推荐学习高中数学 2.2圆的参数方程及应用教案 北师大版选修4-4

合集下载

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 直线和圆锥曲线的参数方程》2

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 直线和圆锥曲线的参数方程》2

直线的参数方程黄煜芳一、教材分析本节课节选自《高中数学北师大版选修4-4》第二章第二节直线的参数方程二、学情分析学生上节课刚学了参数方程的概念以及参数方程与普通方程的互化,接受程度良好,印象还比较清晰,有助于本节课的学习但学生对于平面向量的相关知识已经淡忘,所以课前需要简单的复习一下三、教学目标1 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用;2通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想;3 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度.四、教学重点直线的参数方程及参数的几何意义五、教学难点参数的几何意义六、教学方法与手段引导探究式教学,多媒体课件辅助教学七、教学过程(一)知识回顾教师提出问题:1.共线向量的条件是什么?→→→→→→=⇔≠a b a a b λ)0(// 2.直线方程的有几种形式?这些问题先由学生思考,回答,教师补充完善。

【设计意图】引导学生从几何条件思考参数的选择,为学生推导直线的参数方程做好准备.(二)探索新知1直线的参数方程问题1:已知直线上一点M 0(1,2),倾斜角为6π,求直线的方程 问题2:如何建立的参数方程?问题3:如何建立经过点M 0,0,倾斜角为⎪⎭⎫ ⎝⎛≠2παα的直线的参数方程 【设计意图】有特殊到一般推导出直线的参数方程有助于学生更好理解【师生活动】(1)回顾数轴,引出向量数轴是怎样建立的?数轴上点的坐标的几何意义是什么?教师提问后,让学生思考并回答问题.教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA 为数轴的单位方向向量,OA 方向与数轴的正方向一致,且OM tOA =;②当OM 与OA 方向一致时(即OM 的方向与数轴正方向一致时),0t >;当OM 与OA 方向相反时(即OM 的方向与数轴正方向相反时),0t <;当M 与O 重合时,0t =;【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备.(2)类比分析:问题1:类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴?问题2:把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?教师提出问题后,引导学生思考并得出以下结论:选取直线l 上的定点0M 为原点,与直线l 平行且方向向上l 的倾斜角不为0时或向右(l 的倾斜角为0时)的单位向量e 确定直线l 的正方向,同时在直线l 上确定进行度量的单位长度,这时直线l 就变成了数轴.于是,直线l 上的点就有了两种坐标(一维坐标和二维坐标).在规定数轴的单位长度和方向时,与平面直角坐标系的单位长度和方向保持一致,有利于建立两种坐标之间的联系.【设计意图】使学生明确平面直角坐标系中的任意直线都可以在规定了原点、单位长度、正方向后成为数轴,为建立直线参数方程作准备.(3)选取参数问题1:当点M 在直线l 上运动时,点M 满足怎样的几何条件?让学生充分思考后,教师引导学生得出结论:将直线l 当成数轴后,直线l 上点M 运动就等价于向量0M M 变化,但无论向量怎样变化,都有0M M te =.因此点M 在数轴上的坐标t 决定了点M 的位置,从而可以选择t 作为参数来获取直线l 的参数方程.【设计意图】明确参数.问题2:如何确定直线l 的单位方向向量e ?教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单位方向向量.教师引导学生确定单位方向向量,在此基础上启发学生得出(cos ,sin )e αα=,从而明确直线l 的方向向量可以由倾斜角α来确定.当0απ<<时,sin 0α>,所以直线l 的单位方向向量e 的方向总是向上.【设计意图】综合运用所学知识,获取直线的方向向量,培养学生探索精神,体会数形结合思想.(4) 等价转化,深入探究问题:如果点0M ,M 的坐标分别为00(,)(,)x y x y 、,怎样用参数t 表示,x y ?教师启发学生回顾向量的坐标表示,待学生通过独立思考并写出参数方程后再全班交流.过程如下:因为(cos ,sin )e αα=,([0,)απ∈),00000(,)(,)(,)M M x y x y x x y y =-=--,0//M M e 又,所以存在实数t R ∈,使得0M M te =,即 00(,)(cos ,sin )x x y y t αα--=.于是0cos x x t α-=,0sin y y t α-=,即0cos x x t α=+,0sin y y t α=+.因此,经过定点00(,)M x y ,倾斜角为α的直线的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). 