利用比例尺求图上距离或实际距离
图上距离与实际距离
2、成比例线段 在四条线段中,如果两条线段的比等 于另外两条线段的比,那么称这四条线段 成比例线段. a c 符号语言:若 ,则线段a、 b d b、c、d成比例,反之,若则线段a、b、c、
a c d成比例, 则 . b d 注意:
(1)成比例线段是4条线段之间的关系. (2)线段a、b、c、d成比例亦可说a、b、 c、d是成比例线段.
小结:比例中项,若是线段,则 3 例3、已知 b 5, ab ab 求 和 的值. b b
可以采用设k法
AD AE 5 AB CE 例4、已知如图, ,求 , 的值; BD EC 2 BD AC
A
D B
E C
例5、已知a:b:c=3:2:4,求: 3a 2b c (1) b (2)2a+3b-c=24,求:3a-2b-c.
例3、已知a、b、c、d是成比例线段,其 中a=3cm,b=2cm,c=6cm,求线段d的 长.若a、c、d、b是成比例线段,其余条 件不变,求d长.
小结:成比例的四条线段是有顺序的如: 若 a c ,则a、b、c、d是成比例线段 b d 若 c d ,则c、b、d、a是成比例线段 b a
例1、甲、乙两城市之间的距离为920km,画 在地图上的距离为92cm,求图上距离与实际 距离的比(比例尺).
小结: ①线段的比即长度的比,单位必须一致; ②线段的长总是一个正数,故线段比不可能 是负数和零;
在比例尺为1:38000的城市交通地图 上,某条道路的长为7cm,求这条道 路的实际长度。
2、若a=12,b=3,那么a、b的比例 中项c=_____
3、若b是a、c的比例中项,且a=2cm,
c=8cm,b=____
分层训练
1、兴华机械厂要加工一种精密零件,该零 件长30mm,现要把它放大画在图纸上,若 按照比例尺为10:1,那么该零件在图纸上 有____cm 2、线段AB=0.2cm,CD=10m,则AB:CD= _____ 3、若a、b、d、c是成比例线段,其中a= 5cm,b=3cm,c=2cm,则线段d=___ __cm
比例尺的应用(求实际距离)
如果地图A上的1单位长度表示实际上的100米,而地图B的比例尺为1:200,则地图A上 实际距离为100米时,在地图B上表示为50厘米。
05
比例尺的精度与误差
比例尺的精度
01
比例尺精度决定了地图上表示的距离与实际距 离之间的误差范围。
02
比例尺越小,精度越高,表示的实际距离越准 确。
03
地图制作过程中,需要考虑比例尺与地图用途 的匹配度,以确保地图的实用性。
比例尺误差的消除与减小过采用更先进的测量技术和设备,可以减小地图制作过程中
的测量误差。
选择合适的投影方式
02
根据地图用途和区域特点,选择合适的投影方式,可以减小投
影变换带来的误差。
加强地图校准和检验
03
通过加强地图校准和检验,可以及时发现并纠正地图中的误差,
提高地图的精度。
比例尺的作用
1 2
3
方便测量和估算实际距离
通过比例尺,我们可以根据图上的距离计算出实际的距离, 从而进行测量和估算。
提高地图的可读性和准确性
比例尺可以帮助我们更好地理解地图上的信息,并提高地图 的可读性和准确性。
在工程设计和建设中有广泛应用
在工程设计和建设中,比例尺可以帮助设计师和工程师更好 地理解和规划实际的空间和尺寸,提高设计的准确性和可行 性。
举例
如果地图上的1单位长度表示实际上的100米,而地图的比例尺为1:1000,则实际距离为100米时,在地 图上表示为1厘米。
不同地图之间的换算
地图换算
当需要将一个地图上的距离转换为另一个地图上的距离时,可以使用比例尺进行换算。 假设两个地图的比例尺分别为1:M和1:N,则换算公式为:新距离 = 旧距离 × (N/M)。
实际距离=比例尺图上距离实际距离=比例尺宽
我校新建一块长方形草坪,长50米,宽30米。 把这块草坪按一定的比例缩小,画出的平 面图 长5厘米,宽3厘米。
