朱全银作业复变函数习题

合集下载

(完整版)复变函数习题答案第5章习题详解

(完整版)复变函数习题答案第5章习题详解

第五章习题详解1. 下列函数有些什么奇点?如果是极点,指出它的级:1) ()2211+z z解:2)31z z sin3)1123+--z z z4)()z z lz 1+5)()()z e z z π++1126)11-z e7)()112+z e z 8) n nzz +12,n 为正整数9)21z sin2. 求证:如果0z 是()z f 的()1>m m 级零点,那么0z 是()z f'的1-m 级零点。

3. 验证:2i z π=是chz 的一级零点。

4. 0=z 是函数()22--+z shz z sin 的几级极点?5. 如果()z f 和()z g 是以0z 为零点的两个不恒等于零的解析函数,那么()()()()z g z f z g z f z z z z ''lim lim 00→→=(或两端均为∞)6. 设函数()z ϕ与()z ψ分别以a z =为m 级与n 级极点(或零点),那么下列三个函数在a z =处各有什么性质:1) ()()z z ψϕ;2)()()z z ψϕ;3) ()()z z ψϕ+;7. 函数()()211-=z z z f 在1=z 处有一个二级极点;这个函数又有下列洛朗展开式:()()()()345211111111-+---+=-z z z z z ,11>-z ,所以“1=z 又是()z f 的本性奇点”;又其中不含()11--z 幂,因此()[]01=,Re z f s 。

这些说法对吗?8. 求下列各函数()z f 在有限奇点处的留数:1)zz z 212-+ 2) 421z e z-3)()32411++z z4)zz cos5) z -11cos6) z z 12sin7) z z sin 18) chz shz9. 计算下列各积分(利用留数;圆周均取正向)1) ⎰=23z dz z zsin2) ()⎰=-2221z zdz ze3) ⎰=-231z m dz z zcos , 其中m 为整数4)⎰=-12i z thzdz5) ⎰=3z zdz tg π6) ()()⎰=--11z n n dz b z a z (其中n 为正整数,且1≠a ,1≠b ,b a <)。

第1章 复变函数习题及解答cxf

第1章 复变函数习题及解答cxf

第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中α,R ,θ为实常数)(1)1--; (2)2(cossin )33i ππ-; (3)1cos sin i αα-+;(4)1i e +;答案 :(1)实部-1;虚部 模为2;辐角为42,0,1, 2...3k k ππ+=±±;主辐角为43π;原题即为代数形式;三角形式为442(cos sin )33i ππ+;指数形式为432i e π. (2)略,三角形为:552(cos sin )33i ππ+,指数形式为:532i e π (3)略,三角形为:2sin (cos sin )222i απαπα--+,指数形式为:22sin2i e παα- (4)略,三角形为:(cos1sin1)e i +,指数形式为:i ee1.2 计算下列复数1)()103i 1+-;2)()31i 1+-;答案:1)21032i e π;2)3(2)14632,(0,1,2)k i ek ππ+=; 1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义.答案:证明略。

几何意义:平行四边形对角线平方和等于四边长的平方和。

1.9将下列复数表为sin ,cos θθ的幂的形式(1) cos5θ; (2)sin5θ答案 (1)5324cos5cos 10cos sin 5cos sin θθθθθθ=-+(2)5324sin5sin 10sin cos 5sin cos θθθθθθ=-+1.13 下列不等式在复数平面上表示怎样的点集?1)()1Re 0<<z ;2)320<-<z z ;3)10arg ϕϕ<<z ;4)()0Im πz <<; 5)211<+-z z答案: 1)平面上由0=x 与1=x 所构成的宽度为1的铅直带形域;2)以0z 为心,内半径为2,外半径为3的圆环域;3)顶点在原点,开度为()01ϕϕ-的角形区域;4)宽度为π的带形域,边界为0=y ,π=y ;5)以053z =-为心,43R =为半径的圆之外部区域。

复变函数习题及答案解释

复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。

《复变函数》考试试题与答案各种总结.docx

《复变函数》考试试题与答案各种总结.docx

---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。

复变函数习题答案,习题一

复变函数习题答案,习题一

习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cos sin22ii i eπππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5.解下列方程:(1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥(2)对任意复数12,,z z有2221212122Re()z z z z z z+=++证明:验证即可,首先左端221212()()x x y y=+++,而右端2222112211222Re[()()]x y x y x iy x iy=+++++-2222112212122()x y x y x x y y=+++++221212()()x x y y=+++,由此,左端=右端,即原式成立。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

