图形的旋转 第1课时
人教版初中数学九年级上册 图形的旋转(第1课时)课件PPT
旋 转
第二十三章
23、1
旋 转
图形的旋转
第1课时 旋转的概念与性质
学习目标
1 了解旋转的概念,理解图形旋转的三要素“旋转中心、旋转
方向和旋转角”、(重点)
2 理解旋转的性质,并会运用其解决简单的旋转问题、(重点)
游乐园里的摩天轮、旋转木马、海
盗船的运动有什么共同点?
知识讲解
旋转的性质:
旋转前后的图形全等;
(旋转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角、
知识讲解
例3、 △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的、
已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′
1
1
∴ AO=CO= AB= ×6=3,∴ OD1=DC﹣CO=7﹣3=4,
2
2
在Rt△AD1O中,由勾股定理得,AD1= 2 + 12 = 32 + 42 = 5 、
(2)点B在△D2CE2的内部、
理由如下:设直线CB与D2E2相交于点P,
∵ △D1CE1绕着点C顺时针再旋转30°,∴ ∠PCE2=15°+30°=45°,
3 ,OA ′ = 5 ,旋转角= 44 ° 、
=
13
知识讲解
例4、把一副三角板按如图①放置,其中∠ACB=∠DEC=90°,∠A=45°,
∠D=30°,斜边AB=6 cm,DC=7 cm、把三角板DCE绕点C顺时针旋转
15°得到△D1CE1(如图②)、这时AB与CD1相交于点O、与D1E1相交
于点F、
(1)求线段AD1的长;
八年级数学北师大版初二下册--第三单元 3.2《图形的旋转》(第一课时)课件
2. 旋转的性质: 一个图形和它经过旋转所得的图形中,对应
点到旋转中心的距离相等.任意一组对应点与旋 转中心的连线所成的角都等于旋转角;对应线段 相等,对应角相等.
知1-练
4 如图,△ABC和△ADE均为等边三角形,则图中 可以看成是旋转关系的三角形是( C ) A.△ABC和△ADE B.△ABC和△ABD C.△ABD和△ACE D.△ACE和△ADE
知1-练
5 在俄罗斯方块游戏中,已拼好的图案如图所示,现 又出现一小方格体正向下运动,为了使所有图案消 失,你必须进行以下哪项操作,才能拼成一个完整 图案,使其自动消失( A ) A.顺时针旋转90°,向右平移 B.逆时针旋转90°,向右平移 C.顺时针旋转90°,向下平移 D.逆时针旋转90°,向下平移
(来自《教材》)
知2-练
2 如图,你能绕点O旋转,使得线段AB与线段CD 重合吗?为什么?
解:不能,不符合旋转的概 念和特征.
(来自《教材》)
知2-练
3 【2017·青岛】如图,若将△ABC绕点O逆时针旋 转90°,则顶点B的对应点B1的坐标为( B ) A.(-4,2) B.(-2,4) C.(4,-2) D.(2,-4)
知1-导
知1-导
这个定点称为旋转中心,转动的角称为旋转角.