写出草坪长的图上距离和实际距离的比。
宽
5厘米
3厘米 比例尺 1﹕1000
图上距离﹕实际距离 = 比例尺
图上距离 实际距离 =
比例尺
学校草坪平面图 1﹕1000
比例尺1﹕1000 表示
1
图上距离是实际距离的( 1000 )。
实际距离是图上距离的( 1000 )倍。
图上1厘米的距离表示实际距离(1000厘米 )。
10米
说出下面比例尺的意义。
图上1厘米等于 实际22千米
图上1厘米等于 实际22米
荷花村到杏树村的实际距离是10千米。量出
这两个村的图上距离,并算出这幅图的比例
尺。
0 ( 4 ) ( 8 ) (12) (16)千米
一、选择:根据提示选择合适的比例尺
①1︰500000
② 1︰5000
③1︰50000000
④ 1︰5000000
图上距离是实际距离的五百万分之一。 (④ )
图上1厘米表示实际距离5000米。 ( ① ) 实际距离是图上距离的5000倍。 ( ② )
三、判断
(1)比例尺就是图上距离与实际距离的比。√ ( )
按照国家规定的标准、图示和
比例尺绘制的地图叫做国家基本比 例尺地图。我国的国家基本比例尺 地图的比例尺有以下几种: 1:500、1:1000、1:2000、1:5000、 1 :10000、1:25000、1:50000、 1:100000、1:200000、1:500000、 1:1000000
(2) 0 400 800 1200 1600米
课题:求图上距离或实际距离
(4)汇报,交流。
(5)为什么不用1:10这个比例尺呢?(这张纸画不下。)
所以比例尺要根据自己纸的长和宽来决定,看自己的纸有多长多宽的距离来表示这个物体的长和宽(注意要留足一定的空白的地方,不至于教室的长和宽刚好画在纸的长边和宽边上。
(5)提醒学生:要注明比例尺和标出图上的距离。
(1)学生独立完成,请一生板演。
(2)校对,反馈。
(二)求图上距离
1、看来同学们能利用图上距离和比例尺,求出实际距离;你能根据实际距离和比例尺,求出图上距离吗?
2、出示:篮球场的宽是15米,在1:500的比例尺平面图上,它的宽是多少?
(1)学生独立完成,请一生板演,讲解思路,其间可以提出疑难问题。
(2)校对,反馈。
(4)师适时总结:这位同学利用实际距离=图上距离÷比例尺的关系式来解答,而这位同学利用图上距离和实际距离成正比例关系,用解正比例来解。思路都非常好。你喜欢哪一种?学生谈完后,老师也说说自己的喜欢方法。
3、试一试:出示:在一幅比例尺是1:5000000的地图上,量得上海到杭州的距离是3.4厘米。上海到杭州的实际距离是多少?
2、使学生能综合运用比例尺知识,解决有关问题。
技能目标
进一步了解所学知识与现实生活的联系,发展学生的应用意识,培养学生解决问题的能力。
情感目标
让学生在探索知识的过程中获得成功体验和价值体验,进一步激发学生学习数学的兴趣,坚定学生学会数学的信心。
教学重点
求图上距离和实际距离
教学难点
掌握用解正比例的方法来解答这类问题。
教学关键
用解正比例的方法求图上距离或实际距离。
教学方法
合作探究法、引导发现法
比例尺的应用(求图上距离)
作业
按8:1的比例尺画在图纸上,长和宽各
应画多长?
练1
小军量得公园一个圆形花坛的周长是
157米,他想把它画在平面图上,请你
帮帮画一画。(比例尺根据纸的大小和 圆规的大小确定)
练2
一幅图的线段比例尺是:0
80 160 240 千米
甲乙两城在这幅地图上相距15厘米,两 城间的实际距离是多少千米?如果把甲 乙两城画在另一幅比例尺是 1 ︰10000000的地图上,应画 多少厘米?
答:应画40厘米。
一张地图的比例尺是1︰200000, 从甲地到乙地的距离是60千米,求
图上距离是多少厘米。
试1
英华小学有一块长120米、宽80米 的长方形操场,画在比例尺为1 : 4000的平面图上,长和宽各应画多 少厘米?图上面积是多少平方厘米?
