综合法和分析法学案

合集下载

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

高中数学 第二讲 讲明不等式的基本方法复习课学案 新人教A版选修4-5-新人教A版高二选修4-5数学

高中数学 第二讲 讲明不等式的基本方法复习课学案 新人教A版选修4-5-新人教A版高二选修4-5数学

第二讲讲明不等式的基本方法复习课学习目标 1.系统梳理证明不等式的基本方法.2.进一步体会不同方法所适合的不同类型的问题,针对不同类型的问题,合理选用不同的方法.3.进一步熟练掌握不同方法的解题步骤及规范.1.比较法作差比较法是证明不等式的基本方法,其依据是:不等式的意义及实数大小比较的充要条件.证明的步骤大致是:作差——恒等变形——判断结果的符号.2.综合法综合法证明不等式的依据是:已知的不等式以及逻辑推理的基本理论.证明时要注意的是作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.3.分析法分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即从待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.4.反证法反证法是一种“正难则反”的方法,反证法适用的范围:①直接证明困难;②需要分成很多类进行讨论;③“唯一性”“存在性”的命题;④结论中含有“至少”“至多”否定性词语的命题.5.放缩法放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③用基本不等式放缩.类型一 比较法证明不等式例1 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx ). 证明 ∵b +c a x 2+c +a b y 2+a +b cz 2-2(xy +yz +zx ) =⎝ ⎛⎭⎪⎫bax 2+a by 2-2xy +⎝ ⎛⎭⎪⎫c by 2+b cz 2-2yz +⎝ ⎛⎭⎪⎫a c z 2+c a x 2-2zx =⎝⎛⎭⎪⎫b ax -a b y 2+⎝⎛⎭⎪⎫c by -b c z 2+⎝⎛⎭⎪⎫a cz -c a x 2≥0, ∴b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx )成立. 反思与感悟 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.跟踪训练1 设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n ≥(a +b )2.证明 a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn ≥0,∴a 2m +b 2n≥(a +b )2. 类型二 综合法与分析法证明不等式例2 已知a ,b ,c ∈R +,且ab +bc +ca =1,求证: (1)a +b +c ≥3; (2)a bc +b ac +cab≥3(a +b +c ).证明 (1)要证a +b +c ≥3,由于a ,b ,c ∈R +, 因此只需证(a +b +c )2≥3,即证a 2+b 2+c 2+2(ab +bc +ca )≥3,根据条件,只需证a 2+b 2+c 2≥1=ab +bc +ca , 由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c =33时取等号)可知,原不等式成立. (2)a bc +b ac+c ab =a +b +c abc, 在(1)中已证a +b +c ≥3, ∵ab +bc +ca =1, ∴要证原不等式成立,只需证1abc≥a +b +c ,即证a bc +b ac +c ab ≤1=ab +bc +ca . ∵a ,b ,c ∈R +,a bc =ab ·ac ≤ab +ac2,b ac ≤ab +bc 2,c ab ≤ac +bc2,∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时取等号)成立, ∴原不等式成立.反思与感悟 证明比较复杂的不等式时,考虑分析法与综合法的结合使用,这样使解题过程更加简洁.跟踪训练2 已知a >b >c ,求证:1a -b +1b -c +1c -a>0. 证明 方法一 要证1a -b +1b -c +1c -a>0, 只需证1a -b +1b -c >1a -c. ∵a >b >c ,∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c>0,∴1a -b +1b -c >1a -c成立, ∴1a -b +1b -c +1c -a>0成立. 方法二 ∵a >b >c , ∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c ,1b -c >0, ∴1a -b +1b -c >1a -c , ∴1a -b +1b -c +1c -a>0. 类型三 反证法证明不等式例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2或1+yx<2中至少有一个成立.证明 假设1+x y <2和1+y x<2都不成立,则1+x y ≥2和1+yx≥2同时成立.因为x >0且y >0,所以1+x ≥2y 且1+y ≥2x , 两式相加,得2+x +y ≥2x +2y ,所以x +y ≤2. 这与已知x +y >2矛盾. 故1+x y <2或1+y x<2中至少有一个成立.反思与感悟 反证法的“三步曲”:(1)否定结论.(2)推出矛盾.(3)肯定结论.其核心是在否定结论的前提下推出矛盾.跟踪训练3 已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b .证明 假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ), 于是f (a )+f (-b )=f (b )+f (-a )与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性,可得f (a )>f (b ),f (-b )>f (-a ), 于是有f (a )+f (-b )>f (b )+f (-a )与已知矛盾.故假设不成立. ∴a <b .类型四 放缩法证明不等式例4 已知n ∈N +,求证:2(n +1-1)<1+12+13+…+1n<2n .证明 ∵对k ∈N +,1≤k ≤n ,有 1k =22k>2k +k +1=2(k +1-k ),∴1k>2(k +1-k ). ∴1+12+13+…+1n>2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1).又∵对于k ∈N +,2≤k ≤n ,有 1k =22k<2k +k -1=2(k -k -1),∴1+12+13+…+1n<1+2(2-1)+2(3-2)+…+2(n -n -1)=2n -1<2n . ∴原不等式成立.反思与感悟 放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传递性作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当放缩,否则达不到目的.跟踪训练4 设f (x )=x 2-x +13,a ,b ∈[0,1], 求证:|f (a )-f (b )|≤|a -b |. 证明 |f (a )-f (b )|=|a 2-a -b 2+b | =|(a -b )(a +b -1)|=|a -b ||a +b -1|, ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2, -1≤a +b -1≤1,|a +b -1|≤1. ∴|f (a )-f (b )|≤|a -b |.1.已知p: ab >0,q :b a +a b≥2,则p 与q 的关系是( ) A .p 是q 的充分不必要条件 B .p 是q 的必要不充分条件C .p 是q 的充要条件D .以上答案都不对 答案 C解析 由ab >0,得b a >0,a b>0,∴b a +a b ≥2b a ·ab =2, 又b a +a b≥2,则b a ,a b必为正数, ∴ab >0.2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12答案 D解析 假设a ,b ,c 都小于12,则a +2b +c <2与a +2b +c =2矛盾. 3.若a =lg22,b =lg33,c =lg55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 C解析 a =3lg 26=lg 86,b =2lg 36=lg 96,∵9>8,∴b >a .b 与c 比较:b =lg 33=lg 3515,c =lg 55=lg 5315,∵35>53,∴b >c .a 与c 比较:a =lg 2510=lg 3210,c =lg 2510,∵32>25,∴a >c .∴b >a >c ,故选C.4.已知a,b∈R+,n∈N+,求证:(a+b)(a n+b n)≤2(a n+1+b n+1).证明∵(a+b)(a n+b n)-2(a n+1+b n+1)=a n+1+ab n+ba n+b n+1-2a n+1-2b n+1=a(b n-a n)+b(a n-b n)=(a-b)(b n-a n).(1)若a>b>0,则b n-a n<0,a-b>0,∴(a-b)(b n-a n)<0.(2)若b>a>0,则b n-a n>0,a-b<0,∴(a-b)(b n-a n)<0.(3)若a=b>0,(b n-a n)(a-b)=0.综上(1)(2)(3)可知,对于a,b∈R+,n∈N+,都有(a+b)(a n+b n)≤2(a n+1+b n+1).1.比较法证明不等式一般有两种方法:作差法和作商法,作商法应用的前提条件是已知不等式两端的代数式同号.2.由教材内容可知,分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,两者是对立统一的两种方法.3.证明不等式的基本方法及一题多证:证明不等式的基本方法主要有比较法、综合法、分析法、反证法、放缩法等.证明不等式时既可探索新的证明方法,培养创新意识,也可一题多证,开阔思路,活跃思维,目的是通过证明不等式发展逻辑思维能力,提高数学素养.一、选择题1.a,b∈R+,那么下列不等式中不正确的是( )A.ab+ba≥2 B.b2a+a2b≥a+bC.ba2+ab2≤a+babD.1a2+1b2≥2ab答案 C解析A满足基本不等式;B可等价变形为(a-b)2(a+b)≥0正确;B选项中不等式的两端同除以ab,不等式方向不变,所以C选项不正确;D选项是A选项中不等式的两端同除以ab 得到的,D正确.2.设0<x<1,则a=2x,b=x+1,c=11-x中最大的是( )A.c B.bC.a D.随x取值不同而不同答案 A解析∵0<x<1,∴b=x+1>2x>2x=a,∵11-x-(x+1)=1-(1-x2)1-x=x21-x>0,∴c>b>a.3.若P=a+a+7,Q=a+3+a+4 (a≥0),则P与Q的大小关系为( ) A.P>Q B.P=QC.P<Q D.由a的取值确定答案 C解析 ∵P 2=2a +7+2a 2+7a ,Q 2=2a +7+2a 2+7a +12,∴P 2<Q 2,即P <Q .4.设a =(m 2+1)(n 2+4),b =(mn +2)2,则( ) A .a >b B .a <b C .a ≤b D .a ≥b答案 D解析 ∵a -b =(m 2+1)(n 2+4)-(mn +2)2=4m 2+n 2-4mn =(2m -n )2≥0, ∴a ≥b .5.已知a ,b ,c ,d 为实数,ab >0,-c a <-d b,则下列不等式中成立的是( ) A .bc <ad B .bc >ad C.a c >b d D.a c <b d答案 B解析 将-c a <-d b两边同乘以正数ab ,得-bc <-ad ,所以bc >ad . 6.若A ,B 为△ABC 的内角,则A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 由正弦定理知a sin A =bsin B =2R ,又A ,B 为三角形的内角, ∴sin A >0,sin B >0,∴sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 二、填空题7.lg9·lg11与1的大小关系是________.答案 lg9·lg11<1 解析 ∵lg9>0,lg11>0,∴lg9·lg11<lg9+lg112<lg992<lg1002=1.∴lg9·lg11<1.8.当x >1时,x 3与x 2-x +1的大小关系是________. 答案 x 3>x 2-x +1解析 ∵x 3-(x 2-x +1)=x 3-x 2+x -1=x 2(x -1)+(x -1)=(x -1)(x 2+1),且x >1, ∴(x -1)(x 2+1)>0. ∴x 3-(x 2-x +1)>0, 即x 3>x 2-x +1.9.用反证法证明“在△ABC 中,若∠A 是直角,则∠B 是锐角”时,应假设________. 答案 ∠B 不是锐角解析 “∠B 是锐角”的否定是“∠B 不是锐角”.10.建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元. 答案 1760解析 设水池底长为x (x >0)m , 则宽为82x =4x(m).水池造价y =82×120+⎝ ⎛⎭⎪⎫2x ×2+8x ×2×80=480+320⎝ ⎛⎭⎪⎫x +4x ≥480+1 280=1 760(元), 当且仅当x =2时取等号. 三、解答题11.求证:112+122+132+…+1n 2<2.证明 因为1n2<1n (n -1)=1n -1-1n(n ∈N +,n ≥2),所以112+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)·n=1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n<2. 所以原不等式得证.12.已知a n =1×2+2×3+3×4+…+n (n +1)(n ∈N +),求证:n (n +1)2<a n <(n +1)22. 证明 ∵n (n +1)>n ,∴a n =1×2+2×3+…+n (n +1)>1+2+…+n =n (n +1)2. 又n (n +1)<(n +1)+n 2=2n +12, ∴a n =1×2+2×3+…+n (n +1)<32+52+…+2n +12=n 2+2n 2<(n +1)22. ∴n (n +1)2<a n <(n +1)22. 四、探究与拓展13.已知a ,b 是正数,a ≠b ,x ,y ∈(0,+∞),若a 2x +b 2y ≥(a +b )2x +y,则等号成立的条件为________. 答案 ay =bx解析 a 2x +b 2y -(a +b )2x +y=a 2y (x +y )+b 2x (x +y )-xy (a +b )2xy (x +y )=(ay -bx )2xy (x +y )≥0, 当且仅当ay =bx 时等号成立.14.设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N +.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13. (1)解 令n =1,得S 21-(-1)S 1-3×2=0,即S 21+S 1-6=0,所以(S 1+3)(S 1-2)=0,因为S 1>0,所以S 1=2,即a 1=2.(2)解 由S 2n -(n 2+n -3)S n -3(n 2+n )=0,得(S n +3)[S n -(n 2+n )]=0,因为a n >0(n ∈N +),S n >0,从而S n +3>0,所以S n =n 2+n ,所以当n ≥2时, a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n ,又a 1=2=2×1,所以a n =2n (n ∈N +).(3)证明 设k ≥2,则1a k (a k +1)=12k (2k +1)<1(2k -1)(2k +1)=12⎝ ⎛⎭⎪⎫12k -1-12k +1, 所以1a 1(a 1+1)+1a 2(a 2+1)+1a 3(a 3+1)+…+1a n (a n +1)<12×3+12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n -1-12n +1=16+16-12(2n +1)<13. 所以1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.。

学案 第4讲 综合--分析法

学案 第4讲   综合--分析法

第四讲综合--分析法学案A综合法从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法叫做综合法。

以综合法解应用题时,先选择两个已知数量,并通过这两个已知数量解出一个问题,然后将这个解出的问题作为一个新的已知条件,与其它已知条件配合,再解出一个问题……一直到解出应用题所求解的未知数量。

运用综合法解应用题时,应明确通过两个已知条件可以解决什么问题,然后才能从已知逐步推到未知,使问题得到解决。

这种思考方法适用于已知条件比较少,数量关系比较简单的应用题。

☆1一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。

剩下的要3天做完,问平均每天要做多少套?分析:☆例2 一个服装厂计划加工2480套服装,每天加工100套,工作20天后,每天多加工20套。

提高工作效率后,还要加工多少天才能完成任务?刚开始学习以综合法解应用题时,一定要画思路图,当对综合法的解题方法已经很熟悉时,就可以不再画思路图,而直接解答应用题了。

巩固与拓展☆☆☆有三桶油,第一桶重50千克,第二桶比第一桶重1/10,第三桶比第一桶轻1/10,第三桶重多少千克?☆☆☆在甲、乙、丙三块地种高粱,乙块地比甲块地多产高粱2/13,丙块地产高粱450千克,比乙块地少产高粱2/7,甲块地产高粱多少千克?B 分析法从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决的解题方法叫分析法。