复变函数课后习题答案(全)习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (3) 13i(4).8 21 .i 4i ii 1 i13 2i 解: (1) z3 2i 131 3i .3 3i 3 5i(3) z -ii 1 i2 2 因此, Rez 35 Im z532(4).8 z i 4i 21 i1 4i i1 3i因此, Rez 1, Im z 3,2.将下列复数化为二角表达式和指数表达式:(1)i (2) 1 Vi (3)r(si ni cos )(4) r(cosisin )( 5) 1 cos i sin(02 )解: (1) i cosi sin - —i-e 22 22一i(2) 1 2(cosi..2 isin32e 3 (3) r(sin icos ) r[cos (-i sin(-)](1)13~2\(2) \ (\ 1)(\ 2)因此:Rez3 13 Im z2 13(2)zi (i 1)(i 2)i 1 3i 3 i 10因此,Rez3 10Im z 1 10(4) r(cos isin ) r[cos( ) i sin( )] re(5) 1 cos isin 2sin 2i sin — cos-2 23.求下列各式的值:(1) (\3 i)5(2)(1 100i) (1 100i)(3) (1 \3i)(cos(1 i)(cos isin )i sin ) 2(cos5 isin5 )3(cos3 isin 3(5) (6) d i解: (1) (七i)5[2(cos(舌)isin( -))]5 6(2) (1 100i) (1 100 50i) (2i) (2i)502(2)50251(3) (1 i sin ) (1 i)(cos isin )(4)2 (cos5 isin5 )(cos3 isin3 )3(5) cos— isin —2 2\ 2(cos —isin )44.设z-ii,试用三角形式表示z1z2与-ZZ2解:z1 cos i sin , z24 42[cos( ) i sin()],所以6 6弓勺2[cosq g is"(4 6)]5.解下列方程:(1) (z i)5 1 (2) z4 a40 (a 0) 解:(1)z i 51,由此从而z由此,左端=右端,即原式成立。

复变函数试题库完整

复变函数试题库完整

《复变函数论》试题库梅一A111《复变函数》考试试题(一)1、 =-⎰=-1||00)(z z n z z dz__________.(n 为自然数) 2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z 在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分) 1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3. =-⎰=-1||00)(z z nz z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z 在|z |<1内根的个数. 四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数习题答案

复变函数习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3 352π2π;;1;8π(1);.cos sin7199ii ii+⎛⎫--++⎪+⎝⎭①解:()()()()35i17i35i7i117i17i+-+=++-3816i198ie5025iθ⋅--===其中8πarctan19θ=-.②解:e iiθ⋅=其中π2θ=.π2e ii=③解:ππi i1e e-==④解:()28π116ππ3θ-==-.∴()2πi38π116πe--=⋅⑤解:32π2πcos isin99⎛⎫+⎪⎝⎭解:∵32π2πcos isin199⎛⎫+=⎪⎝⎭.∴322πiπ.3i932π2πcos isin1e e99⋅⎛⎫+=⋅=⎪⎝⎭8.计算:(1)i的三次根;(2)-1的三次根;(3)的平方根.⑴i的三次根.()13ππ2π2πππ22cos sin cos isin0,1,22233++⎛⎫+=+=⎪⎝⎭k ki k∴1ππ1cos isin i662=+=z.2551cosπi sinπi662=+=z3991cosπi sinπi662=+=-z⑵-1的三次根()()132π+π2ππcosπisinπcos isin0,1,233k kk++=+=∴1ππ1cos isin332=+=z2cosπisinπ1=+=-z3551cos πi sin π332=+=--z的平方根.解:πi 4e ⎫=⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe ,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

(完整版)《复变函数》考试试题与答案各种总结

(完整版)《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f (z)在z 0的某个邻域内可导,则函数f(z )在z 0解析. ( )2.有界整函数必在整个复平面为常数。

( ) 3。

若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6。

若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( ) 7。

若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点. ( )8。

若函数f (z )在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠。

( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z )在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。

( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。

=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________。

5。

幂级数0n n nz ∞=∑的收敛半径为__________。

6.若函数f (z )在整个平面上处处解析,则称它是__________。

7。

若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8。

=)0,(Re n zz e s ________,其中n 为自然数。

9. zz sin 的孤立奇点为________ .10。

《复变函数》练习题册

《复变函数》练习题册

第一章1. 设,43,5521i z i z +−=−=求21z z 与21z z . 参考答案:i 515721−−=z z ,i 515721+−=z z2.iii z −−−=131求()().,Im ,Re z z z z参考答案:()().25,21Im ,23Re =−==z z z z3. (1)证明:().Re 2212121z z z z z z =+ (2)证明:11Re()();Im()()22zz z z z z i=+=+4. 求下列复数的辐角主值、三角表示式、指数表示式123456781,1,1,1,2023,,1,z z z z z z i z z i=+==−+=−===−=−参考答案:1234567822arg ,arg ,arg ,arg ,3333arg 0,arg,arg ,arg 22z z z z z z z z πππππππ==−==−====−23i cossin221cos sin 12cos sin 233ii i i e i e i e πππππππππ=+=−=+= ++=,,,5 求i z 212−−=的三角表示式。

参考答案:−=−−=65sin 65cos4212ππi i z6. 求下列复数z 的实部与虚部,共轭复数,模与辐角()()821112432i i i i−++,参考答案:()()()()()()3arctan arg ,10z i 31,3Im ,1Re i,i 4i 4.32arctan arg ,131z i 132133,132Im ,133Re i 2311218−==+=−==+−−==+=−==+z z z z z z z z ,,,7.求下列各式的值(幂)()()()()361121i ++ ())53i − 参考答案:()()()())365511i 8i 21855(3)2(cos()sin())66i ππ+=−+=−−=−+−,8.求下列各式的值(方根)((12()()1331i −参考答案:((1601234522441cossin ,0,1,2,3.442221cos()sin(),0,1,2,3,4,5.661111,,,,,2222k k i k k k i k w i w i w i w i w i w i ππππππππ+++=+++=+=+−=−−()()130********cos sin ,0,1,2.337755cos sin ,cossin ,cos sin 1212121244k k i i kw i w i w i ππππππππππ−+−+ −=+=−++第二章1研究函数()()()22,2,z z h yi x z g z z f =+==和的解析性。

复变函数课后习题答案 (2)

复变函数课后习题答案 (2)

习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cos sin22ii i eπππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

复变函数练习题及答案

复变函数练习题及答案

复变函数卷答案与评分标准一、填空题:1.叙述区域内解析函数的四个等价定理。

定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1)(,)u x y ,(,)v x y 在D 内可微,(2)(,)u x y ,(,)v x y 满足C R -条件。

(3分)定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件:(1),,,x y x y u u v v 在D 内连续,(2)(,)u x y ,(,)v x y 满足C R -条件。

(3分)定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =⎰ 。

(3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。

(3分)2.叙述刘维尔定理:复平面上的有界整函数必为常数。

(3分)3、方程2z e i =+的解为:11ln 5arctan 222i k i π++,其中k 为整数。

(3分) 4、设()2010sin z f z z+=,则()0Re z s f z ==2010。

(3分) 二、验证计算题(共16分)。

1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。

(8分)解:(1)22u x x ∂=+∂,222u x ∂=∂;2u y y∂=-∂,222u y ∂=-∂。

由于22220u u y x∂∂+=∂∂,所以(,)u x y 为复平面上的调和函数。

(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有22v u x y x∂∂==+∂∂,所以(,)2222()v x y x dy xy y C x =+=++⎰ 2,v u y x y∂∂=-=∂∂又2()v y C x x ∂'=+∂ ,所以 ()0C x '=,即()C x 为常数。