试2
一个长方形机件长4.5毫米,宽2.4毫米,
复
例
一条跑道长200米,如果用1:500的比例尺画 在图纸上,应画多长? 算术方法
200米=20000厘米 实际距离×比例尺=图上距离
1 20000× =40(厘米) 500
列方程法
解:设应画χ厘米。 200米=20000厘米 图上距离︰实际距离=比例尺 χ︰20000=1︰500 500χ=20000 ×1 χ=20000÷500 χ=40
( 图上距离 ) =比例尺 ( 实际距离 ) ( =实际距离 ( 图上距离)÷ 比例尺 ) ( =图上距离 实际距离)× 比例尺 ) (
在一幅地图上,测得甲、乙两地的图上距离是13厘米,已知甲 乙两地的实际距离是780千米。 (1)求这幅图的比例尺。 (2)在这幅地图上量得A、B两城的图上距离是5厘米,求A、 B两城的实际距离。 (1)比例尺: 13厘米︰780千米 =13厘米︰78000000厘米 =1 ︰6000000 (2)实际距离 解:设A、B两城的实际 距离是χ厘米。 5 ︰ χ=1 ︰6000000 1χ=5×6000000 (2)实际距离: 1 χ=30000000 5 ÷ 6000000 =30000000(厘米) 30000000厘米=300千米 =300千米 答:这幅图的比例尺是1 ︰6000000,A、B两城 的实际距离是300千米。
比例尺求实际距离的三种方法
比例尺求实际距离的三种方法
嘿,朋友们!今天咱来聊聊比例尺求实际距离的三种超棒方法呀!
第一种,那就是直接用图上距离除以比例尺啦!就比如啊,你有张地图,图上两地之间是 5 厘米,比例尺是 1:10000,那实际距离不就是
5÷(1/10000)=50000 厘米,也就是 500 米嘛!
第二种呢,用比例关系来解决!就好像你做个数学题,知道图上距离和比例尺的比例,那实际距离不也就水到渠成能算出来啦!打个比方,地图上量得是 3 厘米,比例尺是 1:5000,那不就是设实际距离为 x 厘米,
3:x=1:5000,x 不就等于 15000 厘米,即 150 米嘛!
第三种,嘿嘿,那就是利用等量代换的思想哦!这就好比你玩拼图,换到对的位置就恍然大悟啦!好比有个图形,通过一些已知条件推出图上距离和比例尺的关系,那实际距离不就能轻松找到啦!比如说,已知一些相关信息推出图上距离是 4 厘米,比例尺是 1:8000,那实际距离自然就是
4÷(1/8000)=32000 厘米,也就是 320 米呀!
哇塞,这三种方法是不是超赞的呀!大家可一定要学会哦,这样以后遇到比例尺求实际距离就再也不怕啦!。
初一地理地图计距离方法
初一地理地图计距离方法地理是关于地球的研究科学,而地图则是地理学中常用的工具。
通过地图,我们可以更好地理解和分析地球上的各种现象和关系。
而在地理学习的过程中,计算距离是一项非常重要的技巧。
本文将介绍初一地理学习中常用的几种计算距离的方法。
一、比例尺计算比例尺是地图上显示距离与实际距离之间的比例关系。
在地图上通常有一个比例尺尺度的指示,如1:10000。
这意味着地图上的1cm实际上相当于10000cm(或100m)的实际距离。
通过比例尺,我们可以简单地计算地图上两点之间的距离。
例如,如果地图上两点的距离为5cm,而比例尺为1:10000,则实际距离为5cm × 10000 = 50000cm = 500m。
因此,两点之间的实际距离是500m。
二、使用经纬度计算经纬度是地球表面上一个点的坐标。
经度表示东西方向的位置,以子午线为基准,最大值为180度,分别用E表示东经和W表示西经。
纬度表示南北方向的位置,以赤道为基准,最大值为90度,分别用N 表示北纬和S表示南纬。
通过经纬度,我们可以计算两个点之间的距离。
这种方法通常适用于全球范围内的距离计算。
常用的经纬度计算距离的公式有球面三角法和海卡公式。
