【数学】部编八上数学2020第一次月考试卷+答案

合集下载

2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期第一次月考数学试卷4分,共40分)1.如图1,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =().A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图2如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.49.如图6,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图7,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图8,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理_________________.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为__________.13.小明不慎将一块三角形的玻璃摔碎成如图9所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带_____.图9 图10 图11 图1214.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.16.如图12,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到______________位置时,才能使△ABC≌△QPA.年八年级上学期数学第一次月考答题卡二、填空题(本题共24分,每小题4分)11._________________ , 12._______________ , 13.________________ ,14.__________________ , 15._______________ , 16.________________ .三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由.21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE. 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2020年八年级上学期第一次月考数学试卷(答案)4分,共40分)1.如图,在△中,点是延长线上一点,=40°,=120°,则等于(C)A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( B )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =( D).A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是(A)A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( D )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( B )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( B )A.1 B.2 C.3 D.49.如图5,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(C)A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图6,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( C )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图7,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是___三角形的稳定性_______.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为____22______.13.小明不慎将一块三角形的玻璃摔碎成如图8所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带__②___.图8 图9 图10 图1114.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=___135°_____.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____67°___.16.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到__AC的中点_位置时,才能使△ABC≌△QPA.三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.解:∵ AB∥CD,∴∠ABO=∠CDO.(1分)又∵ OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.(3分)在△ABO与△CDO中,∴△ABO≌△CDO.(6分)∴ CD=AB=20米.(8分)(也可利用“AAS”证△ABO≌△CDO,其他过程相同).解析:根据AB∥OH∥CD,利用平行线的性质可知∠ABO=∠CDO(或者∠BAO=∠DCO).由题意可证明OD,OB分别是平行线AB与OH以及OH与CD之间的距离,故OD=OB,根据“ASA”或者“AAS”证明△ABO ≌△CDO,所以CD=AB,进而求出CD的长.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵ BF=EC,∴ BF+FC=EC+CF,即BC=EF.(3分)又AB=DE,AC=DF,∴△ABC≌△DEF.(5分)(2)AB∥DE,AC∥DF.(7分)理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴ AB∥DE,AC∥DF. (10分)21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.解:(1)∆ABE≅∆ACD∴∠EBA=∠C=42°(3分)∠EBG=0180—∠EBA=138°.(5分)(2) ∆ABE≅∆ACD∴AC=AB=9 AE=AD=6 .(8分)∴EC=AC-AE=9-6=3 . (10分)22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB;(2)若AC=12 cm,求BD的长.(1)证明:∵AF⊥DC,∴∠ACF+∠FAC=90°,∵∠ACF+∠FCB=90°,∴∠EAC=∠FCB,在△DBC和△ECA,⎩⎪⎨⎪⎧∠DBC=∠ACB=90°∠DCB=∠CAEDC=AE,∴△DBC≌△ECA(AAS),∴BC=AC(2)解:∵E是AC的中点,∴EC =12BC =12AC=12×12 cm=6 cm,又∵△DBC≌△ECA,∴BD=CE,∴BD=6 cm23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE.解:(1)△ABE≌△ACD,证明:∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (4分)∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE; (6分)(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,(8分)理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (12分)∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF. (14分)。

2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)

2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)

2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .52.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2 B .﹣2与√−83 C .﹣2与−12 D .2与|﹣2|3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 24.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0 B .x ≥﹣1 C .x <﹣1 D .x >﹣1且x ≠05.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .256.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C 到旗杆底部B 的距离为5米,则旗杆的高度为( )米.A.5B.12C.13D.177.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:58.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√139.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤1610.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为,面积为.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.18.计算:(1)2√3(√12−√75+13√108)(2)(√a3b−√ab3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法;(填“正确”或“错误”)(2)已知△ABC的其中两边长分别为1,√7,若△ABC为“类勾股三角形”,则另一边长为;(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为x,y,z(x,y为直角边长且x<y,z为斜边长),用只含有x的式子表示其周长和面积.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .5 【答案】D【分析】直接利用算术平方根的定义得出答案.【解答】解:25的算术平方根是:5.故选:D .【点评】此题主要考查了算术平方根,正确把握定义是解题关键.2.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2B .﹣2与√−83C .﹣2与−12D .2与|﹣2| 【答案】A【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A 、√(−2)2=2,﹣2与√(−2)2是互为相反数,故本选项正确; B 、√−83=−2,﹣2与√−83相等,不是互为相反数,故本选项错误;C 、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D 、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A .【点评】本题考查了实数的性质,对各项准确计算是解题的关键.3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 2 【答案】C【分析】A 选项的被开方数中含有分母;B 、D 选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【解答】解:因为:A 、√0.2b =√5b 5; B 、√12a −12b =2√3a −3b ;D 、√5ab 2=√5a |b |;所以这三项都可化简,不是最简二次根式.故选:C .【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0B .x ≥﹣1C .x <﹣1D .x >﹣1且x ≠0【答案】A【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意,得{x +1≥0x ≠0, 解得:x ≥﹣1且x ≠0.故选:A .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后,应排除在取值范围内使分母为0的x 的值.5.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .25【答案】C【分析】先根据勾股定理求出AB的长,再由正方形的面积公式即可得出结论.【解答】解:∵∠C=90°,AC=3,BC=2,∴AB=√AC2+BC2=√32+22=√13,∴正方形的面积=(√13)2=13.故选:C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,则旗杆的高度为()米.A.5B.12C.13D.17【答案】B【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【解答】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12.答:旗杆的高度为12米.故选:B.【点评】此题考查了勾股定理的应用,熟知勾股定理是解题关键.7.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【答案】C【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√13【答案】C【分析】先估算√13的大小,再估算9−√13的大小,进而确定a、b的值,最后代入计算即可.【解答】解:∵3<√13<4,∴﹣4<−√13<−3,∴5<9−√13<6,又∵9−√13的整数部分为a,小数部分为b,∴a=5,b=9−√13−5=4−√13,∴2a+b=10+(4−√13)=14−√13,故选:C.【点评】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.9.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤16【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB=√AD2+BD2=17,∴此时h=24﹣17=7,所以h的取值范围是7≤h≤16.故选:D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.10.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个【答案】A【分析】利用面积法证明勾股定理即可解决问题.【解答】解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×12ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×12ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=12(a+b)(a+b)=2×12×ab+12c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b−b−a2)(a+b−a2)=12ab+12c⋅12c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.【点评】本题考查了勾股定理的证明、正方形的性质、直角三角形面积的计算;熟练掌握正方形的性质,运用面积法得出等式是解决问题的关键.二.填空题(共6小题)11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=1.【答案】见试题解答内容【分析】先把√8化为最简二次根式2√2,再根据同类二次根式得到m+1=2,然后解方程即可.【解答】解:∵√8=2√2,∴m+1=2,∴m=1.故答案为1.【点评】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为2√3cm,面积为√5cm2.【答案】见试题解答内容【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长=√(√2)2+(√10)2=2√3cm;直角三角形的面积=12×√2×√10=√5cm2.故填2√3cm,√5cm2.【点评】此题主要考查勾股定理及三角形的面积.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈249.3.【答案】249.3.【分析】根据“被开方数的小数点向右或向左移动2位,它们的算术平方根的小数点就相应地向右或向左移动1位”解答即可.【解答】解:∵被开方数62130可由6.213的小数点向右移动4位得到,∴√62130可由√6.123的算术平方根2.493的小数点向右移动2位得到,即√62130≈249.3.故答案为:249.3.【点评】本题考查算术平方根的规律,熟悉被开方数小数点移动与其算术平方根小数点移动的规律是解题的关键.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=4√2.【答案】见试题解答内容【分析】根据二次根式的运算法则即可求出答案.【解答】解:∵a=3+2√2,b=3﹣2√2,∴ab=9﹣8=1,a﹣b=4√2,∴原式=ab(a﹣b)=4√2,故答案为:4√2【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【答案】见试题解答内容【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=√5,OC=√6,OD=√7∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为600√3米.【答案】见试题解答内容【分析】过点C作CO⊥AB,垂足为O,由图可看出,三角形OAC为一直角三角形,已知一直角边和一角,则可求斜边.【解答】解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300√3∴AC=600√3米.故答案为600√3.【点评】本题考查了直角三角形的性质和勾股定理.三.解答题(共7小题)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.【答案】见试题解答内容【分析】(1)根据题意,可以分别求得BC 、AC 、AB 的长,然后利用勾股定理的逆定理,即可判断△ABC 的形状;(2)根据等积法,可以求得AB 边上的高.【解答】解:(1)△ABC 为直角三角形, 理由:由图可知,AC =√22+42=2√5,BC =√12+22=√5,AB =√32+42=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(2)设AB 边上的高为h , 由(1)知,AC =2√5,BC =√5,AB =5,△ABC 是直角三角形,∴12BC ⋅AC =12AB ⋅ℎ, 即12×√5×2√5=12×5h ,解得,h =2, 即AB 边上的高为2.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.计算: (1)2√3(√12−√75+13√108)(2)(√a 3b −√ab 3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.【答案】见试题解答内容【分析】(1)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(2)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(3)先把各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(4)先进行二次根式的乘法运算,然后合并即可;(5)利用平方差公式计算;(6)利用积的乘方进行计算.【解答】解:(1)原式=2√3(2√3−5√3+2√3)=2√3×(−√3)=﹣6;(2)原式=(a√ab−b√ab)•√ab=(a﹣b)√ab•√ab=ab(a﹣b)=a2b﹣ab2;(3)原式=(√2−2√3)(3√2+4√3)=6+4√6−6√6−24=﹣2√6−18;(4)原式=54√12×8+5√12×23−32√32×8−6√32×23=52+5√33−3√3−6=−72−4√33;(5)原式=(5√2)2﹣(2√7)2=50﹣28=22;(6)原式=[(√3+√2)(√3−√2)]2012•(√3+√2)=√3+√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【答案】见试题解答内容【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.【点评】此题不但考查了勾股定理,还考查了学生折叠的知识,折叠中学生一定要弄清其中的等量关系.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.【答案】见试题解答内容【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+92c的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵√36<√43<√49,∴6<√43<7,∴√43的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+92c=−6﹣5+92×6=16,2a﹣b+92c的平方根为±√16=±4.【点评】本题考查算术平方根、立方根、无理数的估算,掌握算术平方根、立方根和无理数的估算是正确解答的前提.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=14﹣x;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.【答案】见试题解答内容【分析】(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;(2)∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得:x=9;(3)由(2)得:AD=√AB2−BD2=√152−92=12,∴S△ABC=12•BC•AD=12×14×12=84.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法 正确 ;(填“正确”或“错误”)(2)已知△ABC 的其中两边长分别为1,√7,若△ABC 为“类勾股三角形”,则另一边长为 2或√13 ; (3)如果Rt △ABC 是“类勾股三角形”,它的三边长分别为x ,y ,z (x ,y 为直角边长且x <y ,z 为斜边长),用只含有x 的式子表示其周长和面积.【答案】(1)正确;(2)2或√13;(3)周长为(1+√2+√3)x ,面积为√22x 2. 【分析】(1)根据“类勾股三角形”的定义进行判断即可;(2)设出第三边,利用“类勾股三角形”的定义分三种情况讨论求解并进行验证即可;(3)根据勾股定理和类勾股三角形的性质将b 、c 用a 表示,即可求出结果.【解答】解:(1)设等边三角形三边长分别是a ,b ,c ,则a =b =c ,∴a 2+b 2=2c 2,∴等边三角形是“类勾股三角形”,∴小璐的说法正确.故答案为:正确;(2)设另一边长为x ,①12+(√7)2=2x 2,解得x =2,符合题意;②12+x 2=2(√7)2,解得x =√13,符合题意;③x 2+(√7)2=2×12,x 无解;故答案为:2或√13;(3)∵Rt △ABC 是“类勾股三角形”且x <y ,z 为斜边长,∴x 2+z 2=2y 2,由勾股定理得x 2+y 2=z 2,整理得x 2+x 2+y 2=2y 2,即2x 2=y 2,∴y =√2x , ∴z 2=3x 2,∴z =√3x ,∴Rt △ABC 的周长为x +y +z =(1+√2+√3)x ,Rt △ABC 的面积为12xy =12x •√2x =√22x 2. 【点评】本题考查勾股定理,理解题目中的新定义及掌握勾股定理是解题关键.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【答案】(1)7;(2)答案见解答.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD=√AB2−BD2=√132−52=12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH在△CHB和△AEF中,∵{BH=EF∠CBH=∠AFE=45°BC=AF,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.。

