五年制小学奥数四年级数论问题——整除
小学小升初奥数知识:数的整除
小学小升初奥数知识:数的整除小学小升初奥数知识集锦:数的整除导语:下面是小编为您收集整理的数的整除相关知识,欢迎阅读!1.整除的概念在小学书中所学的自然数和零,都是整数。
同学们都知道,如果一个整数a除以一个自然数b,商是整数而且没有余数(或者说余数为零),就叫做a能被b整除,或者b整除a,记作a│b。
这时a叫做b 的倍数,b叫做a的约数。
例如,3│15表示15能被3整除,或者3整除15;也可以说15是3的倍数,3是15的约数。
由整数概念可知,整除必须同时满足三个条件:(1)被除数是整数,除数是自然数;(2)商是整数;(3)没有余数。
这三个条件只要有一个不满足,就不能叫整除。
例如,16÷5=3.2,商不是整数,所以不能说5整除16。
又如,10÷2.5=4,除数不是自然数,所以不能说10能被2.5整除。
2.整除的性质(1)如果两个整数都被同一个自然数整除,那么它们的和、差(大减小)也都能被这个自然数整除。
换句话说,同一个自然数的两个倍数之和、差(大减小)仍是这个自然数的倍数。
例如,18与42都能被6整除,那么18与42的和60、差24也都能被6整除;即从6│18及6│42可知6│(18+42)、6│(42-18)。
(2)如果甲数整除乙数,乙数整除丙数,那么甲数整除丙数。
即如果丙数是乙数的倍数,乙又是甲数的倍数,那么丙数是甲数的倍数。
例如,7│28,28│84,那么就有7│84。
(3)如果甲数整除乙数,那么甲数就整除乙数与任一整数的乘积。
也就是说如果乙数是甲数的倍数,那么乙数的任一倍数也是甲数的倍数。
例如,13│39,39×4=156,因此13│156。
(4)如果甲数能被丙数整除,而乙数不能被丙数整除,那么甲数与乙数的和、差都不能被丙数整除。
即如果甲数是丙数的倍数,乙数不是丙数的倍数,那么甲数与乙数的和、差(大减小)都不是丙数的倍数。
例如,6整除48,6不整除35,所以6不整除83(48+35=83),也不整除13(48-35=13)。
小学五年级奥数:数的整除知识点汇总+例题解析
小学五年级奥数:数的整除知识点汇总+例题解析数的整除数的整除问题,内容丰富,思维技巧性强。
它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。
一、基本概念和知识1.整除——约数和倍数例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。
记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。
如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的约数。
例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。
2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
即:如果c|a,c|b,那么c|(a±b)。
例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。
性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c 的积能整除a。
即:如果b|a,c|a,且(b,c)=1,那么bc|a。
例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。
性质4:如果c能整除b,b能整除a,那么c能整除a。
即:如果c|b,b|a,那么c|a。
例如:如果3|9,9|27,那么3|27。
3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。
②能被5整除的数的特征:个位是0或5。
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。
④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。
小学奥数教程之数的整除
学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。
要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。
可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。
可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
数的整除学生姓名授课日期教师姓名授课时长知识定位本讲是数论知识体系中的一个基石,整除知识点的特点介于“定性分析与定量计算之间”即本讲中的题型有定性分析层面的也有定量计算层面的,是很重要的一讲,也是竞赛常考的知识板块。
本讲力求实现的一个核心目标是让孩子熟悉和掌握常见数字的整除判定特性,在这个基础上对没有整除判定特性的数字可以将其转化为几个有整除判定特性的数字乘积形式来分析其整除性质。
另外一个难点是将数字的整除性上升到字母和代数式的整除性上,这个对与学生的代数思维是一个良好的训练也是一个不小的挑战。
知识梳理1.常见数字的整除判定方法(1). 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;(2). 一各位数数字和能被3整除,这个数就能比9整除;一个数各位数数字和能被9整除,这个数就能被9整除;(3). 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.(4). 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)注:在给学生讲解常见数字的判定性质时,要分系列来讲,例如有2系列,5系列,3系列和7,11,13系列,便于记忆。