牛刀小试:1.若直线l 经过点(x 0 , y 0)且倾斜角α=0,则直线l 的参数方程是什么?2. 设直线l 经过点M 0(1,5)、倾斜角为π3,求直线l 的参数方程.3. 已知直线l :⎩⎪⎨⎪⎧ x =-3+32t ,y =2+12t ,(t 为参数).求:( 1) 直线l 过哪个定点;(2)直线l 的倾斜角.【设计意图】通过本题训练,使学生进一步体会直线的参数方程2 参数的几何意义思考探究:①直线的参数方程中哪些是变量?哪些是常量?②参数t 的系数有何数量关系?③参数t 的几何意义是什么?总结如下:①00,x y ,α是常量,,,x y t 是变量;②系数的平方和为1;③由于||1e =,且0M M te =,得到0M M t =,因此t 表示直线上的动点M 到定点0M 的距离.当0M M 的方向与数轴(直线)正方向相同时,0t >;当0M M 的方向与数轴(直线)正方向相反时,0t <;当0t =时,点M 与点0M 重合.【设计意图】把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.(三)简单运用,培养能力例1.已知直线l :⎩⎪⎨⎪⎧ x =-3+32t ,y =2+12t ,(t 为参数). 点M (-33,0)在直线l 上,求t ,并说明t 的几何意义. 【设计意图】通过本题训练,使学生进一步体会直线的参数方程,以及在标准形式下参数t 的几何意义⎪⎩⎪⎨⎧--=+=,221222t x t y 2y x =,B 两点,求线段AB 的长度和点(1,2)M -到A,B 两点的距离之积.先由学生思考并动手解决,教师适时点拨、引导,鼓励一题多解,学生可能有以下解法:解法一:由210x y y x +-=⎧⎨=⎩,得210(*)x x +-=.设11(,)A x y ,22(,)B x y ,由韦达定理得:121211x x x x +=-⋅=-,.AB ∴===由(*)解得12x x ==12y y ∴==.所以A B ,.则MA MB ⋅=2===.解法二、因为直线l 过定点M ,且l 的倾斜角为34π,所以它的参数方程是31cos 432sin 4x t y t ππ⎧=-+⎪⎪⎨⎪=+⎪⎩ (t 为参数),即1222x y ⎧=--⎪⎪⎨⎪=+⎪⎩ (t 为参数).把它代入抛物线的方程,得220t +-=,解得1t =,2t = 由参数t的几何意义得:12AB t t =-=122MA MB t t ⋅==.在学生解决完后,教师投影展示学生的解答过程,予以纠正、完善.然后进行比较:在解决直线上线段长度问题时多了一种解决方法.【设计意图】通过本题训练,使学生进一步体会直线的参数方程,并能利用参数解决有关线段长度问题,培养学生从不同角度分析问题和解决问题能力以及动手能力.【设计意图】通过本题训练,使学生进一步体会利用参数解决有关线段长度问题的方法,对比总结,查漏补缺,培养学生从不同角度分析问题和解决问题能力以及动手能力. (四)归纳总结,提升认识先让学生从知识、思想方法以及对本节课的感受等方面进行总结.教师在学生总结的基础上再进行概括.变式训练:在平面直角坐标系O 中,已知直线的参数方程为⎪⎩⎪⎨⎧+=+=,221222t x ty t 参 直线与椭圆1222=+y x 相交于A ,B 两点,点M (1,2)在直线上,求:(1)线段AB 的长;(2)点M 到A 、B 两点的距离之和.1.知识方面本节课联系数轴、向量等知识,推导出了直线的参数方程,并进行了简单应用,体会了直线参数方程在解决有关问题时的作用.2.数学思想方法方面在研究直线参数方程过程中渗透了运动与变化、类比、数形结合、转化等数学思想.【设计意图】对学习内容有一个整体的认识,培养归纳、概括能力.(五)布置作业,巩固提高1 书面作业:教材P39—1;课后练习:三维设计P34~352 思考题:若直线l 的参数方程为 ⎩⎨⎧+=+=bt y y at x x 00 (b a ,为常数,t 为参数),请思考参数t 的意义.【设计意图】使学生进一步巩固所学知识,加深对知识的理解,为学有余力的学生提供思考的空间.八、板书设计九、教案设计说明本节课研究了直线的参数方程,并进行了简单的应用.本节课注重知识的产生过程,培养学生综合运用所学知识分析问题和解决问题的能力.在教学过程中渗透运动与变化、数形结合、类比、转化等数学思想,关注学生的参与和知识的落实.本节课选择直线的参数方程的参数是比较困难的,这是因为从确定直线的几何条件较难联想到“距离”.因此在教学中除了复习预备知识以外,还复习了数轴.联系数轴上点的坐标的几何意义,类比得到平面直角坐标系中的任意一条直线都可以当成数轴,这样直线上任意一点就可以用坐标t 表示,因此可以选择坐标t 为直线参数方程中的参数.从而,建立直线的参数方程就转化为建立坐标t 与坐标00,x y 及倾斜角 之间关系的问题.这样设计既注重了知识的产生过程,又使学生深刻理解了参数的几何意义.在教学过程中,注重以教师为主导,学生为主体的教学模式.在实施教学和完成教学目标的过程中,适时将学生分组讨论、师生对话、学生动手、学生归纳小结等方式服务于“参数方程”知识的重点和难点的教学中,充分体现了以人为本,鼓励全体学生参与以及重视学法指导的教学新理念.本节课恰当地利用多媒体辅助教学,增强了教学中的直观性.。