通过这些公式,我们可以准确地计算两点之间的球面距离。
三、使用方位角和距离计算方位角和距离计算适用于地图上的直线距离。
方位角是从一个点指向另一个点的方向角度,通常以北为参考。
通过方位角和距离,我们可以计算直线距离。
首先,确定两点之间的方位角。
然后,使用三角关系计算直线距离。
这种方法适用于地图上近距离的两点计算。
四、使用网格计算网格是地图上的方格,用于帮助确定位置和测量距离。
通过网格计算,我们可以估算两点之间的距离。
首先,确定两点所在的方格。
然后,通过计算两点在方格中的行数和列数之差,以及每个方格的大小,可以估算出两点之间的距离。
总结:初一地理学习中,我们可以通过比例尺计算、使用经纬度计算、方位角和距离计算以及网格计算等方法来计算距离。
利用比例尺和实际距离求图上距离邵波教案
利用比例尺和实际距离求图上距离一、教学目标1. 让学生理解比例尺的概念,知道比例尺的应用。
2. 让学生掌握利用比例尺和实际距离求图上距离的方法。
3. 培养学生的实际应用能力和解决问题的能力。
二、教学重点与难点1. 教学重点:比例尺的概念,利用比例尺和实际距离求图上距离的方法。
2. 教学难点:比例尺的应用,求图上距离的计算方法。
三、教学准备1. 教具准备:比例尺图例,实际距离与图上距离的对照图。
2. 学具准备:学生尺子,计算器。
四、教学过程1. 导入新课1.1 教师出示比例尺图例,引导学生观察并说出比例尺的含义。
1.2 学生分享观察到的比例尺信息,教师总结并讲解比例尺的概念。
2. 探究新知2.1 教师出示实际距离与图上距离的对照图,引导学生发现实际距离与图上距离的关系。
2.2 学生通过观察对照图,发现实际距离与图上距离的比例关系。
2.3 教师引导学生总结利用比例尺和实际距离求图上距离的方法。
3. 课堂练习3.1 教师出示练习题,学生独立完成,检验自己对利用比例尺和实际距离求图上距离方法的掌握。
3.2 教师选取部分学生的作业进行讲解和评价,指出作业中的优点和不足。
4. 拓展延伸4.1 教师出示一个实际问题,引导学生利用比例尺和实际距离求解图上距离。
4.2 学生分组讨论,共同解决问题,教师巡回指导。
5. 总结与反思5.1 教师引导学生总结本节课所学的知识点,巩固比例尺的概念和利用比例尺求图上距离的方法。
5.2 学生分享自己的学习收获,教师给予评价和鼓励。
五、课后作业1. 请学生运用比例尺和实际距离,求解家到学校的图上距离,并绘制出家到学校的路线图。
2. 学生家长协助检查作业完成情况,家长在作业本上签字确认。
教学反思:六、教学评价1. 评价目标:通过课后作业和课堂练习,评价学生对比例尺概念的理解和利用比例尺求图上距离的掌握程度。
2. 评价方法:教师对课后作业进行批改,观察学生的作业完成情况,对课堂练习的回答情况进行记录和评价。
比例尺(求图上距离)
你能在图中画出他们的位置吗?
小红家
小明家
小亮家
100
1.填空。 (1) A、B两地相距34 km,在比例尺为1∶500000
的地图上,A、B两地间的距离是( 6.8 )cm。 (2) 一个零件实际长度是3.1 mm,将它画在比例尺
为15∶1的图纸上,图上零件长( 46.5 ) mm。
2.填表。 图上距离 实际距离 比例尺 6 cm 1.8 km 1∶30000 5 cm 900 m 1∶18000 3.4 cm 27.2 km 1∶800000
第8课时 比例尺(求图上距离)
综合运用比例尺、位置与方向的有关知识解决问题
小明家在学校正西方向,距学校200m,小亮家在小 明家正东方向,距小明家400m,小红家在学校正北 方向,距学校250m。在下图中画出他们三家和学校 的位置平面图(比例尺1∶10000)。
想: 1. 应该首先干什么,再干什么? 2. 需要什么条件才能画图? 3.你有几种解决问题的方法?
