圆周运动规律应用
圆周运动规律及应用+答案
圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。
2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。
3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。
角速度:Tt πθω2== 描述物体转动的快慢。
转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。
向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。
二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。
当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。
第四讲:圆周运动规律应用解析版
第四讲:圆周运动规律应用一、拱形桥问题概述如图所示为凹形桥模型.当汽车通过凹形桥的最低点时F N -mg =m v 2r规律桥对车的支持力F N =mg +m v 2r >mg ,汽车处于超重状态概述如图所示为拱形桥模型.当汽车通过拱形桥的最高点时mg -F N =【例题】如图,当汽车通过拱桥顶点的速度为6 m/s 时,车对桥顶的压力为车重的34,如果要使汽车在桥面行驶至桥顶时,对桥面的压力为零,则汽车通过桥顶的速度应为( )A.3 m /sB.10 m/sC.12 m /sD.24 m/s 答案 C二、火车转弯问题三、绳球模型m v 2r规律 桥对车的支持力FN =mg -m v 2r<mg ,汽车处于失重状态.若v =gr ,则F N =0,汽车将脱离桥面做平抛运动概述 如图所示,火车转弯轨道,外高内低.火车转弯时,设转弯半径为r ,若mg tan θ=m v 2r,车轮与内、外侧轨道无作用力,即v =gr tan θ规律当火车转弯时,若v >gr tan θ,则火车车轮对外侧轨道有作用力,若v <gr tan θ,火车车轮对内侧轨道有作用力【例题】铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( )A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压C.这时铁轨对火车的支持力等于mgcos θmg题型概述如图所示,轻绳拉着小球在竖直平面内做圆周运动,或者小球在竖直放置的光滑圆弧形轨道内侧运动.该题型的特点是小球到达最高点时没有物体支撑小球,而轻绳或轨道对小球只能有向下的拉力或弹力.方法技巧绳只能提供拉力而不能提供支持力,在最高点时有F+mg=mv2R≥mg,所以小球通过最高点的条件是v≥gR,通过最高点的临界条件是v=gR.四、杆球模型题型概述如图所示,小球固定在轻杆上,在竖直平面内做圆周运动,或小球在竖直放置的光滑圆管中运动.该题型的特点是小球到达最高点时杆不但可以对小球有拉力,还可以对小球产生支持力,而光滑圆管不仅可以对小球产生向下的压力,还可以对小球产生向上的支持力.【例题】杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为m=0.5 kg的大小不计的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为 4 m/s,则下列说法正确的是(g 取10 m/s2)()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5 N【例题】如图所示,质量为m的小球固定在杆的一端,在竖直面内绕杆的另一端O做圆周运动.当小球运动到最高点时,瞬时速度为v=12Lg,L是球心到O点的距离,则球对杆的作用力是()A.12mg的拉力 B.12mg的压力方法 技巧提供支持力,过最高点的条件:v ≥0.最高点的弹力情况:v <gR 时是支持力,0<N <mg ,其大小随速度的增大而减小;v =gR 时,N =0;v >gR 时是拉力,其大小随速度的增大而增大.五、航天器中的失重现象(1)质量为M 的航天器在近地轨道运行时,航天器的重力提供向心力,满足关系:Mg =M v 2R,则v =gR .(2)质量为m 的航天员:航天员的重力和座舱对航天员的支持力的合力提供向心力,满足关系:mg -F N =m v 2R .当v =gR 时,F N =0,即航天员处于完全失重状态. (3)航天器内的任何物体都处于完全失重状态.针对训练题型1:火车转弯(多选)1.全国铁路大面积提速,给人们的生活带来便利。
2024届高考物理二轮专题学案:圆周运动的规律及应用
考点03 圆周运动的规律及应用基础知识一、常见的传动方式及特点同轴转动同缘传动装置图基本特点、、相同轮缘处______相同转动方向相同______【例题1】如图所示,三个齿轮的半径之比为1:3:5,当齿轮转动时,小齿轮边缘的A点和大齿轮边缘的B 点,若A轮顺时针转动,则B轮会_____ 转动,AB两轮的转速之比为______。
【总结】同缘传动,线速度大小相同;同轴转动,角速度、周期、转速相同。
二、圆周运动的多解性问题【例题2】一位同学玩飞镖游戏,已知飞镖距圆盘为L,对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘以垂直圆盘且过盘心O点的水平轴匀速转动。
若飞镖恰好击中A点,空气阻力忽略不计,重力加速度为g,则飞镖打中A点所需的时间为______;圆盘的半径R为______;圆盘转动的线速度的可能值为______。
【总结】分析思路:1.两个物体运动的有关联性; 2.物体做圆周运动有周期性。
三、匀速圆周运动1.特点:速度与加速度的不变、不断变化。
2.性质:匀速圆周运动是一种___________________________运动。
3.离心运动和近心运动①当时,物体做匀速圆周运动;②当时,物体沿切线飞出;③当时,物体做离心运动; ④当时,物体做近心运动。
四、向心力的来源运动模型汽车转弯水平转台(光滑) 火车转弯图示向心力提供动力学问题【例题3】如图所示,一同学用轻绳拴住一个装有水(未满)的水杯,让水杯在水平面内做匀速圆周运动,不计空气阻力,下列说法中正确的是( )A.水杯匀速转动时,杯中水面呈水平B.水杯转动的角速度越大,轻绳与竖直方向的夹角越大C.水杯转动的周期越小,轻绳在水平方向上的分力越大D.水杯转动的线速度越大,轻绳在竖直方向上的分力越大【总结】思路:1.确定研究对象。
2.确定圆周运动的轨道平面,以及、。
3.对物体进行分析,确定向心力来源。
4.根据牛顿运动定律和圆周运动知识列方程求解。
圆周运动的物理规律
圆周运动的物理规律圆周运动是物体在确定的圆形轨道上运动的一种形式。
无论是行星绕太阳的运动,还是地球绕自转轴的运动,都可以看作是圆周运动。
而圆周运动的物理规律主要有以下几个方面。
一、牛顿第一定律适用于圆周运动牛顿第一定律也被称为惯性定律,其表述为“物体在没有外力作用下会保持匀速直线运动或静止状态”。
虽然圆周运动是物体在曲线轨道上运动,但由于受力方向始终垂直于速度方向,物体在运动过程中会始终保持匀速。
这是因为受力与速度的夹角为90°,所以力对速度没有做功,物体的动能和势能保持恒定。
二、向心力是圆周运动的关键因素向心力是保持物体在圆周运动中向心加速度的力。
根据牛顿第二定律,向心力与物体的质量和向心加速度成正比。
即 F = m·ac,其中F为向心力,m为物体质量,ac为向心加速度。
而向心加速度的大小则由物体的速度和半径决定。