八上第一次月考试卷1

八上第一次月考试卷1

壮志初中八年级上数学第一次月考试卷2006.9.28 一、填空(每题2分,共20分) 1、函数1-=x y 的自变量x 的取值范围是 。

2、如果点(1,3)在直线1-=ax y 上,则a = 。

3、一段导线,在0℃时电阻为2Ω,温度每增加1℃,电阻增加0.008Ω,那么电阻R (Ω)表示为温度t (℃)的函数关系式为 。

4、若函数32)2(--=m x m y 是正比例函数,则常数m 的值是 。

5、已知一次函数1+=kx y ,请你补充一个你喜爱的k 的值为 ,使y 随x 的增大而减小。

6、下面是简单的数值运算程序,当输入x 的值为1时,输出值为 。

7、请阅读一小段约翰·斯特劳斯作品,根据乐谱中的信息确定最后一个音符的时值的长应为 。

8、直线421+-=+=x y x y 与直线的交点坐标为 。

9、某图书出租店有一种图书的租金y (元)与出租的天数x (天) 之间函数关系如图所示,则两天后每过一天累计租金增加 元。

10、某人乘出租车从A 地前往B 地,出租车的起步价为3元(即2公里内收费3元),以后每超过1公里加收1元,若出租车行驶的路程x (公里),则需付费用y (元)与x (公里)之间的函数关系式为 。

二、选择(每题3分,共30分) ( )11、直线x y 2=向上平移两个单位,所得到直线是 A 、22+=x y B 、22-=x y C 、)2(2+=x y D 、)2(2-=x y ( )12、下列曲线中不能表示x y 是的函数是 A B C D ( )13、点(2,a )、(1-,b )在函数1+-=x y 的图象上,则 A 、a >b B 、a <b C 、a ≥b D 、a ≤b ( )14、函数k kx y kx y +==与的图象分别为l 1、l 2,则在同一坐标系中正确的是 A B C D ( )15、已知一次函数23-=+=x y b kx y 与直线平行,与直线32+=x y 相交于y 轴上一点,则k 、b 的值分别为 A 、k =3,b =2 B 、k =3,b =3 C 、k =2-,b =3 D 、k =2,b =3 ( )16、葡萄熟了,从葡萄架上垂直落下来,下面图象可以大致反映葡萄下落过程中速度v 随时间变化的情况的是A B C D( )17、函数35-=x y 的图象不经过第 象限。

山东省东营市2020年八年级上学期数学第一次月考试卷(I)卷

山东省东营市2020年八年级上学期数学第一次月考试卷(I)卷

山东省东营市2020年八年级上学期数学第一次月考试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·江阴期中) 下列说法正确的是()A . 三角形的中线、角平分线和高都是线段;B . 若三条线段的长、、满足,则以、、为边一定能组成三角形;C . 三角形的外角大于它的任何一个内角;D . 三角形的外角和是 .2. (2分)(2017·襄城模拟) 如图,将一张矩形纸片ABCD折叠,使顶点C落在C′处,测量得AB=4,DE=8,则sin∠C′ED为()A . 2B .C .D .3. (2分) (2019八上·郑州开学考) 如图,将纸片沿折叠,使点落在四边形外点的位置,则下列结论正确的是()A .B .C .D .4. (2分) (2020八上·青田期末) 如图,≌ ,下列结论正确的是()A .B .C .D .5. (2分)两个三角形有以下三对元素相等,则不能判定全等的是()A . 一边和两个角B . 两边和它们的夹角C . 三边D . 两边和一对角6. (2分) (2019八上·鄞州期中) 某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A . 1B . 2C . 3D . 47. (2分) (2019八上·新乐期中) 如图,AB=EF,AC=ED,BF=CD,∠A=95°,∠B=25°,则∠D的度数为()A . 60°B . 25°C . 70°D . 95°8. (2分) (2019八上·陕西期末) 下列命题的逆命题不是真命题的是()A . 两直线平行,内错角相等B . 直角三角形两直角边的平方之和等于斜边的平方C . 全等三角形的面积相等D . 线段垂直平分线上的点到这条线段两端点的距离相等9. (2分)在△ABC中,如果∠A:∠B:∠C=1:1:2,那么△ABC的形状是()A . 锐角三角形B . 等腰三角形C . 直角三角形D . 等腰直角三角形10. (2分) (2019八上·西城期中) 下列说法正确的是()A . 面积相等的两个三角形是全等三角形B . 全等三角形是指形状相同的两个三角形C . 全等三角形的周长和面积分别相等D . 所有的等腰直角三角形都是全等三角形二、填空题 (共8题;共9分)11. (1分) (2018八上·沙洋期中) 如图,为了使矩形相框不变形,通常可以相框背后加根木条固定.这种做法体现的数学原理是________.12. (1分)如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是________.13. (2分) (2019八上·剑河期中) 如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=________°.14. (1分) (2017八上·弥勒期末) 如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是________。

八年级数学上册第一次月考知识点及测试题含答案

八年级数学上册第一次月考知识点及测试题含答案

八年级数学第一次月考知识点考点一三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.☆三角形的角平分线是一条线段,而角的平分线是一条射线.☆三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.考点二三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.考点三三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性考点四三角形的内角和结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)考点五三角形的外角1.概念:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.如图中,∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.考点六多边形1.概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