用分析法解应用题时,如果解题所需要的两个条件,(或其中的一个条件)是未知的,就要分别求解找出这两个(或一个)条件,一直到所需要的条件都是已知的为止。

分析法适于解答数量关系比较复杂的应用题。

☆例题1王明买了24本笔记本和6支铅笔,共花了9.60元钱。

已知每支铅笔0.08元,每本笔记本多少钱?分析:要算出每本笔记本多少钱,必须具备两个条件(图5-4):①买笔记本用了多少钱;②买了多少本笔记本。

从题中已知买了24本笔记本,买笔记本用的钱数未知。

2012年金版新学案新编高三总复习第六章 第6课时

2012年金版新学案新编高三总复习第六章 第6课时
第六章 不等式、推理与证明
栏目导引
4.“ 任何三角形的外角都至少有两个钝角 ” . 任何三角形的外角都至少有两个钝角” 的否定应是________. . 的否定应是 解析: 由命题的否定可得. 解析: 由命题的否定可得. 答案: 存在一个三角形, 答案: 存在一个三角形, 其外角最多有一 个钝角
第六章
x<y <
第六章
不等式、推理与证明
栏目导引
综合法 综合法是“由因导果” 综合法是“ 发,顺着推证,经过一系列的中间推理,最 后导出所证结论的真实性. 后导出所证结论的真实性.用综合法证明题 的逻辑关系是: ⇒ 的逻辑关系是: A⇒ B1⇒ B2⇒ …⇒ Bn⇒ B(A 为已知条件或数学定义、定理、公理等, 为已知条件或数学定义、定理、公理等,B 为要证结论), 它的常见书面表达是“ 为要证结论 , 它的常见书面表达是“ ∵, ∴”或“⇒”.
第六章
不等式、推理与证明
栏目导引
1.分析法是从要证明的结论出发,逐步寻求 .分析法是从要证明的结论出发, 使结论成立的( ) 使结论成立的 A.充分条件 B.必要条件 . . C.充要条件 D.等价条件 . . 答案: 答案: A
第六章
不等式、推理与证明
栏目导引
2.否定“自然数 a,b,c 中恰有一个偶数” .否定“ , , 中恰有一个偶数” 时,正确的反设为( 正确的反设为 ) A.a,b,c 都是奇数 . , , B.a,b,c 都是偶数 . , , C.a,b,c 中至少有两个偶数 . , , D.a,b,c 中至少有两个偶数或都是奇数 . , ,
解析: 解析:
∵a,b, c 恰有一个是偶数,即 a, , , 恰有一个是偶数, ,
b,c 中只有一个偶数,其反面是两个或两个 , 中只有一个偶数, 以上偶数或没有一个偶数即全都是奇数, 以上偶数或没有一个偶数即全都是奇数,故 正确. 只有 D 正确. 答案: 答案: D

金版学案高中数学选修1-2人教A版2.2.1同步辅导与检测课件.ppt

金版学案高中数学选修1-2人教A版2.2.1同步辅导与检测课件.ppt
∴当 ab>0 时,有 3 b< 3 a,即 b<a;
当 ab<0 时,有 3 b>3 a,即 b>a. 所以选 D. 答案:D
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆
5.直线l,m与平面α,β,γ满足β∩γ=l,l∥α,m⊂α和
m⊥γ,那么必定有( )
A
A.α⊥γ且l⊥m
◆数学•选修1-2•(配人教A版)◆
1.结合已经学习过的数学实例,了解直接证明的两种最 根本的方法:综合法和分析法.
2.了解用综合法和分析法解决问题的思考特点和过程, 会用综合法和分析法证明具体的问题.通过实例充分认识这 两种证明方法的特点,认识证明的重要性.
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆
(2)用Q表示要证明的结论,那么分析法可用框图表示为:
Q⇐P1 → P1⇐P2 → P2⇐P3 →…→
得到一个明显成立的 条件
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆
3.分析综合法.
(1)定义:根据条件的结构特点去转化结论,得到 _中__间__结__论_Q;根据结论的结构特点去转化条件,得到 _中__间__结__论_P.假设由P可以推出Q成立,就可以证明结论成 立.这种证明方法称为分析综合法.
3.综合法和分析法是直接证明中最根本的两种证明方法, 也是解决数学问题时常用的思维方式.如果从解题的切入点 的角度细分,直接证明方法可具体分为:比较法、代换法、 放缩法、判别式法、构造函数法等.这些方法是综合法和分 析法的延续与补充.
金品质•高追求 我们让你更放心!
返回
◆数学•选修1-2•(配人教A版)◆

新教材适用高中政治第三单元第八课第二框分析与综合及其辩证关系学案部编版选择性必修3(含答案)

新教材适用高中政治第三单元第八课第二框分析与综合及其辩证关系学案部编版选择性必修3(含答案)

新教材适用高中政治学案部编版选择性必修3:第二框分析与综合及其辩证关系课标要求1.了解分析和综合方法的含义及必要性。

2.理解分析与综合的辩证关系,提高认识问题、把握事物整体联系的能力。

3.掌握各种分析和综合方法,树立整体观念;培养辩证分析、看待问题的能力。

素养目标1.科学精神:辩证把握分析与综合的关系。

2.公共参与:掌握分析与综合的方法,正确地进行分析与综合。

自主梳理知识点一分析与综合的含义1.分析(1)必要性:复杂多样的客观事物是以_有机整体__的方式存在和发展的。

为了把握事物的本质和规律,人们需要把认识对象的各个部分、要素暂时地分割开来,把被考察的部分、要素从对象整体中_抽取__出来。

只有这样才能逐步“解剖”认识对象。

(2)含义:分析就是把认识对象分解为各个_部分__、各个要素、各个层次,或者把认识对象的复杂的发展过程分解为若干_阶段__,分别加以认识的一种思维方法。

(3)方法①实践的需要不同,人们进行分析的具体内容和方法也不相同。

在科学研究中,人们常常运用_定性__分析和_定量__分析等多种方法,认识被研究的对象。

②辩证唯物主义阐明了事物矛盾的_普遍性和特殊性__的关系、主要矛盾和次要矛盾的关系、矛盾的_主要方面和次要方面__的关系,有利于人们在实践中抓住重点问题,认清事物性质。

这是最高层次、最具概括性的分析。

(4)优点与缺点:①分析方法将注意力集中在问题的“点”上,力图把具体的“点”认识透彻,其优点是_精确__。

②如果认识只局限在问题的“点”上,就难免产生“只见树木,不见森林”的_片面__认识。

2.综合(1)必要性:要形成对事物_整体__的认识,必须把通过分析得到的对事物的各个部分、各个要素、各个层次,以及事物发展过程中的若干阶段的认识,按照对象所_固有的联系__重新_组合__起来,这就需要运用综合方法。

(2)含义:综合是一种把认识对象的各个部分、各个要素、各个层次和不同发展阶段,按照其固有的联系_联结和统一__起来进行考察的思维方法。

(复习指导)7.4 综合法、分析法、反证法含解析

(复习指导)7.4 综合法、分析法、反证法含解析

7.4综合法、分析法、反证法必备知识预案自诊知识梳理1.综合法与分析法2.反证法(1)反证法的定义:在假定命题结论的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.考点自诊1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)反证法是指将结论和条件同时否定,推出矛盾.()(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()(5)证明不等式√2+√7<√3+√6最合适的方法是分析法.()2.命题:“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明过程“cos4θ-sin4θ=(cos2θ-sin2θ)·(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”应用了()A.分析法B.综合法C.综合法与分析法结合使用D.反证法3.用反证法证明“凸四边形的四个内角中至少有一个不小于90°”时,首先要作出的假设是( )A.四个内角都大于90°B.四个内角中有一个大于90°C.四个内角都小于90°D.四个内角中有一个小于90°4.(2020四川树德中学期中)欲证√2−√3<√5−√6成立,只需证( ) A.(√2-√3)2<(√5-√6)2B.(√2-√5)2<(√3-√6)2C.(√2+√6)2<(√3+√5)2D.(√2-√3-√5)2<(-√6)25.(2020吉林油田十一中月考)比较大小:3-2√2 √10−√7(填“>”“<”或“=”).关键能力学案突破考点综合法的应用【例1】若x ,y ,z 是互不相等的实数,且x+1y=y+1z=z+1x,求证:x 2y 2z 2=1.?综合法证明问题是怎样实现的?解题心得1.综合法的适用范围:(1)定义明确的问题,如证明函数的单调性、奇偶性等,求证没有限制条件的等式或不等式.(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.2.综合法是一种由因索果的证明方法,其逻辑依据也是三段论式的演绎推理方法,因此要保证前提条件正确,推理合乎规律,这样才能保证结论的正确性.其过程一般是从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.对点训练1已知a,b,c>0,a+b+c=1.求证:(1)√a+√b+√c≤√3;(2)13a+1+13b+1+13c+1≥32.考点分析法的应用【例2】已知非零向量a,b,且a⊥b,用分析法证明:|a|+|b||a+b|≤√2.,适用于何种题型?解题心得1.逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.2.证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个结论等价(或充分)的中间结论,然后通过综合法由条件证明这个中间结论,从而使原命题得证.3.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,从正面不易推导时,常考虑用分析法.对点训练2(2020陕西临潼期末)证明:(1)√6+√10>√2+√14;(2)如果a,b>0,则lg a+b2≥lga+lgb2.考点反证法的应用【例3】设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;q≠1,证明:数列{a n+1}不是等比数列.?解题心得对于含有否定概念的命题,直接证明不好证,但问题的反面比较具体易证,一般利用补集法或反证法解答证明.先假设肯定结论成立,然后根据有关的概念、定理、定义、推出与已知、公理、定理等有矛盾,从而说明原命题成立.对点训练3(2020河南新安一高月考)(1)已知x>0,y>0,且x+y>2,求证:1+2yx 与1+2xy中至少有一个小于3.(2)当a+b>0时,求证:√a2+b2≥√22(a+b).1.分析法是从结论出发,逆向思维,寻找使结论成立的充分条件.应用分析法要严格按分析法的语言表达,下一步是上一步的充分条件.2.证明问题的常用思路:在解题时,常常把分析法和综合法结合起来运用,先以分析法寻求解题思路,再用综合法表述解答或证明过程.3.用反证法证明问题要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推理;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但推导出的矛盾必须是明显的.7.4综合法、分析法、反证法必备知识·预案自诊知识梳理1.条件定义、公理、定理及运算法则结论求证的结论充分条件2.(1)反面成立考点自诊1.(1)×(2)×(3)×(4)√(5)√2.B在证明的过程中使用了平方差公式,以及同角的三角函数的关系式,符合综合法的定义,故证明过程使用了综合法.故选B.3.C首先要作出的假设是“凸四边形的四个内角中没有一个不小于90°”,即为“凸四边形的四个内角都小于90°”.故选C.4.C 根据题意,欲证√2−√3<√5−√6,则需证√2+√6<√3+√5,即只需证(√2+√6)2<(√3+√5)2.故选C.5.< 平方后再比较.然后用综合法写出过程即可.∵72>70,∴2√72>2√70,即12√2>2√70,∴17-12√2<17-2√70,即(3-2√2)2<(√10-√7)2,∴3-2√2<√10−√7.关键能力·学案突破例1证明∵x+1y =y+1z ,∴x-y=1z −1y ,∴x-y=y -zyz ,即yz=y -zx -y .∵x+1y =z+1x ,∴x-z=1x −1y , ∴x-z=y -x xy ,即xy=y -xx -z.同理可得xz=z -x y -z .∴x 2y 2z 2=(xy )(xz )(yz )=y -x x -z ×z -x y -z ×y -z x -y=1. 对点训练1证明(1)∵√13a≤13+a 2,√13b ≤13+b 2,√13c ≤13+c2,∴√3√a +√b +√c )≤3×13+a+b+c2=1,∴√a +√b +√c ≤√3,当且仅当a=b=c=13时取等号.(2)∵3b+13a+1+3a+13b+1≥2,3c+13a+1+3a+13c+1≥2,3c+13b+1+3b+13c+1≥2, ∴3b+3c+23a+1+3a+3c+23b+1+3a+3b+23c+1≥6, ∴3(a+b+c )+33a+1+3(a+b+c )+33b+1+3(a+b+c )+33c+1≥9, 即63a+1+63b+1+63c+1≥9, ∴13a+1+13b+1+13c+1≥96=32. 当且仅当a=b=c=13时等号成立. 例2证明若证原不等式|a |+|b ||a+b |≤√2.只需证|a |+|b |≤√2|a +b |, 只需证(|a|+|b|)2≤(√2|a+b|)2,即证a 2+b 2+2|a ||b |≤2a 2+2b 2+4a ·b . 因为非零向量a ,b ,且a ⊥b ,所以a ·b =0,即证2|a ||b |≤a 2+b 2, 即证(|a |-|b |)2≥0,显然成立. 所以原不等式成立.对点训练2证明(1)要证√6+√10>√2+√14,只要证(√6+√10)2>(√2+√14)2,即2√60>2√28,显然成立的,所以,原不等式成立. (2)当a>0,b>0时,要证lg a+b 2≥lga+lgb2,只要证lga+b2≥lg √ab ,因为函数y=lg x 在(0,+∞)上递增,即证a+b 2≥√ab >0,此不等式显然成立,当且仅当a=b 时等号成立.所以lg a+b2≥lga+lgb2. 例3(1)解设{a n }的前n 项和为S n ,则当q=1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q+a 1q 2+…+a 1q n-1, ① qS n =a 1q+a 1q 2+…+a 1q n , ②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n )1-q,∴S n ={na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明假设{a n +1}是等比数列,则对任意的k ∈N *,(a k+1+1)2=(a k +1)(a k+2+1), a k+12+2a k+1+1=a k a k+2+a k +a k+2+1, a 12q 2k +2a 1q k =a 1q k-1·a 1q k+1+a 1q k-1+a 1q k+1, ∵a 1≠0,∴2q k =q k-1+q k+1.∵q ≠0,∴q 2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 对点训练3证明(1)(反证法)假设结论不成立,即有1+2y x ≥3,且1+2xy≥3,由已知x>0,y>0,所以有1+2y ≥3x ,且1+2x ≥3y ,故2+2x+2y ≥3x+3y ,化简得2≥x+y ,与已知x+y>2矛盾,假设不成立.所以1+2y x 与1+2xy中至少有一个小于3成立.(2)(分析法)要证√a 2+b 2≥√22(a+b ),只需证(√a 2+b 2)2≥[√22(a +b )]2,即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab.因为a 2+b 2≥2ab 对一切实数恒成立,所以√a 2+b 2≥√22(a+b )成立.。