高中数学北师大版选修4-4:2.2圆的参数方程及其应用161+课件

高中数学北师大版选修4-4:2.2圆的参数方程及其应用161+课件
是什么? 解:设 M ( x , y )、P ( 4cosθ, 4sinθ), A(12, 0)
x 6 2 cos 则由中点公式可得: (为参数 ) y 2 sin
∴ ( x -6 ) 2 + y 2 = 4
探究三:已知点P(x,y)是圆x2+y2- 4x- 4y-1=0上
所以:
max 4 3 2 min 4 3 2
2 3 cos 2 3 sin 1 (3)d 2 3 3 2 sin( ) 4 2

63 2 max 所以: 2 min 0
x 2 cos 5 1、 指 出 参 数 方 程 { (为 参 数 )所 y 3 2 sin

表示圆的圆心坐标、径 半,并化为普通方程
( x 5) ( y 3) 4
2 2
x r r cos r 2、 圆 { (为 参 数 , r 0)的 直 径 y r sin 2 是4, 则 圆 心 坐 标 是 __________ (2,1)___
3、 如图,圆O的半径为2,P是圆上的动点,Q(6,0)是 x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运 动时,求点M的轨迹的参数方程。
o
r
x
1、圆心在原点的圆的参数方程:
x 2 + y 2 = r2 y
o
r
x
1、圆心在原点的圆的参数方程:
x 2 + y 2 = r2 y
o
r
x
1、圆心在原点的圆的参数方程:
x 2 + y 2 = r2 y
o
r
x
1、圆心在原点的圆的参数方程:
x 2 + y 2 = r2 y

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 极坐标系》2

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 极坐标系》2

课题:圆的极坐标方程(第1课时)授课老师:张秀红授课班级:高二(6)班●教学目的:通过类比直角坐标系下求曲线的方程的过程,探讨圆的极坐标方程。

本课题通过课本例题及习题归类学习,让学生经历由简单到复杂的过程,增强解决圆的极坐标方程的能力。

●教学重点与难点:重点:如何根据条件列出圆的极坐标方程,比较这些图形在极坐标和平面直角坐标系中的方程。

难点:如何寻找条件列出圆的极坐标方程●教学过程:一尝试自学1、直角坐标与极坐标的互化2、圆心为M(a,0),半径为a(a>0)的圆的直角坐标方程为。

3、上述1中如何推导圆的直角坐标方程(方法步骤)4、求曲线方程的步骤(求轨迹方程的步骤)二、主干讲解类型一:圆心在极点的圆例1:求圆心在极点、半径为r 的圆的极坐标方程。