(精品)《复变函数》习题及答案

(精品)《复变函数》习题及答案

第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。

( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。

( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。

( )4、cos z 与sin z 在复平面内有界。

( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。

( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。

( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。

( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。

( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。

( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。

( ) 12、有界整函数必为常数。

( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。

( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。

( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。

( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。

( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。

( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。

( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。

复变函数第三版习题答案

复变函数第三版习题答案

复变函数第三版习题答案复变函数是数学中的一个重要分支,它研究的是具有复数变量和复数值的函数。

复变函数的概念和性质在数学中有着广泛的应用,涉及到物理、工程、计算机科学等领域。

而《复变函数》第三版是一本经典的教材,它提供了丰富的习题,帮助读者巩固和深化对复变函数的理解。

下面将给出一些《复变函数第三版》习题的答案,希望能对读者的学习有所帮助。

1. 习题1.1题目:计算函数 $f(z)=z^2+2z+1$ 在复平面上的奇点和极点。

答案:这是一个多项式函数,它在复平面上的所有点都是解析点,因此没有奇点和极点。

2. 习题2.3题目:计算函数 $f(z)=\frac{1}{z}$ 的留数。

答案:函数 $f(z)=\frac{1}{z}$ 在 $z=0$ 处有一个一阶极点,因此它的留数为$Res(f,0)=1$。

3. 习题3.2题目:计算积分 $\int_{|z|=2} \frac{e^z}{z^2} dz$。

答案:根据留数定理,积分等于函数在奇点处的留数之和。

函数$f(z)=\frac{e^z}{z^2}$ 在 $z=0$ 处有一个二阶极点,因此它的留数为$Res(f,0)=\frac{d}{dz}(z^2 \cdot \frac{e^z}{z^2})|_{z=0}=2$。

所以积分的结果为$2 \cdot 2\pi i = 4\pi i$。

4. 习题4.1题目:证明函数 $f(z)=e^z$ 在复平面上的任意闭合路径上的积分为零。

答案:根据柯西—黎曼方程,函数 $f(z)=e^z$ 在复平面上是解析的。

因此,根据柯西—黎曼定理,它的实部和虚部的偏导数满足拉普拉斯方程。

由于$e^z$ 是指数函数,它的实部和虚部都是调和函数。

而调和函数的积分在闭合路径上总是为零,因此函数 $f(z)=e^z$ 在复平面上的任意闭合路径上的积分为零。

5. 习题5.3题目:计算积分 $\int_{-\infty}^{+\infty} \frac{\cos x}{x^2+1} dx$。

复变函数习题一解答

复变函数习题一解答

第一章习题解答(一)1.设z =,求z 及Arcz 。

解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=± 。

2.设121z z =,试用指数形式表示12z z 及12z z 。

解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。

3.解二项方程440,(0)z a a +=>。

解:12444(),0,1,2,3k ii za e aek πππ+====。

4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。

5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。

证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。

证 由于1321===z z z ,知321z z z ∆的三个顶点均在单位圆上。

因为 33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又 )())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。

复变函数试题答案

复变函数试题答案

复变函数试题答案题1:计算复数 $z=\frac{(1+i)^{20}}{(1-i)^{20}}$ 的模和论证总结过程。

解答:首先,化简复数 $z$ 的形式:$$z = \frac{(1+i)^{20}}{(1-i)^{20}}.$$通过观察可以发现,这是一个幂次相等的形式,我们可以再做进一步的化简:$$z = \left(\frac{1+i}{1-i}\right)^{20}.$$接下来,我们将分母有关复数的形式进行变换:$$z = \left(\frac{(1+i)(1+i)}{(1-i)(1+i)}\right)^{20}.$$继续化简,我们得到:$$z = \left(\frac{2i}{2}\right)^{20} = \left(\frac{i}{1}\right)^{20} = i^{20}.$$由于 $i$ 的周期性,我们知道 $i^{20} = (i^4)^5 = 1^5 = 1$。

因此,我们得出结论:$z=1$。

题2:给定复变函数 $f(z)=\frac{1}{z^2+1}$,计算函数在复平面上的奇点位置并进行论证。

解答:我们的目标是找到函数 $f(z)=\frac{1}{z^2+1}$ 的奇点位置,也就是对于哪些复数 $z$,$f(z)$ 无定义或者不满足解析性。

为了找到这些奇点位置,我们需要解方程 $z^2+1=0$。

通过求解方程,我们可以得到:$$z^2=-1.$$由于 $z$ 是复数,我们知道不存在实数的平方能够等于 $-1$,因此我们引入虚数单位 $i$,将方程化简为:$$z^2=i^2.$$进一步,我们得到两个解:$$z_1 = i, \quad z_2 = -i.$$所以,函数 $f(z)=\frac{1}{z^2+1}$ 的奇点位置为 $z=i$ 和 $z=-i$。