A
B
旋转角
o 旋转中心
例1 下列运动属于旋转的是( B ) A.篮球的滚动 B.钟摆的摆动 C.气球升空的运动 D.一个图形沿某条直线对折的过程
导引:按旋转的定义判断.知1-讲 Nhomakorabea总结
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。
本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。
通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。
二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。
但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。
三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。
2.能够运用图形旋转的性质解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形旋转的性质的理解和运用。
2.旋转的表示方法的掌握。
五. 教学方法采用问题驱动法和案例教学法进行教学。
通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。
六. 教学准备1.多媒体教学设备。
2.图形旋转的实例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。
3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。
4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。
5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。
图形的旋转 第1、2课时
3.2图形的旋转 第一课时一、学习准备:平移作图的步骤:①确定平移的 ;②找出 ; ③确定关键点的 ;④按原图顺序 。
二、学习目标:通过具体实例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等、对应点与旋转中心的连线所成的角彼此相等的性质。
三、学习提示:1、自主学习P75并填空:把一个平面图形___着平面内某一点O_____一个角度,就叫做图形的旋转,点O 叫做_________,转动的角叫做________。
因此,旋转的决定因素....是_________和_________。
2、合作探究:(1).钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度? (2).如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A 、B 分别移动到什么位置?(3).如图:∆ABC 是等边三角形,D 是BC 上一点,∆ABD 经过旋转后到达∆ACE 的位置。
(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M 是AB 的中点,那么经过上述旋转后,点M转到了什么位置?四、学习小结:把一个图形绕着某一定点O 转动一个角度的图形变换叫做旋转.这个定点O 叫旋转中心,转动的角叫做旋转角. 五、夯实基础:1.下列现象中属于旋转的有( )个.①地下水位逐年下降;②传送带的移动;③方向盘的转动; ④水龙头的转动;⑤钟摆的运动;⑥荡秋千 A.2 B.3 C.4 D.52.作出如图所示的点A 绕点O 顺时针旋转180o后的B点。
3.作出如图所示的线段AB 绕点O 逆时针旋转120o后的线段CD ,其中C 点与A 点对应。
4.作出如图所示的∆ABC 绕点O 顺时针旋转180o后的∆DEF ,其中A 点与D 点对应。
E D C B AM BO OBA'5.等边三角形至少旋转__________度才能与自身重合。
北师大版六年级数学下册第三单元 图形的运动第1课时 图形的旋转(一)
绕O点旋转 O
逆时针旋转了90°。
绕O点旋转 O
顺时针旋转了90°。
旋转三要素: 1 旋转中心(绕哪个点旋转) 2 旋转方向(顺时针、逆时针) 3 旋转角度 (旋转了多少度)
画一画。 (1)画出线段A B 绕 点 B 顺 时针旋转90°后的线段。
(2)画出线段A B 绕 点 A 逆时针旋转90°后的线段。
画图。
ቤተ መጻሕፍቲ ባይዱM'
(1)将线段MN 绕
点P 顺时针旋转90°。
N'
(2)将线段MN 绕点P 逆时针旋转90°。
N' M'
课堂总结
通过这节课的学习活动,你有什么收获? 旋转三要素: 1 旋转中心(绕哪个点旋转) 2 旋转方向(顺时针、逆时针) 3 旋转角度 (旋转了多少度)
2.想一想,填一填。
一棵小树被扶起种好,这棵小树绕点O( 顺时针)
方向旋转了( 90 )°。
3.画一画。
(教材P29 T3)
(1)画出线段AB绕点A顺 (2)画出线段AB绕点B逆 时针旋转90°后的线段。 时针旋转90°后的线段。
A
B
(教材P29 T4)
4.如图,点P是线段MN上一点,请按下列要求分别
义务教育北师大版六年级下册
第三单元 图形的运动 第 1 课时 图形的旋转(一)
情境导入
这些是什么现象?
探究新知
观察钟面,说说时针、分针、秒针是怎样旋转的?
时针、分针、 秒针都在绕 中心点旋转。
分针1小时旋转一 周,时针1小时旋 转1大格。
顺时针 逆时针
观察下图中的横杆分别是怎样旋转的,与同伴交流。
练一练
(教材P29 T1)
1.(1)下面两个钟面上,时针分别从几时走到了几时? 哪个钟面的时针旋转的角度大?
人教版九年级上册数学精品教学课件 第二十三章 旋转 图形的旋转 第1课时 旋转的概念与性质
随堂训练 基础巩固
1.下列图案中能由一个图形通过旋转而构成的是_①__②___.(填序号)
2.(2020·大连)如图,△ABC中,∠ACB=90°,∠ABC=40°. 将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落 在边AB上,则∠CAA′的度数是( D )
A.50° B.70° C.110° D.120°
点A、B、P的对应点分别为 C、B、P′ .
旋转中心就是在旋转过程中始终保持固定不变的那个点, 它可以在图形的外部或内部,还可以在图形上,即它可以是平 面内的任意一点.
旋转角:任意一对对应点与旋转中心的连线所成的角.
练习
①时钟的时针在不停地旋转,从上午6时到上午9时,时针 旋转的角度是多少?从上午9时到上午10时呢?
解:从上午6时到上午9时,时针旋转的角度为90°,从上 午9时到上午10时,时针旋转的角度是30°.
②如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是 点 O ,旋转角是 ∠AOA′,点A的对应点是点 A′ .