高中数学第二讲第2节综合法与分析法创新应用教学案新人教A版选修38

高中数学第二讲第2节综合法与分析法创新应用教学案新人教A版选修38

第2节综合法与分析法创新应用[核心必知]1.综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法,又叫顺推证法或由因导果法.2.分析法证明命题时,我们还常常从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法,这是一种执果索因的思考和证明方法.[问题思考]1.如何理解分析法寻找的是充分条件?提示:用分析法证题时,语气总是假定的,常用“欲证A只需证B”表示,说明只要B 成立,就一定有A成立,所以B必须是A的充分条件才行,当然B是A的充要条件也可.2.用综合法和分析法证明不等式有怎样的逻辑关系?提示:综合法:A⇒B1⇒B2⇒…⇒B n⇒B(逐步推演不等式成立的必要条件),即由条件出发推导出所要证明的不等式成立.分析法:B⇐B1⇐B2⇐…⇐B n⇐A(步步寻求不等式成立的充分条件),总之,综合法与分析法是对立统一的两种方法.已知a ,b ,c ∈R +,且互不相等,又abc =1.求证:a +b +c <1a +1b +1c.[精讲详析] 本题考查用综合法证明不等式,解答本题可从左到右证明,也可从右到左证明.由左端到右端,应注意左、右两端的差异,这种差异正是我们思考的方向.左端含有根号,脱去根号可通过a =1bc <1b +1c2实现;也可以由右到左证明,按上述思路逆向证明即可.法一:∵a ,b ,c 是不等正数,且abc =1, ∴a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c.法二:∵a ,b ,c 是不等正数,且abc =1, ∴1a +1b +1c=bc +ca +ab=bc +ca 2+ca +ab 2+ab +bc2> abc 2+a 2bc +ab 2c=a +b +c ——————————————————(1)用综合法证明不等式时,主要利用基本不等式,函数的单调性以及不等式的性质等知识,在严密的演绎推理下推导出结论.(2)综合法证明不等式中所依赖的已知不等式主要是重要不等式,其中常用的有如下几个:①a 2≥0(a ∈R ②(a -b )2≥0(a ,b ∈R ),其变形有:a 2+b 2≥2ab ,⎝ ⎛⎭⎪⎫a +b 22≥ab .a 2+b 2≥12(a +b )2.③若a ,b 为正实数,a +b 2≥ab .特别b a +a b≥2.④a 2+b 2+c 2≥ab +bc +ca .1.已知x ,y ,z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z. 证明:因为x ,y ,z 均为正数.所以x yz +y zx =1z (x y +y x)≥2z,同理可得y zx +z xy ≥2x ,z xy +x yz ≥2y, 当且仅当x =y =z 时, 以上三式等号都成立.将上述三个不等式两边分别相加,并除以2, 得x yz +y zx +z xy ≥1x +1y +1z.a ,b ∈R +,且2c >a +b .求证:c -c 2-ab <a <c +c 2-ab .[精讲详析] 本题考查分析法在证明不等式中的应用.解答本题需要对原不等式变形为-c 2-ab <a -c <c 2-ab ,然后再证明.要证c -c 2-ab <a <c +c 2-ab , 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,两边平方得a 2-2ac +c 2<c 2-ab , 也即证a 2+ab <2ac ,即a (a +b )<2ac .∵a ,b ∈R +,且a +b <2c ,∴a (a +b )<2ac 显然成立. ∴原不等式成立.——————————————————(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或很难发现条件与结论之间的关系时,可用分析法来寻找证明途径.(2)对于无理不等式的证明,常采用分析法通过乘方将 其有理化,但在乘方的过程中,要注意其变形的等价性.(3)分析法证题的本质是从被证的不等式出发寻求使结论成立的充分条件,证明的关键是推理的每一步都必须可逆.2.已知x >0,y >0,求证:(x 2+y 2)12>(x 3+y 3)13.证明:要证明(x 2+y 2)12>(x 3+y 3)13,只需证(x 2+y 2)3>(x 3+y 3)2,即证x 6+3x 4y 2+3x 2y 4+y 6>x 6+2x 3y 3+y 6, 即证3x 4y 2+3x 2y 4>2x 3y 3. ∵x >0,y >0,∴x 2y 2>0, 即证3x 2+3y 2>2xy . ∵3x 2+3y 2>x 2+y 2≥2xy ,∴3x 2+3y 2>2xy 成立,∴(x 2+y 2)12>(x 3+y 3)13.已知a ,b ,c 为不全相等的正实数,且b 2=ac .求证:a 4+b 4+c 4>(a 2-b 2+c 2)2. [精讲详析] 本题考查综合法与分析法的综合应用.解答本题可先采用分析法将所要证明的不等式转化为较易证明的不等式,然后再用综合法证明.欲证原不等式成立,只需证a 4+b 4+c 4>a 4+b 4+c 4-2a 2b 2+2a 2c 2-2b 2c 2, 即证a 2b 2+b 2c 2-a 2c 2>0,∵b 2=ac ,故只需证(a 2+c 2)ac -a 2c 2>0.∵a 、c >0,故只需证a 2+c 2-ac >0, 又∵a 2+c 2>2ac ,∴a 2+c 2-ac >0显然成立. ∴原不等式成立. ——————————————————(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明.(2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析与综合之间互为前提,互相渗透,相互转化的辩证统一关系.3.若a ,b ,c 是不全相等的正数,求证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),即证a +b 2·b +c 2·c +a2>a ·b ·c .又∵a ,b ,c 是不全相等的正数, ∴由基本不等式得:a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,以上三式中由于a ,b ,c 不全相等, 故等号不同时成立. ∴a +b 2·b +c 2·c +a2>a ·b ·c .∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .数学证明是数学高考的核心问题,有时单独考查,有时以解答题的一问出现,综合法是解决数学证明问题的基本方法,而分析法又为综合法的使用提供了思路,因此,综合法与分析法是解决数学证明问题的重要工具.[考题印证]设a,b为非负实数,求证:a3+b3≥ab(a2+b2).[命题立意] 本题考查综合法的应用,考查学生分类讨论的思想和转化化归思想的应用.[证明] 由a,b是非负实数,作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)((a)5-(b)5).当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)·((a)5-(b)5)≥0;当a<b时,a<b,从而(a)5<(b)5,得(a-b)·((a)5-(b)5)>0.所以a3+b3≥ab(a2+b2).一、选择题1.设a,b∈R+,A=a+b,B=a+b,则A、B的大小关系是( )A.A≥B B.A≤BC.A>B D.A<B解析:选C 用综合法(a+b)2=a+2ab+b,所以A2-B2>0.又A >0,B >0, ∴A >B .2.已知a ,b ,c 满足c <b <a 且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .b 2<ab 2D .ac (a -c )>0解析:选A ⎩⎪⎨⎪⎧ac <0,c <a ⇒⎩⎪⎨⎪⎧a >0,c <0. 又b >c ,∴ab >ac ,故A 正确. ∵b -a <0,c <0,∴c (b -a )>0, 故B 错误.由b 2=0,可验证C 不正确, 而ac <0,a -c >0, ∴ac (a -c )<0,故D 错误.3.设a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a解析:选A 构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得b <c ;又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x,故⎝ ⎛⎭⎪⎫3525>⎝ ⎛⎭⎪⎫2525,所以a >c ,故a >c >b .4.已知a 、b 、c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( ) A .S ≥2P B .P <S <2P C .S >P D .P ≤S <2P解析:选D ∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , ∴a 2+b 2+c 2≥ab +bc +ca ,即S ≥P .又三角形中|a -b |<c ,∴a 2+b 2-2ab <c 2, 同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2, ∴a 2+b 2+c 2<2(ab +bc +ca ),即S <2P . 二、填空题5.设a >2,x ∈R ,M =a +1a -2,N =⎝ ⎛⎭⎪⎫12x 2-2,则M ,N 的大小关系是________.解析:∵a >2, ∴M =a +1a -2=(a -2)+1a -2+2≥2+2=4. ∵x 2-2≥-2,∴N =⎝ ⎛⎭⎪⎫12x 2-2≤⎝ ⎛⎭⎪⎫12-2=4, ∴M ≥N . 答案:M ≥N6.设a ,b ,c 都是正实数,且a +b +c =1,若M =⎝ ⎛⎭⎪⎫1a-1·⎝ ⎛⎭⎪⎫1b-1·⎝ ⎛⎭⎪⎫1c-1,则M 的取值范围是________.解析:∵a +b +c =1,∴M =⎝ ⎛⎭⎪⎫1a-1·⎝ ⎛⎭⎪⎫1b-1·⎝ ⎛⎭⎪⎫1c-1=⎝⎛⎭⎪⎫a +b +c a -1·⎝ ⎛⎭⎪⎫a +b +c b -1·⎝ ⎛⎭⎪⎫a +b +c c -1=⎝ ⎛⎭⎪⎫b a +c a ·⎝ ⎛⎭⎪⎫a b +c b ·⎝ ⎛⎭⎪⎫a c +b c≥2bca 2·2ac b 2·2ab c 2=8.即M 的取值范围是[8,+∞). 答案:[8,+∞)7.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的正的等比中项,1R 是1a ,1b的等差中项,则P 、Q 、R 按从大到小的排列顺序为________.解析:由已知P =a +b2,Q =ab ,1R =1a +1b 2=a +b2ab,即R =2aba +b,显然P ≥Q , 又2ab a +b ≤2ab2ab=ab , ∴Q ≥R .∴P ≥Q ≥R . 答案:P ≥Q ≥R 8.若不等式1a -b +1b -c +λc -a>0在条件a >b >c 时恒成立,则λ的取值范围是________. 解析:不等式可化为1a -b +1b -c >λa -c. ∵a >b >c ,∴a -b >0,b -c >0,a -c >0, ∴λ<a -c a -b +a -cb -c恒成立. ∵a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -bb -c≥2+2=4.∴λ<4. 答案:(-∞,4) 三、解答题9.(新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1. 10.已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b .证明:要证(a -b )28a <a +b 2-ab <(a -b )28b ,只要证(a -b )24a <a +b -2ab <(a -b )24b,即证⎝ ⎛⎭⎪⎫a -b 2a 2<(a -b )2<⎝ ⎛⎭⎪⎫a -b 2b 2, 即证0<a -b 2a <a -b <a -b 2b ,即证a +b a <2<a +bb , 即证1+b a <2<1+ab,即证 b a<1< ab成立. 因为a >b >0,所以ab>1,b a<1,故b a <1, a b>1成立, 所以有(a -b )28a <a +b 2-ab <(a -b )28b成立.11.已知实数a 、b 、c 满足c <b <a ,a +b +c =1,a 2+b 2+c 2=1.求证:1<a +b <43.证明:∵a +b +c =1,∴欲证结论等价于 1<1-c <43,即-13<c <0.又a 2+b 2+c 2=1,则有 ab =(a +b )2-(a 2+b 2)2=(1-c )2-(1-c 2)2=c 2-c .①又a +b =1-c .②由①②得a 、b 是方程x 2-(1-c )x +c 2-c =0的两个不等精心制作仅供参考 鼎尚出品鼎尚出品 实根,从而Δ=(1-c )2-4(c 2-c )>0,解得-13<c <1. ∵c <b <a ,∴(c -a )(c -b )=c 2-c (a +b )+ab=c 2-c (1-c )+c 2-c >0,解得c <0或c >23(舍). ∴-13<c <0,即1<a +b <43.。

2.2.1 综合法与分析 2014年】

2.2.1 综合法与分析 2014年】
人教 B 选修 2-2 学案
汗水点燃希望,信念成就梦想!
2.2.1 综合法与分析法
班级:___ 姓名:______ 重点处理的问题(预习存在的问 2、常用的直接证明方法有 3、综合法是 4、分析法是 因此综合法是 分析法 二、课前检测

。 。
思维方法;用框图表示为 P Q1 Q2 ... Qn Q 思维方法。用框图表示为 (Q P .(显然成立) 1 ) (P 1 P 2 ) ..
b2 1 ,则 a 1 b 2 的最大值为 设 a 0, b 0, a 2
2

备课札记 学习笔记
三、例题讲解: 题型一 综合法证明: 例 1、求证:
1 2 3 2。 log5 19 log3 19 log2 19
054-1
人教 B 选修 2-2 学案
汗水点燃希望,信念成就梦想! 备课札记
ab
D.
2ab ab ab
二次批 阅时间
054-2
教后反思(学后反思)
题型二 分析法证明: 例 2、求证: 3 7 2 5 。
学习笔记
题型三 分析----综合法 例 3、已知 , k

2
(k Z ) ,且 sin cos 2 sin ,
sin cos sin 2 。求证:
1 tan2 1 tan2 。 1 tan2 2(1 tan2 )
四、当堂检测: 1.分析法是( ) A. 执果索因的逆推法 C. 因果分别互推得两头凑法
B. 由因导果的顺推法 D.逆命题的证明方法 )
2. a 0, b 0 ,则下列不等式中不成立的是 ( A. a b