八年级上数学第一次月考试题(语数英物全套)有答案

八年级上数学第一次月考试题(语数英物全套)有答案

八上第一次月考数学试卷一、选择题(本大题共10 小题,每小题3 分,共30 分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,和所给图形是全等的图形是()A. B. C. D.2.下列说法正确的是()A.形状完全相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等3.如图,在下列所给条件中,能判定△ABC 和△A'B'C'全等的是()A. AB=A'B',BC=B'C',∠A=∠A'B. ∠A=∠A',∠C=∠C',AC=B'C'C. ∠A=∠A',∠B=∠B',∠C=∠C'D. AB=A'B',BC=B'C',AC=A'C'(第3 题)(第4 题)4.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A. SSSB. SASC. ASAD. AAS5.装修工人在搬运中发现有一块三角形的的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A. ①B. ②C. ③D. ④(第5 题)(第7 题)(第8 题)A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙10. 如图,AC =BC ,AE =CD ,AE ⊥CE 于点 E ,BD ⊥CD 于点 D , AE =7,BD =2,则 DE 的长是( ) A. 7B. 5C. 3D. 2(第 10 题)6. 已知△ABC 的三边长分别是 3、4、5,△DEF 的三边长分别是 3、3x - 2 、 2x + 1 ,若这两个三角形全等,则 x 的值为( )A. 2B. 2 或7C. 7 或3 D. 2 或 7 或 333 23 27. 如图,D 是 AB 上一点,DF 交 AC 于点 E ,FC ∥AB ,则下列结论错误的是( )A. 若 AE =CE ,则 DE =FEB. 若 DE =FE ,则 AE =CEC. 若 BC =CF ,则 AD =CFD. 若 AD =CF ,则 DE =FE8. 如图,是 5×6 的正方形网格,以点 D 、E 为顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A. 2 个B. 4 个C. 6 个D. 8 个9. 如图,已知△ABC 的 3 条边和 3 个角,则能判断和△ABC 全等的是()二、填空题(本大题共 10 小题,每小题 3 分,共 30 分,不需写出证明过程,请把答案直接填写在答题卡相应位置)11. 如图,△ABC ≌△DEF ,点 A 与 D ,B 与 E 分别是对应顶点,且测得 BC =5cm ,BF =7cm ,则 EC 长为cm.(第 11 题) (第 13 题)(第 14 题)12. 请用文字写出判定两个直角三角形全等的一种方法: .13. 如图,∠A =∠C ,只需补充一个条件:,就可得△ABD ≌△CDB .14.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD 下降40cm 时,这时小明离地面的高度是cm.15. 如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .(第15 题)(第16 题)16.如图①、②、③中,点E、D 分别是正△ABC、正四边形ABCM,正五边形ABCMN 中以C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于P 点,图①中,∠APD 的度数为60°,图②中,∠APD 的度数为90°,则图③中,∠APD 的度数为.17.如图为6 个边长相等的正方形的组合图形,则∠1 +∠2 +∠3 = °.(第17 题)(第18 题)18.如图,四边形ABCD 中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为.19.如图,已知点P 为∠AOB 角平分线上的一点,点D 在OA 上,爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB 上取一点E,使得PE=PD,这时他发现∠OEP 与∠ODP 之间有一定的相等关系,请你写出∠OEP 与∠ODP 所有可能的数量关系.(第19 题)(第20 题)20.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,一动点E 从A 点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动秒时,△DEB 与△BCA 全等.三、解答题(本大题共 5 小题,共 40 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(6 分)如图,AC =AE ,∠1=∠2,AB =AD . 求证:BC =DE .(第 21 题)22.(6 分)如图,在△ABC 中,∠ABC =∠ACB ,BD 、CE 分别是∠ABC 、∠ACB 的平分线. 求证:BD =CE .(第 22 题)23.(8 分)我们知道,用直尺和圆规经过直线 AB 外一点 P 作直线 AB 的垂线的方法如下:作法图形(1) 以 P 为圆心,适当的长为半径作弧,使它与 AB 交于点 C 、D ;(2) 分别以 C 、D 为圆心,大于 1CD 长2为半径作弧,两弧交于点 Q ;(3) 作直线 PQ ,直线 PQ 就是所求的直线.若连接CP、DP、CQ、DQ,直线AB、PQ 的交点为O,你能利用“已学的数学知识”来证明PQ⊥AB 吗?若能,请写出证明过程;若不能,请说明理由.(第23 题)24.(9 分)小明遇到这样一个问题,如图1,△ABC 中,AB=7,AC=5,点D 为BC 的中点,求AD 的取值范围.(第24 题)小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD 到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD 用到的判定定理是:(用字母表示);(2)AD 的取值范围是;小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形的构造. 参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF 的长.25.(11 分)【问题提出】学习了三角形全等的判定方法(即“ SAS ”、“ ASA ”、“ AAS ”、“ SSS ” ) 和直角三角形全等的判定方法(即“ HL ” ) 后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在∆ABC 和∆DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“ ∠B 是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B 是直角时,∆ABC≌∆DEF .(1)如图①,在∆ABC 和∆DEF ,AC =DF ,BC =EF ,∠B =∠E = 90︒,根据,可以知道∆ABC≌∆DEF .第二种情况:当∠B 是钝角时,∆ABC≌∆DEF .(2)如图②,在∆ABC 和∆DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:∆ABC≌∆DEF .第三种情况:当∠B 是锐角时,∆ABC 和∆DEF 不一定全等.(3)在∆ABC 和∆DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③ 中作出∆DEF ,使∆DEF 和∆ABC 不全等.(不写作法,保留作图痕迹)(4)∠B 还要满足什么条件,就可以使∆ABC≌∆DEF ?请直接写出结论:在∆ABC 和∆DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若,则∆ABC≌∆DEF .⎨ ⎨ 答案一、选择题二、填空题11. 3 12. 直角三角形中斜边和直角边分别相等的两个三角形全等13. ∠ADB =∠CBD 14. 90 15. 55︒16. 108︒17. 135︒18. 12.5 19. 相等或互补20. 2s 或6s 或8s三、解答题21. 证明: ∠1 =∠2∴∠1 +∠EAB =∠2 +∠EAB即∠CAB =∠EAD在∆ABC和∆ADE 中⎧AC =AE⎪∠CAB =∠EAD⎪⎩AB=AD∴∆ABC≌∆ADE (SAS )∴BC =DE22. ∠ABC =∠ACB∴AB =ACBD、CE分别平分∠ABC、∠ACB∴∠ABD =1∠ABC , ∠ACE =1∠ACB 2 2∴∠ABD =∠ACE在∆ABD和∆ACE中⎧∠A =∠A⎪AB =AC⎪⎩∠ABD=∠ACE∴∆ABD≌∆ACE (ASA)∴BD =CE23.解:CQ =DQ∴Q在CD的垂直平分线上CP =DP∴P在CD的垂直平分线上∴Q、P是CD的垂直平分线∴PQ ⊥AB⎨ ⎨BC = EF24. (1) SAS (2)1<AD <6(3)解: 延长GE 交CB 的延长线于 M . 四边形 ABCD 是正方形, ∴ AD / /CM , ∴∠AGE = ∠M , 在∆AEG 和∆BEM 中,⎧∠AGE = ∠M ⎪∠AEG = ∠MEB , ⎪⎩AE = BE ∆AEG ≌∆BEM∴GE = EM , AG = BM = 2 , EF ⊥ MG , ∴ FG = FM , BF = 4 ,∴ MF = BF + BM = 2 + 4 = 6 , ∴GF = FM = 6 . 25. (1) 解: 如图①, ∠B = ∠E = 90︒ ,∴在Rt ∆ABC 和Rt ∆DEF 中, ⎧ AC = DF,⎩Rt ∆ABC ≌Rt ∆DEF故答案为: HL ;⎨ ⎨CG = FH ⎨ (2) 证明: 如图②, 过点C 作CG ⊥ AB 交 AB 的延长线于G ,过点 F 作 FH ⊥ DE 交 DE 的延长线于 H , ∠ABC = ∠DEF ,且∠ABC 、∠DEF 都是钝角, ∴180︒ - ∠ABC = 180︒ - ∠DEF , 即∠CBG = ∠FEH ,⎧∠CBG = ∠FEH在∆CBG 和∆FEH 中, ⎪∠G = ∠H = 90︒ ,⎪⎩BC = EF∴∆CBG ≌∆FEH (AAS ) ∴CG = FH ,在Rt ∆ACG 和Rt ∆DFH 中, ⎧ AC = DF,⎩∴ Rt ∆ACG ≌Rt ∆DFH (HL ) ∴∠A = ∠D ,⎧∠A = ∠D 在∆ABC 和∆DEF 中, ⎪∠ABC = ∠DEF ,⎪⎩ AC = DF∴∆ABC ≌∆DEF (AAS )(3) 解: 如图③中, 在∆ABC 和∆DEF , AC = DF , BC = EF , ∠B = ∠E , ∆DEF 和∆ABC 不全等;(4) 解: 由图③可知, ∠A = ∠CDA = ∠B + ∠BCD , ∴∠A > ∠B ,∴当∠B ∠A 时, ∆ABC 就唯一确定了, 则∆ABC ≌∆DEF 故答案为: ∠B ∠A .。