类型二:圆心在极轴上且过极点的圆例2:求圆心坐标为Ca,0 (a>0)、半径为a 的圆的极坐标方程?类型三:圆心在点⎪⎭⎫ ⎝⎛2,πa 处且过极点的圆 求圆心在⎪⎭⎫ ⎝⎛2,πa (a>0)、半径为a 的圆的极坐标方程?三、局部训练1、求以)2,4(π为圆心,4为半径的圆的极坐标方程2、求圆心在⎪⎭⎫ ⎝⎛23,πa (a>0)、半径为a 的圆的极坐标方程?3、求圆心在⎪⎭⎫ ⎝⎛4,1π,半径为1的圆的极坐标方程四、效果反馈1、,圆θρcos 2=圆心极坐标是 半径是 θρsin 4=的圆心极坐标是 半径是 两圆的圆心距是2、求圆心在点(3,0),且过极点的圆的极坐标方程3、求圆心在A ()π,3、半径为3的圆的极坐标方程 圆的方程是为半径的为圆心,、以极坐标系中的点1)1,1(4A )4cos(2πθρ-=、A )4sin(2πθρ-=、B )1cos(2-=θρ、C )1sin(2-=θρ、D5、已知一个圆的极坐标方程是θθρsin 5cos 35-=,求圆心的极坐标与半6.求下列圆的圆心的极坐标:(1)θρsin 4=;(2))4cos(2θπρ-=7、求极坐标方程分别是1=ρ与θρcos 2-=的两个圆的公共弦所在的极坐标方程。

2018年高中数学北师大版选修4-4课件: 圆,椭圆,双曲线的参数方程

2018年高中数学北师大版选修4-4课件: 圆,椭圆,双曲线的参数方程
������2 (1)椭圆 2 ������ ������2
2.椭圆的参数方程
【做一做 2-1】
������2 ������2 椭圆 + =1 的参数方程为 9 4
.
解析:根据题意,a=3,b=2, ������ = 3cos������, 所以参数方程为 (φ 为参数). ������ = 2sin������ ������ = 3cos������, 答案: (φ 为参数) ������ = 2sin������
.
M 目标导航
1 2 3
UBIAODAOHANG
Z 知识梳理
HISHISHULI
Z 重难聚焦
HONGNANJUJIAO
D 典例透析
IANLITOUXI
S 随堂演练
UITANGYANLIAN
3 .双曲线的参数方程 双曲线
������2 ������ 2
− 2 =1(a>0,b>0)的参数方程是
������
(1-������ )r 1+������ 2������������ 1+������
2 2 2
1.圆的参数方程
,
������ =
(k 为参数).
参数 k 的几何意义是直线 AP 的斜率.
M 目标导航
1 2 3
UBIAODAOHANG
Z 知识梳理
HISHISHULI
Z 重难聚焦
HONGNANJUJIAO
D 典例透析
IANLITOUXI
S 随堂演练
UITANGYANLIAN
������ = 2cos������, 【做一做 1-1】 直线 3x-4y-9=0 与圆 (θ 为参数)的位置关系 ������ = 2sin������ 是( ). A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 解析:由圆的参数方程知圆心坐标为(0,0),半径 r=2. 所以圆心到直线 3x-4y-9=0 的距离 d=

高二数学北师大版选修4-4课件:2.2.2 圆的参数方程 椭圆的参数方程 双曲线的参数方程

高二数学北师大版选修4-4课件:2.2.2 圆的参数方程 椭圆的参数方程 双曲线的参数方程

思维脉络
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE
1
2
3
1.圆的参数方程
圆的普通方 程
圆的参数方程
参数的几何意义
x2+y2=r2
x = r������������������ y = r������������������
∵0<θ<43π
,
π 3
<θ+π3
<
5π 3
,-1≤cos
������ + π
3
∴0≤x<32.
<
1 2
,
故△ABC 的重心 G 的轨迹方程是圆(x-1)2+y2=1 中 0≤x<32的一段圆
弧.
探究一
探究二
探究三
首页
探究四
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
=2+sin 2α-cos 2α
=2+
2sin
2������− π
4
.
则当 α=kπ+38π(k∈Z)时,x2+2xy+3y2 取最大值为 2+ 2,当 α=kπ-π8(k∈
Z)时,x2+2xy+3y2 取最小值为 2- 2.
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
首页
X 新知导学 INZHI DAOXUE
Z 重难探究 HONGNAN TANJIU
D 当堂检测 ANGTANG JIANCE

2.2 圆的参数方程 课件 (北师大选修4-4)

2.2 圆的参数方程 课件 (北师大选修4-4)