高中数学第2讲证明不等式的基本方法章末复习课学案新人教A版选修4_5

高中数学第2讲证明不等式的基本方法章末复习课学案新人教A版选修4_5

第2讲 证明不等式的基本方法[自我校对] ①作差法 ②综合法 ③执果索因 ④放缩法 ⑤间接证明作差——恒等变形——判断差值的符号——结论.其中,变形是证明推理中的关键,变形的目的在于判断差的符号.【例1】 设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2. [自主解答] 3a 3+2b 3-(3a 2b +2ab 2) =3a 2(a -b )+2b 2(b -a )=(a -b )(3a 2-2b 2). ∵a ≥b >0,∴a -b ≥0,3a 2-2b 2≥2a 2-2b 2≥0,从而(3a 2-2b 2)(a -b )≥0,故3a 3+2b 3≥3a 2b +2ab 2成立.1.若a =lg 22,b =lg 33,c =lg 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <cC [a 与b 比较:a =3lg 26=lg 86,b =2lg 36=lg 96.∵9>8,∴b >a ,b 与c 比较:b =lg 33=lg 3515,c =lg 55=lg 5315.∵35>53,∴b >c ,a 与c 比较:a =lg 2510=lg 3210,c =lg 2510.∵32>25,a >c ,∴b >a >c ,故选C.]步推导出不等式成立的必要条件,两者是对立统一的两种方法,一般来说,对于较复杂的不等式,直接用综合法往往不易入手.因此通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.【例2】 已知实数x ,y ,z 不全为零,求证:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).[自主解答] 因为x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2 ≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2,同理可证:y 2+yz +z 2≥y +z2,x 2+xz +z 2≥z +x2.由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号, 所以三式累加得:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ), 所以有x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).2.设a ,b ,c 均为大于1的正数,且ab =10. 求证:log a c +log b c ≥4lg c .[证明] 由于a >1,b >1,故要证明log a c +log b c ≥4lg c , 只要证明lg c lg a +lg clg b ≥4lg c .又c >1,故lg c >0,所以只要证1lg a +1lg b ≥4,即lg a +lg blg a ·lg b ≥4.因ab =10,故lg a +lg b =1, 只要证明1lg a ·lg b≥4.(*)由a >1,b >1,故lg a >0,lg b >0,所以0<lg a ·lg b ≤⎝ ⎛⎭⎪⎫lg a +lg b 22=⎝ ⎛⎭⎪⎫122=14,即(*)式成立.所以,原不等式log a c +log b c ≥4lg c 得证.差异较大时,可考虑用放缩法进行过渡从而达到证明目的.【例3】 若a ,b ,c ,x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.[自主解答] 设a ,b ,c 都不大于0, 则a ≤0,b ≤0,c ≤0, ∴a +b +c ≤0, 由题设知,a +b +c=⎝⎛⎭⎪⎫x 2-2y +π2+⎝ ⎛⎭⎪⎫y 2-2z +π3+⎝ ⎛⎭⎪⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3, ∴a +b +c >0,这与a +b +c ≤0矛盾, 故a ,b ,c 中至少有一个大于0.3.如图,已知在△ABC 中,∠CAB >90°,D 是BC 的中点,求证:AD <12BC .[证明] 假设AD ≥12BC .(1)若AD =12BC ,由平面几何定理“若三角形一边上的中线等于该边长的一半,那么这条边所对的角为直角”,知∠A =90°,与题设矛盾,所以AD ≠12BC .(2)若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD , 从而∠B >∠BAD . 同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD , 即∠B +∠C >∠A .因为∠B +∠C =180°-∠A ,所以180°-∠A >∠A ,即∠A <90°,与已知矛盾, 故AD >12BC 不成立.由(1)(2)知AD <12BC 成立.不等式的传递性,达到证明的目的.运用放缩法证明的关键是放缩要适当,既不能太大,也不能太小.【例4】 已知a ,b ,c 为三角形的三条边,求证:a 1+a ,b 1+b ,c1+c 也可以构成一个三角形.[自主解答] 设f (x )=x1+x ,x ∈(0,+∞).设0<x 1<x 2,则f (x 2)-f (x 1)=x 21+x 2-x 11+x 1=x 2-x 1(1+x 1)(1+x 2)>0,∴f (x )在(0,+∞)上为增函数.∵a ,b ,c 为三角形的三条边,于是a +b >c , ∴c1+c <a +b 1+(a +b )=a 1+a +b +b 1+a +b <a 1+a +b 1+b ,即c 1+c <a 1+a +b 1+b, 同理b 1+b <a1+a +c1+c ,a1+a <b1+b +c1+c , ∴以a1+a ,b 1+b ,c1+c 为边可以构成一个三角形.4.已知|x |<ε3,|y |<ε6,|z |<ε9,求证:|x +2y -3z |<ε.[证明] ∵|x |<ε3,|y |<ε6,|z |<ε9,∴|x +2y -3z |=|1+2y +(-3z )|≤|x |+|2y |+|-3z |=|x |+2|y |+3|z |<ε3+2×ε6+3×ε9=ε.∴原不等式成立.1.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4C [由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.]2.设a ,b >0,a +b =5,则a +1+b +3的最大值为________.[解析] 令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. [答案] 3 23.设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k4依次构成等比数列?并说明理由.[解] (1)证明:因为2a n +12a n=2a n +1-a n =2d(n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)不存在,理由如下:令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0). 假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =da,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,得t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)不存在,理由如下:假设存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列,则a n1(a 1+2d )n +2k=(a 1+d )2(n +k ),且(a 1+d )n +k(a 1+3d )n +3k=(a 1+2d )2(n +2k ),分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1,并令t =d a 1⎝ ⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k=(1+t )2(n +k ),且(1+t )n +k(1+3t )n +3k=(1+2t )2(n +2k ).将上述两个等式两边取对数,得 (n +2k )ln(1+2t )=2(n +k )ln(1+t ),且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ). 化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )], 且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )]. 再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t ) =4ln(1+3t )ln(1+t ).(**)令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ),则g ′(t )=2[(1+3t )2ln (1+3t )-3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t )](1+t )(1+2t )(1+3t ).令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+ 3(1+t )2ln(1+t ),则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ′1(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )]. 令φ2(t )=φ′1(t ),则φ′2(t )=12(1+t )(1+2t )(1+3t )>0.由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立. 所以不存在a 1,d 及正整数n ,k ,使得a n1,a n +k2,a n +2k3,a n +3k4依次构成等比数列.4.已知a >0,函数f (x )=e axsin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.证明:(1)数列{f (x n )}是等比数列; (2)若a ≥1e 2-1,则对一切n ∈N *,x n <|f (x n )|恒成立.[证明] (1)f ′(x )=a e ax sin x +e axcos x =e ax (a sin x +cos x )=a 2+1e axsin(x +φ). 其中tan φ=1a ,0<φ<π2.令f ′(x )=0,由x ≥0得x +φ=m π, 即x =m π-φ,m ∈N *.对k ∈N ,若2k π<x +φ<(2k +1)π,即2k π-φ<x <(2k +1)π-φ,则f ′(x )>0; 若(2k +1)π<x +φ<(2k +2)π,即(2k +1)π-φ<x <(2k +2)π-φ,则f ′(x )<0. 因此,在区间((m -1)π,m π-φ)与(m π-φ,m π)上,f ′(x )的符号总相反.于是当x =m π-φ(m ∈N *)时,f (x )取得极值,所以x n =n π-φ(n ∈N *). 此时,f (x n )=ea (n π-φ)sin(n π-φ)=(-1)n +1e a (n π-φ)·sin φ.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +2e a [(n +1)π-φ]sin φ(-1)n +1e a (n π-φ)sin φ=-e a π是常数, 故数列{f (x n )}是首项为f (x 1)=e a (π-φ)sin φ,公比为-e a π的等比数列.(2)由(1)知,sin φ=1a 2+1,于是对一切n ∈N *,x n <|f (x n )|恒成立,即n π-φ<1a 2+1ea (n π-φ)恒成立,等价于a 2+1a <e a (n π-φ)a (n π-φ)(*)恒成立(因为a >0).设g (t )=e tt (t >0),则g ′(t )=e t(t -1)t2. 令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 从而当t =1时,函数g (t )取得最小值g (1)=e.因此,要使(*)式恒成立,只需a 2+1a <g (1)=e ,即只需a >1e 2-1.而当a =1e 2-1时,由tan φ=1a =e 2-1>3且0<φ<π2知,π3<φ<π2.于是π-φ<2π3<e 2-1,且当n ≥2时,n π-φ≥2π-φ>3π2>e 2-1.因此对一切n ∈N *,ax n =n π-φe 2-1≠1,所以g(ax n)>g(1)=e=a2+1 a.故(*)式亦恒成立.综上所述,若a≥1e2-1,则对一切n∈N*,x n<|f(x n)|恒成立.。

高中数学选修4-5第二讲证明不等式的基本方法第2讲1人教版

高中数学选修4-5第二讲证明不等式的基本方法第2讲1人教版

数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
2.综合法 已知条件 出发,利用_________________________ 定义、公理、定理、性质 等, 从_________ 经过一系列的推理、论证而得出命题成立,这种证明方法叫做 综合法,又叫_______________________ 顺推证法或由因导果法 . 3.分析法 充分条件 , 从要证的结论 __________出发,逐步寻求使它成立的___________
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
解析: ∵a2+b2-1-a2b2≤0 ∴a2b2-a2-b2+1≥0 ∴(a2-1)(b2-1)≥0 由分析法的步骤可知
答案: D
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
3.已知 a,b 是正实数,比较大小 aabb________abba.
abba>0,
答案: aabb≥abba.
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习
4.求证: 7-1> 11- 5.
证明: 要证 7-1> 11- 5, 只需证 7+ 5> 11+1, 即证 7+2 35+5>11+2 11+1, 即证 35> 11, 即证 35>11(显然成立), 因为 35>11 成立,所以原不等式成立.
[ 解题过程]
(1)a2+b2-2(a-b-1)
=(a-1)2+(b+1)2≥0, ∴a2+b2≥2(a-b-1).
数学 选修4-5
第二讲 证明不等式的基本方法
预习学案 课堂学案 课后练习