2020-2021年秋季部编版八年级上第一次月考试卷含答案

2020-2021年秋季部编版八年级上第一次月考试卷含答案

八年级(上)第一次月考语文试卷(时间:120分钟满分:100分)班级座号姓名成绩一、积累与运用(17分)1.下列加点字的注音完全正确的一项是( )(2分)A.要塞(sài) 瞥.见(piē)黝.黑(yòu)意趣盎.然(àng)B.仲裁(zhòng) 顿挫.(cuò)滞.留(zhì)藏污纳垢.(hòu)C.炽.热(chì)诘.责(jié)骤.雨(zhòu)筋.疲力尽(jīn)D.吹嘘(xū)镌刻(juān) 窒.息(zhì)丑陋可憎.(zèng)2.下列选项中,没有错别字的一组是( )(2分)A.荧光愚钝油光可签眼花潦乱 B.劳禄燥热任劳任怨和颜悦色C.馈退坠毁紧绷惮精竭虑 D.犀利粲然小心翼翼引人注目3.下列加点的词语使用有误的一项是( )(2分)A.军乐团奏响《检阅进行曲》,万众瞩目....的阅兵分列式开始了。

B.电影《大鱼海棠》的预告片中“守望重生”“义无反顾”“爱苦别离”三个章节对抑扬顿...挫.的故事情节进行了更为细致的刻画。

C.舆论的力量就像排山倒海....一般,令人无法抵挡。

D.他聪慧好学,多才多艺,阳光帅气,在我们年级鹤立鸡群....,是校草的热门人选。

4.下列句子中没有语病的一项是( )(2分)A.骑在“女红军”塑像头上拍照,此类不文明的旅游现象屡禁不止,其原因是缺乏个人修养造成的。

B.一档名为《朗读者》的大型朗读类节目播出,加上已经成为热门话题的《见字如面》,给人一种久违的文化气息。

C.一年一度的两会,吸引着来自各行各业的目光,打动着亿万百姓的心弦。

D.读者深受喜爱的杨绛先生,不凡的一生中,留下了大量文风质朴、寓意深刻的作品。

5.下列句子语言表达得体的一项是()(2分)A.我的行李放在前面那辆的士上了,多亏了你开车帮我找回;明天我将登门致谢,请你在家恭候。

B.胡毅然的《此心安处是吾乡》在省组织的读书征文活动中获一等奖,主办单位将惠赠丛书一套。

江苏省镇江市外国语学校2024-2025学年八上数学第一次月考试卷(含答案)

江苏省镇江市外国语学校2024-2025学年八上数学第一次月考试卷(含答案)

江苏省镇江市外国语学校2024-2025学年八上数学第一次月考试卷一.选择题(共7小题)1.如图,将三角形纸片ABC折叠,使点C与点A重合,折痕为DE.若∠B=80°,∠BAE =26°,则∠EAD的度数为( )A.36°B.37°C.38°D.45°2.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=24,DE=4,AB=5,则AC的长是( )A.4B.5C.6D.73.如图,∠BAC的平分线与BC的垂直平分线相交于点D,ED⊥AB,DF⊥AC,垂足分别为点E,F,AB=11,AC=5,则BE的长为( )A.3B.4C.5D.64.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.425.在△ABC中,∠C=90°,BC=16cm,∠A的平分线AD交BC于D,且CD:DB=3:5,则点D到AB的距离等于( )A.6cm B.7cm C.8cm D.9cm6.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°7.如图,在△ABC中,AB边的垂直平分线DE,分别与AB边和AC边交于点D和点E,BC 边的垂直平分线FG,分别与BC边和AC边交于点F和点G,又△BEG的周长为16,且GE=1,则AC的长为( )A.16B.15C.14D.13二.填空题(共11小题)8.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .9.如图,将一张长方形纸片ABCD沿EF折叠,ED′与BC交于点为G,点D、点C分别落在点D′、点C′的位置上,若∠1=110°,则∠GFC′= .10.已知点P为∠AOB内一点,且∠AOB=30°,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若OP=6,则△PMN的周长为 .11.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是 .12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3= .13.如图,在Rt△ABC中,∠ACB=90°,点D在边AB上,将△CBD沿CD折叠,使点B 恰好落在边AC上的点E处.若∠A=24°,则∠CDE= °.14.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CF⊥AD,BE⊥AD.若CF=8,BE =6,AD=10,则EF的长为 .15.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB= .16.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是 .17.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是 .18.如图,在锐角△ABC中,∠ACB=50°;边上有一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是 .三.解答题(共6小题)19.(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是 ;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC 于点F,连接EF,求证:BE+CF>EF.20.如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q 从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.21.如图,AD∥BC,AE平分∠BAD,BE平分∠ABC,AF=AD,AB=AD+BC.(1)AE与BE垂直吗?说明你的理由;(2)若AE=5,BE=3,试求出四边形ABCD的面积.22.如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM的平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.23.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.24.定义:如图,A,B为直线l同侧的两点,过点A作直线l的对称点A',连接A'B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.如图①,在△ABC中,D,E分别是AB、AC上的点,AB=AC,AD=AE,然后将△ADE 绕点A顺时针旋转一定角度,连接BD,CE,得到图②,延长CE交BA的延长线于点N,延长BD至点M,使DM=EN,连接AM,得到图③,请解答下列问题:(1)在图②中,BD与CE的数量关系是 ;(2)在图③中,求证:点A为点C,M关于直线BN的“等角点”.参考答案与试题解析一.选择题(共7小题)1.【解答】解:∵∠B=80°,∠BAE=26°,∴∠AEB=180°﹣(∠B+∠BAE)=180°﹣(80°+26°)=74°,∵将△ABC折叠点C与点A重合,∴AE=CE,∴∠EAD=∠C,由三角形的外角性质得,∠AEB=∠EAD+∠C,∴2∠EAD=74°,∴∠EAD=37°.故选:B.2.【解答】解:作DF⊥AC于F,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=4,∵S△ADB+S△ADC=S△ABC,∴×5×4+×AC×4=24,∴AC=7.故选:D.3.【解答】解:如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=(11﹣5)=3.故选:A.4.【解答】解:由平移的性质知,BE=6,DE=AB=10,S△ABC=S△DEF,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S△DEF﹣S△EOC=S△ABC﹣S△EOC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.5.【解答】解:∵BC=16,DC:DB=3:5,∴CD=×16=6,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=6,即点D到AB的距离是6cm.故选:A.6.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.7.【解答】解:∵DE是AB边的垂直平分线,∴EB=EA,∵FG是BC边的垂直平分线,∴GB=GC,∵△BEG的周长为16,∴GB+GE+EB=16,∴AE+GE+GC=16,∴AC+GE+GE=16,∵GE=1,∴AC=16﹣2=14,故选:C.二.填空题(共11小题)8.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.9.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEG=180°﹣∠1=70°,∠DEF+∠EFC=180°,由翻折可得,∠DEF=∠GEF,∠EFC=∠EFC',∴∠DEF=55°,∴∠EFC=180°﹣55°=125°,∴∠GFC'=∠EFC'﹣∠EFG=∠EFC﹣∠DEF=125°﹣55°=70°,故答案为:70°.10.【解答】解:∵P1、P2分别是P关于OA、OB的对称点,∴∠P1OA=∠AOP,∠P2OB=∠BOP,PM=P1M,PN=P2N,P1O=PO=P2O,∴∠P1OP2=∠P1OA+∠AOP+∠P2OB+∠BOP=2∠AOB,∵∠AOB=30°,∴∠P1OP2=2×30°=60°,∴△OP1P2是等边三角形,又∵△PMN的周长=PM+MN=PN=P1M+MN+P2N=P1P2,∴△PMN的周长=P1P2=P1O=PO=6.故答案为:611.【解答】解:作F关于AD的对称点F',∵AD是∠BAC的平分线,∴点F'在AB上,∴EF=EF',∴当CF'⊥AB时,EC+EF的最小值为CF',∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,∴S△ABC=,∴12×8=10×CF',∴CF'=,∴EC+EF的最小值为,故答案为:.12.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.13.【解答】解:∵∠ACB=90°,将△CBD沿直线CD翻折180°,得到△CED,点E恰好落在边AC上,∴∠ACD=∠BCD=∠ACB=45°,由三角形的外角性质得,∠CDB=∠A+∠ACD=24°+45°=69°,由据翻折的性质得,∠CDE=∠CDB=69°.故答案为:69.14.【解答】解:∵AB⊥CD,CF⊥AD,BE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∠AEB=∠CFD=90°,∴∠A=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF=6,AE=CF=8,∵AF=AD﹣DF=10﹣6=4,∴EF=AE﹣AF=8﹣4=4,故答案为:4.15.【解答】解:∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.16.【解答】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.17.【解答】解:如图,延长AP交BC于点D,∵BP平分∠ABC∴∠ABP=∠DBP,且BP=BP,∠APB=∠DPB∴△ABP≌△DBP(ASA)∴AP=PD,∴S△ABP=S△BPD,S△APC=S△CDP,∴S△PBC=S△ABC=9,故答案为:9.18.【解答】解:作点P关于AC,BC的对称点D,G,连接PD,PG分别交AC,BC于E,F,连接DG交AC于M,交BC于N,连接PM,PN.此时△PMN的周长最小.∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=50°,∴∠EPF=130°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=50°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=50°,∴∠MPN=130°﹣50°=80°,故答案为:80°.三.解答题(共6小题)19.【解答】(1)①证明:∵AD是△ABC的中线,∴BD=CD,在△ADB和△ECD中,,∴△ABD≌△ECD(SAS);②解:由①知,△ABD≌△ECD,∴CE=AB,∵AB=5,∴CE=5,∵ED=AD,AD=x,∴AE=2AD=2x,在△ACE中,AC=3,根据三角形的三边关系得,5﹣3<2x<5+3,∴1<x<4,故答案为:1<x<4;(2)证明:如图2,延长FD,截取DH=DF,连接BH,EH,∵DH=DF,DE⊥DF,即∠EDF=∠EDH=90°,DE=DE,∴△DEF≌△DEH(SAS),∴EH=EF,∵AD是中线,∴BD=CD,∵DH=DF,∠BDH=∠CDF,∴△BDH≌△CDF(SAS),∴CF=BH,∵BE+BH>EH,∴BE+CF>EF.20.【解答】解:(1)如图1中,∵AD是高,∴∠ADC=90°,∵BE是高,∴∠AEB=∠BEC=90°,∴∠EAO+∠ACD=90°,∠EBC+∠ECB=90°,∴∠EAO=∠EBC,在△AOE和△BCE中,,∴△AOE≌△BCE,∴AO=BC=5.(2)∵BD=CD,BC=5,∴BD=2,CD=3,由题意OP=t,BQ=4t,①当点Q在线段BD上时,QD=2﹣4t,∴S=•t(2﹣4t)=﹣2t2+t(0<t<).②当点Q在射线DC上时,DQ=4t﹣2,∴S=•t(4t﹣2)=2t2﹣t(<t≤5).(3)存在.①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴5﹣4t=t,解得t=1,②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴4t﹣5=t,解得t=.综上所述,t=1或s时,△BOP与△FCQ全等.21.【解答】解:(1)结论:AE⊥BE.理由:∵AD∥BC,∴∠BAD+∠ABC=180°,又∵AE平分∠BAD,BE平分∠ABC,∴∠DAE=∠EAF=∠BAD,∠ABE=∠CBE=∠ABC,∴∠EAB+∠EBA=(∠BAD+∠ABC)=×180°=90°,∵∠EAB+∠ABE+∠AEB=180°,∴∠AEB=90°,∴AE⊥BE;(2)∵AF=AD,AB=AD+BC,∴BF=BC,在△AED和△AEF中,,∴△AED≌△AEF(SAS),∴S四边形ADEF=2S△AEF,同理△BEF≌△BEC,∴S四边形BCEF=2S△BEF,∴S四边形ABCD=S四边形ADEF+S四边形BCEF=2S△AEF+2S△BEF=2S△ABE=2××5×3=15.∴四边形ABCD的面积为15.22.【解答】(1)证明:连接BD,∵DE垂直平分BC,∴BD=CD,∵AD平分∠CAM,DF⊥AC,DG⊥AM,∴DG=DF,在Rt△BDG和Rt△CDF中,,∴Rt△BDG≌Rt△CDF(HL),∴BG=CF;(2)解:在Rt△ADG和Rt△ADF中,,∴Rt△ADG≌Rt△ADF(HL),∴AG=AF,∵AC=AF+CF,BG=AB+AG,BG=CF,∴AC=AF+AB+AG,∴AC=2AG+AB,∵AB=10cm,AC=14cm,∴AG==2cm.23.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)存在,理由:①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.24.【解答】(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠CAE=∠BAD,在△CAE和△BAD中,∴,∴△CAE≌△BAD(SAS),∴BD=CE,故答案为:BD=CE;(2)证明:由(1)得:△CAE≌△BAD,∴∠ADB=∠AEC,∴180°﹣∠ADB=180°﹣∠AEC,∴∠ADM=∠AEN,在△ADM和△AEN中,,∴△ADM≌△AEN(SAS),∴∠DAM=∠EAN,∴∠DAM+∠MAE=∠EAN+∠MAE,∴∠MAN=∠DAE,∵∠DAE=∠BAC,∴∠MAN=∠BAC,过点M作关于BN的对称点M′,连接AM′,如图,则∠MAN=∠M′AN=∠BAC,∵∠BAC+∠CAN=180°,∴∠M′AN+∠CAN=180°,∴C、A、M′三点共线,即M′C交直线BN于点A,∴点A为点C,M关于直线BN的“等角点.。