3.兰州到乌鲁木齐的铁路线大 约长1900km。地图上两地 之间的长度是多少厘米? (选题源于教材P57第7题)
1900km=190000000cm 1 图上距离:190000000×40000000 =4.75 (cm答):地图上两地之间的长度是4.75 cm。
4.学校要建一个长80m、宽60m的
首先先算出图上距离,再根据方向画出位置。
图上距离 根据“ 实际距离
=比例尺
”,
推出:“图上距离=实际距离×比例尺”
200 m=20000 cm 400 m=40000 cm 250 m=25000 cm
1
小明家到学校的图上距离:20000× 10000 =2(cm)
图上距离和实际距离的比
地图制作者需要根据实际需求选 择合适的比例尺,以满足不同用 户对地图精度和详细程度的需求。
导航系统
导航系统是现代生活中不可或缺的一 部分,它可以帮助我们找到目的地并 规划最佳路线。
通过使用图上距离和实际距离的比,导航系 统可以提供准确的路线规划和行驶距离估算 ,帮助用户快速、准确地到达目的地。
01
02
03
04
军事
比例尺在军事上有着广泛的应 用,如作战计划、地形分析等
。
地理研究
地理学家使用比例尺来研究地 形、地貌和地球表面的其他特
征。
城市规划
城市规划师使用比例尺来规划 城市和地区的发展。
地图制作
地图制作者使用比例尺来制作 各种类型的地图,如交通图、
旅游图等。
计算图上距离和实际距离的比的步骤
在地理学、地图学、测量和军事等领域中,比例尺都是不可或缺的概念,对于空间 数据的表示、分析和应用具有重要意义。
02 图上距离和实际距离的定 义
图上距离的定义
图上距离
在地图或图纸上,两点之间的直线距 离。
测量方法
使用测量工具,如直尺、量角器等, 直接测量两点间的直线长度。
实际距离的定义
实际距离
在实际环境中,两点之间经过地形、地貌、建筑物等障碍物的实际行走或行驶 距离。
使用激光测距仪
激光测距仪具有高精度和高速度的优点,能够快速准确地测量实际距离。
选用高分辨率的GPS设备
高分辨率的GPS设备能够提供更精确的位置信息,从而减小测量误差。
优化地图制作流程
采集更多数据点
在地图制作过程中,增加更多的数据 点可以提高地图的精度,进而提高图 上距离和实际距离的比的精度。
图上距离应该等于什么
图上距离应该等于什么
实际距离=图上距离÷比例尺,图上距离=实际距离×比例尺。
在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
这时,就要确定图上距离和相对应的实际距离的比。
扩展资料
比例尺公式
图上距离=实际距离×比例尺。
实际距离=图上距离÷比例尺。
比例尺=图上距离÷实际距离.(在比例尺计算中要注意单位间的`换算)。
(1公里=1千米=1×1000米=1×100000厘米)。
单位换算:图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零。
比例地图
国家测绘部门将1∶5000、1∶1万、1∶2.5万、1∶5万、1∶10万、1∶25万、1∶50万和1∶100万八种比例尺地形图规定为国家基本比例尺地形图,简称基本地形图,亦称国家基本图,以保证满足各部门的基本需要。
其中:
大比例尺地形图:1∶5000至1∶10万的地形图;
中比例尺地形图:1∶25万和1∶50万地形图;
小比例尺地形图:1∶100万地形图。
生活中的比例尺
如:地图,绘图、测量、田地、航空、公路、航海,建筑。
10.1图上距离与实际距离(1)
AD AE DB=25,AC=32, DB EC
求 EC。 B
A
D
E
C
B
A
课后一刻
如何测量A、B间 的距离?
C
D
两条线段长度的比叫线段的比 四条线段a,b,c,d中,如果a与b的比等于 c与d的比,即 a : b c : d ,那么这四条线段 a,b,c,d叫做成比例线段,简称比例线段。
比例的基本性质为: 在比例中,两个外项的积等于两个内项的积.用式 子表示就是:
a c 如果a:b=c:d或 = (b,d都不为0),那么ad=bc. b d a c 反之,若ad=bc,则a:b=c:d或 = b d a c
例2、已知a、b、c、d是成比例线段,其 中a=3cm,b=2cm,c=6cm,求线段d 的长.
若条件改为a、b、d、c是成比例的4 条线段,其它条件不变,线段d的长度 是否改变?
注意:成比例的四条线段,要注意其 顺序性。
例3、已知a是线段b、c的比例中项,其 中b=2cm,c=8cm,求线段a的长.
(1)分别量出两幅地 图中南京市与徐州 比例尺: 1:8000000
市、南京市与连云
港市之间的地图上 距离; 比例尺: 1:16000000
a=3.4cm
c=3.4cm
b=1.7cm
Байду номын сангаас
d=1.7cm
比例尺:
1:8000000
比例尺: a=3.4cm
c=3.4cm
1:16000000
b=1.7cm d=1.7cm
(2)在这两幅地图中,南京市与徐州市的图上距离的比 是多少?南京市与连云港市的图上距离的比是多少?这两 个比值之间有什么关系?