向心力的方向指向圆心,使得物体在做圆周运动时受到向心加速度的约束。
三、角动量守恒定律适用于圆周运动角动量是物体在转动中的动量,它的大小与物体的转动速度和转动惯量有关。
对于圆周运动,角动量的大小可以表示为L = r·m·v,其中L为角动量,r为物体到转轴的距离,m为物体质量,v为物体的速度。
根据角动量守恒定律,当物体在圆周运动过程中转动惯量保持不变时,其角动量也保持不变。
四、离心力和引力共同影响圆周运动在天体运动中,离心力和引力共同作用于行星或卫星进行圆周运动。
离心力是指物体远离中心的力,其大小与物体的质量、角速度和半径有关。
而引力则是物体和中心天体之间的吸引力,其大小与物体的质量、中心天体的质量、以及物体到中心天体的距离有关。
这两者共同作用使得行星或卫星在圆轨道上保持稳定运动。
综上所述,圆周运动的物理规律可以通过牛顿第一定律、向心力、角动量守恒定律以及离心力和引力共同作用来解释。
这些规律揭示了物体在圆周运动中的受力情况和运动特征,对于我们理解宇宙中的天体运动以及地球自转等现象具有重要意义。
高一物理圆周运动的相关知识点
高一物理圆周运动的相关知识点圆周运动是物理学中的重要内容之一,它有着广泛的应用领域。
本文将介绍高一物理学习中与圆周运动相关的知识点,包括圆周运动的基本概念、运动规律以及一些实际应用。
一、圆周运动的基本概念圆周运动是指物体沿着固定半径的圆周轨道运动的一种形式。
在圆周运动中,物体所受到的合力始终指向轴心,使得物体保持在圆周上匀速运动。
这种运动可以用一些特殊的物理量来描述。
1. 角度角度是描述圆周运动位置关系的一个重要概念。
我们常用角度来衡量物体在圆周上所处的位置。
一圈对应的角度是360度,当物体运动一半圆周时,所对应的角度是180度。
2. 弧长弧长是圆周上两个位置之间的路径距离。
弧长与角度之间存在一定的关系,公式为:弧长 = 半径 ×弧度。
其中弧度是指圆周上的一个角度对应的弧长与半径的比值。
3. 角速度和角加速度角速度是指单位时间内物体运动的角度,通常用符号ω表示,公式为:ω = Δθ / Δt。
角加速度是指单位时间内的角速度变化率,通常用符号α表示,公式为:α = Δω / Δt。
二、圆周运动的运动规律圆周运动遵循一些基本的运动规律,这些规律对于解析和计算圆周运动的物理量十分重要。
1. 向心加速度在圆周运动中,物体所受到的合力指向轴心,这个合力会产生向心加速度。
向心加速度的大小可以用公式 ac = v² / R 来计算,其中v为物体的速度,R为圆周半径。
2. 牛顿第二定律在圆周运动中的应用牛顿第二定律 F = ma 在圆周运动中也适用。
对于处于圆周运动的物体,需要将合力分解为径向力和切向力两个分量来计算。
3. 圆周运动的力学能量在圆周运动中,存在着势能和动能的转换。
当物体沿圆周运动时,可能会发生重力势能转化为动能的情况。
三、圆周运动的实际应用圆周运动在日常生活和工程领域都有着广泛的应用。
1. 离心力与离心机离心力是圆周运动中的一种力,我们常见的离心机就是利用离心力分离混合物中不同密度成分的设备。
学而思圆周运动:圆周运动的基本规律、圆周运动的各种应用
匀速圆周运动做匀速圆周运动的物体的速度大小是恒定的,但速度方向时刻改变,所以匀速圆周运动是变速运动 做匀速圆周运动的物体并不处于平衡状态物体做匀速圆周运动的条件是物体时刻受到与速度方向垂直的合外力作用,并且这个合外力总沿着半径指向圆心,所以叫向心力向心力总是指向圆心,而线速度沿圆周的切线方向,故向心力始终与线速度垂直,所以向心力的作用效果只是改变物体线速度的方向而不改变线速度的大小向心力是根据力的作用效果命名的,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,还可以是某个力的分力向心加速度①意义:它是描述线速度方向改变快慢的物理量,向心力产生的加速度叫向心加速度,它遵循牛顿第二定律②方向:始终指向圆心,并且时刻变化③大小22224v a r r v r Tπωω====向做匀速圆周运动的物体,向心加速度大小不变对向心加速度的几点说明①向心加速度通过牛顿第二定律由物体所受向心力来确定由于做匀速圆周运动的物体在运动的过程中角速度、速率、周期都是不变的,因而物体在做匀速圆周运动的过程中,向心加速度的大小是不变的,但是向心加速度的方向在时刻变化着,所以匀速圆周运动是变加速曲线运动②向心加速度是匀速圆周运动的瞬时加速度而不是平均加速度在匀速圆周运动中,加速度不是恒定的,这里的向心加速度,是指某时刻或某一位置的瞬时加速度 ③向心加速度不一定是物体做圆周运动的实际加速度【例1】下列说法正确的是( )A .匀速圆周运动是一种匀速运动B .匀速圆周运动是一种匀变速运动C .匀速圆周运动是一种变加速运动D .物体做圆周运动时,其合力垂直于速度方向,不改变线速度大小圆周运动:圆周运动的基本规律、圆周运动的各种应用【例2】质点做匀速圆周运动,则①在任何相等的时间里,质点的位移都相等②在任何相等的时间里,质点通过的路程都相等③在任何相等的时间里,质点运动的平均速度都相同④在任何相等的时间里,连接质点和圆心的半径转过的角度都相等以上说法中正确的是( )A.①②B.③④C.①③D.②④【例3】做匀速圆周运动的两物体甲和乙,它们的向心加速度分别为a1和a2,且a1>a2,下列判断正确的是( )A.甲的线速度大于乙的线速度B.甲的角速度比乙的角速度小C.甲的轨道半径比乙的轨道半径小D.甲的速度方向比乙的速度方向变化得快【例4】甲、乙两物体均做匀速圆周运动,其向心加速度a随半径r变化的关系图线,分别如图中a甲、a乙所示,图线a甲是一条过原点的直线;图线a乙是以横轴和纵轴为渐近线的双曲线。
物体的圆周运动
物体的圆周运动物体的圆周运动是一种特殊的运动形式,它在物理学领域中有着广泛的应用和研究。
本文将介绍物体的圆周运动的原理和相关概念,并探讨其应用和意义。
一、圆周运动的原理物体的圆周运动是指物体在一个平面上以一定半径的圆轨道做匀速运动的现象。
圆周运动的原理可以通过向心力和离心力来解释。
1. 向心力当物体在圆轨道上运动时,会受到向心力的作用。
向心力的方向指向圆心,大小与物体的质量、圆周运动的半径和物体的线速度有关。
向心力的作用使得物体始终保持在圆轨道上,并向圆心靠近。
2. 离心力离心力是指物体在圆周运动中的超越向心力的力。
它的方向指向远离圆心的方向,与向心力方向相反。
离心力的大小与向心力大小相等,但方向相反。
离心力的作用使得物体始终倾向于离开圆心。
二、圆周运动的相关概念在理解物体的圆周运动时,需要了解一些相关的概念,如线速度、角速度和周期。
1. 线速度线速度是指物体在圆周运动中沿着圆轨道的路径长度与所花费的时间之比。
线速度的大小与物体运动的半径和角速度有关。
线速度可以通过公式v = rω来计算,其中v表示线速度,r表示半径,ω表示角速度。
2. 角速度角速度是指物体在圆周运动中角度增量与所花费的时间之比。
角速度的大小与物体运动周期和角度增量有关。
角速度的单位是弧度/秒。
角速度可以通过公式ω = Δθ/Δt来计算,其中ω表示角速度,Δθ表示角度增量,Δt表示时间。
3. 周期周期是指物体完成一次圆周运动所需要的时间。
周期可以通过公式T = 2π/ω来计算,其中T表示周期,π表示圆周率,ω表示角速度。
三、圆周运动的应用和意义圆周运动在现实生活和科学研究中有着广泛的应用和意义。
1. 行星公转行星围绕太阳做圆周运动的规律是天体力学中的一个重要问题。
研究行星的圆周运动可以揭示宇宙的结构和演化规律。
2. 粒子加速器粒子加速器利用向心力原理,将高能粒子沿着圆轨道进行加速运动,以便进行粒子物理实验。
圆周运动在粒子加速器的设计和操作中起着重要作用。
圆周运动的应用领域与实例分析