知识点2 旋转的性质
在硬纸板上先挖一个三角形洞,再在三角形
洞外挖一个小洞O(作为旋转中心),把挖好洞 的硬纸板放在白纸上,在白纸上描出挖掉的三角
R·九年级上册
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念与性质
新课导入 导入课题
欣赏日常生活中一些物体的运动现象,观察运动的过程。
学习目标
(1)了解生活中广泛存在的旋转现象,知道旋转是继平移、 对称之后的又一种基本变换. (2)能结合图形指出什么是旋转中心、旋转角和对应点. (3)体会旋转的形成过程,并探究旋转的性质.
3.(教材P60例题变式)如图,四边形ABCD是正方形,△ADF按 顺时针方向旋转一定的角度得到△ABE,已知AF=4,AB=7.
3.2.1旋转的定义及性质
到什么位置?
A
60°
M. E
B
C
D
确定一次图形的旋转时,必须明确: 旋转中心 旋转角 旋转方向
①旋转的范围是“平面内”,其中“旋转中心, 旋转方向,旋转角度”称之为旋转的三要素;
②旋转变换同样属于全等变换.
例2 如图,点A、B、C、D都在方格纸的格点上,
若△AOB绕点O按逆时针方向旋转到△COD的位置,
转一定角度得Rt △ADE,点B的对应点D恰好落
在BC边上.若AB=1, ∠B=60 °,则CD的长为
( D)
E
A. 0.5 B. 1.5
C. 2
D. 1
A
C
D
B
4. △A ′ OB ′是△AOB绕点O按逆时针方向 旋转得到的.已知∠AOB=20 °, ∠ A ′ OB =24°,
AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转 角等于 44 ° .
第三章 图形的平移与旋转
3.2 图形的旋转
第1课时 旋转的定义和性质
一 旋转的概念
旋转的定义: 在平面内,将一个图形绕
一个定点按某个方向转动一个 角度,这样的图形运动称为旋 转.
P
对应点
O
旋转中心
旋转角 120
P′
这个定点称为旋转中心.
转动的角称为旋转角.
例1. △ ABD经过旋转后到△ ACE的位置. (1)旋转中心是哪一点? (2)旋转了多少度?顺时针还是逆时针? (3)如果M是AB的中点,经过上述旋转后,点M转
则旋转的角度为( C )
A.30° B.45° C.90° D.135°
A
二 旋转的性质
E
F
人教版初中数学23.1 图形的旋转 (第1课时) 课件
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCE中, ∠ACD=∠BCE
CD=CE ∴△ACD≌△BCE(SAS).
连接中考
23.1 图形的旋转/
(2)当AD=BF时,求∠BEF的度数.
解:(2)∵∠ACB=90°,AC=BC,
如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点
(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针
方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
解:(1)由题意可知:CD=CE,∠DCE=90°,
人教版 数学 九年级 上册
23.1 图形的旋转/
23.1 图形的旋转 (第1课时)
导入新知
23.1 图形的旋转/
新 疆 的 风 车 田
导入新知
23.1 图形的旋转/
荷 兰 的 大 风 车
导入新知
23.1 图形的旋转/
游 乐 场 的 摩 天 轮
导入新知
23.1 图形的旋转/
卫星 拍摄 到的 台风 “桑 美” 的中 心旋 涡
旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中 “旋转中心,旋转方向,旋转角度”称之为旋转 的三要素;②旋转变换同样属于全等变换.