高中数学第二章等式与不等式不等式及其性质学案新人教B版必修第一册

高中数学第二章等式与不等式不等式及其性质学案新人教B版必修第一册

2.2.1 不等式及其性质课程标准理解不等式的概念,掌握不等式的性质.新知初探·自主学习——突出基础性教材要点知识点一 实数大小比较1.文字叙述如果a -b 是________,那么a >b ;如果a -b________,那么a =b ;如果a -b 是________,那么a <b ,反之也成立.2.符号表示a -b >0⇔a________b ;a -b =0⇔a________b ;a -b <0⇔a________b .状元随笔 1.不等式“a≤b”的含义是“a <b”或“a =b”.2.比较两实数a ,b 的大小,只需确定它们的差a -b 与0的大小关系,与差的具体数值无关.因此,比较两实数a ,b 的大小,其关键在于经过适当变形,能够确认差a -b 的符号,变形的常用方法有配方、分解因式等.知识点二 不等式的性质性质别名性质内容注意1对称性a >b ⇔________可逆2传递性a >b ,b >c ⇒________3可加性a >b ⇔________可逆4可乘性c 的符号5同向可加性同向6同向同正可乘性同向7可乘方性a >b >0⇒________同正(n∈N,n≥2)8可开方a>b>0⇒______(n∈N,n≥2)同正状元随笔 (1)性质3是移项的依据.不等式中任何一项改变符号后,可以把它从一边移到另一边.即a +b>c ⇒a>c -b. 性质3是可逆性的,即a>b ⇔a +c>b +c .(2)注意不等式的单向性和双向性.性质1和3是双向的,其余的在一般情况下是不可逆的.(3)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.要克服“想当然”“显然成立”的思维定势.知识点三 证明问题的常用方法方法定义综合法从________出发,综合利用各种结果,经过逐步推导最后得到结论的方法.分析法从要证明的________,________使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.反证法首先假设结论的________成立,然后由此进行推理得到矛盾,最后得出假设不成立.反证法是一种间接证明的方法.基础自测1.大桥桥头竖立的“限重40吨”的警示牌,是提示司机要安全通过该桥,应使车和货物的总质量T满足关系( )A.T<40B.T>40C.T≤40D.T≥402.设M=x2,N=-x-1,则M与N的大小关系是( )A.M>N B.M=N C.M<N D.与x有关3.已知x<a<0,则一定成立的不等式是( )A.x2<a2<0B.x2>ax>a2C.x2<ax<0D.x2>a2>ax课堂探究·素养提升——强化创新性题型1 比较大小[教材P60例1]例1 比较x2-x和x-2的大小.状元随笔 通过考察这两个多项式的差与0的大小关系,可以得出它们的大小关系.方法归纳用作差法比较两个实数大小的四步曲跟踪训练1 若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是()A .f (x )<g (x )B .f (x )=g (x )C .f (x )>g (x )D .随x 值变化而变化状元随笔 作差→变形→判断差的符号→结合差的符号判定大小题型2 不等式的性质[经典例题]例2 对于实数a 、b 、c ,有下列说法:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a <b <0,则a 2>ab >b 2;④若c>a>b>0,则ac−a>bc−b;⑤若a>b,1a>1b,则a>0,b<0.其中正确的个数是( ) A.2B.3C.4D.5状元随笔 分析条件→利用不等式性质逐一判断方法归纳(1)首先要注意不等式成立的条件,不要弱化条件,尤其是不凭想当然随意捏造性质.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值一定要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.跟踪训练2 (1)已知a<b,那么下列式子中,错误的是( )A.4a<4b B.-4a<-4bC.a+4<b+4D.a-4<b-4状元随笔 利用不等式的性质,解题关键找准使不等式成立的条件.(2)(多选)对于任意实数a,b,c,d,下列命题中不正确的是( )A.若a>b,c≠0,则ac>bcB.若a>b,则ac2>bc2C.若ac2>bc2,则a>bD.若a>b,则1a<1b题型3 利用不等式性质求范围[经典例题]例3 已知-2<a≤3,1≤b<2,试求下列代数式的取值范围:(1)|a|;(2)a+b;(3)a-b;(4)2a-3b.状元随笔 运用不等式性质研究代数式的取值范围,关键是把握不等号的方向.方法归纳利用不等式性质求范围的一般思路(1)借助性质,转化为同向不等式相加进行解答;(2)借助所给条件整体使用,切不可随意拆分所给条件;(3)结合不等式的传递性进行求解.跟踪训练3 已知实数x,y满足:1<x<2<y<3,(1)求xy的取值范围;(2)求x-2y的取值范围.题型4 利用不等式的性质证明不等式[逻辑推理、数学运算]综合法、分析法与反证法例4 (1)已知a>b>0,c<d<0,e<0,求证:ea−c>eb−d;(2)证明:√7−√3<√6−√2.状元随笔 注意书写的规范性及易错点:①分析法的步骤要规范,分析时一般按照“要证……,需证……,只需证……”的步骤进行.②反证法,必须假设所证问题的反面成立,推出与之矛盾,从而肯定原结论成立.③不等式两边含有根式,同时两侧均为正数的时候,通常选择平方处理,此时应该注意平方后尽量保证式子的最简化,如本例将√7和√2结合,剩余两数结合,好处在于平方后能消掉一部分,使问题简单化.④应该明确问题的反面,如“>”的反面是“≤”,“至少有一个”的反面是“一个也没有”等.方法归纳利用不等式的性质证明简单不等式的实质及注意点(1)实质:就是根据性质把不等式变形.(2)注意点:①记准、记熟不等式的性质并注意在解题中灵活准确地加以应用;②应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.证明不等式常选用综合法,对于不方便用综合法证明的不等式可以灵活选择分析法与反证法.跟踪训练4 (1)已知a>b>0,c<d<0,e<0,求证:e(a−c)2>e(b−d)2;(2)将下面用分析法证明a2+b22≥ab的步骤补充完整:要证a2+b22≥ab,只需证a2+b2≥2ab,也就是证________,即证________,由于________显然成立,因此原不等式成立;(3)已知x,y>0,且x+y>2.求证:1+xy,1+yx中至少有一个小于2.2.2 不等式2.2.1 不等式及其性质新知初探·自主学习[教材要点]知识点一1.正数 等于0 负数2.> = <知识点二b<a a>c a+c>b+c ac>bc ac<bc a+c>b+d ac>bd a n>b n n√a> n√b知识点三已知条件 结论出发 逐步寻求 否定[基础自测]1.解析:“限重40吨”是不超过40吨的意思.答案:C2.解析:因为M-N=x2+x+1=(x+12)2+34>0,所以M>N.答案:A3.解析:因为x<a<0,不等号两边同时乘a,则ax>a2;不等号两边同时乘x,则x2>ax,故x2>ax>a2.答案:B课堂探究·素养提升例1 【解析】 因为(x2-x)-(x-2)=x2-2x+2=(x-1)2+1,又因为(x-1)2≥0,所以(x-1)2+1≥1>0,从而(x2-x)-(x-2)>0,因此x2-x>x-2.跟踪训练1 解析:f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=x2-2x+2=(x-1)2+1>0,所以f(x)>g(x).故选C.答案:C例2 【解析】 对于①,令c=0,则有ac=bc.①错.对于②,由ac2>bc2,知c≠0,∴c2>0⇒a>b.②对.对于③,由a<b<0,两边同乘以a得a2>ab,两边同乘以b得ab>b2,∴a2>ab>b2.③对.对于④,c>a>b>0⇒c−a>0,c−b>0a>b⇒−a<−b⇒c−a<c−b}⇒0<c-a<c-b⇒1c−a>1c−b>0a>b>0}⇒a c−a>b c−b.④对.对于⑤,a>b⇒a−b>01a>1b⇒b−aab>0}⇒ab<0a>b}⇒a>0,b<0.⑤对.【答案】 C跟踪训练2 解析:(1)根据不等式的性质,a<b,4>0⇒4a<4b,A项正确;a<b,-4<0⇒-4a>-4b,B项错误;a<b⇒a+4<b+4,C项正确;a<b⇒a-4<b -4,D项正确.(2)对于选项A,当c<0时,不正确;对于选项B,当c=0时,不正确;对于选项C,∵ac2>bc2,∴c≠0,∴c2>0,∴一定有a>b.故选项C正确;对于选项D,当a>0,b<0时,不正确.答案:(1)B (2)ABD例3 【解析】 (1)|a|∈[0,3];(2)-1<a+b<5;(3)依题意得-2<a≤3,-2<-b≤-1,相加得-4<a-b≤2;(4)由-2<a≤3得-4<2a≤6, ①由1≤b<2得-6<-3b≤-3, ②由①②得,-10<2a-3b≤3.跟踪训练3 解析:(1)∵1<x<2<y<3,∴1<x<2,2<y<3,则2<xy<6,则xy 的取值范围是(2,6).(2)由(1)知1<x<2,2<y<3,从而-6<-2y<-4,则-5<x-2y<-2,即x-2y的取值范围是(-5,-2).例4 【证明】 (1)方法一 因为c<d<0,所以-c>-d>0,因为a>b>0,所以a-c>b-d>0,所以0<1a−c<1b−d,又因为e<0,所以ea−c>eb−d.方法二 ea−c−eb−d=e[(b−d)−(a−c)](a−c)(b−d)=e[(b−a)+(c−d)](a−c)(b−d),因为a>b>0,c<d<0,所以-c>-d>0,所以a-c>0,b-d>0,b-a<0,c-d<0,又e<0,所以e[(b−a)+(c−d)](a−c)(b−d)>0,所以ea−c>eb−d.(2)方法一 分析法:要证√7−√3<√6−√2,只需证√7+√2<√3+√6,只需证(√7+√2)2<(√3+√6)2,展开得9+2√14<9+2√18,只需证√14<√18,即证14<18,显然成立,所以√7−√3<√6−√2.方法二 反证法:假设√7−√3≥√6−√2,则√7+√2≥√3+√6,两边平方得9+2√14≥9+2√18,所以√14≥√18,即14≥18,显然不成立,所以假设错误.所以√7−√3<√6−√2.跟踪训练4 解析:(1)证明:因为c<d<0,所以-c>-d>0,因为a>b>0,所以a-c>b-d>0,所以(a-c)2>(b-d)2>0,所以0<1(a−c)2<1(b−d)2,又e<0,所以e(a−c)2>e(b−d)2.(2)用分析法证明a2+b22≥ab的步骤为:要证a2+b22≥ab成立,只需证a2+b2≥2ab,也就是证a2+b2-2ab≥0,即证(a-b)2≥0.由于(a-b)2≥0显然成立,所以原不等式成立.(3)证明:假设1+xy,1+yx都不小于2,即1+xy≥2,1+yx≥2.因为x,y>0,所以1+x≥2y,1+y≥2x.所以2+x+y≥2(x+y),即x+y≤2与已知x+y>2矛盾.所以1+xy,1+yx中至少有一个小于2.答案:(1)见解析 (2)a2+b2-2ab≥0 (a-b)2≥0 (a-b)2≥0 (3)见解析11。

北师大版高三数学(文科)一轮复习选修4-5第2讲不等式的证明学案

北师大版高三数学(文科)一轮复习选修4-5第2讲不等式的证明学案

第2讲 不等式的证明[学生用书P223]1.不等式证明的方法 (1)比较法 ①作差比较法:知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b 只要证明a -b >0即可,这种方法称为作差比较法.②作商比较法:由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab >1即可,这种方法称为作商比较法.(2)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫综合法.即“由因导果”的方法.(3)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫分析法.即“执果索因”的方法.(4)反证法和放缩法①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫做反证法.②在证明不等式时,有时要把所证不等式的一边适当地放大或缩小,此利于化简并使它与不等式的另一边的关系更为明显,从而得出原不等式成立,这种方法称为放缩法.(5)数学归纳法一般地,当要证明一个命题对于不小于某正整数n 0的所有正整数n 都成立时,可以用以下两个步骤:①证明当n =n 0时命题成立;②假设当n =k (k ∈N *,且k ≥n 0)时命题成立,证明n =k +1时命题也成立.在完成了这两个步骤后,就可以断定命题对于不小于n 0的所有正整数都成立.这种证明方法称为数学归纳法.2.几个常用基本不等式(1)二维形式的柯西不等式 ①定理1(二维形式的柯西不等式)若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立. ②(二维变式)a 2+b 2·c 2+d 2≥|ac +bd |,a 2+b 2·c 2+d 2≥|ac |+|bd |.③定理2(柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.④定理3(二维形式的三角不等式)设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥⑤(三角变式)设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(2)柯西不等式的一般形式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有:a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,反序和等于顺序和.排序原理可简记作:反序和≤乱序和≤顺序和.若a >b >1,x =a +1a ,y =b +1b ,则x 与y 的大小关系是( )A .x >yB.x <y C .x ≥y D .x ≤y解析:选A .x -y =a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab .由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0,即x -y >0,所以x >y .下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③|b a +ab |≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A .1B.2 C .3 D .4解析:选C .log x 10+lg x =1lg x+lg x ≥2(x >1);①正确.ab ≤0时,|a -b |=|a |+|b |,②不正确; 因为ab ≠0,b a 与ab 同号,所以|b a +b a |=|b a |+|ab |≥2,③正确;由|x -1|+|x -2|的几何意义知, |x -1|+|x -2|≥1恒成立,④也正确, 综上①③④正确.设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 解析:由柯西不等式得(ma +nb )2≤(m 2+n 2)(a 2+b 2),即m 2+n 2≥5,所以m 2+n 2≥ 5,所以m 2+n 2的最小值为5.答案: 5若a ,b ,c ∈(0,+∞),且a +b +c =1,求a +b +c 的最大值. 解:(a +b +c )2=(1×a +1×b +1×c )2 ≤(12+12+12)(a +b +c )=3. 当且仅当a =b =c =13时,等号成立.所以(a +b +c )2≤3. 故a +b +c 的最大值为3.设x >0,y >0,若不等式1x +1y +λx +y ≥0恒成立,求实数λ的最小值.解:因为x >0,y >0,所以原不等式可化为-λ≤(1x +1y )(x +y )=2+y x +x y .因为2+y x +xy ≥2+2y x ·xy=4,当且仅当x =y 时等号成立.所以⎣⎡⎦⎤(1x +1y )(x +y )min=4, 即-λ≤4,λ≥-4. 所以λ的最小值为-4.用综合法、分析法证明不等式 [学生用书P224][典例引领](2017·高考全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【证明】 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.[通关练习]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立, 只需证a +b a +a +b b ≥4成立,即证b a +ab ≥2成立,因为a >0,b >0,所以b a +a b ≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a≥1. 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,所以a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a≥1.放缩法证明不等式[学生用书P225][典例引领]若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b | ⇒1|a +b |≥1|a |+|b |,所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.[通关练习]设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n=1.所以原不等式成立.柯西不等式的应用[学生用书P225][典例引领]已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值. 【解】 (1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z+3)=27.所以3x +1+3y +2+3z +3≤33. 当且仅当x =23,y =13,z =0时取等号.(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.(1)使用柯西不等式证明不等式的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )(1a 21+1a 22+…+1a 2n )≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.[通关练习]1.设x ,y ,z ∈R ,x 2+y 2+z 2=25,试求x -2y +2z 的最大值与最小值. 解: 根据柯西不等式,有(1·x -2·y +2·z )2≤[12+(-2)2+22](x 2+y 2+z 2), 即(x -2y +2z )2≤9×25, 所以-15≤x -2y +2z ≤15,故x -2y +2z 的最大值为15,最小值为-15.2.已知大于1的正数x ,y ,z 满足x +y +z =33.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.证明: 由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·[(x +2y +3z )+(y +2z +3x )+(z +2x +3y )]≥(x +y +z )2=27.又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183, 所以x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32,当且仅当x =y =z =3时,等号成立.排序不等式的应用[学生用书P226][典例引领]设a ,b ,c 为任意正数,求a b +c +b c +a +c a +b的最小值. 【证明】 不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b ,由排序不等式得,ab +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b , 上述两式相加得:2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3, 即ab +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时, ab +c +b c +a +c a +b 取最小值32.求最小(大)值时,往往所给式子是顺(反)序和式.然后利用顺(反)序和不小(大)于乱序和的原理构造出适当的一个或两个乱序和,从而求出其最小(大)值.[通关练习]设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解: 令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bca (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .所以S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=ca (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=ba (b +c )+c b (a +c )+ac (a +b ),两式相加得:2S ≥1a +1b +1c ≥331abc=3.所以S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.证明不等式的常用方法与技巧(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的基本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.证明不等式需要注意的2个问题(1)在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要分析每次使用时等号是否成立.(2)柯西不等式使用的关键是出现其结构形式,也要注意等号成立的条件.[学生用书P353(单独成册)]1.(2018·长春质量检测(二))(1)如果关于x 的不等式|x +1|+|x -5|≤m 的解集不是空集,求实数m 的取值范围;(2)若a ,b 均为正数,求证:a a b b ≥a b b a .解:(1)令y =|x +1|+|x -5|=⎩⎪⎨⎪⎧-2x +4,x ≤-16,-1<x <52x -4,x ≥5,可知|x +1|+|x -5|≥6,故要使不等式|x +1|+|x -5|≤m 的解集不是空集,只需m ≥6.(2)证明:因为a ,b 均为正数,所以要证a a b b ≥a b b a ,只需证a a -b b b -a ≥1,即证(a b )a -b ≥1,当a ≥b 时,a -b ≥0,a b ≥1,可得(ab )a -b ≥1;当a <b 时,a -b <0,0<a b <1,可得(a b )a -b >1,故a ,b 均为正数时,(ab )a -b ≥1,当且仅当a =b 时等号成立,故a a b b≥a b b a 成立.2.(2018·湘中名校联考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+3bt 的最大值.解:(1)由|x +a |<b ,可得-b -a <x <b -a , 所以-b -a =2且b -a =4.解得a =-3,b =1. (2)利用柯西不等式,可得-3t +12+3t =3(4-t +t )≤3(1+1)(4-t +t )=6×4-t +t =26,当且仅当t =4-t ,即t =2时等号成立.当t =2时,at +12+3bt 的最大值为26.3.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d. 证明: 法一:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d )=⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥331a -b ·1b -c ·1c -d ·33(a -b )(b -c )(c -d )=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 法二:因为⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d (a -d ) =⎝ ⎛⎭⎪⎫1a -b +1b -c +1c -d [(a -b )+(b -c )+(c -d )] ≥⎝ ⎛⎭⎪⎫ 1a -b ·a -b +1b -c ·b -c +1c -d ·c -d 2=9, 当且仅当a -b =b -c =c -d 时取等号,所以1a -b +1b -c +1c -d ≥9a -d. 4.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3;(2)a bc +b ac +c ab≥3(a +b +c ). 证明:(1)要证a +b +c ≥3;由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)证得.所以原不等式成立.(2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2, b ac ≤ab +bc 2,c ab ≤bc +ac 2, 所以a bc +b ac +c ab ≤ab +bc +ca .(当且仅当a =b =c =33时等号成立) 所以原不等式成立.1.求证:112+122+132+ (1)2<2. 证明:因为1n 2<1n (n -1)=1n -1-1n, 所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2. 2.(2018·成都第二次诊断性检测)(1)求证:a 2+b 2+3≥ab +3(a +b );(2)已知a ,b ,c 均为实数,且a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6,求证:a ,b ,c 中至少有一个大于0.证明:(1)因为a 2+b 2≥2ab ,a 2+3≥23a ,b 2+3≥23b ,将此三式相加得2(a 2+b 2+3)≥2ab +23a +23b ,所以a 2+b 2+3≥ab +3(a +b ).(2)假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,因为a =x 2+2y +π2,b =y 2+2z +π3,c =z 2+2x +π6, 所以a +b +c =(x 2+2y +π2)+(y 2+2z +π3)+(z 2+2x +π6)=(x +1)2+(y +1)2+(z +1)2+π-3>0,即a +b +c >0与a +b +c ≤0矛盾,故假设错误,原命题成立,即a , b ,c 中至少有一个大于0.3.设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d . ②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.综上,a +b > c +d 是|a -b |<|c -d |的充要条件.4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14.(2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12, 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2 =(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.。