圆周运动的应用领域与实例分析圆周运动是指物体在规定中心进行的匀速旋转运动,是自然界中常见且广泛应用的一种运动形式。
圆周运动在许多领域中发挥着重要的作用,下面将从物理学、机械工程和天文学等角度对其应用领域与实例进行详细分析。
一、物理学中的应用圆周运动在物理学中是一个基础概念,在力学、电磁学等学科中有着广泛的应用。
其中,最典型的应用是在力学中的离心力和向心加速度的研究。
离心力是指在圆周运动中由于惯性而产生的偏离轨迹的力,它的大小与物体质量和角速度成正比。
离心力的应用非常广泛,例如在离心机中,离心力可用于分离混合物中的不同组分。
离心机通过不同物质的质量差异以及离心力的作用,使得混合物中的成分分离出来,从而在生物科学、化学和制药等领域发挥了重要的作用。
向心加速度则是指在圆周运动中,物体向圆心靠拢时所受到的加速度。
向心加速度是圆周运动的基本性质,它决定了物体在圆周运动中的速度和轨迹。
向心加速度的研究在机械工程中有着广泛的应用,例如在离心泵中,向心加速度可以用来增加液体的压力,并将其输送到较远的地方。
二、机械工程中的应用圆周运动在机械工程中有许多应用领域,如轮胎的旋转、轴承的转动和摩擦等。
其中,最突出的应用是摆线与齿轮的设计与制造。
摆线是一种特殊的圆周运动,其轨迹为与定长线段接触的轮廓线。
摆线具有良好的传动性能和高效的运动特性,因此在工业制造中广泛应用于齿轮设计、漏斗锥形的设计等领域。
例如,在传动装置中,摆线齿轮的设计可以实现平稳的传递运动,提高传动效率。
另外,齿轮的设计与制造也是机械工程中圆周运动的重要应用。
齿轮的主要作用是将电动机的高速旋转转换为较低速度但更大的扭矩输出,广泛应用于各种机械设备中。
例如,在汽车行业中,齿轮传动系统通过将发动机的高速旋转转换为车轮的运动,实现汽车的前进和倒退。
三、天文学中的应用圆周运动在天文学中也有许多重要的应用,如行星轨道、恒星运动和星际空间探索等。
其中,行星轨道的研究和预测是最广泛的应用之一。
物理圆周运动总结归纳
物理圆周运动总结归纳物理学中,圆周运动是一个重要的概念。
它涉及到物体在一个固定半径的圆形轨道上运动的问题。
在本文中,我们将对物理圆周运动进行总结归纳,探讨其相关理论和应用。
一、基本概念圆周运动是指物体在固定半径的圆形轨道上运动,维持在此轨道上的力称为向心力。
向心力的大小与物体质量成正比,与物体的速度的平方成正比,与物体运动半径的倒数成正比。
圆周运动的速度大小恒定,而速度的方向则始终朝向圆心。
同时,圆周运动还存在一个与速度大小相对的概念,即角速度。
二、角速度与角加速度角速度是描述物体在圆周运动中旋转快慢的物理量。
它的大小等于物体绕圆心转动的角度的变化率。
使用符号ω表示,单位为弧度/秒。
公式为:ω = Δθ / Δt其中,Δθ是物体绕圆心转动的角度变化量,Δt是时间的变化量。
角加速度则是描述物体在圆周运动中转速变化的物理量。
它的大小等于角速度随时间的变化率。
使用符号α表示,单位为弧度/二次方秒。
公式为:α = Δω / Δt三、牛顿第二定律在圆周运动中的应用牛顿第二定律是物理学中最基本的定律之一,它在圆周运动中也有重要的应用。
当物体受到向心力作用时,可以利用牛顿第二定律来推导物体的运动方程。
假设质量为m的物体在半径为r的圆形轨道上运动,并受到向心力F_c的作用。
根据牛顿第二定律,物体的向心加速度a_c与向心力的关系为:F_c = m * a_c由于向心加速度与角加速度之间存在关联,可以推导出物体在圆周运动中的运动方程为:a_c = r * α将上述两个等式结合,可以得到:F_c = m * r * α四、应用领域1. 行星公转行星公转是天体运动中的一种圆周运动。
行星沿着围绕恒星的轨道运动,即围绕一个公共圆心进行圆周运动。
该应用领域研究行星的轨道、速度以及力学规律,对于了解天体运动和星际空间探索具有重要的意义。
2. 粒子加速器粒子加速器是一种利用电磁场加速高能粒子的装置,广泛应用于粒子物理学和核物理学领域。
圆周运动
圆周运动的规律及其应用,圆周运动的描述(考纲要求Ⅰ)1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:判断正误,正确的划“√”,错误的划“×”.(1)匀速圆周运动是速度不变的曲线运动.()(2)做匀速圆周运动的物体向心加速度与半径成反比.()(3)做匀速圆周运动的物体角速度与转速成正比.()(4)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢看周期、角速度.( ),匀速圆周运动的向心力 (考纲要求 Ⅱ)1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小:F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r .3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.,离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势.图4-3-13.受力特点当F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向飞出;当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图4-3-1所示.判断正误,正确的划“√”,错误的划“×”.(1)随圆盘一起匀速转动的物块受重力、支持力和向心力的作用.( )(2)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动.( )(3)摩托车转弯时,如果超过一定速度,摩托车将发生滑动,这是因为摩托车受到沿半径方向向外的离心力作用.( )基 础 自 测1.(多选)下列关于匀速圆周运动的说法中,正确的是( ). A .线速度不变 B .角速度不变C .加速度为零D .周期不变2.(多选)质点做匀速圆周运动,则( ). A .在任何相等的时间里,质点的位移都相同 B .在任何相等的时间里,质点通过的路程都相等C .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等D .在任何相等的时间里,质点运动的平均速度都相同 3.(单选)下列关于离心现象的说法正确的是( ). A .当物体所受的离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做背离圆心的圆周运动C .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做曲线运动 4.(单选)汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长,某国产轿车的车轮半径约为30 cm ,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h ”上,可估算出该车车轮的转速约为( ). A .1 000 r/s B .1 000 r/minC .1 000 r/h D .2 000 r/s.5.(单选)甲、乙两质点均做匀速圆周运动,甲的质量与运动半径分别是乙的一半,当甲转动80转时,乙正好转过60转,则甲与乙所受的向心力大小之比为( ). A .1∶4 B .4∶1C .4∶9D .9∶4热点一 描述圆周运动的各物理量间的关系 1.圆周运动各物理量间的关系 2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a =v 2r =ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.