接下来,我们进行奇点位置的论证。

对于奇点 $z=i$,我们观察到在 $z=i$ 附近,分母 $z^2+1$ 接近于 $0$,所以 $f(z)$ 发散,不具备解析性。

复变作业参考答案

复变作业参考答案

复变作业参考答案复变答案部分习题的参考答案练习一n 35一、1.cos;2. i.4222zzzz=实数七、解:1 z21 z21 z21 z2z+zz z z2z (z z)(1 zz) 02由于y 0,有z z 0,故(z z)(1 zz) 0 1 zz 0;z2 z 1 x2 y2 1 练习二三.证明:由函数f(z)在z0处连续,则对任意正实数0,总是存2| ,z在正常数0,使得当当|zz0-D都(f有),f(z )f( z成立),从而有|z-z0| , z D(f) |f(z) f(z0)| |f(z) f(z0)||f(z) f(z0)| ,|z-z0| , z D(f) ||f(z) f(z0)|| |f(z) f(z0)| ,综上得|f(z)|,f(z)在z0连续.ei i e i i六.(6)Argsini=argsini+2k arg+2k2ie 1 e arg+2k +2k . 2i2七.(1) z=Log2+ +2n i; 2复变答案练习三六.复变答案2022年-2022年学年第1 学期作业部分习题的参考答案任课老师_________班级:______________学号:__________姓名:______________日期:月日如图(b)z (2)设z在的C内部,以z为圆心,充分r 大的r为半径,作圆周Cr,使曲线C全含在Cr的内部,如图(b)所示. Cr f (ξ ) 图(b) 则ξ z在C和Cr围成的复连通区域内解析,且连续到边界,由柯西积分公式C∫f (ξ ) f (ξ ) dξ + ∫ dξ = 0 Cr ξ z C ξ z1 2π i∫Cf (ξ ) 1 dξ = ξ z 2π i∫f (ξ ) dξ Cr ξ z56由于上式左边与r无关, 故有1 f (ξ ) ∫ Cr ξ z d ξ A = o(1), (r → ∞). 2π i即得1 2π i1 2π i∫∫f (ξ ) d ξ = A, Cr ξ zf (ξ ) d ξ = A. ξ z所以C完57复变答案练习四一.解:(1) ( 1)n 1n 1nz= ( 1)nn 1n 1(n 1)z- ( 1)n 1znnn 1n 1=( 1) zn 1n 1z'- 1 zz2 zz,(|z| 1) ' -2 = =1 z 1 z 1 z二.解: f(z)111(z 1)(z 2)3 1 z 2 4 1 z 24nn1 z2 1 z 2.3n 1 3 4n 1 4收敛圆|z-2|3,收敛半径r=3. 1三.解:(1) f(z)(z 1)(z 2)11nz 1,(0 |z 1| 1). z 11 (z 1)n 1 (2)f(z)1z 211(z 2) 1z 22z 21 ( 1)n , 1|z-2| . z2 n 1n1n1z2四.解:由于e ,故有e z2n,从而n 0n!n 0n!zedz= 0z2zz111 12n 2n2n 1zdz zdz z n! 0n!n 0n 0n!2n 1 n 0收敛半径|z| .复变答案练习五一.解:(1)z=0为3级极点,z=2k i(k 1, 2, )为1级极点,z= 为非孤立奇点.(2) z=1为本性奇点,z=2k i(k 0, 1, 2, )为1级极点,z= 为非孤立奇点.1 2二.解:记f(z) ,其中z=i为1级极点,z=1为2级2(z 1) z 1极点,因此11C(z 1)2(z2 1)=2 iRes f(z),i 2 iRes f(z),11 =2 i(z 1)2(z i)dz i+2 i12dzz 111 i i i. =22三.解:(1)m0,此时z=b和z= 为孤立奇点;11,Res f(z), . Res f(z),b mm (b a)(b a)(2) m0,此时z=a为m级极点,z= b和z= 均为孤立奇点;Res f(z),b四.