八年级上学期数学第一次月考试卷(I)卷

八年级上学期数学第一次月考试卷(I)卷

八年级上学期数学第一次月考试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·交城期中) 以下列各组线段为边,能组成三角形的是()A . 3cm,4cm,7cmB . 3cm,3cm,6cmC . 5cm,8cm,2cmD . 4cm,5cm,8cm2. (2分) (2019八上·西岗期末) 若等腰三角形底角为,则顶角为A .B .C .D .3. (2分)如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A . 5B . 6C . 7D . 不能确定4. (2分)如图,正方形CEFH的边长为m,点D在射线CH上移动,以CD为边作正方形CDAB,连接AE、AH、HE,在D点移动的过程中,三角形AHE的面积()A . 无法确定B .C .D .5. (2分) (2015高二上·昌平期末) 一个多边形的边数每增加一条,这个多边形的()A . 内角和增加360°B . 外角和增加360°C . 对角线增加一条D . 内角和增加180°6. (2分)(2018·扬州) 在中,,于,平分交于,则下列结论一定成立的是()A .B .C .D .7. (2分) (2016八上·余杭期中) 如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE 与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A . 2B . 3C . 1D . 88. (2分)如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A . AC=ADB . AB=ABC . ∠ABC=∠ABDD . ∠BAC=∠BAD9. (2分)已知等边三角形的高为,则它的边长为()A . 4B . 3C . 2D . 510. (2分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A . 70°B . 80°C . 90°D . 100°二、填空题 (共6题;共6分)11. (1分) (2017八上·中江期中) 已知A(0,1)、B(3,1)、C(4,3),如果在y轴的左侧存在一点D,使得△ABD与△ABC全等,那么点D的坐标为________.12. (1分) (2017八下·北海期末) 如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=40°,则∠E=________度.13. (1分) (2019八上·朝阳期中) 如图,在棋盘中建立直角坐标系,三颗棋子,,的位置分别是,和.如果在其他格点位置添加一颗棋子,使,,,四颗棋子成为一个轴对称图形,请写出一个满足条件的棋子的位置的坐标________14. (1分) (2018九上·丰台期末) 在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为________.15. (1分)(2017·宝山模拟) 如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE 翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═ ,那么CF:DF═________16. (1分) (2019七下·苏州期末) 如图,中, .点从点出发沿路径向终点运动;点从点出发沿路径向终点运动.点和分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过和作于,于 .则点运动时间等于________时,与全等。

2020-2020八年级数学人教版上期第一次月考试卷含答案

2020-2020八年级数学人教版上期第一次月考试卷含答案

2020-2021学年度第一学期考试卷八年级数学人教版(RJ)注意事项:1.本试卷共6页,三大题,满分120分,考试时间100分钟。

2.请用蓝、黑色钢笔或圆珠笔写在试卷或答题卡上。

1.下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形2.下列四个图形中,线段BE是△ABC的高的是()3.下列长度的三根木棒能组成三角形的是()A.1,2, 4B.2, 2, 4C.2, 3 ,4D.2, 3, 64.已知ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形5.如图,已知∠1=∠2,AC=AD,增加下列条件,其中不能使△ABC≌△AED的条件()A.AB=AEB.BC=EDC.∠C=∠DD.∠B=∠E6.五边形的外角和等于()A.180°B.360°C.540°D.720°7.如图,AE=AF,AB=AC,EC与BF交于点O,A=60°,B=25°,则∠FOC的度数为()A.60° B.70° C.75° D.85°8.如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A.9cmB.12cmC.12cm或15cmD.15cm9.如图,∠GBC,∠BAC的平分线相交于点F,BE⊥CF于H,若∠AFB=40°,∠E的度数为()A.40°B.50°C.55°D.60°10.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则△EDF的度数为()A.45°-∠AB.90°-∠AC.90°-∠AD.180°-∠A第9题图第10题图二.填空题(每小题3分,共15分)11.正n边形的一个外角为72,则n的值是____________.12.如图,如果AD∥BC,AD=BC,AC与BD相交于点O,则图中的全等三角形一共有 ____________ 对。