探究新知
23.1 图形的旋转/
素养考点 2 旋转角度的计算
例2 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则 旋转的角度为( C )
图形的旋转(共1课时)
23.1 图形的旋转(第1课时)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键重点:旋转及对应点的有关概念及其应用.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、小结对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?四、巩固练习①随堂练习1,2,3.②教科书第64页1,2,3.第二课时:图形的旋转(2)教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.,△ABF是△ADE 例2.如图,四边形ABCD是边长为1的正方形,且DE=14的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14∵对应点到旋转中心的距离相等且F是E的对应点∴AF=4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形.三、巩固练习教材P64 练习1、2.四、应用拓展例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD、四边形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.。
3.2 图形的旋转 第1课时 旋转的定义和性质
3.2 图形的旋转第1课时旋转的定义和性质【学习目标】通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.【学习方法】自主探究与合作交流相结合。
【学习重难点】重点:掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的不变性.旋转角的性质,对应点到旋转中心的距离相等.【学习过程】模块一预习反馈一、学习准备1、确定一个图形平移后的位置,除需要原来的位置外,还需要的条件是平移的____________.2、平移作图的步骤:①确定平移的___________,②找出_________,③确定关键点的_______,④按原图顺序连接对应点3、阅读教材:P75—P76第3节《图形的旋转》二、教材精读4、旋转的定义在平面内,将一个图形绕着一个_____沿_________转动一个角度,这样的图形运动称为旋转.这个定点称为_________,转动的角称为________.旋转不改变图形的___________. 实践练习:日常生活中,我们经常见到以下情景:①钟表指针的转动;②汽车方向盘的转动;③打气筒打气时,活塞的运动;④传送带上瓶装饮料的移动.其中属于旋转的是 ___ .5、如图所示,如果把钟表的指针看作四边形AOBC,它绕O点按顺时针方向旋转得到四边形DOEF。
在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移到什么位置?(3)AO与DO的长有什么关系?BO与EO呢?F(4)∠AOD与∠BOE有什么大小关系?再找一个具有这种关系的角。
归纳:选择图形的性质:旋转不改变图形的和,但图形上的每个点同时都按相同的方式转动相同的。
旋转前后两个图形对应点到旋转中心的距离 __ ;对应点与旋转中心的连线所成的角都等于;对应线段________,对应角___________.实践练习:判断题一个图形经过旋转①图形上的每一个点到旋转中心的距离相等. ( )②图形上可能存在不动点. ( )③图形上任意两点的连线与其对应点的连线相等. ( )模块二合作探究6、上右图是正六边形,这个图案可以看做是由____________“基本图案”通过旋转得到的.7、如图,ABC∆绕点A逆时针旋转至ADE∆的位置,请你写出其中的对应点、对应角和对应线段。
人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计
人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。
通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。
本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。
但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。
此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。
三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。
2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。
四. 教学重难点1.重点:图形旋转的定义和性质。
2.难点:图形旋转在实际问题中的应用。
五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。
2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。
3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。
2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。
3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。
23.1.1图形的旋转课件第一课时.ppt
解:(1)它的旋转中心是钟表的轴心;
(2)分针匀速旋转一周需要60 分,因此旋转20分,分针
360 ? ? 20 ? 120 ?
旋转的角度为
60
2020/2/3
陵城区第五中学 张付安
练一练
如图,在正方形ABCD中,E是CB延长线上一
点,△ABE经过旋转后得到△ADF,请按图回答:
(1)旋转中心是哪一点 ?点A(2)旋转角是多城区第五中学 张付安
练一练
已知,如图边长为1的正方形EFOG绕与之边
长相等的正方形ABCD的对角线交点O旋转任意角
度,求图中重叠部分的面积.
0.25
G
A
D
M
O
E
BH
C
2020/2/3
F
陵城区第五中学 张付安
练一练
已知,如图边长为1的正方形EFOG绕与之边
长相等的正方形ABCD的对角线交点 O旋转任意角
2020/2/3
陵城区第五中学 张付安
人教版数学九年级上
§23.1 图 形 的 旋 转(一)
2020/2/3
陵城区第五中学 张付安
A
A/
B
2020/2/3
C B/
C/
平移变换
陵城区第五中学 张付安
2020/2/3
轴对称变换
陵城区第五中学 张付安
问:“你能由其中一个花瓣通过平移或轴对称 变换得到整个美丽的紫荆花吗?”
2020/2/3
陵城区第五中学 张付安
试一试
(2)如图,香港特别行政区区旗中央的紫荆花图案由
5个相同的花瓣组成 ,它是由其中一个花瓣经过几 次旋转得到的 ? 求其中旋转角是多少度 ?