观察2
圆 心 为 O1 ( a , b )、 半 径 为 r的 圆 可 以 看 作 由 圆 心 为 原 点 O 、 半 径 为 r的 圆 平 移 得 到 , 设 圆 O1上 任 意 一 点 P ( x , y ) 是 圆 O 上 的 点 P1 ( x1 , y1 ) 平 移 得 到 的 , 由平移公式,有 x x1 a y y1 b
y
例3、已知点P(x,y)是圆x2+y2- 6x- 4y+12=0上动 点,求(1) x2+y2 的最值,
(2)x+y的最值,
(3)P到直线x+y- 1=0的距离d的最值。
解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1, 用参数方程表示为 x 3 cos y 2 sin 由于点P在圆上,所以可设P(3+cosθ,2+sinθ) (1) x2+y2 = (3+cosθ)2+(2+sinθ)2
=14+4 sinθ +6cosθ=14+2
sin(θ +ψ). 13
(其中tan ψ =3/2)
∴ x2+y2 的最大值为14+2 13 ,最小值为14- 2 13 。 (2) x+y= 3+cosθ+ 2+sinθ=5+
2 sin(θ +
2
) 4 。

4 )

∴ x+y的最大值为5+ 2 ,最小值为5 3 cos 2 sin 1 2
2
一段抛物线; ( 3) x y 4 , 双曲线;

江西省高中北师大版数学选修4-4教案:2.1参数方程的概念

江西省高中北师大版数学选修4-4教案:2.1参数方程的概念

江西省于都中学高二数学中心发言稿选修4-4 第二章参数方程【课标要求】1、了解抛物运动轨迹的参数方程及参数的意义。

2、理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用。

3、会进行曲线的参数方程与普通方程的互化。

第一课时参数方程的概念一、教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

2.分析曲线的几何性质,选择适当的参数写出它的参数方程。

二、教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

三、教学方法:启发诱导,探究归纳四、教学过程(一).参数方程的概念ν,与地1.问题提出:铅球运动员投掷铅球,在出手的一刹那,铅球的速度为面成α2.分析探究理解:(1)、斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα (2)、抽象概括:参数方程的概念。

(见课本第27页) 说明:(1)一般来说,参数的变化范围是有限制的。

(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。

(3)平抛运动:【课本P27页例题】为参数)t gt y t x (215001002⎪⎩⎪⎨⎧-== (4)思考交流:把引例中求出的铅球运动的轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用。

(二)、应用举例:例1、(课本第28页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y t x (t 为参数)(1)判断点1M(0,1),2M (5,4)与曲线C 的位置关系;(2)已知点3M (6,a)在曲线C 上,求a 的值。

分析:只要把参数方程中的t 消去化成关于x,y 的方程问题易于解决。

学生练习。

反思归纳:给定参数方程要研究问题可化为关于x,y 的方程问题求解。

例2、设质点沿以原点为圆心,半径为2的圆做匀速(角速度)运动,角速度为60πrad/s,试以时间t 为参数,建立质点运动轨迹的参数方程。

高二数学选修4-4教案06圆的参数方程

高二数学选修4-4教案06圆的参数方程

高二数学选修4-4教案06圆的参数方程教学目的:学习圆的参数方程,理解参数θ的几何意义;会用圆的参数方程解题。

教学重点:圆的参数方程的推导及应用。

教学难点:参数θ的几何意义及应用。

教学方法:师生互动,培养创新思维。

教学过程:一、问题情景:【1】已知1y x 22=+,怎样求22y xy 2x -+的最大与最小值?【2】函数ϑϑcos 2sin 2y --=的值域怎么求?你知道有哪几种方法?二、数学构建.从上面的问题可以看到:圆的方程1y x 22=+与方程组⎩⎨⎧==θθsin y cos x 之间有着一定的对应关系,那么我们怎样来认识和理解它们的这种关系呢?事实上:1.设点P 在圆O :222r y x =+上,从点P 0开始按逆时针方向运动到达点P ,且设∠P 0OP=θ.若设点P 的坐标是(x,y),由三角函数的定义不难发现,点P 的横坐标x 、纵坐标y 都是θ的函数,即⎩⎨⎧==θθsin r y ,cos r x ① 另一方面,对于θ的每一个允许值,由方程组①所确定的点P (x,y )都在圆O 上.这表明,方程①也可用来表示圆。

那么,我们就把方程组①叫做圆心为原点、半径为r 的圆的参数方程。

其中θ是参数.注意:根据点与θ角的一一对应性质,我们一般设定)2,0[πθ∈。

2.对于圆心为O (a,b )、半径为r 的圆(x-a)2+(y-b)2=r 2,可以看成由圆心为原点O ,半径为r 的圆222r y x =+按向量ν=(a,b)平移得到的(如右图).不难求出,圆心在(a,b )、半径为r 的圆的参数方程为:⎩⎨⎧+=+=.sin r b y ,cos r a x θθ (θ为参数且)2,0[πθ∈)② 注意:若将方程组①、②中的参数θ消去,则可得到这一圆的标准方程,即:222r y x =+和(x-a)2+(y-b)2=r 2。

