平行四边形的一个判定条件.
通过学生操作、思考,利用平行四边形的概念,进一步证明了一组对边平行且相等的四边形是平行四边形,从而加深学生的理解.

八年级数学下册 9.3 平行四边形教案(3) (新版)苏科版

八年级数学下册 9.3 平行四边形教案(3) (新版)苏科版
5、已知:平行四边形ABCD中,E、F分别是BA、DC上的点,且AE∥CF,交BC、AD于点G、H。试说明:EG=FH。
6.学校要在花园里栽四棵树,已知其中三棵如图所示,请你栽上第四棵树,使得这四棵树组成平行四边形。
教学反思:
3、1、如图,平行四边形ABCD的对角线相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,四边形EFGH是平行四边形吗?为什么?
3 4 5
4.平行四边形ABCD的对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H、分别为OB、OD的中点,四边形EGFH是平行四边形吗?为什么?
你能证明所画的四边形ABCD是平行四边形吗?
1.学生直接回答第一个问题.
2.学生自己画图独立思考.
合作探究
如图,直线AC、BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四的一个判定条件.
定理:对角线互相平分的四边形是平行四边形.
平行四边形
教学目标
1.进一步经历探索平行四边形条件的过程;
2.平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用.
教学重点
四边形是平行四边形的条件的灵活的运用.
教学难点
发展学生的探究意识和有条理的表达能力.
教学过程(教师)
学生活动
二次备课及设计思路
操作思考
画两条相交直线a、b,设交点为O.
在直线a上截取OA=OC,在直线b上截取OB=OD,连接AB、BC、CD、DA.
几何语言:
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形.
新知应用
已知:如图,在□ABCD中,点E、F在AC上,且AE=CF.
求证:四边形EBFD是平行四边形.

苏科版数学八年级下册教学设计9.3 平行四边形(1)

苏科版数学八年级下册教学设计9.3 平行四边形(1)

苏科版数学八年级下册教学设计9.3 平行四边形(1)一. 教材分析苏科版数学八年级下册第9.3节“平行四边形(1)”主要包括平行四边形的性质和判定。

本节内容是学生学习了四边形的性质之后的内容,是学生对四边形知识的进一步拓展。

本节内容对于学生理解和掌握平行四边形的性质和判定,以及后续学习中应用平行四边形的性质解决实际问题具有重要意义。

二. 学情分析八年级的学生已经掌握了四边形的性质,对于新知识有一定的接受能力。

但是,对于平行四边形的性质和判定,学生可能还比较陌生,需要通过实例和操作来理解和掌握。

此外,学生可能对于证明过程和方法还不够熟练,需要通过练习来提高。

三. 教学目标1.理解平行四边形的性质和判定。

2.能够应用平行四边形的性质解决实际问题。

3.培养学生的逻辑思维能力和证明能力。

四. 教学重难点1.平行四边形的性质和判定。

2.证明过程和方法。

五. 教学方法采用问题驱动法,通过实例和操作,引导学生探索平行四边形的性质和判定。

同时,结合证明过程,培养学生的逻辑思维能力和证明能力。

六. 教学准备1.PPT课件。

2.练习题和答案。

七. 教学过程1.导入(5分钟)通过PPT展示一些生活中的平行四边形,如教室的黑板、滑梯等,引导学生关注平行四边形,激发学生的学习兴趣。

2.呈现(10分钟)介绍平行四边形的定义和性质,如对边平行、对角相等等,并通过PPT展示相关的图示和例题,让学生理解和掌握平行四边形的性质。

3.操练(10分钟)让学生通过PPT上的练习题,应用所学的平行四边形的性质进行计算和证明。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)通过PPT上的巩固题,让学生进一步理解和掌握平行四边形的性质。

教师选取部分学生的答案进行讲解和分析。

5.拓展(10分钟)引导学生思考如何判定一个四边形是平行四边形,介绍判定方法,如对角线互相平分、对边平行等。

并通过PPT展示相关的图示和例题,让学生理解和掌握判定方法。

6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。

【精品】苏科初中数学八年级下册《9.3 平行四边形》教案 (10)

【精品】苏科初中数学八年级下册《9.3 平行四边形》教案 (10)

A D CBA D C9.3 平行四边形(2)学习目标:1.探索并掌握平行四边形的判定条件;2.能利用平行四边形的判定方法解决有关问题.重点、难点:探索平行四边形成立的条件;掌握平行四边形的判定方法并会简单应用。

学习过程一.【预学指导】初步感知、激发兴趣对于四边形ABCD,如果从条件①AB∥CD;②AD∥BC;③AB=CD;④BC=AD中选出2个,那么能说明四边形ABCD是平行四边形的有___(填序号,填出符合条件的所有情况。

)二.【问题探究】问题1:在方格纸上画两条互相平行且相等的线段AD、BC,并连结AB、DC,AB∥CD平行吗?你能用实际操作(一副三角板)验证吗?你能说明所画四边形ABCD是平行四边形吗??已知:如图,在四边形ABCD中,AD//BC,AD=BC.求证:四边形ABCD是平行四边形.定理:的四边形是平行四边形.几何语言:∵∴个人复备EBADC问题2:在四边形ABCD 中,AB =CD ,AD =BC . 四边形A BCD 是平行四边形吗?证明你的结论.定理: 的四边形是平行四边形. 几何语言:∵∴问题3:已知:如图,在□ABCD 中,点E 、F 分别在AD 、BC 上,且AE =CF . 求证:四边形BFDE 是平行四边形.三.【拓展提升】如图,在□ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F ,求证:四边形AECF 是平行四边形.个人复备四.【课堂小结】通过这节课的学习,你有什么感受呢?【板书设计】【教学反思】个人复备。