A
第1课时 图形的旋转
第三章中心对称图形(一)第1课时图形的旋转预学目标1.结合图形初步了解旋转中心及旋转角的概念,能够找出图形旋转变换的旋转中心及旋转角.2.类比图形平移,能够寻找图形旋转中的对应,结合图形阅读并初步了解图形旋转的性质.3.能够根据要求作简单的图形旋转变换.知识梳理1.旋转的概念如图1,在平面内,将△ABC绕点C逆时针旋转至△EFC的位置,这样的图形运动称为图形的_______,旋转中心为_______,旋转的角度可用∠ACE或_______表示.2.旋转的性质如图1,(1)旋转前的△ABC与旋转后的△EFC_______.(2)对应点A和_______到旋转中心点C的距离相等,即AC=_______,对应点_______和F到_______的距离相等,即_______=FC.(3)线段AC旋转至线段_______形成旋转角∠ACE,线段_______旋转至线段FC形成旋转角∠_______,应有_______=∠BCF.例题精讲例1如图,Rt△A'BC'是由Rt△ABC绕点B旋转而得的,且点A、B、C'在同一条直线上,若∠C=90°,BC=2,∠ABC=60°,则旋转中心是_______,旋转角度是_______°,BC'=_______,∠A'=_______°.提示:确定旋转中心后,选择一条通过旋转中心的线段(如BC边)为参考对象,观察其运动过程,以达到了解整个图形是如何旋转的目的.解答:点B;120或240;2;30.点评:解决这类题目,要紧紧抓住旋转定义中的三要素,旋转的性质中对应点与旋转中心所连线段的夹角都等于旋转角,旋转前后的两个图形的形状与大小不变.例2 如图①,画出△ABC绕点O按顺时针方向旋转90°后的△A'B'C'.提示:确定三角形位置的关键是确定三个顶点的位置,所以应先由旋转的性质得旋转前后两个图形的对应点(点A与点A'、点B与点B'、点C与点C')到旋转中心O的距离相等,对应点与旋转中心的连线所成的旋转角都为顺时针90°,从而确定A、B、C的对应点A'、B'、C'的位置.解答:如图②.点评:作图过程中要掌握一个要素,即找出图形的关键点.要确定一个图形旋转的位置,必须具备三个条件:(1)图形原来的位置;(2)旋转中心;(3)旋转方向及旋转角度.热身练习1.下列现象属于旋转的是( )A.摩托车在急刹车时向前滑行B.飞机起飞后冲向空中C.幸运大转盘转动D.火车在笔直的铁轨上飞驰而过2.如图,P是等边△ABC内的一点,若将△PBC绕点B旋转到△P'BA的位置,则∠PBP'的度数是( )A.45°B.60°C.90°D.120°3.钟表分针的运动可看做是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了_______°.4.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O按逆时针方向旋转90°得到△OA1B1,则线段OA1的长是_______,∠AOB1的度数是_______°.5.如图,△ABC与△CDE都是等边三角形,图中的△_______和△________至少可以旋转_______°互相得到.6.画出四边形ABCD绕点O按逆时针方向旋转90°后的四边形A'B'C'D'.7.如图,P是正方形ABCD内的一点,将△ABP绕点B按顺时针方向旋转与△CBP'重合,若PB=1,求PP'的长.参考答案1.C 2.B 3.90 4.6 135 5.ACD BCE 60 6.略7。
人教版九年级数学上册 《图形的旋转》PPT课件(第一课时)
问题:
1)线段OA与OA'有什么关系? 2)∠AOA'与∠BOB'有什么关系? 3)△ABC与ΔA'B'C'的形状和大小有什么关系?
相等
相等
全等
第七页,共十四页。
情景思考
如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:
(1)旋转中心?
点O
(2)旋转方向?
顺时针
(3)经过旋转,找出点A、B的对应点?
置.
① 试说出旋转中心、旋转方向及旋转角度? 点A、逆时针、60°
② ∠DAE等于多少度? 60°
A
③ △DAE是什么三角形?
等边三角形
④ 如果M是AB的中点,那么经过上述旋转后,点M转到了什
M
么位置?
AC边中点
第十一页,共十四页。
BD
E C
随堂测试
如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,
P
O
如果图形上的点P经过旋转变为点P′
,那么这两个点P和P′叫做这个旋转的对
应点.
P′
旋转中心是_____O__点__,
旋转角度是_________. 120°
第四页,共十四页。
课堂测试
时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角是多少度? 从下午3时到下午5时呢?
第五页,共十四页。
(3)对应点与旋转中心所连线段的夹角等于旋转角.