反之,由圆的标准方程也可直接采用三角换元的方法得到圆的参数方程。

高中数学 第二章 参数方程 2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学案 北师大版选修44

高中数学 第二章 参数方程 2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学案 北师大版选修44

2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程对应学生用书P24][自主学习]1.有向线段的数量如果P ,M 是l 上的两点,P 到M 的方向与直线的正方向一致,那么PM 取正值,否则取负值.我们称这个数值为有向线段2.直线参数方程的两种形式(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).其中M(x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M的位移,可以用有(2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1).其中M (x ,y )为直线上的任意一点,参数λ的几何意义是:动点M 量比QM MP.①当λ>0时,M 为内分点;②当λ<0且λ≠-1时,M 为外分点; ③当λ=0时,点M 与Q 重合.[合作探究]1.如何引入参数求过定点P (x 0,y 0)且与平面向量a =(a ,b )⎝⎛⎭⎪⎫或斜率为b a平行的直线的参数方程?提示:在直线l 上任取一点M (x ,y ),a,=(x -x 0,y -y 0),可得x -x 0a =y -y 0b ,设这个比值为t ,即:x -x 0a =y -y 0b=t ,则有:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t ∈R ).2.问题1中得到的参数方程中参数何时与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t ∈R )中参数t 具有相同的几何意义?提示:当a 2+b 2=1时.对应学生用书P24][例1] (1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点.[思路点拨] 本题考查如何根据已知条件确定直线的参数方程及运算求解能力,解答此题需要将条件代入⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α得到直线的参数方程,然后与x -y +1=0联立可求得交点.[精解详析] (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧ x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t ,得两直线的交点为(3,4).1.已知直线经过的定点与其倾斜角,求参数方程利用⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).2.已知直线过两点,求参数方程利用⎩⎪⎨⎪⎧x =x 1+λx21+λ,y =y 1+λy21+λλ为参数且λ≠-3.已知直线经过的定点与其方向向量a =(a ,b )(或斜率ba),则其参数方程可为:⎩⎪⎨⎪⎧x =x 0+ta ,y =y 0+tb(t 为参数).1.已知两点A (1,3),B (3,1)和直线l :y =x ,求过点A ,B 的直线的参数方程,并求它与直线l 的交点M 分AB 的比.解:设直线AB 与l 的交点M (x ,y ),且AMMB=λ,则直线AB 的参数方程为⎩⎪⎨⎪⎧x =1+3λ1+λ,y =3+λ1+λ(λ为参数且λ≠-1).①把①代入y =x 得1+3λ1+λ=3+λ1+λ,得λ=1,所以点M 分AB 的比为1∶1.[例2] 写出经过点M 0(-2,3),倾斜角为4的直线l 的参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.[思路点拨] 本题考查直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的应用,特别是参数几何意义的应用.解答此题需先求出直线上与点M 0相距为2的点对应的参数t ,然后代入参数方程求此点的坐标.[精解详析] 直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-2+t cos 3π4,y =3+t sin 3π4(t 为参数).①设直线l 上与已知点M 0相距为2的点为M 点,M 点对应的参数为t ,则|M 0M |=|t |=2, ∴t =±2.将t 的值代入①式:当t =2时,M 点在M 0点上方,其坐标为(-2-2,3+2); 当t =-2时,M 点在M 0点下方,其坐标为(-2+2,3-2).1.过定点P (x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),|t |P 与M 间的距离.2.过定点M 0(x 0,y 0),斜率为ba 的直线的参数方程是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (a ,b 为常数,t为参数).当a2+b 2=1时,|t |a 2+b 2≠1时,|t |的长度的1a 2+b 2.2.