(1)11,Resf(z),a ,Res f(z), 0. mm(b a)(b a)3 2m;(2)ab (a b);(3*)解1:以原点为中心,以r, R为半径作围线C如图复变答案作辅助函数f(z)lnz,在围线C的内部,f(z)有一个2级极点z=i,(1 z2)2f(z)的支点z=0及z= 不属于C内部.故f(z)在C所围区域上除z=i外lnzlnz,单值解析.令(z) (z i)222有(1 z)(z i)2'(z)1lnzlnz 2,23 z(z i)(z i)1lnilni1'(i) 2 . 23i(i i)(i i)4i8由留数定理得Clnzdz 22(1 z)'BMBB'A'A'NAABlnzdz 22(1 z)2 iRes[lnz,i] 22(1 z)lnz]22(1 z)dzd[(z i)22 ilimz i复变答案d (z) 2i 22 ilim 2 i i.z idz824zlnzlnz 0,所以dz 0; 其中,由于|zlimBMB'(1 z2)2| (1 z2)2由于limzlnz0,|z| 0(1 z2)2A'NAlnzdz 0; 22(1 z)在AB上,z=x,limABr 0Rlnzlnxdz dx __(1 z)(1 x)i在B'A'上,z=-x=xe(x0),lnz=lnx+ i,dz=-dx. rlim 0 R'A'B0lnzlnx idz dx 2222 (1 z)(1 x)lnxdxdx i 0(1 x2)2 (1 x2)2Clnzlnxdxdz 2 dx i __(1 x2)2(1 x)(1 z)比较得0解2:由于f(z)*224i.lnxdxdx . 22(1 x)4lnz在上半平面内的极点为i,是2级极点,故(1 z2)2z idlnzRes[f(z),i]dz(1 z2)2i . 48lnxdx i dx 2 idx dx i i. __(1 x)2(1 x)48 48比较得0lnxdxdx . 22(1 x)4复变答案sin sin五.解:记I C 2 z2d ,g( ,z) 2 z2*,由于g( ,在z) |的|内1部有两个孤z立奇z点因此由留数定理得sin sinI 2 iRes ,z 2 iRes , zz zsinz sinzsin( z)2 i . 2 iz z z z z f(z)sinz1sinz zz2n 11 z ( 1)n zn 0(2n 1)!z2n ( 1).(2n 1)!n 0n由正弦函数的泰勒展开性质知,函数f(z)在除z=0之外的任何地方都处处收敛.练习六一.|w(i)'| 2;Argw(i)'2.二.解:由于w(4i)=-4,将圆周|z-4i|=2变为直线v=u,所以它把z= 变为-4i,因此逆变换为iz 4i rew 4w 4ii由w(2i)=0得e 1,r 2.故所求变换为4i(z 2i). wz 2(1 2i)三.解:我们考虑逆变换,即将Rew0变为|z|2的变换.由于w(0)=1,复变答案w 1,其中是实数.注意到所以变换的形式是z 2ew 1if'(z)1dzdww f(z),2由argf(0)2,知argdzdww 12,从而得,所以z 2iw 1. z 2i, 故所求变换为wz 2iw 1四.解:由题意知道,可设z (1 ei ),则w u iv (1 ei )2 1u cos (1 cos ) 2cos 1 v 1sin (1 cos ) 21214代入u的表达式得u2 v2 u 0.五.解:设z=x+iy,则w ez exeiy(0 y )所以w是以r ex为半径,以为圆心角的扇形(除去原点). 2w ez4z. 七. 解: w z(i 1) (1 i)六.解:从|z-a|=|a|得(z a)(z a) |a|2复变答案将z1w代入上式得(1w a)(1wa) |a|2 整理得aw aw 1. 令a |a|ei ,w u iv,得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设.,4355212121⎪⎪⎭⎫⎝⎛+-=-=z z z z i z i z 与求, 解:()()()()i i i i i iz z 43434355435521--+----=+--= ()()i 51-57-25i 20-1520-15-=+=i z z 515721+-=⎪⎪⎭⎫ ⎝⎛∴.2.