苏科版数学八年级下册9.3《平行四边形》说课稿1

苏科版数学八年级下册9.3《平行四边形》说课稿1

苏科版数学八年级下册9.3《平行四边形》说课稿1一. 教材分析苏科版数学八年级下册9.3《平行四边形》是学生在学习了三角形、四边形的基础上,进一步研究平行四边形的性质和判定。

这一节内容是整个初中数学的重要知识点,也是后续学习几何图形的基础。

教材从学生的实际出发,通过观察、操作、猜想、验证等过程,引导学生发现平行四边形的性质,培养学生的几何思维能力。

二. 学情分析学生在学习这一节内容时,已经具备了一定的几何图形知识,对三角形、四边形的性质有所了解。

但平行四边形的性质和判定较为复杂,需要学生通过观察、操作、思考、探究等活动,才能掌握。

因此,在教学过程中,教师要关注学生的认知水平,引导学生积极参与,提高学生的动手操作能力和几何思维能力。

三. 说教学目标1.知识与技能:使学生掌握平行四边形的性质和判定方法,能运用平行四边形的性质解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的几何思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:平行四边形的性质和判定方法。

2.教学难点:平行四边形的判定方法的灵活运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,提高学生的动手操作能力和几何思维能力。

2.教学手段:多媒体课件、几何画板、实物模型等,帮助学生直观地理解平行四边形的性质。

六. 说教学过程1.导入新课:通过复习三角形、四边形的性质,引出平行四边形的性质,激发学生的学习兴趣。

2.探究平行四边形的性质:引导学生观察、操作、猜想、验证平行四边形的性质,总结出平行四边形的性质定理。

3.判定平行四边形:引导学生通过已知条件,判断一个四边形是否为平行四边形,总结出平行四边形的判定方法。

4.巩固练习:设计一些练习题,让学生运用所学的平行四边形的性质和判定方法解决问题,加深学生对知识的理解。

【精品】苏科初中数学八年级下册《9.3 平行四边形》教案 (3)

【精品】苏科初中数学八年级下册《9.3 平行四边形》教案 (3)
9.3 平行四边形(3)
教学目标
1.进一步经历探索平行四边形条件的过程;
2.平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用.
教学重点
四边形是平行四边形的条件的灵活的运用.
教学难点
发展学生的探究意识和有条理的表达能力.
教学过程(教师)
学生活动
设计思路
操作思考
画两条相交直线a、b,设交点为O.
已知:如图,在□ABCD中,点E、F在AC上,且AE=CF.
求证:四边形EBFD是平行四边形.
思考:你还有其他方法证明吗?
学生独立思考完成.
使学生能够运用平行四边形的概念和定理证明四边形是平行四边形,从而加深学生的理解.
讨论交流
如图,如果OA=OC,OB≠OD,那么四边形ABCD不是平行四边形.试证明这个结论.
在直线a上截取OA=OC,在直线b上截取OB=OD,连接AB、BC、CD、DA.
你能证明所画的四边形ABCD是平行四边形吗?
1.学生直接回答第一个问题.
2.学生自己画图独立思考.
通过自己动手画,学生能够容易得出结论.
合作探究
如图,直线AC、BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.
学生经历分析题目的过程.
引导学生独立思考,自主探究,并通过合作交流,完善说理,学会有条理的表达.
体会小结
通过本节课的学习你有什么体会?说出告诉大家.
学生自由表述,其他学生补充.
通过学生小结,学生理解平行四边形的性质和判别四边形是平行四边形的条件这两者的区别,防止混淆.
课堂作业
习题9.3第7、9题.
课后何语言:
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五.小结
板书设计
(用案人完成)
当堂作业
教学札记
四.随堂练习
.1.判断对错
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.
(2)平行四边形两条对角线的交点到一组对边的距离相等.
(3)平行四边形的两组对边分别平行且相等.
(4)平行四边形是轴对称图形.
2.在ABCD中,AC=6、BD=4,则AB的范围是________.
3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是.
平行四边形
课题
9.3平行四边形(2)
课型
新授课
教学目标
理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
重点
平行四边形对角线互相平分的性质,以及性质的应用.
难点
综合运用平行四边形的性质进行有关的论证和计算.
教法及教具
结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分.




教学内容
个案调整
教师主导活动
学生主体活动
三.例题分析
例1已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:OE=OF,AE=CF,BE=DF.




教学内容
个案调整
教师主导Байду номын сангаас动
学生主体活动
一.复习提问:
(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:
(2)平行四边形的性质:
①具有一般四边形的性质(内角和是).
②角:平行四边形的对角相等,邻角互补.
边:平行四边形的对边相等.
二.探索新知
【探究】:
画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?
证明:在ABCD中,AB∥CD,
∴∠1=∠2.∠3=∠4.
又OA=OC(平行四边形的对角线互相平分),
∴△AOE≌△COF(ASA).
∴OE=OF,AE=CF(全等三角形对应边相等).
∵ABCD,∴AB=CD(平行四边形对边相等).
∴AB—AE=CD—CF.即BE=FD.
例2(教材P94的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
相关文档
最新文档