【典例1】(多选)如图4-3-2所示为皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径是4r ,小轮的半径是2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中皮带不打滑,则( ). A .a 点和b 点的线速度大小相等 B .a 点和b 点的角速度大小相等 C .a 点和c 点的线速度大小相等 D .a 点和d 点的向心加速度大小相等 反思总结常见的三种传动方式及特点1.皮带传动:如图4-3-3甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .图4-3-32.摩擦传动:如图4-3-4甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .图4-3-43.同轴传动:如图4-3-4乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB .【跟踪短训】1.(2013·桂林模拟)(单选)如图4-3-5所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( ).A .线速度大小之比为3∶2∶2B .角速度之比为3∶3∶2C .转速之比为2∶3∶2图4-3-2图4-3-5D .向心加速度大小之比为9∶6∶4热点二 匀速圆周运动中的动力学问题)1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 【典例2】(2013·重庆卷,8)如图4-3-6所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合.转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为60°,重力加速度大小为g . (1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;(2)若ω=(1±k )ω0,且0<k ≪1,求小物块受到的摩擦力大小和方向.【跟踪短训】2.(多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关.还与火车在弯道上的行驶速度v 有关.下列说法正确的是( ).A .速率v 一定时,r 越小,要求h 越大B .速率v 一定时,r 越大,要求h 越大C .半径r 一定时,v 越小,要求h 越大D .半径r 一定时,v 越大,要求h 越大物理建模 6.竖直平面内圆周运动的“轻绳、轻杆”模型1.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑. 2.模型特点图4-3-6该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:【典例3】(单选)如图4-3-7所示,2012年8月7日伦敦奥运会体操男子单杠决赛,荷兰选手宗德兰德荣获冠军.若他的质量为60 kg ,做“双臂大回环”,用双手抓住单杠,伸展身体,以单杠为轴做圆周运动.此过程中,运动员到达最低点时手臂受的总拉力至少约为(忽略空气阻力,g =10 m/s 2)( ). A .600 N B .2 400 N C .3 000 N D .3 600 N图4-3-7即学即练(单选)如图4-3-8所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L ,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为( ). A.3mg B .23mg C .3mg D .4mgA 对点训练——练熟基础知识题组一 匀速圆周运动的运动学问题1.(多选)在“天宫一号”的太空授课中,航天员王亚平做了一个有趣实验.在T 形支架上,用细绳拴着一颗明黄色的小钢球.设小球质量为m ,细绳长度为L .王亚平用手指沿切线方向轻推小球,小球在拉力作用下做匀速圆周运动.测得小球运动的周期为T ,由此可知A .小球运动的角速度ω=T /(2π) B .小球运动的线速度v =2πL /T C .小球运动的加速度a =2π2L /T 2 D .细绳中的拉力为F =4m π2L /T 22.(单选)2013年6月20日上午10时,中国载人航天史上的首堂太空授课开讲.航天员做了一个有趣实验:T 形支架上,用细绳拴着一颗明黄色的小钢球.航天员王亚平用手指沿切线方向轻推小球,可以看到小球在拉力作用下在某一平面内做圆周运动.从电视画面上可估算出细绳长度大约为32 cm ,小球2 s 转动一圈.由此可知王亚平使小球沿垂直细绳方向获得的速度为 ( ). A .0.1 m/s B .0.5 m/s C .1 m/sD .2 m/s题组二 匀速圆周运动的动力学问题3.(单选)如图4-3-9所示,是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小图4-3-8球穿在光滑细杆与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O 处,当转盘转动的角速度为ω1时,指针指在A 处,当转盘转动的角速度为ω2时,指针指在B 处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为( ). A.12B.12C.14D.134.(2013·扬州中学期中考试)(单选)如图4-3-10所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两物体A 和B ,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好没有发生滑动时,烧断细线,则两物体的运动情况将是( ). A .两物体均沿切线方向滑动B .两物体均沿半径方向滑动,远离圆心C .两物体仍随圆盘一起做匀速圆周运动,不会滑动D .物体A 仍随圆盘做匀速圆周运动,物体B 沿曲线运动,远离圆心5.(2013·江苏卷,2)(单选)如图4-3-11所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( ).A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力比悬挂B 的小题组三 离心现象6.(单选)世界一级方程式锦标赛新加坡大奖赛赛道单圈长5.067公里,共有23个弯道,如图4-3-12所示,赛车在水平路面上转弯时,常常在弯道上冲出跑道,则以下说法正确的是( ).A .是由于赛车行驶到弯道时,运动员未能及时转动 方向盘才造成赛车冲出跑道的B .是由于赛车行驶到弯道时,运动员没有及时加速才造成赛车冲出跑道的C .是由于赛车行驶到弯道时,运动员没有及时减速才造成赛车冲出跑道的图4-3-10图4-3-12图4-3-11D.由公式F=mω2r可知,弯道半径越大,越容易冲出跑道7.(多选)公路急转弯处通常是交通事故多发地带.如图4-3-13,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处().A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小题组四圆周运动的临界问题8.(2013·上海卷,6)(单选)秋千的吊绳有些磨损.在摆动过程中,吊绳最容易断裂的时候是秋千().A.在下摆过程中B.