选修4-5证明不等式的基本方法学案

选修4-5证明不等式的基本方法学案

第02讲 证明不等式的基本方法1.已知a ≠2,那么4a4+a 2____1(填“>”或“<”). 2.若0<a <b 且a +b =1,则四个数12,b,2ab ,a 2+b 2中最大的是__ _。

知识要点一典例分析例1.若x >0,则( )A .(x +1)3>(x +1)2B .(x +1)3≥(x +1)2C .(x +1)3<(x +1)2D .(x +1)3≤(x +1)2例2.已知a,b是正实数,比较大小a a b b________a b b a.学霸说比较法证明不等式的关键在变形,而变形的技巧在于将差式进行重新组合、合理搭配,目的是有利于判断差式的符号.该法尤其适用于具有多项式结构特征的不等式的证明.举一反三1.求证:(1)a2+b2≥2(a-b-1);(2)若a>b>c,则bc2+ca2+ab2<b2c+c2a+a2b.知识要点二典例分析例1.已知a ,b ,c >0,求证:a 3+b 3+c 3≥13(a 2+b 2+c 2)(a +b +c ).例2.要证a 2+b 2-1-a 2b 2≤0,只要证( )A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C .⎝⎛⎭⎫a +b 22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0例3.已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab .举一反三1.已知a +b +c =1,求证:ab +bc +ca ≤13.2.求证:3+7<2+ 6.3.已知a ,b ,c 为△ABC 的三条边,求证:a 2+b 2+c 2<2(ab +bc +ca )典例分析例1.已知0<x <2,0<y <2,0<z <2,求证:x (2-y ),y (2-z ),z (2-x )不都大于1.例2.已知实数x ,y ,z 不全为零,求证:x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).举一反三1.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A .假设三内角都不大于60°B .假设三内角都大于60°C .假设三内角至多有一个大于60°D .假设三内角至多有两个大于60°2.若a ,b ,c 都是小于1的正数,求证:(1-a )·b ,(1-b )c ,(1-c )a 不可能同时大于14.3.求证:11·2+12·3+13·4+…+1n n +<1(n ∈N +).初出茅庐建议用时:10分钟1.已知a c 2>bc2,则下列不等式一定成立的是( )A .a 2>b 2B .lg a >lg bC .1b >1cD .⎝⎛⎭⎫13b >⎝⎛⎭⎫13a2.设a ,b ∈R +,且a ≠b ,P =a 2b +b 2a,Q =a +b ,则( )A .P >QB .P ≥QC .P <QD .P ≤Q3.“a =18”是“对任意的正数x,2x +ax≥1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知a ,b ,c ∈R +,且a +b +c =1.求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.5.已知a <b <c ,求证:a 2b +b 2c +c 2a <a 2c +b 2a +c 2b .6.已知a >b >0.求证:a -b <a -b .7.实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.优学学霸建议用时:15分钟1.设0<x <1,则a =2x ,b =1+x ,c =11-x中最大的一个是( )A .aB .bC .cD .不能确定 2.设a >0,b >0,则以下不等式中不恒成立的是( )A .(a +b )⎝⎛⎭⎫1a +1b ≥4 B .a 3+b 3≥2ab 2 C .a 2+b 2+2≥2a +2b D .|a -b |≥a -b3.设a >b >0,x =a +b -a ,y =a -a -b ,则x ,y 的大小关系是x ________y .4.已知a ,b 都是正实数,且a +b =2.求证:a 2a +1+b 2b +1≥1.5.设x ,y 为正数,且x +y =1,证明:⎝⎛⎭⎫1x 2-1⎝⎛⎭⎫1y 2-1≥9.6.求证:2(n +1-1)<1+12+13+…+1n<2n (n ∈N +).建议用时:20分钟1.设x >0,y >0,x +y =1,x +y 的最大值是( )A .1B .2C .22D .322.a >0,b >0,则“a >b ”是“a -1a >b -1b”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件3.若f (n )=n 2+1-n ,g (n )=n -n 2-1,φ(n )=12n ,则f (n ),g (n ),φ(n )的大小顺序为________.4.设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2.5.已知a ,b ,c ∈R +,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)abc+b ac+cab≥3(a +b +c ).6.若x ,y >0,且x +y >2,则1+y x 和1+xy 中至少有一个小于2.。

28分析法、综合法、反证法

28分析法、综合法、反证法

高三数学复习学案28 制版:侯向军 审核:张海军 李继涛 一心向着目标前进的人,整个世界都会为他让路!不等式的证明(分析法、综合法、反证法) 一.复习目标:1.掌握并灵活运用证明不等式的方法证明简单的不等式. 二【知识点精讲】不等式证明方法多,证法灵活,其中比较法、分析法、综合法是基本方法,要熟练掌握,其他方法作为辅助,这些方法之间不能截然分开,要综合运用各种方法.1. 比较法证明不等式是最基本的方法也是最常用的方法。

比较法的两种形式:①比差法:要证a>b ,只须证a-b>0。

②比商法:要证a>b 且b>0,只须证>b a 0。

2. 综合法:利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所要求证的不等式的方法。

证明时要注意字母是否为正和等号成立的条件。

基本不等式:若,0,0>>b a 则ba ab b a b a 1122222+≥≥+≥+ 当且仅当a=b 时取等号。

3. 分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

这种证明方法叫做分析法。

要注意书写的格式, 综合法是分析法的逆过程 4. 其他方法:(1)反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

(2). 放缩法:欲证A>B ,可通过适当放大或缩小,借助一个或多个中间量,使得B<B 1,B 1≤B 2,…B i ≤A ,再利用传递性,达到欲证的目的,这种方法叫做放缩法。

(3). 构造法:构造二次方程用“Δ”,构造函数用函数单调性,构造图形用数形结合方法。

典型例题题型一比较法例1、2:aa b b〉〉+≥+2b已知:a 0,b 0.求证a题型二综合法和分析法例2、 已知a ,b ∈R ,且a+b=1求证:()()2222≥+++b a题型三反证法0101<<<<a b ,,0<c<1,求证(1);(1a b b c c a ---4题型四不等式综合(选做)()ln(1)(1)();1(2)1,:1-ln(1)1f x x x f x x x x x =+-〉-≤+≤+已知函数求函数的单调区间若证明提高练习一、选择题:1.(2005年春季北京,8)若不等式(-1)na <2+nn 11+-)(对任意n ∈N *恒成立,则实数a 的取值范围是A.[-2,23)B.(-2,23)C.[-3,23)D.(-3,23)2.分析法是从要证的不等式出发,寻求使它成立的A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件3. 设∈c b a ,,(0,+∞),则三个数b a 1+,cb 1+,ac 1+的值 ( )A.都大于2B.都小于2C.至少有一个不大于2D.至少有一个不小于2 4.设m>1,mm Q m m P -+=--=1,1,那么 ( )A .P>QB .P ≥QC .P<QD .P ≤Q5.a,b 是实数,则使|a|+|b|>1成立的充分不必要条件 ( )A .|a+b|≥1B .21||21||≥≥b a 且C .a ≥1D .b<-1二、填空题6.(2)在等差数列{a n }与等比数列{b n }中,a 1=b 1>0,a 2n +1=b 2n +1>0(n =1,2,3,…),则a n +1与b n +1的大小关系是____________. 7.a>b>c ,n ∈N *,且ca n cb ba -≥-+-11恒成立,则n 的最大值为_____________. 三、解答题:8.已知x,y ∈R +,且2x+y=1,求证:22311+≥+yx .9、10,2a a a〉≥+-已知求证理科做10. (2009宁夏海南卷理)(本小题满分12分) 已知函数32()(3)x f x x x ax b e -=+++(I )如3a b ==-,求()f x 的单调区间;(II )若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明βα-〉6.文科做已知函数()xf x e x =-, (1) 求f(x)的最小值(2) 不等式()f x ax >的解集为P ,若12,2m xx ⎧⎫=≤≤⎨⎬⎩⎭且 ,M P φ≠ 求a 的取值范围。