对于11的单独判定特性需要重点讲解。
2.整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).注:在理解这个性质时,我们要注意,反过来是不成立的,即两数的和(a+b)或差(a-b)能被c整除,这两个数不一定能被c整除.如5 ︱(26+24),但526,524.可以引入下面的问题2∣12,12∣36.2能否整除36?显然,回答是肯定的.这是因为36是12的倍数,12又是2的倍数,那么36一定是2的倍数.由此我们又可以得出:性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am (m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么bd也能被ac整除.如果b|a ,且d|c ,那么ac|bd;3.重点难点解析(1).常见数字的整除判定性质(2).将不具有整除判定性质的数字进行分解判定其整除性(3).代数式之间整除性的判断,代数思想的应用(4).试除法的理解和应用4.竞赛考点挖掘(1).与数字谜或算式迷结合的整除判断特性题目(2).代数式之间的整除性问题例题精讲【试题来源】【题目】已知道六位数20□279是13的倍数,求□中的数字是几?【解析】本题为基础题型,利用13的整除判定特征即可知道方格中填1。
五年制小学奥数四年级数论问题整除
整除——当两个整数a和b(b≠0),a被b除的余数为0时(商为整数),则称a被b整除或b整除a;倍数和约数——把a叫作b的倍数,b叫作a的约数;数的整除特征:①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;求满足下面各小题条件的a:(a代表同一个数字)⑴312a a⑵512a a⑶910a a有一个五位数可同时被9和11整除。
若将这个五位数的第一位、第三位与第五位数码移除,则可得到一个两位数35;若将这个五位数的前三位数码移除,则剩下的两位数可被9整除;若将这个五位数的末三位数码移除,则剩下的两位数也可以被9整除,请问这个五位数是什么?有些六位数,组成六位数的六个数字都不相同,而相邻两个数字组成的两位数能被3整除,这样的六位数一共有几个?如果从5,6,7,8,9五个数字中,选出四个数字组成一个四位数,它能被3,5,7都整除,求这些数中最大的四位数。
有一个五位数679a b ,它可被72整除。
请问a 2+b 2等于多少?如果七位数2008□□□能同时被2、3、4、5、6、7、8、9整除,那么,它的最后三位数是_____。
从1~99中选出连续3个自然数,使得它们的乘积能被30整除,一共有_____种选法。
测试题1.173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数。
依次可被9、11、6整除。
”问:数学老师先后填入的3个数字的和是多少?2.如果六位数1992□□能被95整除,那么,它的最后两位数是_____。
小学五年级奥数-整除问题
五年级思维第二讲基础知识:1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷则称a 能被b 整除或者b 能整除a ,记做b a |,否则称为a 不能被b 整除或者b 不能整除a ,记做a b |. 性质1:如果a 、b 都能被c 整除,那么他们的和与差也能被c 整除.性质2:如果b 与c 的乘积能够整除a ,那么b 、c 都能整除a .性质3:如果b 、c 都能整除a ,并且b 、c 互质,那么b 、c 的乘积也能够整除a. 性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a .性质5:如果b 和c 的乘积能够被a 整除,并且a ,b 互质,那么c 能够被a 整除.2. 被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3. 被3,9整除特征:数字和被3,9整除.4. 被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.例题:例1、如果六位数2012□□能够被105整除,那么后两位数是多少?解:设六位数为,105=3,依次考虑被3,5,7整除得到3∣a+b -1,b=0或5, 7∣(10a+b-1),得到唯一解a=8,b =5.故后两位为85.例2、求所有的x ,y 满足使得72∣.解:72=8×9,根据整除9性质易得x +y =8或17,根据整除4 的性质y =2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费□67.9□元,其中□处字迹已经模糊不清,请你补上□中的数字并且算出每只羽毛球的单价.解:设两个□处的数字分别是a 、b ,则有143∣,根据11∣,有a+b =8,再根据13∣,所以13∣(100a +67-90-b ),再根据a+b =8得到13∣(10a -5)解得a =7 b =1所以方框处的数字是7和1,单价5.37元.例4、把若干个自然数1,2,3….乘到一起,如果已知这个乘积的最后14位都是0,那么最后的自然数至少是多少?