在上摆过程中C.摆到最高点时D.摆到最低点时9.(多选)如图4-3-14所示,半径为R的光滑圆形轨道竖直固定放置,小球m在圆形轨道内侧做圆周运动.对于半径R不同的圆形轨道,小球m通过轨道最高点时都恰好与轨道间没有相互作用力.下列说法中正确的有().A.半径R越大,小球通过轨道最高点时的速度越大B.半径R越大,小球通过轨道最高点时的速度越小C.半径R越大,小球通过轨道最低点时的角速度越大D.半径R越大,小球通过轨道最低点时的角速度越小10.(单选)在光滑水平面上,有一转轴垂直于此平面,交点O的上方h处固定一细绳,绳的另一端连接一质量为m的小球B,绳长l>h,小球可随转轴转动在光滑水平面上做匀速圆周运动,如图4-3-15所示.要使小球不离开水平面,转轴转速的最大值是().A.12πgh B.πghC.12πgl D.12πlg图4-3-13图4-3-15图4-3-1411.(多选)如图4-3-16所示,长为L 的轻杆一端固定质量为m 的小球,另一端固定转轴O ,现使小球在竖直平面内做圆周运动.P 为圆周轨道的最高点.若小球通过圆周轨道最低点时的速度大小为92gL ,则以下判断正确的是( ). A .小球不能到达P 点B .小球到达P 点时的速度小于gLC .小球能到达P 点,但在P 点不会受到轻杆的弹力D .小球能到达P 点,且在P 点受到轻杆向上的弹力B 深化训练——提高能力技巧12.(2013·常州市上学期期中考试)如图4-3-17所示,将一质量为m =0.1 kg 的小球自水平平台右端O 点以初速度v 0水平抛出,小球飞离平台后由A 点沿切线落入竖直光滑圆轨道ABC ,并沿轨道恰好通过最高点C ,圆轨道ABC 的形状为半径R =2.5 m 的圆截去了左上角127°的圆弧,BC 为其竖直直径,(sin 53°=0.8,cos 53°=0.6,重力加速度g 取10 m/s 2)求: (1)小球经过C 点的速度大小;(2)小球运动到轨道最低点B 时小球对轨道的压力大小; (3)v0的数值.图4-3-16图4-3-17。
生活中的圆周运动
生活中的圆周运动圆周运动是一种非常常见的运动形式,它在我们的日常生活中无时不在。
圆周运动是指物体在做一个圆形的运动,圆形的路径是被称为圆周,这个运动的性质和特点非常有趣,这篇文章将会围绕圆周运动展开,介绍一些我们日常生活中圆周运动的应用。
工业机器上的圆周运动做圆周运动的机器往往有一个能够旋转的部分,这个部分需要以稳定的速度旋转。
这种运动可以在工业机器上找到。
例如,汽车的发动机,它的活塞每一个上下运动就是一个圆周运动,而发动机的曲轴则完成了一个完整的圆周运动,从而将活塞的运动转换为转向轮的动力。
在机械工程中,圆锥齿轮和齿轮的设计常常涉及到圆周运动的速度和方向的控制。
在流水线工厂生产线上,各种机器的控制电机、伺服马达和开关也需要使用圆周运动来实现。
儿童乐园上的圆周运动在儿童乐园上,圆周运动也起到了非常大的作用。
这种运动是指将一个圆形结构转动起来,从而使小孩可以坐在圆形结构上摆动。
这种运动可以经常看到在露天游乐场上的旋转木马、回旋螺旋梯和旋转视角等游乐设施上。
圆周运动给人们带来的感觉是非常愉悦的,而且还能锻炼小孩的平衡感和协调能力。
运动员的圆周运动在许多体育项目中,运动员也需要以一定的速度、强度和频率进行圆周运动。
例如,田径运动员在跑步时会使用“弯道战术”,在圆形赛道的弯道处以稍微缓慢一些的速度跑,而在直道处以更快的速度跑,以此来实现最快的比赛成绩。
在手球、篮球和足球等室内外运动项目中,运动员经常需要在场地上绕圆形的轨道移动,跳跃和弯曲,从而打出配合和进攻的配合。
天文学中的圆周运动圆周运动在天文学中也扮演着非常重要的角色。
例如,地球在绕着太阳运动时,它的轨道就是一个圆周,绕着自己的轴旋转一周所需要的时间也是固定的。
太阳系中其他星球的运动轨迹也是类似的。
这些圆周运动的规律性对于天文学家来说非常重要,因为它能够帮助他们了解星球和行星的轨迹、运动速度和方向,这些都是研究天文学的重要基础。
总的来说,圆周运动是我们日常生活中非常常见的运动形式,它不仅存在于机械工程、儿童乐园和体育运动中,还存在于天文学研究中。
圆周运动实例分析
圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。
下面将以多种实例来分析圆周运动。
实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。
地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。
地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。
这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。
实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。
卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。
卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。
实例三:风车旋转风车旋转也可以看作是一种圆周运动。
当风吹来时,风叶会受到风的力推动,从而开始转动。
风叶的运动轨迹是一个近似于圆周的曲线。
旋转的轴心是固定的,风向则决定了旋转的方向。
风车的旋转速度取决于风的强度和风叶的设计。
实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。
当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。
我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。
实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。
当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。
这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。
总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。
人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。
力学中的圆周运动
力学中的圆周运动圆周运动(Circular Motion)是力学中一种重要的运动形式,广泛应用于各个领域,与人们的日常生活息息相关。
本文将从基本概念、运动规律以及实际应用等方面介绍力学中的圆周运动。
一、基本概念圆周运动是物体在半径为r的圆周轨道上运动的过程。
在圆周运动中,物体保持一定的速度,并不断改变运动方向。
根据力学定律,物体沿圆周运动所受的向心力可以计算为Fc = mv²/r,其中Fc为向心力,m为物体的质量,v为物体的速度,r为圆周半径。
二、运动规律在圆周运动中,可以根据运动规律来计算与描述物体的运动状态。
1. 圆周运动的速度物体在圆周运动中的速度可以通过v = ωr来计算,其中v为线速度,ω为角速度,r为圆周半径。
角速度可以表示物体单位时间内绕圆周运动的角度变化量。
2. 圆周运动的加速度物体在圆周运动中的加速度可以通过a = αr来计算,其中a为加速度,α为角加速度,r为圆周半径。
角加速度可以表示物体单位时间内角速度的变化量。
3. 圆周运动的周期与频率圆周运动的周期T是一个物体绕圆周一周所需的时间,可以通过T = 2π/ω来计算,其中π为圆周率。