八年级上学期数学第一次月考试卷

八年级上学期数学第一次月考试卷

八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2019八上·荣昌期末) 下列各组数据中,能作为一个三角形的三边边长的是()A . 5,5.10B . 5,10,20C . 15,25,35D . 10,15,252. (3分)下图如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD=S△ABC .A . 3个B . 2个C . 1个D . 0个3. (3分) (2020八上·义乌期中) 下列句子是命题的是()A . 画B . 小于直角的角是锐角吗?C . 连结D . 三边对应相等的两个三角形全等4. (3分)不是利用三角形稳定性的是()A . 照相机的三角架B . 三角形房架C . 自行车的三角形车架D . 矩形门框的斜拉条5. (3分)以下多边形中,既是轴对称图形又是中心对称图形的是()A . 正五边形B . 矩形C . 等边三角形D . 平行四边形6. (3分) (2019八上·新昌期中) 如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,那么,按照图中所标注的数据,图中实线所围成的图形面积为().A . 40.5B . 48.5C . 50D . 52.57. (3分)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A . AB=ACB . ∠BAC=90°C . BD=ACD . ∠B=45°8. (3分)(2014·来宾) 顺次连接菱形各边的中点所形成的四边形是()A . 等腰梯形B . 矩形C . 菱形D . 正方形9. (3分)如图,一张△ABC纸片,小明将△ABC沿着DE折叠并压平,点A与A′重合,若∠A=78°,则∠1+∠2=()A . 156°B . 204°C . 102°D . 78°10. (3分)(2020·湖州模拟) 如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=2,P为AB上一动点,则PD的最小值为()A . 2B . 3C . 4D . 无法确定二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分)命题“三角形的一个外角等于和它不相邻的两个内角的和”的条件是,结论.12. (4分) (2020八下·萍乡期末) “直角三角形只有两个锐角”的逆命题是,该逆命题是一个命题(填“真”或“假”).13. (4分)如图,已知直线y=2x+6与x轴、y轴分别交于M,N两点,以OM为边在x轴下方作等边三角形OMP,现将△OMP沿y轴向上平移,当点P恰好落在直线MN上时,点P运动的路程为.14. (4分)(2019·保定模拟) 一个正多边形每一个外角为36°,则这个多边形的内角和为.15. (4分) (2021八上·武昌期末) 如图,中,,,MN垂直平分AB,则.16. (4分)(2020·中模拟) 如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH , HG交AB于点E ,连接DE交AC于点F ,连接FG .则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG=.其中正确的结论是.(填入正确的序号)三、解答题(共66分) (共8题;共66分)17. (8分) (2020八下·莆田月考) 等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.18. (6分)如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.19. (6分) (2017七下·苏州期中) 已知:如图,AB∥CD,∠A=∠D.求证:AF∥ED.20. (8分) (2020九上·江苏月考) 如图,过A、C、D三点的圆的圆心为点E,过B、F、E三点的圆的圆心为点D,若∠ABC=17°,求∠BAC的度数.21. (8分) (2017七下·西华期末) 如图,已知AD∥BC,∠1=∠2,试说明∠A=∠C.22. (8分)(2019·温州模拟) 图①、图②都是4×4的正方形网格,每个小正方形的顶点为格点,每个小正方形的边长均为1.在图①、图②中已画出线段AB,点A、B均在格点上按下列要求画图:(1)在图①中,以格点为顶点,AB为腰,画一个三边长都是无理数的等腰三角形;(2)在图②中,以格点为顶点,AB为底的等腰三角形.23. (10分) (2020九上·北京期中) 如图,△ABC中,AC=BC ,∠ACB=90°,D为AC延长线上一点,连接BD ,在BC边上取一点E ,使得CD=CE ,连接AE并延长交BD于点F .(1)依题意补全图形;(2)求证:AF⊥BD;(3)连接CF ,点C 关于BD的对称点是Q ,连接FQ ,用等式表示线段CF,CQ之间的数量关系,并加以证明.24. (12分)(2017·黄石模拟) 如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A点出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A,G重合),设运动时间为t秒,连接BM并延长AG于N.(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=HN;(3)过点M分别作AB,AD的垂线,垂足分别为E,F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值.参考答案一、选择题(每小题3分,共30分) (共10题;共30分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(每小题4分,共24分) (共6题;共24分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题(共66分) (共8题;共66分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。

2020—2021年部编人教版八年级数学上册第一次月考考试卷【及参考答案】

2020—2021年部编人教版八年级数学上册第一次月考考试卷【及参考答案】

2020—2021年部编人教版八年级数学上册第一次月考考试卷【及参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高3.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠14.下列各数:-2,0,13,0.020020002…,π( )A .4B .3C .2D .15.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1) 6.计算()22b a a -⨯的结果为( ) A .bB .b -C . abD .b a 7.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2BC .2D .47.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >29.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.因式分解:2218x -=__________.3.分解因式:3x -x=__________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为__________.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)11322xx x-=---(2)311xx x-=-2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知关于x的一元二次方程22240x x k++-=有两个不相等的实数根(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.4.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、A7、C8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、2(x+3)(x﹣3).3、x(x+1)(x-1)4、(-4,2)或(-4,3)5、36、12三、解答题(本大题共6小题,共72分)1、(1)无解;(2)32x.2、1 23、(1)k<52(2)24、(1)略(25、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)A,B两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

山西省八年级上学期数学第一次月考试卷

山西省八年级上学期数学第一次月考试卷

山西省八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·沈阳期中) 要组成一个三角形,三条线段长度可取()A . 2,3,5B . 18,9,8C . 9,6,13D . 3,5,92. (2分)(2020·枣阳模拟) 如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE//AB,若∠ACD=500 ,则∠B的度数是()A . 50°B . 40°C . 30°D . 25°3. (2分)如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A . 3B . 4C . 7D . 84. (2分) (2021八下·江岸期末) 如图中,,,,分别以三边为直径画半圆,则两月形图案的面积之和(阴影部分的面积)是()A . 5πB . 10πC . 5D . 105. (2分) (2021八下·新华期末) 如图,沿着虚线将四边形纸片剪成两部分,如果所得两个图形的内角和相等,则符合条件的剪法是()A . ①②B . ①③C . ②④D . ③④6. (2分) (2017八上·西湖期中) 如图,,且平分,过点作变于点,若点到的距离为,则的长为().A .B .C .D .7. (2分) (2019八下·哈尔滨期中) 如图,在矩形ABCD中,把矩形ABCD绕点C旋转,得到矩形FEGH,且点E落在AD上,连接BE,BG,交CE于点H,连接FH,若FH平分∠EFG,则下列结论:① ;② ;③ ;④ ,其中正确的个数是()A . 1个B . 2个C . 3个D . 4个8. (2分)(2021·港南模拟) 如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1 , S2 ,则S1:S2等于()A . 2:1B . :1C . 3:2D . 2:9. (2分)(2021·铜仁模拟) 如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:① ;② ;③ ;④.其中结论正确的序号是()A . ①②③B . ①②④C . ①③④D . ②③④10. (2分)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A . 60°B . 65°C . 55°D . 50°二、填空题 (共6题;共6分)11. (1分)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件(只需填一个),使△ABC≌△DEF.12. (1分) (2020八上·东台期中) 如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=°.13. (1分)(2016·无锡) 如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.14. (1分) (2017八下·阳信期中) 在直角坐标系中,已知点A (0,2),B(1,3),则线段AB的长度是.15. (1分) (2016七下·沂源开学考) 如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角度数为.16. (1分) (2018八上·南昌月考) 如图所示,请将用“>”排列.三、解答题 (共8题;共76分)17. (5分) (2017八下·钦州期末) 如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)18. (15分) (2018八上·柳州期中) 如图,AC和BD相交于点O ,点O是线段AC、BD的中点。

【八上数学月考真题】秦外2020年八上第一次月考数学试卷(含答案)

【八上数学月考真题】秦外2020年八上第一次月考数学试卷(含答案)

有这性质的点 P 有( )个.
A.1 个
B.5 个
C.9 个
D.13 个
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)
7. 16 的平方根是
, 64 的立方根是_______.
8.据统计:我国微信用户数量已突破 8.87 亿人,近似数 8.87 亿精确到_________位.
9.我们知道,如果两个图形成轴对称,那么这两个图形全等,请写出轴对称的两个图形的另一条性质;

第 2页(共 12页)
三、解答题(本大题共 9 小题,共 68 分) 17.计算(每题 3 分,共 6 分):
(1) (6)2 3 27 ( 5)2
(2) 5 3 ( 5 1)0 36
18.解方程(每题 3 分,共 6 分)(1) 9(x 2)2 121 0 ;
(2) 64(x 1)3 125 .
第 4页(共 12页)
24.(8 分)如图①,要在一条笔直的路边 l 上建一个燃气站,向 l 同侧的 A 、 B 两个城镇分别铺设管道输 送燃气.试确定燃气站的位置,使铺设管道的路线最短写出关键依据并证明.(提示:在直线 l 上另取一 点,证明过该点的管道路线不是最短) (2)如果在 A 、 B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种 情形的铺设管道的方案(不需说明理由).生态保护区是正方形区域,位置如图②所示;
第 5页(共 12页)
25.(12 分)半角模型是指有公共顶点,锐角等于较大角的一半,且组成这个较大角的两边相等.通过翻 折或旋转,将角的倍分关系转化为角的相等关系,并进一步构成全等或相似三角形,弱化条件,变更载 体,而构建模型,可把握问题的本质.
(1)问题背景: 如图 1,在四边形 ABCD 中, AB AD , BAD 120 , B ADC 90 , E 、 F 分别是 BC , CD 上的