将下列负数化为三角表示式与指数表示式. (1);31i z -= (2);12iiz +-= (3);5cos5sinππi z += (4).sin cos 1ϕϕi z +-=解:(1),231=+==z r 由于z 在第四象限,则 ().33arctan πθ-=-= ∴z 的三角表示式为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3sin 3cos 2ππi z .z 的指数表示式为 .23i e z π-=(2)()()()().111112i i i i i i i z -=+-=--+---=则211=+==z r ,因为z 在第四象限,故411arctan πθ-=⎪⎭⎫⎝⎛-=. z ∴的三角表示式为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=4sin 4cos 2ππi zz 的指数表示式为 iez 42π-=.(3)又,1==z r ππππ103cos 52cos 5sin=⎪⎭⎫⎝⎛-=, ,ππππ103sin 52sin 5cos=⎪⎭⎫⎝⎛-= 故z 的三角表示式为,103sin 103cos ππi z +=z 的指数表示式为 .103i e z π=(4),2cos2sin2sin ,2sin 2cos 12ϕϕϕϕϕ==-⎪⎭⎫ ⎝⎛+=∴2cos 2sin 2sin2ϕϕϕi z z 的三角表示式为 ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=22sin 22cos 2sin2ϕπϕπϕi z z 的指数表示式为 .2sin 222⎪⎭⎫ ⎝⎛-=ϕπϕi e z3.求下列各式的值. (1)();35i + (2)()();11n n i i -++(3);1-3 (4).13i - 解:(1)),6sin6(cos23ππi i z +=+=∴求式.65sin 65cos 3265sin 65cos 25⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=ππππi i(2),4sin 4cos 21⎪⎭⎫ ⎝⎛+=+ππi i,4sin 4cos 21⎪⎭⎫ ⎝⎛-=-ππi i∴求式()()nnnn i i ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=4sin 4cos 24sin 4cos 2ππππ().4cos24sin 4cos 4sin 4cos 222πππππn n i n n i n n n+=⎪⎭⎫⎝⎛-++=(3),sin cos 1ππi +=- ()2,1,032sin 32cos 1-3=+++=∴k k i k ππππ则,3sin3cos0ππωi +=,sin cos 1ππωi += .232135sin 35cos 2i i -=+=ππω(4),4sin 4cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-ππi i()2,1,0,324sin 324cos 26=⎪⎪⎪⎪⎭⎫⎝⎛+-++-=∴k k i k ππππ求式 则,12sin 12cos 0ππωi -=,⎪⎭⎫ ⎝⎛+=127sin 127cos 261ππωi .165sin 165cos 262⎪⎭⎫ ⎝⎛+=ππωi4.描出下列不等式所确定的区域或闭区域,并指出它是有界的还是无界的, 单连通的还是多连通的:1);32≤≤z 2);1arg 1π+-<<-z3);141+<-z z 4);622≤++-z z 解:1),iy x z +=令则,32≤≤z 即9422≤+≤y x ,它是有界的,多连通区域.2)它表示的是一个无界的、单连通的角形域.3),iy x z +=令则有.1581517,01153422222⎪⎭⎫⎝⎛>+⎪⎭⎫ ⎝⎛+>+++y x x y x 即它表示的是一个无界的、多连通区域.4),iy x z +=令故有()()6222222≤++++-y x y x整理得:,15922≤+y x 它表示的是一个有界、单连通区域。