频率f是圆周运动单位时间内的循环次数,可以通过f = 1/T来计算。
三、实际应用圆周运动在生活中有着广泛的应用,以下是一些实际场景的例子:1. 环形公路上的车辆行驶当车辆在环形公路上行驶时,车辆会保持一定的速度并沿着圆周轨道行驶,这就是圆周运动的一个实际应用。
向心力将车辆约束在圆周轨道上,保证了行驶的稳定性。
2. 标注行进半径的扭转开关在很多扭转开关上,设计师会标注行进半径,这是因为该开关需要旋转一定角度才能开启或关闭电路。
这个旋转的过程就是一个圆周运动,通过设定行进半径可以控制旋转的灵敏度。
3. 悬挂球体的运动当有一个绳子固定在某一点,下面悬挂着一个球体时,球体做圆周运动。
绳子提供了向心力,使球体沿着圆周轨道运动。
总结:力学中的圆周运动是一种重要的运动形式,涉及到很多基本概念和运动规律。
圆周运动原理与应用
圆周运动原理与应用人们在日常生活中接触到的运动形式各式各样,但最常见的还是圆周运动。
无论是钟表的指针、风扇的叶片、汽车的轮胎、自行车的车轮,还是机械臂的关节、地球的自转、行星的公转,都是圆周运动的实例。
那么什么是圆周运动?它的原理是什么?它在哪些领域中有应用?一、圆周运动的概念圆周运动是指质点在平面内按照固定运动轨迹做匀速的旋转运动。
在圆周运动中,质点离开圆心的距离保持不变,速度大小恒定,方向不断变化,而且与半径的方向垂直。
圆周运动可以看做是一种二维的运动形式,是各种复杂运动的基础。
二、圆周运动的原理圆周运动的原理可以用牛顿第二定律来解释。
根据牛顿第二定律,物体的加速度是与作用力成正比、与物体质量成反比的。
在圆周运动中,由于物体的速度大小恒定,所以它的加速度大小也恒定。
然而,它的方向不断变化,因此必须受到一个向心力的作用,才能保持在圆周运动中。
向心力的大小与圆周运动速度的平方成正比,与质点离开圆心的距离成反比。
向心力的方向始终指向圆心,是质点受到的总合外力。
三、圆周运动的应用圆周运动在生活和工业中应用广泛。
以下是几个典型的应用:1. 赛车运动赛车在赛道上进行匀速圆周运动,驾驶员的技术包括在车速快的情况下保持突出的向心力,防止车辆失控滑出赛道。
了解赛车运动的原理对提高驾驶技术和竞赛成绩都有帮助。
2. 显示器刷新显示器是由大量的像素点组成的,每个像素点都可以发出不同的颜色。
通过分别控制每个像素点的发光时间,可以产生各种图像的效果。
在液晶屏上,像素点需要经过一段时间才能亮起来,所以必须按照一定的顺序逐行扫描像素点,以达到刷新显示的效果。
这就是一种圆周运动,其中的“圆心”是显示器的控制器。
3. 水平天文仪水平天文仪是用来观测天体的仪器,它能够在水平面上旋转,以便于观测不同方向的天空。
水平天文仪是一种典型的圆周运动,其驱动装置需要通过精密设计和制造来保证天文观测的精度和准确性。
4. 摆锤摆锤是通过重力作用实现圆周运动的简单仪器,常用于物理实验中。
圆周运动规律及应用
圆周运动规律及应用圆周运动是指物体在一个固定的圆形轨道上运动的过程。
它是一种常见的运动形式,在日常生活中有着广泛的应用。
圆周运动的规律和应用涉及到物体的角速度、切线速度、向心加速度等概念,下面将详细介绍。
首先,圆周运动的基本概念是角度和弧长之间的关系。
当物体在圆周上移动一个角度时,会对应一个弧长的变化。
这个关系是通过弧度制来表示的,即角度的度数除以180再乘以π。
例如,一个物体在圆周上旋转一周,对应的角度是360度,弧度是2π。
这个关系为后面的计算提供了基础。
其次,圆周运动可以通过角速度来描述。
角速度是指物体在圆周运动中,单位时间内所转过的角度。
它的公式是角速度=角度/时间。
角速度的单位通常是弧度/秒。
角速度可以用来描述物体的运动快慢,具体数值越大表示转动越快。
然后,圆周运动的速度可以分为切线速度和角速度。
切线速度是指物体在圆周运动时切线方向上的速度。
它的公式是切线速度=角速度×半径。
切线速度可以通过测量单位时间内物体经过的弧长来计算。
切线速度是表示物体在圆周运动中的真实速度,与角速度和半径有关。
再次,圆周运动中常常会涉及到一个重要的物理量,即向心加速度。
向心加速度是指物体在圆周运动中径向方向的加速度。
它的公式是向心加速度=切线速度²/半径。
向心加速度是由于物体受到向心力的作用而产生的,它的方向始终指向圆心。
向心加速度的大小与切线速度的平方成正比,与半径的倒数成反比。
向心加速度是决定圆周运动轨迹的重要因素。
最后,圆周运动的规律和应用在日常生活中有着广泛的应用。
其中之一是汽车在行驶过程中的转向。
当汽车转弯时,驾驶员会施加向心力来改变汽车的方向。
向心力的大小与汽车速度的平方成正比,与转弯半径成反比。
这是因为向心力与向心加速度成正比,而向心加速度又与切线速度的平方成正比,与半径的倒数成反比。
因此,汽车转弯时,向心力越大,转弯越快。
另一个应用是摩托车在绕弯过程中的倾斜角度。
当摩托车绕弯时,为了保持稳定状态,驾驶员会倾斜摩托车,使重心向内侧偏移。
生活中圆周运动
03
通过微积分可以计算圆周运动的轨矢量运算在处理复杂问题时的作用
描述圆周运动的物体的位置和速度
矢量运算可以用来描述圆周运动的物体的位置和速度,通过矢量的加法和减法可以得到物体在不 同时刻的位置和速度。
分析圆周运动的合成和分解
通过矢量运算可以分析圆周运动的合成和分解,如将复杂的圆周运动分解为简单的匀速直线运动 和匀变速直线运动的合成。
03
钟表、指南针等日常用品
钟表指针的旋转、指南针的指向都涉及圆周运动,这些日常用品的设计
和使用都离不开圆周运动原理。
促进科技发展,推动社会进步
航天器轨道设计
航天器的轨道设计需要精确计算和控制圆周运动的参数, 以确保航天器能够按照预定轨道稳定运行,这对于人类的 太空探索和科学研究具有重要意义。
精密机械制造
三角函数在圆周运动中应用
1 2
描述匀速圆周运动的物体的位置
三角函数可以用来描述匀速圆周运动的物体在某 个时刻的位置,通过角度和半径的关系,可以准 确地确定物体的坐标。
分析圆周运动的周期性
三角函数具有周期性,因此可以用来分析圆周运 动的周期性,如转速、周期、频率等。
3
计算向心加速度和向心力
在向心加速度和向心力的计算中,需要用到三角 函数的导数和积分,以及三角函数之间的关系, 如正弦定理、余弦定理等。
波动可以通过不同的介质进行传播,如固体、液体和气体。在传播过程中,波动会遵循一定的传播规 律,如反射、折射和衍射等。此外,波动的传播速度会受到介质性质的影响。
曲线运动在自然界和人类活动中的普遍性
自然界中的曲线运动
地球围绕太阳公转、月亮围绕地球旋转 、行星的自转等都是自然界中的曲线运 动现象。这些运动遵循着天体物理学的 规律,呈现出周期性和稳定性。
圆周运动的基本规律及应用
返回导航页
结束放映
(2014· 新课标全国卷Ⅰ)如图所示,两个质量均为 m 的小木块 a 和 b(可视为质点)放在水平圆盘上,a 与转轴 OO′的距离为 l,b 与转轴的距 离为 2l,木块与圆盘的最大静摩擦力为木块所受重力的 k 倍,重力加速度大 小为 g。若圆盘从静止开始绕转轴缓慢地加速转动,用 ω 表示圆盘转动的角 速度,下列说法正确的是( ) A.b 一定比 a 先开始滑动 B.a、b 所受的摩擦力始终相等 kg C.ω= 是 b 开始滑动的临界角速度 2l 2kg D.当 ω= 时,a 所受摩擦力的大小为 kmg 3l
×
返回导航页
结束放映
汽车与路面间的动摩擦因数为 μ,公路某转 弯处半径为 R(设最大静摩擦力等于滑动摩擦力),问: (1)若路面水平,汽车转弯不发生侧滑,汽车速度不 能超过多少? (2)若将公路转弯与路面设计成外侧高、内侧低,使 路面与水平面有一倾角 α,汽车以多大速度转弯时,可 以使车与路面间无侧向摩擦力?