根据比例尺求实际距离
方法一: 根据: 图上距离:实际距离=比例尺 解:设济南到青岛的实际距离为X厘米。
4:X=1:8000000 X=4×8000000 X=32000000
32000000厘米=320千米 320 ÷100=3.2(小时) 答:大约需要3.2小时到达青岛。
注意:在用比例尺进行计算时,所设的实际距离的单位名 称必须和图上距离的单位名称相同。
答:比萨斜塔的实际高度为 54.5米。
54.5×100 =5450(厘米)
5450厘米=54.5米
答:比萨斜塔的实际高度为 54.5米。
2. 机器零件的截面图。这个零件外
直径的实际长度在生产中,有时由于机器 零件比较小,需要把实际尺寸扩大到一定 的倍数之后,再画在图纸上。
右图是用6:1的比例尺画的一个是多 长毫米? 解:设这个零件外直径的实际长度是X厘米。
X=6×40000000
240000000厘米=2400千米
X=240000000 240000000厘米=2400千米。
答:两地之间的实际距离是2400千米
答:两地之间的实际距离是2400千 米。
4.在一幅比例尺是1:20000000的地图上,甲乙 两地相距6厘米。一架飞机以每小时800千米的 速度飞往乙地,需要飞多少小时?
解:设甲乙两地的实际距离是X厘米。
6:X=1:20000000
X=6×20000000
X=120000000
120000000厘米=1200千米
1200÷800=1.5(小时)
答:需要飞1.5小时。
5.考考你:下图是用1:4000的比例尺画出的 某建筑占地平面图。这个建筑的实际占地面 积是多少平方米?
根据比例尺 求实际距离
复习
比例尺
图上距离 = 比例尺 实际距离
比例尺 1:100000000
1:100000000是数值比例尺,有时写成
1 100000000
比例尺
0
50
100km
这是线段比例尺,表示地图上1cm的距离相当于地面 上50km的实际距离.
在生产中,有时由于机器零件比较小,需要把实际距 离扩大一定的倍数以后,再画在图纸上.
1 100
答:图上距离和实际距离的比是1︰100。
在比例尺是1∶6000000的地图上,量得南京到 北京的距离是15厘米.南京到北京的实际距离大 约是多少千米?
图上距离 1 = 实际距离 6000000
解:设南京到北京的实际距离为x厘米。 15∶x=1∶6000000 x=90000000 90000000厘米=900千米
答:南京到北京的实际距离大约是900千米。
学校到小明家的实际距离为900米.你有办法找到小明 家在图上的位置吗?(小明家在学校的正西方.)
北
小明家 学校
0
300
600米
上海
杭州
在比例尺是1︰5000000的中国地图上,量 得上海到杭州的距离是3.4厘米。计算一下, 上海到杭州的实际距离大约是多少千米?
答:地铁1号线的实际长度是50km。
设计一座厂房,在平面图上用10厘米的距离表示地面 上10米的距离。求图上距离和实际距离的比。
10厘米︰10米
先统一单位,再化简。
10米=1000厘米 10︰1000=1︰100 (或)
1 100
答:图上距离和实际距离的比是1︰100。
在比例尺是1∶6000000的地图上,量得南京到 北京的距离是15厘米.南京到北京的实际距离大 约是多少千米?
数学六年级下册-《比例尺》知识讲解 根据比例尺和实际距离求图上距离
六年级下册-打印版
根据比例尺和实际距离求图上距离
问题导入A城到B城的实际距离是120 km,画在比例尺为1 :1000000的图纸上,应画多少厘米?