安徽省合肥市第四十五中学2022-2023学年八年级上学期月考数学试卷(10月份)

安徽省合肥市第四十五中学2022-2023学年八年级上学期月考数学试卷(10月份)

1合肥庐阳四十五中2022-2023学年八上第一次月考数学试卷(含答案)本卷沪科版11.1~12.4、共4页三大题、23小题,满分150分,时间120分钟(使用直接打印、精品解析请自重)一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,若点P 的坐标为(5,-3),则点P 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列函数是正比例函数的是( ) A .y =x 2+2 B .22+-=x y C .y =-2x D .xy 2=3.将直线y =2x 沿着y 轴向下平移3个单位长度,所得的直线是( )A .y =2(x+3)B .y =2x-3C .y =2x+3D .y =2(x-3) 4.一根蜡烛原长a 厘米,点燃后燃烧时间为t 分钟,所剩余蜡烛的长为y 厘米,其中是变量的是( ) A .a ,t ,y B .y C .t ,y D .a ,y 5.在平面直角坐标系中,以方程4x-3y =9的解为坐标的点组成的图形是( )A .B .C .D .6.下列方程组中,有无数组解的是( ) A .⎩⎨⎧-=--=-1222y x y x B .⎩⎨⎧-=+=2353x y x y C .⎩⎨⎧=--=--01482074y x y x D .⎩⎨⎧-=-=323x y x y7.下列关于一次函数y =-3x+1的说法中,不正确的是( )A .若图象过点(x 1,y 1),(x 1+1,y 2),则y 1<y 2B .图象经过一、二、四象限C .在y 轴上的截距是1D .函数值y 随着x 的增大而减小 8.甲、乙两个工程队同时修建两条长为1000米的马路,所修建的马路的长度y (米)与天数x (天)之间的函数关系如图所示,下列说法不正确的是( )A .甲工程队每天修建100米B .甲、乙两队在第3天和第6天修建的马路长度相同C .乙工程队休息前修建的速度比休息后修建的速度每天慢40米D .乙工程比甲工程队早2天完成任务2第8题图 第10题图 9.在同一直角坐标系中,一次函数y=ax+b 的图象与正比例函数x ab y =图象的位置不可能是( ) A . B . C . D .10.已知一次函数y =2x 与x y 21-=如图所示,点A 1(1,2)在直线y =2x 上,过点A 1作A 1A 3平行于x 轴交 直线x y 21-=与点A 2,过点A 2作A 2A 3平行于y 轴交直线y =2x 于点A 3,过点A 3作A 3A 4平行于x 轴交直线x y 21-=与点A 4,以此类推,则线段A 2021A 2022的长为()A .5×22021B .3×22022C .3×22020D .5×22020二、填空题(每小题5分,共20分)11.函数1-=x y 中,自变量x 的取值范围是 .12.已知y 与x 成正比例,且当x =2时,y =-3.则当x =21-时,y = .13.已知直线y =x 23-4经过点(a ,b ),则3a-2b 的立方根为 .14.如图长方形ABCD 的边长AB =5,BC =1.刚开始时AB 与y 轴重合.将长方形ABCD 沿x 轴以每秒1个单位 长度向右平移,在平移过程中,边AB 与直线y =x 43-+5交于点M ,与直线y =21x 交于点N ,边CD 与直线 y =x 43-+5交于点P ,与直线y =21x 交于点Q ,设运动时间为t (秒). (1)当0≤t ≤4时,用含t 的表达式表示MN 的长 ; (2)当|MN-PQ|为定值时,时间t 的取值范围为 .三、解答题(共90分)15.已知一次函数y =kx+b 的图象与直线y-3x+4平行,且经过点(-2,1). (1)求这个函数的解析式. (2)判断点A (-31,-6)是否在此一次函数的图象上.16.如图所示的正方形网格中,每个小正方形的边长为1个单位,格点三角形△ABC .(1)将△ABC 平移至△A 1B 1C 1,使得点C 1的坐标为(3,0),请画出平移后的三角形,并写出点A 2,B 2的坐标;(2)若△ABC 的边上存在一点P (a ,b ),则平移后得到的点P 1的坐标为 .317.已知点P (2a-1,3-a ),且点P 在第二象限.(1)求a 的取值范围; (2)若点P 到坐标轴的距离相等,求点P 的坐标.18.已知一次函数y =-21x+2. (1)求该直线与坐标轴的交点坐标; (2)画出一次函数的图象; (3)由图可知,若方程-21x+2=0,则方程的解为 .19.如图,在平面直角坐标系中,直线l 1:y =ax+4与x 轴、y 轴分别交于点A ,B ,且与直线l 2:y =kx 相交于点 C (3,2).(1)求a 和k 的值; (2)求直线l 1与l 2与x 轴围成的三角形面积; (3)直接写出kx >ax+4≥0的解集.20.温度与我们的生活息息相关,你仔细观察过温度计吗?如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉),设摄氏温度为x (℃),华氏温度为y (℉),则y 是x 的一次函数.(1)仔细观察图中数据,试求出y 与x 之间的函数表达式;(2)当华氏温度为5℉,求摄氏温度为多少?21.李老师准备购买12个文具盒和若干本练习本作为运动会奖品赠送给获奖学生,已知文具盒每个15元,练习本每本3元,现有两个商家可供选择.设甲商家购买的费用y1(元),乙商家购买的费用y2(元),练习本个数x(x>12).甲:买一个文具盒赠送一本练习本;乙:练习本和文具盒按标价打九折出售.(1)请分别写出y1,y2与练习本个数x的函数关系式;(2)请帮李老师抉择选择哪个商家更实惠?并说明理由.22.某水果种植基地计划租几辆货车装运苹果和橘子共60吨去外地销售,要求每辆货车只能装一种水果,且必须装满.苹果橘子每辆车装载量 4 6每吨获利(元)1200 1500(1)设装运苹果的货车有x辆,装运橘子的货车有y辆,请用含x的代数式来表示y;(2)写出总利润W(元)与x(辆)之间的函数关系式;(3)若装运苹果的货车的辆数不得少于装运橘子的货车的辆数,应怎样安排才能获得最大利润,并求出最大利润.23.已知AB两地相距72千米,甲骑自行车从A地到B地,乙骑摩托车从B地到A地再返回B地.两人同时出发,甲每小时行驶18千米,乙去时用了2小时,回来时速度增加了25%,如图表示甲、乙两人离A地的距离y 千米与时间x小时的函数关系如图所示.(1)分别求出乙去A地及返回时离A地的距离y与时间x的函数关系;(2)求出乙返回追上甲时,甲所用的时间以及此时他们离B地的距离.(3)直接写出甲、乙相距6千米时甲骑行的时间.45合肥庐阳四十五中2022-2023学年八上第一次月考数学试卷答案1 2 3 4 5 6 7 8 9 10 DCBCDCACDD11、 x ≥1; 12、 43; 13、 2; 14、 (1)545+-t ; (2)0≤t ≤3;15、(1)y=-3x-5; (2)不在此图像上;16、(1)如图所示:A1(-1,6);B1(-4,3); (2)P1(a-2,b-2);17、(1)a <21; (2)a=-2或a=34; 18、(1)(4,0)、(0,2); (2)如图;(3)x=4;19、(1)a=-32;k=32; (2)6; (3)3<x ≤6; 20、(1)y=3259+x ; (2)-15℃;21、(1)y 1=3x+144; y 2=2.7x+162; (2)x=60,两家一样;当x >60,乙便宜;当x <60,甲便宜;22、(1)y=1032+-x ; (2)W=-1200x+90000; (3)两种车辆各6辆,利润82800元; 23、(1)⎩⎨⎧≤<-≤≤+=)6.32(9045)20(7236x x x x y ; (2)310h ; 12km ; (3)928h ;。

2020年学海中学部编版八年级上第一次月考试卷

2020年学海中学部编版八年级上第一次月考试卷

2020年学海中学八年级第一次月考试卷一、积存〔27分〕1.书写。

〔3分〕本题依据卷面书写状况评分。

请你在答题时努力做到书写清楚、工整。

2.阅读下面句子,依据拼音写汉字。

〔4分〕〔1〕上野的樱花烂熳的时节,望去确也像fēi〔▲〕红的轻云。

〔鲁迅《藤野先生》〕〔2〕日本报纸上很叱责他的不xùn〔▲〕,爱国青年也愤然,然而暗地里却早受了他的影响了。

〔鲁迅《藤野先生》〕〔3〕她性格和ǎi〔▲〕,没有打骂过我们,也没有同任何人吵过架。

〔朱德《回忆我的母亲》〕〔4〕我决心mán〔▲〕着母亲离开家乡,远走云南,参加新军和同盟会。

〔朱德《回忆我的母亲》〕3.补全成语。

〔3分〕〔1〕▲无消息〔2〕任劳任▲〔3〕一丝不▲〔4〕油光可▲〔5〕▲扬顿挫〔6〕重峦叠▲4.古诗文名句填空。

〔11分〕山川之美,古来共谈。

“树树皆秋色,〔1〕▲〞是秋意颇浓的山野之美;“晴川历历汉阳树,〔2〕▲〞是登楼远眺的江景之美;〔3〕“▲,▲〞是塞外大漠雄浑壮丽之美;〔4〕“▲,▲〞是白居易笔下西湖早春的花草之美。