第九页,共十四页。
情景思考
如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
A
FB
23.1 图形的旋转(第1课时)
23.1 图形的旋转
• 学习目标: 1.通过观察具体实例学习旋转概念,会画一个图形 作旋转后所得的图形; 2.探究旋转的性质,并在观察、猜想、验证、归纳、 概括的探究过程中,发展合情推理能力,进一步 体会图形运动中的变和不变.
·学习重点:
旋转的性质.
1.创设情境,导入新知
指针式钟表的指针在不停地转动,风车风轮的每个 叶片在风的吹动下转动到新的位置.这些现象有哪些共 同特点?
旋转的性质 ◆ 对应点到旋转中心的距离相
等. ◆ 对应点与旋转中心所连线段
的夹角等于旋转角. ◆ 旋转前、后的图形全等.
4.探究
(8)你能用符号语言表示 这三条性质吗?
旋转的性质 ◆ 对应点到旋转中心的距离相
等. ◆ 对应点与旋转中心所连线段
的夹角等于旋转角. ◆ 旋转前、后的图形全等.
5.应用
2.定义
把一个平面图形绕着平面内某一点 O 转动一个角度 的图形变换叫做图形的旋转.这个点 O 叫旋转中心,转 动的角叫做旋转角.
如果图形上的点 P 经过旋转变为点 P′,那么这两个 点叫做这个旋转的对应点.
P
O 120°
P′
3.小试牛刀
教材59页练习题
3.小试牛刀
2.如图,杠杆绕支点转动撬起重物,杠杆的旋转 中心在哪里?旋转角是哪个角?
例1 下图为 4×4 的正方形网格,每个小正方形的 边长均为 1,将 △OAB 绕点 O 逆时针旋转 90°, 你能 画出△OAB 旋转后的图形 △O'A'B ' 吗?
B
A'
A
B'
O
6.归纳总结
(1)如何画出旋转后的图形? (2)如何确定旋转后的对应点的位置?
7.应用
人教版九年级数学上册23.1.1旋转的概念和性质课件
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念和性质
Hale Waihona Puke 教学重点:旋转的概念. 教学难点:能够正确地辨别出一种变换是否为旋转.
教学过程
一、创设情境,导入新课
2
大水轮在不停地转动.
时钟的分针在不停地旋转.
风车在风中转动
(1)从3时到5时,时针转动了多少度? (2)风车风轮的每个叶片在风的吹动下转动到新的 位置.每个叶子转了多少度? 学生观察分析、体会感知旋转.
二、合作探究,感受新知
1.概念的认识 (1)把一个图形绕着某一个点O转动一个角度的图形变换叫 做旋转,点O叫做旋转中心,转动的角叫做旋转角. (2)旋转对应点.
2.例题分析例如图,△OAB绕O点按顺时针方向旋转得到 △OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B分别移动到什么位置?
谢谢观赏
You made my day!
我们,还在路上……
教师边讲解边演示. 教师引导学生回答这些问题,教师书写. 学生理解认识有关概念. 学生积极思考,勇于发言.
三、课堂小结,梳理新知
1.旋转的概念. 2.旋转中心、旋转角、对应点.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时43分49秒09:43:4922.4.12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转的性质
1. 经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了 相同的角度。 2. 旋转图形的任意一对对应点与旋转中心的连线所成的角都是 旋转角。 3. 旋转图形的任意一对对应点到旋转中心的距离相等。 4. 旋转后的图形与原图形全等。 (旋转不改变图形的形状和大小)
如图所示的图案可以看作是一个菱形通过几次旋转 得到的?每次旋转了多少角度?
下图可看作是一个等腰三角形通过几次旋转得到的? 每次O
F
旋转不改变图形的 形状和大小。
例1、 如图,如果把钟表的指针看作四边形AOBC,它 绕O点按顺时针方向旋转得到四边形DOEF.在这个 旋转过程中: (1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A, B分别移动到什么位置? (3)AO 与 DO 的长有什么关系? BO 与 EO 呢? (4)∠AOD与∠BOE有什么大小关系?
观察思考
思考1:以上情景中的转动现象,有什么共同特征? 思考2:钟表的指针在转动过程中,其形状、大小、 位置是否发生改变?
你能否描述一下什么叫旋转?
C
B
D
A E O
F
旋转的定义
在平面内,将一个图形绕一个定点沿某个方向 转动一个角度,这样的图形运动称为旋转。 这个定点称为旋转中心,转动的角称为旋转 角。