过程讲解
1.理解题意
根据题意可知比例尺是1:1000000,实际距离是120 km,求图上距离。
2.探究解题方法
解法一
分析根据“=比例尺”可以列方程求解。
因为所设的图上距离的单位是厘米,所以要先把实际距离转化成以厘米为单位的数,再列方程。
解答解:设应画x厘米。
120 km=12000000 cm
=
1000000x=12000000
x=12
解法二
分析要求图上距离是多少厘米,可以把120 km转化成以厘米为单位的数,再利用“实际距离×比例尺”直接求出图上距离。
解答 120 km= 12000000 cm
12000000×=12( cm)
答:应画12 cm。
归纳总结
已知比例尺和实际距离,求图上距离的方法:可以根据“=比例尺”列方程解答,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
图上距离和实际距离
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 引言 • 图上距离与实际距离的关系 • 地图投影 • 实际距离的测量方法 • 图上距离和实际距离的应用 • 总
引言
BIG DATA EMPOWERS TO CREATE A NEW
新的测量技术和数据处理方法可以进一步改进地 图制作和测量精度,未来研究可以探索这些新技 术的应用和潜力。
人工智能和机器学习技术在地图制作和导航领域 也有着广泛的应用前景,未来研究可以探索如何 利用这些技术提高地图的智能化水平和服务质量 。
THANKS
感谢观看
ERA
主题简介
图上距离
指在地图或图纸上两点之间的直线距 离。
实际距离
指在实际地理空间中两点之间的直线 距离。
主题重要性
01
在地理学、测量学、交通规划等 领域,图上距离和实际距离的转 换是重要的基础工作。
02
正确理解图上距离和实际距离的 关系,有助于提高地图的精度和 使用效果,为相关领域的研究和 实践提供支持。
03
地图投影
BIG DATA EMPOWERS TO CREATE A NEW
ERA
地图投影的种类
等角投影
保持角度不变,常用于航海图和航空 图。
等面积投影
等距离投影
保持两点间的距离不变,常用于制作 地形图。
保持面积不变,常用于制作世界地图。
地图投影的选择
根据用途选择
不同的地图用途需要选择不同的 投影方式,例如,航海图需要选 择等角投影,世界地图需要选择
等面积投影。
根据区域选择
不同地区的地球曲率不同,因此需 要根据区域选择合适的投影方式。
4.8 根据比例尺求图上距离或实际距离
项目
内容
1.下午2时,量得一根4米高的竹竿的影子长1.5米。一棵大树的影子长4.5米,这棵大树高多少米?
2.在一幅比例尺是1∶8000000的地图上,量出济南到青岛的距离是4厘米,济南到青岛的实际距离是多少?
分析与解答:
图上距离∶实际距离=比例尺。据此,设济南到青岛的实际距离为x,列比例式为(),然后求出两地的距离是()千米。
温馨
提示
知识准备:比例的意义和基本性质,运用比例关系解比例。
学具准备:直尺。
参考答案
1.12米
2.正比例 = 320
3.略
4.略
5Hale Waihona Puke 2000厘米=20米20×6×20×4=9600(平方米)
6.甲:40千米乙:60千米
3.根据比例尺求图上距离或实际距离的问题,实际上就是利用比例关系列方程解题。
4.解决问题过程中要注意单位转换和比例尺的前后项分别是哪个量。
5.某建筑工地挖一个长方形的地基,把它画在比例尺是1∶2000的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?
6.在比例尺是1∶6000000的地图上,量得两地的距离是5厘米,甲、乙两车同时从两地相向而行,3小时后两车相遇。已知甲、乙两车的速度比是2∶3。甲、乙两车每小时各行驶多少千米?
知道图上距离和比例尺实际距离怎么求
比例尺分放大比例尺和缩小比例尺,放大比例尺就是把一些很小的东西数据放大画在图纸上(因为把那么小的东西画在图纸上,很难观察清楚),一般用于一些特别小的零件上,比如一个手表里的一个零件长3毫米,放大10倍画在图纸上的话,那么,写成放大比例尺就是10:1;而缩小比例尺就是把一个很大的东西画在图纸上(比如房子、汽车、飞机,这么大的东西,图纸怎么够画呢,当然要缩小画在图纸上啦),比如一栋房子长10米,宽10米,高50米(我是举例),要缩小100倍画在图纸上,写成比例尺就是10:100。
比例尺公式:图上距离=实际距离*比例尺
实际距离=图上距离/比例尺比例尺=图上距离/实际距离
已知比例1:10000
地图距离a厘米
实际距离a×10000厘米
记住1:10000表示的就是地图上1厘米代表实际10000厘米。
比例尺怎么算
比例尺怎么算一1比例尺计算1.图上距离÷实际距离=比例尺2.图上距离÷比例尺=实际距离3.比例尺×实际距离=图上距离2比例尺三种形式1.数字式:用数字的比例式或分数式表示比例尺的大小。