然览物之情,各有异同。

面对傲雪凌霜的松柏,刘祯发出了〔5〕“▲?松柏有本性〞的赞叹;面对情谊深厚的故乡水,李白抒发的是〔6〕“▲,▲〞的思乡之情;面对流离失所的海民,狐兔出没的荒凉的家园,曹植发出〔7〕“▲,▲〞的悲叹。

5.解释以下加点的词。

〔6分〕〔1〕沿溯.阻绝〔▲〕〔2〕哀转久绝.〔▲〕〔3〕夕日欲颓.〔▲〕〔4〕未复有能与.其奇者〔▲〕〔5〕窥谷忘反.〔▲〕〔6〕东皋薄.暮望〔▲〕二、阅读〔43分〕〔一〕名著阅读〔6分〕6.以下说法有误..的一项是〔▲〕。

〔2 分〕A.《昆虫记》是法国昆虫学家法布尔花了足足三十年时间写就的科普巨著,它堪称科学和文学完美结合的典范。

B.《与朱元思书》的作者是吴均,南朝梁文学家,本文是吴均写给友人的信的一部分。

C.《使至塞上》作者王维,字摩诘,唐代诗人,有“诗佛〞之称。

山西省晋城市八年级上学期数学第一次月考试卷

山西省晋城市八年级上学期数学第一次月考试卷

山西省晋城市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、陕西省西安雁塔区电子科技大学附属中学2019-2020学年八 (共27题;共84分)1. (2分) (2020七上·淮滨期末) 下列说法不正确的是()A . 1是绝对值最小的数B . 0既不是正数,也不是负数C . 一个有理数不是整数就是分数D . 0的绝对值是02. (2分) (2019九上·德惠月考) 使代数式有意义,则x的取值范围是()A . x≠2B . x>2C . x≥-2且x≠0D . x≤23. (2分)在平面直角坐标系中,点P(m+1,2﹣m)在第二象限,则m的取值范围为()A . m<﹣1B . m<2C . m>2D . ﹣1<m<24. (2分)在平面直角坐标系中,点P(x2+1,-2)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=()A . ﹣2B . 0C . 3D . 56. (2分) (2020九下·龙岗期中) 下列各式错误的是()A .B .C .D .7. (2分)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=, CE=1,则图中阴影部分的面积为()A .B .C .D .8. (2分)(2019·零陵模拟) 下列计算正确的是()A . |﹣2|=﹣2B . a2•a3=a6C . (﹣3)﹣2=D . =39. (2分)(2017·雁江模拟) ﹣ +1的小数部分是()A . ﹣ +5B . ﹣ +4C . ﹣﹣3D . ﹣410. (2分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移()A . 0.6米B . 0.7米C . 0.8米D . 0.9米11. (1分)(2020·鼓楼模拟) 写出一个数,使这个数等于它的倒数:________.12. (1分) (2020七下·孝南期末) 若,且,则 ________.13. (1分)(2018·高安模拟) 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点若AB=5,AD=12,则四边形ABOM的周长为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

于点 O,将∠C 沿 EF(E 在 BC 上,F 在 AC 上)折叠,点 C 与点 O 恰好重合,则∠OEC

°
A
D O F
(第 15 题)
B
C
E
(第 16 题)
三、解答题(本大题共 11 小题,共 68 分) 17.(5 分)如图,点 A,D,B,E 在同一条直线上,且 AD=BE,∠A=∠FDE,请添加一
B.等腰直角三角形
C.等边三角形
D.等腰三角形
3.如图,点 B、E、C、F 在同一条直线上,AB∥DE,AB=DE,依据 SAS 证明△ABC≌
△DEF,可以添加的条件是( )
A.∠A=∠D
B.AC∥DF
C.BE=CF
D.AC=DF
4.在联欢会上,有 A、B、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子
游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放
的最适当的位置是在△ABC 的( )
A.三边中线的交点
B.三条角平分线的交点
C.三边中垂线的交点
D.三边上高所在直线的交点
5.如图,在△ABC 中,AC=BC,∠ACB=90°,点 D、E 在 AB 上,将△ACD、△BCE 分
(1)若 AB=AC,∠BAC=120°,求证 BM=MN=NC; (2)由(1)可知△AMN 是_______三角形; (3)去掉(1)中的“∠BAC=120°”的条件,其他不变,判断△AMN 的形状,并证明
你的结论;
6 / 15
(4)当∠B 与∠C 满足怎样的数量关系时,△AMN 是等腰三角形?直接写出所有可能的 情况.
【树人数学】2020 年初二(上)第一次月考试卷+答案
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分) 1.日常生活中,我们会看到很多标志,在以下绿色食品、回收、节能、节水四个标志中,
轴对称图形是( )
A.
B.
C.
2.如果一个三角形是轴对称图形,那么这个三角形一定是(
D. )
A.直角三角形
平移使其顶点与 I 重合,则图中阴影部分的周长为

2 / 15
15.如图,在△ABC 中,AD 平分∠BAC 交 BC 于点 D,点 M,N 分别是 AD 和 AB 上的动
点,当 S△ABC=12,AC=8 时,BM+MN 的最小值等于

16.如图,在△ABC 中,AB=AC,∠BAC=40°,∠BAC 的平分线与 AB 的垂直平分线交
11.在△ABC 中,∠A=40°,当∠B=
时,△ABC 是等腰三角形.
12.如图为 6 个边长相等的正方形的组合图形,则∠1+∠2+∠3=
°.
°. .
(第 8 题)
(第 12 题)
(第 14 题)
13.在△ABC 中,AB=3,AC=4,则 BC 边上的中线 AD 的取值范围是

14.如图,点 I 为△ABC 的三个内角的角平分线的交点,AB=4,AC=3,BC=2,将∠ACB
()
A.1
B.2
C.3
D.4
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 7.一个等腰三角形的两边长分别是 3cm 和 7cm,则它的周长是
cm.
8.如图,△ABC≌△ADC,∠ABC=118°,∠DAC=40°,则∠BCD 的度数为
9.角是轴对称图形,它的对称轴是

10.用反证方法证明“在△ABC 中,AB=AC,则∠B 必为锐角”的第一步是假设
24.(6 分)如图,AB∥CD,O 为∠BAC、∠DCA 的平分线的交点,OE⊥AC 于 E,且 OE =2,求 AB 与 CD 之间的距离.
5 / 15
25.(6 分)(1)如图 1,以△ABC 的边 AB、AC 为腰分别向外作等腰直角三角形,AD⊥AB, AE⊥AC,连接 DE,判断△ABC 与△ADE 面积之间的关系,并说明理由;
D E
A
C
B
图1
(2)如图 2,广场上的小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中
间的所有正方形的面积之和是 a 平方米,内圈的所有三角形的面积之和是 b 平方米,则
这条小路共占地
平方米.
26.(10 分)在△ABC 中,∠BAC>90°,AB 的垂直平分线交 BC 于 M,交 AB 于 E,AC 的 垂直平分线交 BC 于 N,交 AC 于 F.
求证:△ABF≌△CBD.
4 / 15
22.(6 分)定理:等腰三角形的两个底角相等(简称“等边对等角”). 请写已知、求证,并证明. 已知: 求证: 证明:
23.(6 分)如图,点 D 是△ABC 内部的一点,BD=CD,过点 D 作 DE⊥AB,DF⊥AC,垂 足分别为 E、F,且 BE=CF.求证:△ABC 为等腰三角形.
20.(4 分)如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图
(不写作法,保留作图痕迹); ⑴如图 1,在 AB 边上寻找一点 M,使∠AMC=∠ACB; ⑵如图 2,在 BC 边上寻找一点 N,使得 NA+NB=BC.
图1
图2
21.(5 分)如图,CB⊥AD,AE⊥DC,垂足分别 B、E,AE、BC 相交于点 F,且 AB=BC.
个适当条件使△ABC≌△DEF,并证明.
18.(5 分)如图,四边形 ABCD 中,AB=AC,∠B=∠C,求证:BD的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三 角形称为格点三角形,在网格中画出所有与△ABC 成轴对称的格点三角形.
别沿 CD、CE 翻折,点 A、B 分别落在点 A′、B′的位置,再将△A′CD、△B′CE 分
别沿 A′C、B′C 翻折,点 D 与点 E 恰好重合于点 O,则∠A′OB′的度数是( )
A.90°
B.120°
C.135°
D.150°
(第 3 题)
(第 5 题)
1 / 15
|
6.如图,在△ABC 中,∠C=90°,∠B=30°,以 A 为圆心,任意长为半径画弧分别 交 AB、AC 于点 M 和 N,再分别 以 M、N 为圆心,大于 MN 的长为半径画弧,两弧 交于点 P,射线 AP 交 BC 于点 D,则下列说法中:①AD 是∠BAC 的平分线;②∠ADC =60°;③点 D 在 AB 的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的个数是
相关文档
最新文档