5.函数z 1=ω把下列z 平面上的曲线映射成ω平面上怎样的曲线?422=+y x .解:令,iv u iy x z +=+=ω, 221yx iyx z +-==ω则 .41,,222222=++-=+=∴v u yx yv y x x u 故6.设()()()y x iv y x u z f ,,+=在D 内解析,且().,2z f u v 求= 解:(),12yu u y v x u ∂∂∙=∂∂=∂∂()22xuu x v y u ∂∂∙-=∂∂-=∂∂(2)代入(1)得:()0142=+∂∂u xu().00142内的常数是则常数常数,故D z f v u x u u ===∂∂∴≠+7.求出下列复数的辐角主值. (1);2i e + (2).32i e - 解:(1).1arg ,212=+=+z k Arge i π (2).3arg ,2332-=+-=-z k Arge i π8.解方程.031=--i e z 解:()i Ln z 31+=,2,1,0,232ln 2331ln ±±=⎪⎭⎫⎝⎛++=⎪⎭⎫⎝⎛+++=k k i k i i ππππ9.求()[]i i 3,41exp π+的值.解:()[]⎪⎭⎫ ⎝⎛+=+4sin 4cos 41exp 41πππi e i(),i e i e +=⎪⎪⎭⎫ ⎝⎛+=12222224433iLn i e =()().3ln sin 3ln cos 223ln 23ln i e e e k k i k i i +===--+πππ10.计算⎰Czdz Re ,其中C 为从原点到i +1的直线段.解:(),10,≤≤+=t it t z t 则(),1,Re dt i dz t z +== ()().1211Re 10i dt i t zdz C+=+=∴⎰⎰11.计算dz z C⎰,其中C 为:圆周.2=z解:()θπθθθd ie de e z i i 2,202=≤≤=().0sin cos 4222020=+=∙=∴⎰⎰⎰θθθθππθd i i d ie dz z i C12.计算积分().11212dz zz i z ⎰=-+ 解:()⎪⎭⎫ ⎝⎛-++-=+-=+i z i z z z z z z z 11211111122, 而2111≤-+i z i z z 都在和上解析, ⎰⎰⎰--+-=∴32121211C C C i z dzi z dz dz z 求式 .221-0-0i iππ-=⨯=13.求()()().cos 1,sin :20,1822θθθπ-=-=++⎰a y a x a C dz z z C的摆线到是连接解:1822++z z 在复平面内处处解析,()⎰++=∴adzz zπ202182故求式积分与路径无关,()().22423223a a a πππ++=13.计算,14sin2dz z zC⎰-π其中,C :(1).2)3(;211)2(;211==-=+z z z解:().2224214sin 114sin11211i i z zdz z z zz z ππππ=⨯=-=+--==+⎰().2224214sin 114sin21211i i z zdz z z zz z ππππ=⨯=+=-+==-⎰(3)由复合闭路定理得:.214sin2Z 2i dz z zππ=-⎰=14.计算.110cos ,cos 012=≤=⎰=--n z z z e dz z ze z z z 内在在复平面内解析,函数 解:求式()().22sin cos 'cos 200i i z e z e z e i z z z z z πππ-=∙--===--=-15.下列级数是否收敛?是否绝对收敛?();1111⎪⎭⎫ ⎝⎛+∑∞=n i n n ()();!820∑∞=n n n i ()().21131∑∞=⎥⎦⎤⎢⎣⎡+-n n n i n 解:().11112111收敛,故原级数发散发射,∑∑∑∑∞=∞=∞=∞===n n n n n n n b n a()()收敛,法知由正项级数的比例审敛∑∞==1!8,!8!82n n n nn n n i故原级数收敛,且为绝对收敛. ()().211311且非绝对收敛收敛,故原级数收敛,收敛,为条件∑∑∞=∞=-n n n n n16.求级数()n n z n ∑∞=+01的收敛半径与和函数.解:112lim lim1=++=∞→+∞→n n c c n nn n ,1=∴R记()(),1,10<+=∑∞=z z n S n n z则有()()()∑⎰∑⎰∑⎰∞=∞=+∞=--==+=+=0010011111n zn n nnz n zzz dz z n dz z n dz z S , ()()∑∞=<-=⎪⎭⎫⎝⎛--=+∴02.1,11'1111n n z z z z n17.把下列函数在指定的圆环域内展开成洛朗级数.()()()()().2;21;10,2112;110;10,1112+∞<<<<<<--<-<<<-z z z z z z z z z解:(),101时当<<z()()()[]+++++++=⎪⎭⎫ ⎝⎛-=-∙=-nn z n nz z z zz z z z z f 13211'111111132()()()∑∞-=---+=++++++++=112122132n nnn n zn z n z n nz z z当110<-<z 时, ()()()111112-+∙-=z z z f ()()()()()[]()()()()()()()()∑∞-=++-----=--+---+-+---=+--+--+---=22221122.1111111111111111n nn n n n nnn z z z z z z z z z18.说明0=z 是ze z 1-的可去奇点.解:⎪⎪⎭⎫ ⎝⎛-++++++=-1!!3!211132 n z z z z z z e nz +∞<<+++++=-z n z z z n 0,!!3!2112 ze z z 10-=∴是的可去奇点.19.求下列各函数()z f 在有限奇点处的留数.();1n zze ().sin 26z z z - 解:()()级极点,的是n zf z 01=()[]()⎥⎦⎤⎢⎣⎡∙-=∴--→n z n n n z z e z dz d n z f s 110lim !110,Re()()!11lim !110-=-=→n e n z z . ()()()()(),0'''0,0''0'002≠===P P P P 且 ()z f z 是0=∴的三级极点.()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+--=-= !5!31sin 5366z z z z z z z z z f +-=--13!51!31z z 故!511-=-c ()[].510,Re !-=∴z f s20.计算下列各积分,C 为正向圆周.()⎰-Czz ze ;112 ()()()().31210⎰--+C z z i z dz解:()()112--=z ze z f z有两个一级极点+1,-1,且都在圆周2=z 内,()[]()[]{}⎰-+=-∴Czz f s z f s i dz z ze ,1,Re 1,Re 212π()[]()[].221,Re ,221,Re 111--====-==e z ze zf s e z ze z f s z zz z故⎰=⎪⎪⎭⎫ ⎝⎛+=--Czich e e i dz z ze .12222112ππ ()点外,除∞2被积函数的奇点是:31,与i -,则有()[]()[]()[]()[],0,Re 3,Re 1,Re ,Re =∞+++-z f s z f s z f s i z f s 由于C i 在与1-的内部,所以有 原式()[]()[]{}1,Re ,Re 2z f s i z f s i +-=π()[]()[]{}()().303212,Re 3,Re 21010i i i i z f s z f s i +-=⎭⎬⎫⎩⎨⎧++-=∞+-=πππ。

相关文档
最新文档