解:最后14位都是0说明这个乘积整除1014,由于1×2×3×…中因数2比因数5多得多,只需考虑其整除514,5的倍数但是不是25的倍数可以提供一个因数5,25的倍数但是不是125的倍数可以提供2个因数5…可得出至少需要60个数,即这个自然数至少是60.例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.解:168=3⨯7⨯8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776.当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求. 因此唯一符合题目要求的数是768768.例6、 要使六位数能够被63整除,那么商最小是多少? 解:63=7⨯9. 考虑能被7整除,于是有7∣(100b+10c+6-100-a ),整理得 7∣(2b+3c-a +4),再考虑该数能被9整除,有a+b+c =2或11或20. 由于要求最小的商也就是最小的被除数,先希望a =0. 此时,易验证b =0, b =1无解,而在b =2时,有解c =9,所以最小的被除数是100296,最小的商是1592.例7、 所有五位数中,能够同时被7,8,9,10整除的有多少?解:7,8,9,10的最小公倍数是2520,五位数最小是10000,最大99999,共有90000个数,180035252090000 =÷,24403252010000 =÷,所以共有36个.例8、用1、2、3组成的四位数(可重复)中能够被11整除的数有多少个?解:这样的四位数被11整除,一定有奇数位数字之和等于偶数位数字之和. 在1,2,3,4中1+1=1+1,1+2=1+2,1+3=1+3, 1+3=2+2 ,2+2=2+2,2+3=2+3,3+3=3+3七种情况,其中1+1=1+1、2+2=2+2、3+3=3+3分别只能得到1个4位数,1+2=1+2,1+3=1+3,2+3=2+3情况相同可以得到4个4位数,1+3=2+2也能得到4个4位数,所以一共有19个.例9、已知(重复99次)能够被91整除,求.解:根据7和13的整除判断方法7(13)∣(重复99次)有7(13)∣(重复98次),因为(91,1000)=1,所以7(13)∣(重复98次),以此类推,就有7(13)∣,得到 =455,所以=55.例10、已知11个连续两位数的乘积的末四位都是0,而且是343的倍数,那么这11个数中最小的是多少?解:因为连续11个数是343的倍数,而33437=,但是11个数中之多有两个是7的倍数,所以这11个数中有49或者98,而11个数之多有3个是5的倍数,但却是10000的倍数,所以这11个数中又有25或者50或者75,并且以5的倍数开头和结尾,又要保证有2个7的倍数,所以只能是40到50这11个数.所以最小的数是40.数学万花筒——趣题欣赏:1. 鬼谷子问题:传说在春秋战国时期,鬼谷子随意从2-99中选取了两个数。
小学五年奥数-数的整除
数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。
2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。
②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。
③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。
3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。
所以3□6□5能同时被3和25整除。
3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。
当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。
同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。
五年级奥数第2讲-整除问题进阶
课堂检测
(1)在7315、58674、325702、96723、360360中,7的倍数有哪些?13的倍数有哪些?
(2)四位数 33 能同时被9和11整除,这个四位数是多少?
(3)四位数27 8能被7整除,那么这个四位数是多少?
(4)已知多位数81 258258...258,能同时被7和13整除,方格内的数字是多少?
五年级奥数第2讲-整除问题进阶
第二讲
整除问题进阶
• 数论专题第2讲
知识精讲
上一讲我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用 数字和判断等。 1.尾数判断法 (1)能被2、5整除的数的特性:个位数字能被2、5整除. (2)能被4、25整除的数的特性:末两位能被4、25整除。 (3)能被8、125整除的数的特性:末三位能被8、125整除。 2.数字求和法 能被3、9整除得数的特性:各位数字之和能被3、9整除。 3.奇偶位求差法 能被11整除的数的特性:“奇位和”与“偶位和”的差能被11整除。
2012个258
(5)已知多位数11...1 33...3,能被7整除,那么中间方格内的数字是多少?
2011个1020/11/5
18
挑战极限
例题六:
有一个五位数,它的末三位为999。如果这个数能被23整除,那么这个五位数最小 是多少? 分析:我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘 积,因此不可能根据整除特征来考虑,我们尝试从整除的定义来入手,这个五位数 能被23整除,就是说,它能写成23与另一个数的乘积,接下来大家想到该怎么办了 吗?