过点A (1,-5)的直线l 1的参数方程为⎩⎨⎧x =1+t ,y =-5+3t(t 为参数),它与方程为x-y -23=0的直线l 2相交于一点P ,求点A 与点P 之间的距离.解:将直线l 1的参数方程化为⎩⎪⎨⎪⎧x =1+12t ,y =-5+32t(t 为参数).⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1且32>0,令t ′=2t ,则将t ′代入上述方程得直线l 1的参数方程的标准式为⎩⎪⎨⎪⎧x =1+12t ′,y =-5+32t ′(t ′为参数).代入x -y -23=0得⎝ ⎛⎭⎪⎫1+12t ′-⎝ ⎛⎭⎪⎫-5+32t ′-23=0,解得t ′=43, ∴|AP |=|t ′|=4 3.[例3] 已知直线l 过点P (1,0),倾斜角为3,直线l 与椭圆3+y 2=1相交于A ,B 两点,设线段AB 的中点为M .(1)求P ,M 两点间的距离; (2)求线段AB 的长|AB |.[思路点拨] 本题考查直线的参数方程在解决直线与圆锥曲线相交中的中点、弦长等问题中的应用,解答此题需要求出直线的形如⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)的方程,然后利用参数的几何意义求解.[精解详析] (1)∵直线l 过点P (1,0),倾斜角为π3,cos α=12,sin α=32.∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数).①∵直线l 和椭圆相交,将直线的参数方程代入椭圆方程 并整理得5t 2+2t -4=0,Δ=4+4×5×4>0.设这个二次方程的两个实根为t 1,t 2.由根与系数的关系得:t 1+t 2=-25,t 1t 2=-45,由M 为AB 的中点,根据t 的几何意义, 得|PM |=|t 1+t 22|=15. (2)|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=8425=2215.1.在解决直线与圆锥曲线相交关系的问题中,若涉及到线段中点、弦长、交点坐标等问题,利用直线参数方程中参数t 的几何意义求解,比利用直线l 的普通方程来解决更为方便.2.在求直线l 与曲线C :f (x ,y )=0的交点间的距离时,把直线l 的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α代入f (x ,y )=0,可以得到一个关于t 的方程f (x 0+t cos α,y 0+t sin α)=0.假设该方程的解为t 1,t 2,对应的直线l 与曲线C 的交点为A ,B ,那么由参数t 的几何意义可得|AB |=|t 1-t 2|.(1)弦AB 的长|AB |=|t 1-t 2|. (2)线段AB 的中点M 对应的参数t =t 1+t 22(解题时可以作为基本结论使用).3.(江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数)代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2. 所以AB =|t 1-t 2|=8 2.本课时常考查直线参数方程的确定与应用,同时考查运算、转化及求解能力,高考、模拟常与极坐标方程及圆锥曲线的参数方程交汇命题.[考题印证](湖南高考)在平面直角坐标系xOy 中,若直线l 1:⎩⎪⎨⎪⎧x =2s +1,y =s (s 为参数)和直线l 2:⎩⎪⎨⎪⎧x =at ,y =2t -1(t 为参数)平行,则常数a 的值为________.[命题立意] 本题主要考查对参数方程的理解、两直线的位置关系,以及平面直角坐标系下由两直线的位置关系确定参数值的方法.[自主尝试] 先把两直线的参数方程化成普通方程.直线l 1:x -2y -1=0,直线l 2:2x -ay -a =0.因为两直线平行,所以1×(-a )=-2×2,故a =4,经检验,符合题意.[答案] 4对应学生用书P26]一、选择题1.已知直线l 过点A (1,5),倾斜角为π3,P 是l t 为参数,则直线l 的参数方程是( )A.⎩⎪⎨⎪⎧ x =1+12t ,y =5-32tB.⎩⎪⎨⎪⎧ x =1-12t ,y =5+32tC.⎩⎪⎨⎪⎧x =1+12t ,y =5+32tD.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t解析:选D t t .则参数方程为⎩⎪⎨⎪⎧x =1+-t π3,y =5+-tπ3,即⎩⎪⎨⎪⎧x =1-12t ,y =5-32t .故选D.2.直线⎩⎪⎨⎪⎧x =3+t sin 20°,y =-t cos 20°(t 为参数)的倾斜角是( )A .20°B .70°C .110°D .160°解析:选C 法一:将原方程改写成⎩⎪⎨⎪⎧x -3=t sin 20°,-y =t cos 20°,消去t ,得y =tan 110°(x -3),所以直线的倾斜角为110°.法二:将原参数方程化为⎩⎪⎨⎪⎧x =3+-t ,y =-t ,令-t =t ′,则⎩⎪⎨⎪⎧x =3+t ′cos 110°,y =t ′sin 110°,所以直线的倾斜角为110°. 3.直线⎩⎨⎧x =-2-2t ,y =3+2t(t 为参数)上与点P (-2,3)的距离等于2的点的坐标是( )A .(-4,5)B .(-3,4)C .(-3,4)或(-1,2)D .