1.匀速圆周运动 (1)定义:线速度大小 不变 (2)性质:加速度大小 不变 动。 2.描述匀速圆周运动的物理量 定义、意义 描述做圆周运动的物体运动 线速度 快慢 _______的物理量(v) 描述物体绕圆心 转动 角速度 快慢 的物理量(ω) 公式、单位 Δx 2πr ② v= = T Δt ②单位: m/s Δθ 2π ②ω= = T Δt ②单位: rad/s
返回导航页
结束放映
思维诊断 (1)匀速圆周运动是匀加速曲线运动。 (× )
(2)做匀速圆周运动的物体所受合外力为变力。(
√
)
(3)随水平圆盘一起匀速转动的物体受重力、 支持力和向心力作用。 ( (4)做圆周运动的物体所受到的合外力不一定等于向心力。 (
圆周运动物体在圆轨道上的运动
圆周运动物体在圆轨道上的运动圆周运动是指物体在一个固定半径的圆轨道上运动的过程。
在这种运动中,物体会沿着圆轨道旋转,保持一定的速度和向心加速度。
本文将详细探讨圆周运动物体在圆轨道上的运动特点及其相关公式和应用。
一、圆周运动基本概念圆周运动是一种二维平面运动,物体绕着一个固定半径的圆轨道进行旋转。
在这种运动中,物体始终朝向圆心,并保持一定的速度。
圆周运动物体受到向心力的作用,导致向心加速度存在。
二、向心力和向心加速度向心力是使物体朝向圆心的力,它是圆周运动的基本力之一。
向心力的大小与物体的质量和向心加速度相关。
向心力的大小可以由以下公式计算得出:F = mv²/r其中,F为向心力,m为物体的质量,v为物体的速度,r为圆周运动的半径。
向心加速度是指圆周运动物体沿着圆轨道向圆心加速度的大小。
向心加速度与向心力有着直接的关系。
向心加速度的大小可以由以下公式计算得出:a = v²/r其中,a为向心加速度,v为物体的速度,r为圆周运动的半径。
三、圆周运动的周期和频率圆周运动的周期是指物体完成一次完整旋转所需的时间。
圆周运动的频率是指物体在一秒钟内完成的旋转次数。
周期和频率之间存在以下关系:T = 1/f其中,T为周期,f为频率。
四、圆周运动物体的角速度和角位移角速度是指物体在圆周运动过程中,角度的变化率。
角速度的大小可以由以下公式计算得出:ω = Δθ/Δt其中,ω为角速度,Δθ为角位移的改变量,Δt为时间的改变量。
角位移是指物体在圆周运动过程中,角度的变化量。
角位移的大小可以由以下公式计算得出:Δθ = ωt其中,Δθ为角位移,ω为角速度,t为时间。
五、应用实例圆周运动的概念和相关公式广泛应用于现实生活和科学研究中。
以下是一些实际应用实例:1. 赛车在椭圆形跑道上进行圆周运动,驾驶员需要根据向心力调整赛车的速度和转向角度,以保持在合适的轨道上行驶。
2. 行星绕着太阳进行圆周运动,向心力保持行星沿着椭圆轨道运动,决定了行星的轨道形状和星球运动的周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11、如图,线段OA=2AB, 11、如图,线段OA=2AB,A、B两球质量相等,当 OA=2AB 两球质量相等, 它们绕O点在光滑水平桌面上以相同角速度转动时, 它们绕O点在光滑水平桌面上以相同角速度转动时, 两段轻绳中拉力之比F 为多大? 两段轻绳中拉力之比FAB:FOB为多大?
2 :3
12.(2008广东物理)(2)有一种较“飞椅”的游乐项 12.(2008广东物理)(2 有一种较“飞椅” .(2008广东物理)( 示意图如图所示,长为L的钢绳一端系着座椅, 目,示意图如图所示,长为L的钢绳一端系着座椅,另一 端固定在半径为r的水平转盘边缘。 端固定在半径为r的水平转盘边缘。转盘可绕穿过其中心 的竖直轴转动。 匀速转动时, 的竖直轴转动。当转盘以角速度ω匀速转动时,钢绳与转 轴在同一竖直平面内, 轴在同一竖直平面内,与竖直方向的夹角为θ。不计钢绳 的重力,求转盘转动的角速度ω与夹角θ的关系。 的重力, 的关系。
3.如图所示,竖直圆筒内壁光滑,半径为R,顶 如图所示,竖直圆筒内壁光滑,半径为R 部有入口A 的正下方h处有出口B 一质量为m 部有入口A,在A的正下方h处有出口B,一质量为m 的小球从人口A沿圆筒壁切线方向水平射人圆筒内, 的小球从人口A沿圆筒壁切线方向水平射人圆筒内, 要使球从B处飞出,小球进入入口A处的速度v 要使球从B处飞出,小球进入入口A处的速度vo应满 足什么条件?在运动过程中,球对筒的压力多大? 足什么条件?在运动过程中,球对筒的压力多大?
14、 14、两个质量分别是m1和m2的光滑小球套在光滑水 平杆上, 的细线连接, 平杆上,用长为L的细线连接,水平杆随框架以角 做匀速转动,两球在杆上相对静止, 速度ω做匀速转动,两球在杆上相对静止,如图 所示, 所示,求两球离转动中心的距离R1和R2及细线的拉 力.
15、如图所示, 15、如图所示,用细绳一端系着的质量为M=0.6kg 静止在水平转盘上, 的物体A静止在水平转盘上,细绳另一端通过转盘 =0.3kg的小球 中心的光滑小孔O吊着质量为m=0.3kg的小球B,A 点的距离为0.2m 0.2m. 的重心到O点的距离为0.2m.若A与转盘间的最大 =2N, 保持静止, 静摩擦力为f=2N,为使小球B保持静止,求转盘绕 的取值范围.( .(取 中心O旋转的角速度ω的取值范围.(取g=10m/s2)
v Rg
2
1 2v 2 C. arcsin . 2 Rg
v B.arctan . Rg v2 D.arccot . Rg
2
B
FN F θ mg θ
10、中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙 10、中央电视台《今日说法》 某区湘府路上的离奇交通事故。 某区湘府路上的离奇交通事故。家住公路拐弯处的张先生和李先生 家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面, 家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,所幸 没有造成人员伤亡和财产损失,第八次则有辆卡车冲撞进李先生家, 没有造成人员伤亡和财产损失,第八次则有辆卡车冲撞进李先生家, 造成三死一伤和房屋严重损毁的血腥惨案。 造成三死一伤和房屋严重损毁的血腥惨案。经公安部门和交通部门 协力调查,画出了现场示意图(下图1)和道路的设计图(下图2)。有 协力调查,画出了现场示意图(下图1)和道路的设计图(下图2)。 1)和道路的设计图 2) 位交警根据图1 作出以下判断,你认为正确的是: 位交警根据图1、2作出以下判断,你认为正确的是: AC 依据图1 A、依据图1可知汽车在拐弯时发生侧翻是因为车作离心运动 依据图1 B、依据图1可知汽车在拐弯时发生侧翻是外( C、依据图2发现公路在设计上犯了严重的内(东)高外(西)低科 学性错误 依据图2发现公路在设计上犯了严重的外( 高内( D、依据图2发现公路在设计上犯了严重的外(西)高内(东)低科 学性错误