现在我们再来学习一些新的判断方法。
知识精讲
一、截断作和
能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的 可以是一位数)之和,能被99整除。
四年级奥数专题之整除与余数
四年级奥数整除与余数【导言】我们学习的除法算式有两种情况,一种是被除数除以除数以后,余数为0,即数的整除性;另一种是被除数除以除数以后,余数不为0,即有余数的除法。
一个有余数的除法包括四个数:被除数÷除数=商……余数。
这个关系也可以表示为:被除数=除数×商+余数。
下面来总结一下整除和有余数除法的特征:1、整除:(1)能被2整除的特征:如果一个数的个位数字是偶数,那么这个数能被2整除。
(2)能被3整除的特征:如果一个数的各位数字之和能被3整除,那么这个数能被3整除。
(3)能被4(或25)整除的特征:如果一个数的末两位数能被4(或25)整除,那么这个数能被4(或25)整除。
(4)能被5整除的特征:如果一个数的个位数字是0或5,那么这个数能被5整除。
(5)能被8(或125)整除的特征:如果一个数的末三位数能被8(或125)整除,那么这个数能被8(或125)整除。
(6)能被9整除的特征:如果一个数的各位数字之和能被9整除,那么这个数能被9整除。
(7)能被11整除的特征:如果一个数奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。
2、有余数的除法:(1)一个数除以4的余数,与它的末两位除以4的余数相同。
(2)一个数除以8的余数,与它的末三位除以8的余数相同。
(3)一个数除以9的余数,与它的各位数字之和除以9的余数相同。
(4)一个数除以11的余数,与它的奇数位上的数字之和与偶数位上的数字之和的差除以11的余数相同。
(如果奇位上的数字之和小于偶数位上的数字之和,可用偶数位数字之和减去奇数位数字之和,再除以11,所得的余数与11的差即为所求)。
【经典例题1】已知一个6位数14A52B能被5和9整除,求这个6位数。
【解题步骤】能被5整除的数的末位是0或5,能被9整除的末位是各位上的数字之和能被9整除,即1+4+A+5+2+B能被9整除。
当B=0时,A取6;当B=5时,A取1。
小学奥数 数论问题 第二讲 数的整除特性
第二讲数的整除特性讲义(一)整除的定义:所谓“一个自然数a能被另一个自然数b整数”就是说“商a/b是一个整数”;或者换句话说:存在这第三个自然数c,使得a=b×c,这时候我们就说“b整除a”或者“a能被b整除”,其中b叫a的约数,a是b的倍数,记做“b︱a”(二)整除的性质:(传递性)若c︱b,b︱a,则c︱a(可加性)若c︱a,c︱b,则c︱(a+b)(可乘性)若c︱a,d︱b,则cd︱ab(三)常见的整除特征:尾数系:一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;数字和系:一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;分段做差系:如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.课后习题基础篇:【闯关1】493至少增加()才是3的倍数,至少减少()才有因数5,至少增加()才是2的倍数,至少增加()才是7的倍数。
【闯关2】如果六位数1992□□能被105整除,那么它的最后两位数是多少?提高篇:【闯关3】如果四位数x=6□□8能被236整除,那x除以236所得的商为________。
【闯关4】从50到100的这51个自然数的乘积的末尾有多少个连续的0?巅峰篇:【闯关5】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.)第二讲数的整除特性课后习题:基础篇:【闯关1】493至少增加()才是3的倍数,至少减少()才有因数5,至少增加()才是2的倍数,至少增加()才是7的倍数。
解析:一个位数数字和能被3整除,这个数就能被3整除;4+9+3=16,所以至少增加2就是3的倍数。
小奥数论整除和余数知识点总结及经典例题
1.数论——数的整除和余数基本概念和基本性质定义整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a。
表达式和读法b∣a,读着b能整除a;或a能被b整除;b a,不能整除;基本性质①传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯定是a的倍数;②加减性:如果a|b、a|c,那么a|(b c);③因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能整除c;④互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能整除c,且ab互质,则ab的积能整除c;⑤a个连续自然数中必恰有一个数能被a整除。
数的整除的判别法末位判别法数字和判别法(用以判别能否被3或9整除)各数位上数字的和是3或9的倍数,则能被3或9整除。
173652÷9:1+7+3+6+5+2的和除以3或9;简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。
奇偶数位判别法(用以判别能否被11整除)从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除;÷11:奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。
余数的判断法与整数位的判断法一致。
三位一截判别法(用以判别能否被7/11/13整除)基本用法从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除;如,,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。