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第2节综合法与分析法

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第2节综合法与分析法

§2 综合法与分析法2.1 综合法学习目标核心素养1.了解综合法的思考过程、特点.(重点) 2.会用综合法证明数学命题.(难点) 1.通过对综合法概念和思维过程的理解的学习,培养逻辑推理的核心素养.2.通过对综合法应用的学习,提升逻辑推理和数学建模的核心素养.1.综合法的定义从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明,这种思维方法称为综合法.2.综合法证明的思维过程用P表示已知条件、已知的定义、公理、定理等,Q表示所要证明的结论,则综合法的思维过程可用框图表示为:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q思考:综合法的证明过程属于什么思维方式?[提示]综合法是由因导果的顺推思维.1.综合法是从已知条件、定义、定理、公理出发,寻求命题成立的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件[答案] B2.在△ABC中,若sin Asin B<cos Acos B,则△ABC一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形C[由条件可知cos Acos B-sin Asin B=cos(A+B)=-cos C>0,即cos C<0,∴C为钝角,故△ABC 一定是钝角三角形.]3.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.综合法[证明过程符合综合法的证题特点,故为综合法.]用综合法证明三角问题【例1】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b -c)sin B +(2c -b)sin C.(1)求证:A 的大小为60°;(2)若sin B +sin C = 3.证明:△ABC 为等边三角形.思路探究:(1)利用正弦定理将角与边互化,然后利用余弦定理求A. (2)结合(1)中A 的大小利用三角恒等变形证明A =B =C =60°. [证明] (1)由2asin A =(2b -c)sin B +(2c -b)sin C , 得2a 2=(2b -c)b +(2c -b)c , 即bc =b 2+c 2-a 2, 所以cos A =b 2+c 2-a 22bc =12,所以A =60°.(2)由A +B +C =180°,得B +C =120°,由sin B +sin C =3,得sin B +sin(120°-B)=3, sin B +(sin 120°cos B-cos 120°sin B)=3, 32sin B +32cos B =3, 即sin(B +30°)=1. 因为0°<B<120°, 所以30°<B+30°<150°, 所以B +30°=90°,即B =60°, 所以A =B =C =60°, 即△ABC 为等边三角形.证明三角等式的主要依据1.三角函数的定义、诱导公式及同角基本关系式. 2.和、差、倍角的三角函数公式.3.三角形中的三角函数及三角形内角和定理. 4.正弦定理、余弦定理和三角形的面积公式.1.若sin θ,sin α,cos θ成等差数列,sin θ,sin β,cos θ成等比数列,求证:2cos 2α=cos 2β.[证明] ∵sin θ,sin α,cos θ成等差数列, ∴sin θ+cos θ=2sin α①又∵sin θ,sin β,cos θ成等比数列, ∴sin 2β=sin θcos θ②将②代入①2,得1+2sin 2β=4sin 2α, 又sin 2 β=1-cos 2β2,sin 2α=1-cos 2α2,∴1+1-cos 2β=2-2cos 2α, 即2cos 2α=cos 2β.用综合法证明几何问题【例2】 如图,在四面体B­ACD 中,CB =CD ,AD⊥BD,E ,F 分别是AB ,BD 的中点.求证: (1)直线EF∥平面ACD ; (2)平面EFC⊥平面BCD.思路探究:(1)依据线面平行的判定定理,欲证明直线EF∥平面ACD ,只需在平面ACD 内找出一条直线和直线EF 平行即可;(2)根据面面垂直的判定定理,欲证明平面EFC⊥平面BCD ,只需在其中一个平面内找出一条另一个面的垂线即可.[证明] (1)因为E ,F 分别是AB ,BD 的中点,所以EF 是△ABD 的中位线,所以EF∥AD,又EF 平面ACD ,AD平面ACD ,所以直线EF∥平面ACD.(2)因为AD⊥BD,EF∥AD,所以EF⊥BD.因为CB =CD ,F 是BD 的中点,所以CF⊥BD.又EF∩CF=F ,所以BD⊥平面EFC. 因为BD平面BCD ,所以平面EFC⊥平面BCD.证明空间位置关系的一般模式本题是综合运用已知条件和相关的空间位置关系的判定定理来证明的,故证明空间位置关系问题,也是综合法的一个典型应用.在证明过程中,语言转化是主旋律,转化途径为把符号语言转化为图形语言或文字语言转化为符号语言.这也是证明空间位置关系问题的一般模式.2.如图,在长方体ABCD­A 1B 1C 1D 1中,AA 1=AD =a ,AB =2a ,E ,F 分别为C 1D 1,A 1D 1的中点.(1)求证:DE⊥平面BCE ; (2)求证:AF∥平面BDE. [证明](1)∵BC⊥侧面CDD 1C 1,DE侧面CDD 1C 1,∴DE⊥BC.在△CDE 中,CD =2a ,CE =DE =2a ,则有CD 2=DE 2+CE 2,∴∠D EC =90°,∴DE⊥EC. 又∵BC∩EC=C ,∴DE⊥平面BCE.(2)连接EF ,A 1C 1,设AC 交BD 于点O ,连接EO , ∵EF 12A 1C 1,AO 12A 1C 1, ∴EFAO ,∴四边形AOEF 是平行四边形, ∴AF∥OE. 又∵OE平面BDE ,AF平面BDE ,∴AF∥平面BDE.用综合法证明不等式[探究问题]1.综合法证明不等式的主要依据有哪些? [提示] (1)a 2≥0(a∈R).(2)a 2+b 2≥2ab,⎝ ⎛⎭⎪⎫a +b 22≥ab,a 2+b 2≥(a +b )22.(3)a ,b∈(0,+∞),则a +b 2≥ab ,特别地,b a +ab ≥2.(4)a -b≥0⇔a≥b;a -b≤0⇔a≤b. (5)a 2+b 2+c 2≥ab+bc +ca. (6)b a +ab≥2(a,b 同号,即ab>0).(7)||a|-|b||≤|a+b|≤|a|+|b|(a ,b∈R).左边等号成立的条件是ab≤0,右边等号成立的条件是ab≥0. 2.使用基本不等式证明不等式时,应该注意什么?请举例说明.[提示] 使用基本不等式时,要注意①“一正、二定、三相等”;②不等式的方向性;③不等式的适度,如下例.[题] 已知,a ,b∈(0,+∞),求证:a b +b a≥a + b.若直接使用基本不等式,a b +b a≥2ab ·b a=24ab ,而a +b ≥24ab.从而达不到证明的目的,没掌握好“度”,正确的证法应该是这样的:[证明] ∵a>0,b>0, ∴ab +b ≥2a ,ba +a ≥2b , ∴a b +b +ba +a ≥2a +2b , 即ab +ba≥a + b. 【例3】 已知x>0,y>0,x +y =1,求证:⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥9.思路探究:解答本题可由已知条件出发,结合基本不等式利用综合法证明. [证明] 法一:因为x>0,y>0,1=x +y≥2xy , 所以xy≤14.所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =1+1x +1y +1xy =1+x +y xy +1xy =1+2xy ≥1+8=9.法二:因为1=x +y ,所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =5+2⎝ ⎛⎭⎪⎫x y +y x . 又因为x>0,y>0,所以x y +yx ≥2,当且仅当x =y 时,取“=”. 所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥5+2×2=9.1.本例条件不变,求证:1x +1y≥4.[证明] 法一:因为x ,y∈(0,+∞),且x +y =1, 所以x +y≥2xy ,当且仅当x =y 时,取“=”, 所以xy ≤12,即xy≤14,所以1x +1y =x +y xy =1xy ≥4.法二:因为x ,y∈(0,+∞),所以x +y≥2xy>0,当且仅当x =y 时,取“=”, 1x +1y≥21xy>0, 当且仅当1x =1y时,取“=”,所以(x +y)⎝ ⎛⎭⎪⎫1x +1y ≥4. 又x +y =1,所以1x +1y≥4.法三:因为x ,y∈(0,+∞),所以1x +1y =x +y x +x +yy=1+y x +xy+1≥2+2x y ·yx=4, 当且仅当x =y 时,取“=”.2.把本例条件改为“a>0,b>0,c>0”且a +b +c =1,求证:ab +bc +ac≤13.[证明] ∵a>0,b>0,c>0, ∴a 2+b 2≥2ab, b 2+c 2≥2bc, a 2+c 2≥2ac.∴a 2+b 2+c 2≥ab+bc +ca.∴(a+b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥3(ab+bc +ac). 又∵a+b +c =1, ∴ab+bc +ac≤13.综合法的证明步骤1.分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等.2.转化条件,组织过程:将条件合理转化,书写出严密的证明过程.特别地,根据题目特点选取合适的证法可以简化解题过程.1.综合法的基本思路综合法的基本思路是“由因导果”,由已知走向求证,即从数学命题的已知条件出发,经过逐步的逻辑推理,最后得到待证结论.其逻辑依据是三段论式的演绎推理方法.2.综合法的特点(1)从“已知”看“可知”,逐步推向“未知”,由因导果,逐步推理,寻找它的必要条件.(2)证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,易于表达推理的思维轨迹.(3)由综合法证明命题“若A,则D”的思考过程如图所示:1.判断(正确的打“√”,错误的打“×”)(1)综合法是由因导果的顺推证法.( )(2)综合法证明的依据是三段论.( )(3)综合法的推理过程实际上是寻找它的必要条件.( )(1)√(2)√(3)√[(1)正确.由综合法的定义可知该说法正确.(2)正确.综合法的逻辑依据是三段论.(3)正确.综合法从“已知”看“可知”,逐步推出“未知”,其逐步推理实际上是寻找它的必要条件.]2.已知直线l,m,平面α,β,且l⊥α,mβ,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β.其中正确的命题的个数是( )A.1 B.2C.3 D.4B[若l⊥α,α∥β,则l⊥β,又mβ,所以l⊥m,①正确;若l⊥α,m β,l⊥m,α与β可能相交,②不正确; 若l⊥α,mβ,α⊥β,l 与m 可能平行,③不正确;若l⊥α,l∥m,则m⊥α,又m β,所以α⊥β,④正确.]3.已知p =a +1a -2(a>2),q =2-a 2+4a -2(a>2),则p 与q 的大小关系是________. p>q [p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q<22=4≤p.]4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3,…).求证:(1)数列⎩⎨⎧⎭⎬⎫S n n 为等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=n +2n S n ,而a n +1=S n +1-S n ,∴n +2nS n =S n +1-S n , ∴S n +1=2(n +1)n S n ,∴S n +1n +1S n n =2,又∵a 1=1, ∴S 1=1,∴S 11=1,∴数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公比为2的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫S n n 的公比为2,而a n =n +1n -1S n -1(n≥2),∴S n +1n +1=4S n -1n -1=4n -1·a n (n -1)n +1, ∴S n +1=4a n .2.2 分析法学 习 目 标核 心 素 养1.了解分析法的思考过程、特点.(重点) 2.会用分析法证明数学命题.(难点)1.通过对分析法概念和思维过程的理解的学习,培养逻辑推理的核心素养. 2.通过对分析法应用的学习,提升逻辑推理和数学建模的核心素养.1.分析法的定义从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等,这种思维方法称为分析法.2.分析法证明的思维过程用Q 表示要证明的结论,则分析法的思维过程可用框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件1.用分析法证明:要使①A>B,只需使②C<D.这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件B [根据分析法的特点,寻找的是充分条件,∴②是①的充分条件,①是②的必要条件.] 2.欲证2-3<6-7,只需证( ) A .(2+7)2<(3+6)2B .(2-6)2<(3-7)2C .(2-3)2<(6-7)2D .(2-3-6)2<(-7)2A [欲证2-3<6-7,只需证2+7<3+6,只需证(2+7)2<(3+6)2.]3.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab,只需证a 2+b 2≥2ab,也就是证________,即证________,由于________显然成立,因此原不等式成立.[答案] a 2+b 2-2ab≥0 (a -b)2≥0 (a -b)2≥0应用分析法证明不等式【例1】 已知a>b>0,求证:(a -b )28a <a +b 2-ab<(a -b )28b.思路探究:本题用综合法不易解决,由于变形后均为平方式,因此要先将式子两边同时开方,再找出使式子成立的充分条件.[证明] 要证(a -b )28a <a +b 2-ab<(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b .∵a>b >0,∴同时除以(a -b )22,得(a +b )24a <1<(a +b )24b ,同时开方,得a +b 2a<1<a +b 2b,只需证a +b<2a ,且a +b>2b , 即证b<a ,即证b<a. ∵a>b>0,∴原不等式成立, 即(a -b )28a <a +b 2-ab<(a -b )28b.分析法证题思维过程1.分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件为已知(或已证)的不等式.2.分析法证明数学命题的过程是逆向思维,即结论⇐…⇐…⇐…已知,因此,在叙述过程中,“要证”“只需证”“即证”等词语必不可少,否则会出现错误.1.已知a>0,求证:a 2+1a 2-2≥a+1a-2.[证明] 要证a 2+1a 2-2≥a+1a-2,只需证a 2+1a 2+2≥a+1a +2,即证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a+22,即a 2+1a 2+4a 2+1a 2+4≥a 2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +4,只需证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a ,只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2.上述不等式显然成立,故原不等式成立.用分析法证明其他问题【例2】 设函数f(x)=ax 2+bx +c(a≠0),若函数y =f(x +1)的图象与f(x)的图象关于y 轴对称,求证:f ⎝ ⎛⎭⎪⎫x +12为偶函数. 思路探究:由于已知条件较为复杂,且不易与要证明的结论联系,故可从要证明的结论出发,利用分析法,从函数图象的对称轴找到证明的突破口.[证明] 要证函数f ⎝ ⎛⎭⎪⎫x +12为偶函数,只需证明其对称轴为直线x =0, 而f ⎝ ⎛⎭⎪⎫x +12=ax 2+(a +b)x +14a +12b +c ,其对称轴为x =-a +b 2a ,因此只需证-a +b2a =0,即只需证a =-b ,又f(x +1)=ax 2+(2a +b)x +a +b +c ,其对称轴为x =-2a +b 2a ,f(x)的对称轴为x =-b 2a ,由已知得x =-2a +b 2a 与x =-b2a 关于y 轴对称,所以-2a +b 2a =-⎝ ⎛⎭⎪⎫-b 2a ,得a =-b 成立,故f ⎝ ⎛⎭⎪⎫x +12为偶函数.分析法证题思路1.分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接或证明过程中所需要用的知识不太明确、具体时,往往采用分析法.2.分析法的思路与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知,即已知条件、已经学过的定义、定理、公理、公式、法则等.2.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).[证明] 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12.∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.综合法与分析法的综合应用1.综合法与分析法的推理过程是合情推理还是演绎推理?[提示] 综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?[提示] 综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因.【例3】 在某两个正数x ,y 之间,若插入一个数a ,则能使x ,a ,y 成等差数列;若插入两个数b ,c ,则能使x ,b ,c ,y 成等比数列,求证:(a +1)2≥(b +1)(c +1).思路探究:可用分析法找途径,用综合法由条件顺次推理,易于使条件与结论联系起来. [证明] 由已知条件得⎩⎪⎨⎪⎧2a =x +y ,b 2=cx ,c 2=by ,消去x ,y 得2a =b 2c +c2b ,且a>0,b>0,c>0.要证(a +1)2≥(b+1)(c +1), 只需证a +1≥(b +1)(c +1), 因(b +1)(c +1)≤(b +1)+(c +1)2,只需证a +1≥b +1+c +12,即证2a≥b+c.由于2a =b 2c +c2b ,故只需证b 2c +c2b≥b+c ,只需证b 3+c 3=(b +c)(b 2+c 2-bc)≥(b+c)bc , 即证b 2+c 2-bc≥bc,即证(b -c)2≥0.因为上式显然成立,所以(a +1)2≥(b+1)(c +1).分析综合法特点综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.3.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且三个内角A ,B ,C 构成等差数列.求证:1a +b +1b +c =3a +b +c.[证明] 要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,即证c a +b +a b +c=1,只需证c(b +c)+a(a +b)=(a +b)(b +c), 只需证c 2+a 2=ac +b 2. ∵A,B ,C 成等差数列, ∴2B=A +C ,又A +B +C =180°,∴B=60°. ∵c 2+a 2-b 2=2accos B , ∴c 2+a 2-b 2=ac , ∴c 2+a 2=ac +b 2, ∴1a +b +1b +c =3a +b +c成立.1.综合法与分析法的区别与联系区别:综合法 分析法 推理方向 顺推,由因导果 逆推,执果索因 解题思路 探路较难,易生枝节 容易探路, 利于思考(优点) 表述形式 形式简洁,条理清晰(优点)叙述烦琐,易出错 思考的 侧重点侧重于已知条 件提供的信息侧重于结论 提供的信息联系:分析法便于我们去寻找证明思路,而综合法便于证明过程的叙述,两种方法各有所长,因而在解决问题时,常先用分析法寻找解题思路,再用综合法有条理地表达证明过程,将两种方法结合起来运用2.分析综合法常采用同时从已知和结论出发,用综合法拓展条件,用分析法转化结论,找出已知与结论的连结点,从而构建出证明的有效路径.上面的思维模式可概括为下图:1.判断(正确的打“√”,错误的打“×”) (1)分析法就是从结论推向已知.( )(2)分析法的推理过程要比综合法优越. ( ) (3)并不是所有证明的题目都可使用分析法证明.( )(1)× (2)× (3)√ [(1)错误.分析法又叫逆推证法,但不是从结论推向已知,而是寻找使结论成立的充分条件的过程.(2)错误.分析法和综合法各有优缺点.(3)正确.一般用综合法证明的题目均可用分析法证明,但并不是所有的证明题都可使用分析法证明.] 2.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系是( ) A .P>Q B .P =QC .P<QD .由a 的取值决定C [当a =1时,P =1+22,Q =2+5,P<Q ,故猜想当a≥0时,P<Q.证明如下:要证P<Q ,只需证P 2<Q 2,只需证2a +7+2a (a +7)<2a +7+2(a +3)(a +4),即证a 2+7a<a 2+7a +12,只需证0<12.∵0<12成立,∴P<Q 成立.]3.设a>0,b>0,c>0,若a +b +c =1,则1a +1b +1c 的最小值为________.9 [因为a +b +c =1,且a>0,b>0,c>0,所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +a b +c b +b c +a c +ca ≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+6=9.当且仅当a =b =c 时等号成立.]4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan A cos B +tan Bcos A .证明:a +b =2c. [证明] 由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos Acos B +sin B cos Acos B,化简得2(sin Acos B +sin Bcos A)=sin A +sin B ,即2sin(A +B)=sin A +sin B , 因为A +B +C =π,所以sin(A +B)=sin(π-C)=sin C. 从而sin A +sin B =2sin C. 由正弦定理得a +b =2c. 命题得证.。