2008-2009学年江苏省淮安中学高三物理复习 2008-2009学年江苏省淮安中学高三物理复习
一、圆周运动概念的考查 1、如图所示装置中,三个轮的半径分别为r、2r、 如图所示装置中, 4r,b点到圆心的距离为r,求图中a、b、c、d各 点的线速度之比、角速度之比、加速度之比。 点的线速度之比、角速度之比、加速度之比。
4、质量为m的小球用长为L的细线挂在O点,在O点 质量为m的小球用长为L的细线挂在O 正下方L/2处有一光滑的钉子O L/2处有一光滑的钉子 正下方L/2处有一光滑的钉子O/,把小球拉到与钉 在同一水平面的位置,摆线被钉子挡住并张紧, 子O/在同一水平面的位置,摆线被钉子挡住并张紧, 如图所示,现将小球由静止释放, 如图所示,现将小球由静止释放,当小球第一次 BCD 通过最低点P 通过最低点P时( ) 小球的运动速度突然减小; A、小球的运动速度突然减小; 小球的角速度突然减小; B、小球的角速度突然减小; 小球的向心加速度突然减小; C、小球的向心加速度突然减小; D、悬线的拉力突然减小
临界问题
16、如图所示,在绕竖直轴OO' 16、如图所示,在绕竖直轴OO'匀速转动的水平 OO 圆盘上,沿半径方向放置A 两个小物体, 圆盘上,沿半径方向放置A、B两个小物体,质量 分别为m kg, kg. 分别为ml=0.3 kg,m2=0.2 kg.A与B间用长度为 l=0.1m的细线相连,A距轴r=0.2 m,A、B与盘 0.1m的细线相连 的细线相连, 距轴r m, 面间的最大静摩擦力均为重力的0.4 0.4倍 面间的最大静摩擦力均为重力的0.4倍. (1)为使 为使A 同时相对于圆盘发生滑动, (1)为使A、B同时相对于圆盘发生滑动,圆盘的角 速度至少为多大? 速度至少为多大? (2)当圆盘转动角速度逐渐增大到 当圆盘转动角速度逐渐增大到A (2)当圆盘转动角速度逐渐增大到A与B即将开始滑 动时烧断连线, 的运动情况分别如何? 动时烧断连线,则A与B的运动情况分别如何? (1)4rad/s (2)A相对圆盘静止 (2)A相对圆盘静止 B做离心运动。 做离心运动。
7、如图所示,一个轮半径为R,轴半径为 的轮轴, 、如图所示,一个轮半径为 ,轴半径为r的轮轴 的轮轴, 可以绕水平轴O转动 物体A、 质量均为 转动, 质量均为m, 可以绕水平轴 转动,物体 、B质量均为 ,分 别用足够长的细绳绕在轮、轴边缘。 别用足够长的细绳绕在轮、轴边缘。若轮轴的质 量不计,摩擦不计,让两物体由静止释放, 量不计,摩擦不计,让两物体由静止释放,轮与 轴以相同的角速度转动,试求; 轴以相同的角速度转动,试求; (1)两物体运动的加速度之比。 )两物体运动的加速度之比。 2)当物体A下降 下降h时 (2)当物体A下降h时,两物体 的即时速度V 各为多大。 的即时速度 A和VB各为多大。 下降的加速度a (3)物体 下降的加速度 A。 )物体A下降的加速度
17、如图所示,在倾角为α=30° 17、如图所示,在倾角为α=30°的光滑斜面顶点 α=30 处固定一原长l =0.2m的轻弹簧 的轻弹簧, 处固定一原长l0=0.2m的轻弹簧,弹簧的另一端与 放在光滑斜面体上质量为m=2kg的物体C相连后, m=2kg的物体 放在光滑斜面体上质量为m=2kg的物体C相连后, 弹簧长度变为l =0.25m。当斜面体连同物体C 弹簧长度变为l1=0.25m。当斜面体连同物体C一起 绕竖直轴AB转动时, AB转动时 绕竖直轴AB转动时,求: 转速为多少时物体C对斜面无压力? (1)转速为多少时物体C对斜面无压力? 转速n=60r/min n=60r/min时 弹簧的长度是多少? (2)转速n=60r/min时,弹簧的长度是多少?
ω=
g R−h
关键: 关键:1、由受力分析列出 向心力表达式。 向心力表达式。 2、由圆周运动规律写 出向心力表达式。 出向心力表达式。
9、 在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯 、 在高速公路的拐弯处,路面造得外高内低, 司机左侧的路面比右侧的要高一些, 时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角 的圆弧, 为θ.设拐弯路段是半径为 的圆弧,要使车速为 时车轮与路面 .设拐弯路段是半径为R的圆弧 要使车速为v 之间的横向(即垂直于前进方向 摩擦力等于零, 应等 即垂直于前进方向)摩擦力等于零 应等( 之间的横向 即垂直于前进方向 摩擦力等于零,θ应等( ) A.arcsin .
5 2 (1) r/s 2π (2)0.36m
18、如下图所示,光滑的水平面上钉有两枚铁钉A 18、如下图所示,光滑的水平面上钉有两枚铁钉A B,相距0.1m,长为1m的柔软细线拴在 相距0.1m,长为1m的柔软细线拴在A 和B,相距0.1m,长为1m的柔软细线拴在A上,另一端 系一质量为0.5kg的小球,小球的初始位置在AB 0.5kg的小球 AB连 系一质量为0.5kg的小球,小球的初始位置在AB连 线上A的一侧,把细线拉紧,给小球以2m/s 2m/s垂直于线 线上A的一侧,把细线拉紧,给小球以2m/s垂直于线 方向的水平速度使它做圆周运动, 方向的水平速度使它做圆周运动,由于由钉子的存 使小球慢慢地缠绕在AB AB上 在,使小球慢慢地缠绕在AB上,求: (1)如果细线不会断 如果细线不会断, (1)如果细线不会断,从小球开始运动到细线完全 缠在A,B上需要多长时间? A,B上需要多长时间 缠在A,B上需要多长时间? (2)如果细线的抗断力 最大张力) 7N,则从开始 如果细线的抗断力( (2)如果细线的抗断力(最大张力)为7N,则从开始 运动到细线断裂经历多长时间? 运动到细线断裂经历多长时间?
5、如图所示,小球从水平位置静止释放,设小球 如图所示,小球从水平位置静止释放, 角速度为ω 通过最低点时的速度为v,角速度为ω,加速度为 a,绳的拉力为T,那么随着绳子L的增长 B.ω、a都减小 A.v、a都增大 不变, 增大, C.T不变,增大 D.v增大,减小
6、如图所示,A、B、C三个物体放在旋转圆台上, 如图所示, 三个物体放在旋转圆台上, 它们与台面的动摩擦因素相同,质量分别为2m 2m、 它们与台面的动摩擦因素相同,质量分别为2m、m、 它们离轴距离分别为a 2a,当转台旋转时, m,它们离轴距离分别为a、a、2a,当转台旋转时, 均未滑动, A、B、C均未滑动,则 ( ) B 物体受到的向心力比A物体受到的向心力大; A、C物体受到的向心力比A物体受到的向心力大; 物体受到的静摩擦力最小; B、B物体受到的静摩擦力最小; 圆台角速度增加时, 先滑动; C、圆台角速度增加时,B比C先滑动; 圆台角速度增加时, 先滑动。 D、圆台角速度增加时,B比A先滑动。 关键: 关键:求出各物体所 能达到的最大角速度。 能达到的最大角速度。