特殊用法①一般求空格数如果中间有空格,则利用加减性加或减除数7的倍数,分别从右边和左边抵消缩减位数,到最后看7的哪个倍数与缩减后的末位数相同,并看7的哪个倍数与缩减后的首位数相同,则前一个倍数的十位数和后一个倍数的个位数的和即为空格中应填的数。
四年级奥数 整除
四年级奥数整除
思维聚焦
了解整除的特征,1能整除任何整数,0能整除任意非零整数。
能被3和9整除的数的特征,各个数字的和能被3或者9整除,能被5整除的数的特征:一个数的末尾是0或5.能被2整除的数的特征是数字末尾是0,2,4,6,8。
能被7整除的数的特征是去掉个位数字,再从剩下的数中减去个位数字的2倍,差是7的倍数。
一、典型例题
判断789654能否被3或9整除
解答:
7+8+9+6+5+4=39
39能被3整除,不能被9整除,所以789654能被3整除,不能被9整除。
二、触类旁通
判断2689,12354能否被7整除
解答:
268-9×2=250
因为250不能被7整除,所以2689不能被7整除
1235-4×2=1227
122-7×2=108
因为108不能被7整除,所以12354不能被7整除。
三、熟能生巧
1、判断3022250能否被2整除
2、判断987654321能否被7整除
3、判断1020306能否被3整除
4、求一个能被5整除的最大五位数
5、判断3022250能否被5整除
6、判断123456789能否被9整除
7、已知一个自然数,它是45的倍数,并且每个数位上的数字只有
0和3,这个自然数最小是多少?
8、已知一个自然数,它是36的倍数,并且每个数位上的数字只有
0和6.这个自然数最小是多少?。
奥数整除知识点总结
奥数整除知识点总结整除是关于数学中的一种基本概念,是指一个数能够被另一个数整除,也就是能够被另一个数整数倍的数。
在奥数学习中,整除是一个非常重要的知识点,对于学生来说,掌握整除的相关知识是非常重要的。
本文将对奥数整除知识点进行详细的总结,希望能帮助学生更好地掌握整除的相关知识。
一、整数的概念在奥数学习中,整数是一个非常基本的概念。
整数包括正整数、负整数和零。
正整数是大于零的整数,负整数是小于零的整数,零是不大于也不小于零的整数。
在奥数整除的相关题目中,通常涉及到正整数的整除,因此在奥数学习中,学生需要了解和掌握正整数的相关概念。
二、整除的概念整除是指一个数能够被另一个数整除,也就是能够被另一个数整数倍的数。
在奥数学习中,整除是一个非常基础的概念,掌握整除的相关知识对学生来说是非常重要的。
当一个数a能够被另一个数b整除时,我们通常用"a能被b整除"表示,也可以用数学符号"a|b"表示。
对于两个整数a和b,如果存在另一个整数c,使得b=ac,那么我们就说a能被b整除。
三、整数的性质在奥数整除的相关题目中,通常会涉及到整数的一些基本性质,学生需要了解和掌握整数的一些基本性质。
下面我们将介绍整数的一些基本性质:1. 整数的加法性质:对于任意两个整数a和b,它们的和a+b也是一个整数。
2. 整数的减法性质:对于任意两个整数a和b,它们的差a-b也是一个整数。
3. 整数的乘法性质:对于任意两个整数a和b,它们的积ab也是一个整数。
4. 整数的除法性质:对于任意两个整数a和b,当a能够被b整除时,它们的商a/b也是一个整数。
四、整除的性质在奥数整除的相关题目中,通常会涉及到整除的一些基本性质,学生需要了解和掌握整除的一些基本性质。
下面我们将介绍整除的一些基本性质:1. 整除的传递性:如果a能被b整除,b能被c整除,那么a能被c整除。
2. 整除的继承性:如果a能被b整除,b能被c整除,那么a能被c整除。
四年级常考的奥数题:整数除问题
四年级常考的奥数题:整数除问题四年级常考的奥数题:整数除问题导语:在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。
下面是小编为大家整理的:奥数题。
希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!小学奥数题【例一】数的整除性规律【能被2或5整除的数的特征】一个数的末位能被2或5整除,这个数就能被2或5整除【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。
例如,1248621各位上的数字之和是1+2+4+8+6+2+1=243|24,则3|1248621。
又如,372681各位上的数字之和是3+7+2+6+8+1=279|27,则9|372681。
【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。
例如,173824的末两位数为24,4|24,则4|173824。
43586775的末两位数为75,25|75,则25|43586775。
【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。
例如,32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。
3569824的末三位数为824,8|824,则8|3569824。
214813750的末三位数为750,125|750,则125|214813750。
【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。
例如,75523的末三位数为523,末三位以前的.数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。
奥数题解析“数的整除”解题方法
奥数题解析“数的整除”解题方法本文将要教各位同学小学奥数题目中“数的整除”这一问题的解析思路和技巧,提供给各位同学学习。
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.11与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.2若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