例如地图上1厘米代表实地距离500千米,可写成1∶50000000或写成:五千万分之一。
2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如图上1厘米相当于地面距离10千米。
3地图比例尺表示图上距离比实际距离缩小(或放大)的程度,因此也叫缩尺。
如1∶10万,即图上1厘米长度相当于实地1000米。
严格讲,只有在表示小范围的大比例尺地图上,由于不考虑地球的曲率,全图比例尺才是一致的。
通常绘注在地图上的比例尺称为主比例尺。
在地图上,只有某些线或点符合主比例尺。
比例尺与地图内容的详细程度和精度有关。
二比例尺=图上距离/实际距离。
比例尺的概念:比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
按照比例尺概念,比例尺的算式为:比例尺=图上距离/实际距离。
比例尺的特点:比例尺实际上是一个“比”;比例尺是图上距离与实际距离的“比”;图上距离和实际距离的单位是统一的(即换算成相同单位再比),所以比例尺没有单位(单位统一被约分了);比例尺的前项一般为1。
比例尺的换算方法:(1)长度单位换算公式:1公里=1千米。
1000米=1千米。
1米=10分米=100厘米=1000毫米。
1分米=10厘米=100毫米。
1厘米=10毫米。
(2)比例尺的换算:举例说明:“图上一厘米代表实际1公里,比例尺是多少?”解析:长度单位换算公式是孩子原来就掌握的知识,因为比例尺必须统一单位,只需要按长度单位换算公式,将图上距离和实际距离的单位换算成相同单位,然后统一代入比例尺算式,比例尺=1厘米/1公里=1厘米/100000厘米=1/100000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★补例:在比例尺是1/800的平面图上,量得一个长方形的长是2.5厘米,宽1.5厘米,这个长方形的实际面积是多少?
想:利用比例尺先求出实际的长和宽,再求实际面积。
注:比例尺≠图上面积:实际面积
同理,1/50表示图上距离占实际距离的1/50
★小结:凡是比例尺都可理解为:图上距离占实际距离的几分之一
二、发现问题合作探究
如果知道一幅地图的比例尺,就可根据比例尺求出图上距离或实际距离
教学例7:明确题意
引导分析:比例尺已知,1:8000可理解为图上距离占实际距离的1/8000,实际距离是单位“1”,单位“1”未知,可用除法计算,再把求出的实际距离的厘米数化成米数(由于图上距离是厘米,求出的实际距离也是厘米)
5÷1/8000=5×8000=40000厘米=400米
教学“试一试”(P50)
引导分析:已知比例尺和实际距离,求图上距离,应先把实际距离化成厘米数,利用比例尺求出的图上距离才是厘米。又因为实际距离是单位“1”,单位“1”已知,可用乘法计算。
240米=24000厘米
24000×1/8000=3厘米
答:……
2.5÷1/800=……=2000厘米=20米
1.5÷1/800=……=1200厘米=12米
20×12=240平方米
三、课堂训练巩固完善
练习:P50练一练(先理解1:20000的含义,再根据条件计算)
四、总结归纳扶正方向
通过本课的学习,你有哪些收获?
五、检查反馈反思延展
课堂作业:
1、P51T3(最后的结果要把厘米化成千米)
课题
P49-50例7求图上距离或实际距离
课时
1课时
教学
目标
1、进一步理解比例尺的意义,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,提高学生解决实际问题的能力。
教学
重难点
能按给定的比例尺求相应的实际距离或图上距离
教具
准备
多媒体课件、小黑板
课型
2、从北京到杭州的路程是1250千米,在比例尺是1:25000000的地图上,应画多少厘米?
3、在比例尺是1/500000的地图上,量得甲乙两地的距离是28厘米,若火车每小时行80千米,从甲地到乙地需行几小时?
板书
设计
求图上距离或实际距离
5÷1/8000=5×8000=40000厘米=400米
试一试:240米=24000厘米
24000×1/8000=3厘米
教学
后记
在教学时,先让学生说出比例尺1:8000的意思,通过学生对比例尺的多角度理解的基础上,让学生独立探究,灵活的选择解决方法。在反馈汇报时,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。在巩固练习时把数学学习与解决实际问题有机结合起来,让学生在实践中应用知识,让学生真正体会比例尺的价值,在解决问题过程中让学生发现数学问题就在我们身边,体会到解决问题的快乐。学生兴趣浓厚,学得积极主动。
新授课
教学过程
个性设计
一、学案引导自主学习
1、什么叫比例尺?
2含义
理解指导:在1:1000中,“1”是图上距离;“1000”是实际距离。因此,1:1000可理解为:图上距离占实际距离的1/1000
1:1000也可理解为:实际距离是图上距离的1000倍。