2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2

2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2

2.2 直接证明与间接证明第1课时直接证明1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式本题条件已知定义已知公理已知定理…?本题结论.2.综合法和分析法直接证明定义推证过程综合法从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件?…?…?结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法结论?…?…?已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例1] 已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2≥1 3 .[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论.[精解详析] ∵a2+19≥2a3,b2+19≥2b3,c2+19≥2c3,∴a2+19+b2+19+c2+19≥23a+23b+23c=23(a+b+c)=23.∴a2+b2+c2≥1 3 .[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a,b,c为不全相等的正数,且abc=1,求证:1a+1b+1c>a+b+c.证明:∵a>0,b>0,c>0,且abc=1,∴1a+1b+1c=bc+ca+ab.又bc+ca≥2bc·ca=2abc2=2c,同理bc+ab≥2b,ca+ab≥2a.∵a、b、c不全相等.∴上述三个不等式中的“=”不能同时成立.∴2(bc+ca+ab)>2(c+a+b),即bc+ca+ab>a+b+c,故1a+1b+1c>a+b+c.2.(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n),因为a⊥b,所以a·b=0,又因为aπ,n⊥π,所以a·n=0,故a·c=0,从而a⊥c.法二:如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.∵PO⊥π,aπ,∴直线PO⊥a.又a⊥b,b平面PAO,PO∩b=P,∴a⊥平面PAO.又c平面PAO,∴a⊥c.(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c 是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.[例2] 已知a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明(a-b)28a<a+b2-ab<(a-b)28b成立,只需证(a-b)24a<a+b-2ab<(a-b)24b成立,即证(a-b)24a<(a-b)2<(a-b)24b成立.只需证a-b2a<a-b<a-b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥ a+b.证明:要证ab+ba≥ a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥ a+b.[例3] 已知0<a≤1,0<b≤1,0<c≤1,求证:1+ab+bc+caa+b+c+abc≥1.[思路点拨] 因为0<a≤1,0<b≤1,0<c≤1,所以要证明1+ab+bc+caa+b+c+abc≥1成立,可转化为证明1+ab+bc+ca≥a+b+c+abc成立.[精解详析] ∵a>0,b>0,c>0,∴要证1+ab+bc+caa+b+c+abc≥1,只需证1+ab+bc+ca≥a+b+c+abc,即证1+ab+bc+ca-(a+b+c+abc)≥0.∵1+ab+bc+ca-(a+b+c+abc)=(1-a)+b(a-1)+c(a-1)+bc(1-a)=(1-a)(1-b-c+bc)=(1-a)(1-b)(1-c),又a≤1,b≤1,c≤1,∴(1-a)(1-b)(1-c)≥0,∴1+ab+bc+ca-(a+b+c+abc)≥0成立,即证明了1+ab+bc+caa+b+c+abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC中,三个内角A、B、C成等差数列.求证:1a+b+1b+c=3a+b+c.证明:要证1a+b+1b+c=3a+b+c,只需证a+b+ca+b+a+b+cb+c=3,即ca+b+ab+c=1,只需证c(b+c)+a(a+b)(a+b)(b+c)=1,即a2+c2+ab+bcb2+ab+ac+bc=1.下面证明:a2+c2+ab+bcb2+ab+ac+bc=1.∵A+C=2B,A+B+C=180°,∴B=60°. ∴b2=a2+c2-ac.∴a2+c2+ab+bcb2+ab+ac+bc=a2+c2+ab+bca2+c2-ac+ab+ac+bc=1.故原等式成立.6.若a,b,c是不全相等的正数.求证:lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.证明:要证lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c成立,即证lg a+b2·b+c2·c+a2>lg(abc)成立,只需证a+b2·b+c2·c+a2>abc成立,∵a+b2≥ab>0,b+c2≥bc>0,c+a2≥ca>0,∴a+b2·b+c2·c+a2≥abc>0,(*)又∵a,b,c是不全相等的正数,∴(*)式等号不成立,∴原不等式成立.1.综合法:由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法:执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P2;当由P1可以推出P2时,结论得证.一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是____________________.解析:a a+b b>a b+b a?a a-a b>b a-b ba(a-b)>b(a-b)?(a-b)(a-b)>0(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S在底面ABC上的射影为点O,∴SO⊥平面ABC,连接AO,BO,∵SA⊥BC,SO⊥BC,∴BC⊥平面SAO,∴BC⊥AO.同理可证,AC⊥BO.∴O为△ABC的垂心.答案:垂心5.已知函数f(x)=10x,a>0,b>0,A=f a+b2,B=f()ab,C=f2aba+b,则A,B,C的大小关系为____________________.解析:由a+b2≥ab≥2aba+b,又f(x)=10x在R上是单调增函数,所以fa+b2≥f()ab≥f 2aba+b,即A≥B≥C.答案:A≥B≥C二、解答题6.已知函数f(x)=log2(x+2),a,b,c是两两不相等的正数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.解:f(a)+f(c)>2f(b).证明如下:因为a,b,c是两两不相等的正数,所以a+c>2ac.因为b2=ac,所以ac+2(a+c)>b2+4b,即ac+2(a+c)+4>b2+4b+4,从而(a+2)(c+2)>(b+2)2.因为f(x)=log2(x+2)是增函数,所以log2(a+2)(c+2)>log2(b+2)2,即log2(a+2)+log2(c+2)>2log2(b+2).故f(a)+f(c)>2f(b).7.已知a>0,用分析法证明:a2+1a2-2>a+1a-2.证明:要证a2+1a2-2≥a+1a-2,只需证a2+1a2+2≥a+1a+ 2.因为a>0,故只需证a2+1a2+22≥a+1a+22,即a2+1a2+4 a2+1a2+4≥a2+2+1a2+2 2a+1a+2,从而只需证2a2+1a2≥2a+1a,只需证4a2+1a2≥2a2+2+1a2,即a2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*).证明:由c=0,得b n=S nn=a+n-12d.又b1,b2,b4成等比数列,所以b22=b1b4,即a+d22=a a+32d,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.第2课时间接证明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.若a、b、c都是奇数,则不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p则q”的过程可以用下面的框图表示:肯定条件p否定结论q→导致逻辑矛盾→“p且q”为假→“若p则q”为真(2)反证法证明命题“若p则q”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1?平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P?平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P?平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:原结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在)至少有两个至多有n-1个至少有n+1个6.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .证明:假设(1-a)b,(1-b)c,(1-c)a都大于1 4 .∵a,b,c∈(0,1),∴1-a>0,1-b>0,1-c>0,∴(1-a)+b2≥(1-a)b>14=12.同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .7.用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.证明:假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)<f(β).这与f(α)=0=f(β)矛盾.所以方程f(x)=0在区间 [a,b]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题;(3)“否定性”命题;(4)“惟一性”命题;(5)“必然性”命题;(6)“至多”“至少”类命题;(7)涉及“无限”结论的命题.2.用反证法证明问题的三个注意点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“1+ba,1+ab中至多有一个小于2”的反设为__________________.答案:1+ba,1+ab都小于 22.(山东高考改编)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根.答案:方程x3+ax+b=0没有实根3.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为____________________.解析:“a,b全为0”即是“a=0且b=0”,因此它的反设为“a≠0或b≠0”.答案:a,b不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为______________________.解析:对“且”的否定应为“或”,所以“x≠a且x≠b”的否定应为“x=a或x=b”.答案:x=a或x=b二、解答题6.(陕西高考)设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.解:(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n=a1(1-q n)1-q,∴S n=na1,q=1,a1(1-q n)1-q,q≠1.(2)证明:假设{a n+1}是等比数列,则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.7.设f(x)=x2+ax+b,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1 2 .证明:假设|f(1)|<12,|f(2)|<12,|f(3)|<12,则有-12<1+a+b<12,-12<4+2a+b<12,-12<9+3a+b<12.于是有-32<a+b<-12,①-92<2a+b<-72,②-192<3a+b<-172. ③由①、②得-4<a<-2,④由②、③得-6<a<-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P?直线a.求证:过点P和直线a平行的直线b有且只有一条.证明:(1)存在性:∵P?直线a,∴点P和直线a确定一个平面α.由平面几何知识知:在平面α内过点P能作出一条直线与直线a平行,故直线b存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平形.。

综合法与分析法学案

综合法与分析法学案

综合法和分析法一、教学过程:(一)学习目标1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2. 会用综合法证明问题;了解综合法的思考过程.3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.(二)学习过程1.课前准备(预习教材P 45~ P 47,找出疑惑之处)复习1:两类基本的证明方法: 和 .复习2:直接证明的两中方法: 和 .2.新课导学1)学习探究探究任务一:综合法的应用问题:已知,0a b >,求证:2222()()4a b c b c a abc +++≥.新知:一般地,利用 ,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法. 反思:框图表示:要点:顺推证法;由因导果. 2)典型例题例1已知,,a b c R +∈,1a b c ++=,求证:1119a b c ++≥变式:已知,,∈,1a b c R+++=,求证:111a b c---≥.(1)(1)(1)8a b c小结:用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明.例2 在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列. 求证:为△ABC等边三角形.变式:设在四面体P ABC -中,90,,ABC PA PB PC ∠=︒==D 是AC 的中点.求证:PD 垂直于ABC ∆所在的平面.小结:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来.3)动手试试练1. 求证:对于任意角θ,44cos sin cos2θθθ-=练2. ,A B 为锐角,且tan tan tan A B A B +,求证:60A B +=.3.总结提升1)学习小结综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.2)知识拓展综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题,综合法是一种由因索果的证明方法.4.学习评价1)自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差2) 当堂检测(时量:5分钟 满分:10分)计分:(1) 已知22,,"1""1"x y R xy x y ∈≤+≤则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2) 如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( )A .5481a a a a >B .5481a a a a <C .5481a a a a +>+D .5481a a a a =(3) 设23451111log 11log 11log 11log 11P =+++,则( ) A .01P << B .12P <<C .23P <<D .34P <<(4)若关于x 的不等式22133(2)(2)22x x k k k k --+<-+的解集为1(,)2+∞,则k 的范围是____ . (5) 已知b a ,是不相等的正数,x y ==,则,x y 的大小关系是_________.5. 课后作业1)已知a ,b ,c 是全不相等的正实数,求证:3b c a a c b a b c a b c +-+-+-++>2)在△ABC 中, 证明:2222112cos 2cos b a b B a A -=-。

《金新学案》高考数学总复习 6

《金新学案》高考数学总复习 6

2.用反证法证明不等式要把握三点: (1)必须先否定结论,既肯定结论的反面.当结论的反面呈现多样性时,必 须罗列出各种可能结论,缺少任何一种可能,反证法都是不完整的. (2)反证法必须从否定的结论开始进行推理,即应把结论的反面作为条件, 且必须根据这一条件进行推证;否则,仅否定结论,不从结论的反面出发进行 推理,就不是反证法. (3)推导出的矛盾可能是多种多样,有的与已知矛盾,有的与假设矛盾,有 的与已知事实相矛盾,等等.推出的矛盾必须是明显的.
设a,b均为正数,且a≠b,求证:a3+b3>a2b+ab2. 证明: 证法一:(分析法) 要证a3+b3>a2b+ab2成立, 只需证(a+b)(a2-ab+b2)>ab(a+b)成立. 又因为a+b>0,
只需证a2-ab+b2>ab成立. 只需证a2-2ab+b2>0成立. 即需证(a-b)2>0成立. 而依题设a≠b,则(a-b)2>0显然成立,由此命题得证. 证法二:(综合法) a≠b a-b≠0 (a-b)2>0 a2-2ab+b2>0
通过对近三年高考试题的统计分析,整个命题过程中有以下的规律: 1.考查热点:不等式的证明在高考中以函数、数列、解析几何为载体进 行命题. 2.考查形式:多在解答题中出现. 3.考查角度: 对不等式的证明的考查.一般把不等式的证明作为综合题中的一问出现, 重点考查逻辑推理能力.常考查不等式的证明方法是比较法、综合法、分析 法,有时也会涉及反证法和放缩法.
又AB 平面MBEN,EN为平面MBEN与平面DCEF的交线, 所以AB∥EN. 又AB∥CD∥EF, 所以EN∥EF,这与EF∩EF=E矛盾,故假设不成立. 所以ME与BN不共面,它们是异面直线.
练规范、练技能、练速度Fra bibliotek4.命题趋势:高考还将以与其他数学知识交汇为主,渗透不等式 的证明方法,考查学生解决综合试题的能力.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1综合法和分析法
学习目标:(1)知识与能力:了解直接证明的两种基本方法:分析法和综合法;(2)过程与方
法:了解分析法和综合法的思考过程、特点。

(3)情感与价值观:充分体会逻辑性的严谨、周密。

学习重点:会用综合法证明问题;了解综合法的思考过程.
学习难点:根据问题的特点,结合综合法的思考过程、特点,选择适当证明方法.
学生探究过程:
合情推理分__________和__________,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------__________与__________。

例1. 已知:c b a ,,是不全相等的正数,
求证: ()()()abc b a c a c b c b a 6222222>+++++
证明:
1、综合法的定义:
一般的,利用________和某些数学______,_______,_______等经过一系列的推理论证,最后导出所要证明的结论成立。

(1)综合法证明逻辑关系是:
P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论
()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒
(2)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。

练习:1.在锐角三角形中,求证:.cos cos cos sin sin sin C B A C B A ++>++
分析:锐角三角形的各角均为锐角,即两角之和大于︒90,于是想到构造角的不等式,联想三角函数的单调性,进而转化为三角函数不等式。

例2、在△ABC 中,三个内角A,B,C 的对边分别为,,a b c ,且A,B,C 成等差数列, ,,a b c 成等比数列,求证△ABC 为等边三角形.
分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C; A , B , C 为△ABC 的内角,这是一个隐含条件,明确表示出来是A + B + C =π; a , b ,c 成等比数列,转化为符号语言就是2
b a
c =.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.
证明:由 A, B, C 成等差数列,有___________. (1)
因为A,B,C 为△ABC 的内角,所以A + B + C=π. (2)
由(1)(2),得B=_______.
由a, b ,c 成等比数列,有_______________. (3)
由余弦定理及(3),可得
_______________________________________. (4)
再由(4),得____________________.
即, ________________
因此_________. 从而__________.
所以__________________________
2、分析法定义:一般的,从_______________出发,逐步寻求是它成立的____________,直到最后,把要证明的结论归结为判定一个明显成立的条件,这个条件可以是:__________, ________,________,________,__________。

(1)用分析法证明不等式的逻辑关系是:
()()1121().....()n n n Q P P P P P P P -⇐←⇐←⇐←⇐
(2)分析法的思维特点是:执果索因,即从结论出发,步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法
例3、求证5273<+ 证明:因为5273和+都是正数,所以为了证明5273<+
只需证明____________________________
展开得 _____________________________
即 ______________________
因为______________成立,
所以_____________________________成立 即证明了5273<+
练习:1、已知233=+n m ,求证2≤+n m 。

分析:观察条件和结论,不具备使用基本不等式的特点,用综合法证比较困难,可以考虑用分析法,探究思路推正结论。

证明:
2、若a 、b 、c 是不全相等的正数, 求证:c b a a
c c
b b
a lg lg lg 2lg 2lg 2lg ++>+++++
巩固练习:P42—练习1、2
课堂小结:
作业:P44—A 组1、2。

相关文档
最新文档