3若一个整数的数字和能被3整除,则这个整数能被3整除。
4若一个整数的末尾两位数能被4整除,则这个数能被4整除。
5若一个整数的末位是0或5,则这个数能被5整除。
6若一个整数能被2和3整除,则这个数能被6整除。
7若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的.过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
8若一个整数的未尾三位数能被8整除,则这个数能被8整除。
小学奥数题库《数论》整除-整除的基本概念-1星题(含解析)
数论-整除-整除的基本概念-1星题课程目标知识提要整除的基本概念•定义如果整数a除以整数b(b≠ 0),除得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b∣a.注意:如果除得的结果有余数,我们就说a不能被b整除,也可以说b不能整除a.•整除的性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。
性质2:如果b与c的积能整除a,那么b与c都能整除a。
性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。
性质4:如果c能整除b,b能整除a,那么c能整除a。
精选例题整除的基本概念1. 再过12天就到2016年了,昊昊感慨地说:我到目前只经过2个闰年,并且我出生的年份是9的倍数,那么2016年昊昊是岁.【答案】9【分析】根据题意“我到目前只经过2个闰年”可得我的出生年份在2005 2008,这之间只有2007是9的倍数,则昊昊是2007年出生,则2016年昊昊是2016−2007=9岁.2. 若六位数201ab7能被11和13整除,则两位数ab=.【答案】48【分析】由11的整除特征可知:(7+a+0)−(2+1+b)=a+4−b=0或11,若a+4−b=11,a−b=7,只有8−1=9−2=7,六位数201817、201927都不能被13整除.若a+4−b=0,则a+4=b,只有0+4=4,1+4=5,2+4=6,3+4=7,4+4=8,5+4=9等情况,构成的六位数201047,201157,201267,201377,201487,201597中只有201487能被13整除,则ab=48.3. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能被101整除的日子是2011ABCD,那么2011ABCD是多少?【答案】20111221【分析】试除法得出答案:20111231÷101=199121⋯⋯10,31−10=21,所以ABCD=1221.4. 若4b+2c+d=32,试问abcd能否被8整除?请说明理由.【答案】见解析.【分析】由能被8整除的特征知,只要后三位数能被8整除即可.bcd=100b+10c+d,有bcd−(4b+2c+d)=96b+8c=8(12b+c)能被8整除,而4b+2c+d=32也能被8整除,所以abcd能被8整除.。
春季五年制小学奥数四年级数论问题——整除
春季五年制小学奥数四年级数论问题——整除数论问题—整除整除——当两个整数a和b(b≠0),a被b除的余数为0时(商为整数),则称a被b整除或b整除a;倍数和约数——把a叫作b的倍数,b叫作a的约数;数的整除特征:①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;例求满足下面各小题条件的a:(a代表同一个数字)⑴312a a⑵512a a⑶910a a例有一个五位数可同时被9和11整除。
若将这个五位数的第一位、第三位与第五位数码移除,则可得到一个两位数35;若将这个五位数的前三位数码移除,则剩下的两位数可被9整除;若将这个五位数的末三位数码移除,则剩下的两位数也可以被9整除,请问这个五位数是什么?有些六位数,组成六位数的六个数字都不相同,而相邻两个数字组成的两位数能被3整除,这样的六位数一共有几个?如果从5,6,7,8,9五个数字中,选出四个数字组成一个四位数,它能被3,5,7都整除,求这些数中最大的四位数。
有一个五位数679a b ,它可被72整除。
请问a 2+b 2等于多少? 例例例例如果七位数2008□□□能同时被2、3、4、5、6、7、8、9整除,那么,它的最后三位数是_____。
例从1~99中选出连续3个自然数,使得它们的乘积能被30整除,一共有_____种选法。
测试题1.173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数。
依次可被9、11、6整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整除——当两个整数a 和b (b ≠0),a 被b 除的余数为0时(商为整数),则称a 被b 整除或b 整除a ;
倍数和约数——把a 叫作b 的倍数,b 叫作a 的约数;
数的整除特征:
①一个数的末位能被2或5整除,这个数就能被2或5整除;
一个数的末两位能被4或25整除,这个数就能被4或25整除;
一个数的末三位能被8或125整除,这个数就能被8或125整除;……
②一个数各位数字之和能被3整除,这个数就能被3整除;
一个数各位数字之和能被9整除,这个数就能被9整除;
③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;
④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;
求满足下面各小题条件的a :(a 代表同一个数字)
⑴312a a
⑵512a a ⑶910a a
有一个五位数可同时被9和11整除。
若将这个五位数的第一位、第三位与第五位数码移除,则可得到一个两位数35;若将这个五位数的前三位数码移除,则剩下的两位数可被9整除;若将这个五位数的末三位数码移除,则剩下的两位数也可以被9整除,请问这个五位数是什么?
例2 数论问题—整除
例1
有些六位数,组成六位数的六个数字都不相同,而相邻两个数字组成的两位数能被3整除,这样的六位数一共有几个?
如果从5,6,7,8,9五个数字中,选出四个数字组成一个四位数,它能被3,5,7都整除,求这些数中最大的四位数。
有一个五位数679a b ,它可被72整除。
请问a 2+b 2等于多少?
如果七位数2008□□□能同时被2、3、4、5、6、7、8、9整除,那么,它的最后三位数是_____。
从1~99中选出连续3个自然数,使得它们的乘积能被30整除,一共有_____种选法。
测试题
1.173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数。
依次可
被9、11、6整除。
”问:数学老师先后填入的3个数字的和是多少?
2.如果六位数1992□□能被95整除,那么,它的最后两位数是_____。
3.从0、1、2、4、7五个数中选出三个组成三位数,其中能被3整除的有_____个。
例7 例6
例5 例4 例3
4.在724的左边添加一个数码a ,右边添加一个数码b ,组成一个五位数。
如果这个五位数是12的倍
数,求a ×b 的最大值。
5.用6、7、8、9四个数字组成的,各个数字互不相同的四位数中,能被11整除的有多少个?
6.731□是一个四位数,在□中依次填入三个数字,使所组成的三个四位数,依次能被9、11、6整除,
所填入的这三个数字之和是_____。
答案
1.答案:设这个四位数为173a ,当这个数被9整除时,9|(1+7+3+a ),所以a =7;当这个数被11整
除时,11|(7+a -1-3),所以a =8;当这个数被6整除时,a 是偶数,且各位数字和是3的
倍数,即3|(1+7+3+a ),所以a =4。
那么填入的这三个数字的和是7+8+4=19。
2.答案:设这个六位数为1992ab ,199300952097
85÷=。
所以199300-85=199215能被95整除。
这个六位数最后两位数是15
3.答案:三个数的和不小于0+1+2=3,不大于2+4+7=13。
那么有可能被3整除的是数是:0、1、
2;2、4、0;2、7、0;4、7、1。
总共有三位数111122323112618C C C C ⨯⨯+⨯⨯=+=个。
4.答案:因为这个五位数是12的倍数,所以它被3和4整除。
根据性质,4b 被4整除。
b 可取0、4、
8,所以b 最大可以取8。
另一方面,a +7+2+4+8=a +21被3整除,所以a 被3整除,a 最大可以取9。
当b =0或4,a 都不能取到8。
因此a ×b 的最大值为8×9=72。
5.答案:根据被11整除的数的特征,它的偶数位数字之和与奇数位数字之和的差是11的倍数。
8+9-6-7=4,所以只有一种可能即9+6-7-8=0。
所以有:9768、9867、6798、6897、
7986、7689、8976、8679,一共是8种。
即11
428
C C
⨯=。
6.答案:设□中的数为a。
要使这个四位数能被9整除,那么7+3+1+a能被9整除,a=7;要使这个四位数能被11整除,那么(7+1)与(3+a)的差能被11整除,可得a=5;要使这个数能被6整除,即a要是一个偶数,同时所有位数之和能被3整除,所以a=4。
所以这三个数字之和为7+5+4=16。