(-4,5)或(0,1)解析:选C 设直线上的点Q (-2-2t,3+2t )与点P (-2,3)的距离等于2, 即d =-2-2t +2++2t -2= 2.解得t =±22.当t =22时,⎩⎪⎨⎪⎧x =-2-2×22=-3,y =3+2×22=4,∴Q (-3,4).当t =-22时,⎩⎪⎨⎪⎧x =-2-2×⎝ ⎛⎭⎪⎫-22=-1,y =3+2×⎝ ⎛⎭⎪⎫-22=2,∴Q (-1,2).综上,符合题意的点的坐标为(-3,4)或(-1,2).4.直线l 经过点M 0(1,5),倾斜角为π3,且交直线x -y -2=0于点M ,则|MM 0|等于( )A.3+1 B .6(3+1) C .6+ 3D .63+1解析:选B 由题意可得直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =5+32t (t 为参数),代入直线方程x -y -2=0,得1+12t -⎝ ⎛⎭⎪⎫5+32t -2=0,解得t =-6(3+1).根据参数t 的几何意义可知|MM 0|=6(3+1). 二、填空题5.过P (-4,0),倾斜角为5π6的直线的参数方程为________. 解析:∵直线l 通过P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎪⎨⎪⎧x =-4+t cos 5π6,y =0+t sin 5π6,即⎩⎪⎨⎪⎧ x =-4-32t ,y =t 2.答案:⎩⎪⎨⎪⎧x =-4-32t ,y =12t6.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t(t 为参数)与直线4x +ky =1垂直,则常数k =________. 解析:直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t的斜率为-32,∴-4k ×⎝ ⎛⎭⎪⎫-32=-1,k =-6.答案:-67.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin θ,y =-2+t cos θ(t 为参数),其中角θ的范围是⎝ ⎛⎭⎪⎫π2,π,则直线l 的倾斜角是________.解析:将原参数方程改写成⎩⎪⎨⎪⎧x -1=t sin θ,y +2=t cos θ,消去参数t ,得y +2=(x -1)tan ⎝ ⎛⎭⎪⎫3π2-θ,由θ∈⎝ ⎛⎭⎪⎫π2,π和倾斜角的范围可知直线l 的倾斜角为3π2-θ. 答案:3π2-θ8.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=1有两个交点A ,B ,若点P 的坐标为(2,-1),则|PA |·|PB |=________.解析:把直线的参数方程代入圆的方程,得⎝ ⎛⎭⎪⎫2-12t 2+⎝⎛⎭⎪⎫-1+12t 2=1, 即t 2-6t +8=0,解得t 1=2,t 2=4,∴A (1,0),B (0,1).∴|PA |=12+12=2,|PB |=22+22=2 2.∴|PA |·|PB |=2×22=4.答案:4三、解答题9.已知P 为半圆C :x 2+y 2=1(0≤y ≤1)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3. (1)以O 为极点,x 轴的正半轴为极轴建立坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.解:(1)由已知,M 点的极角为π3,且M 点的极径等于π3, 故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)M 点的直角坐标为⎝ ⎛⎭⎪⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎪⎨⎪⎧ x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t (t 为参数). 10.已知直线l 经过点P (1,1),倾斜角α=π6. (1)写出直线l 的参数方程; (2)设l 与圆x 2+y 2=4相交于点A 和点B ,求点P 到A ,B 两点的距离之积. 解:(1)因为直线l 过P (1,1),且倾斜角α=π6,所以直线l 的参数方程为⎩⎪⎨⎪⎧ x =1+32t ,y =1+12t (t 为参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数分别为t 1,t 2.将直线l 的参数方程代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫1+32t 2+⎝⎛⎭⎪⎫1+12t 2=4, 整理,得t 2+(3+1)t -2=0.因为t 1,t 2是方程t 2+(3+1)t -2=0的根,所以t 1t 2=-2.故|PA |·|PB |=|t 1t 2|=2.所以点P 到A ,B 两点的距离之积为2. 11.已知圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ(θ是参数)和定点A (0,3),F 1,F 2是圆锥曲线的左、右焦点. (1)求经过点F 1垂直于直线AF 2的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程.解:(1)圆锥曲线⎩⎨⎧ x =2cos θ,y =3sin θ化为普通方程是x 24+y 23=1,所以F 1(-1,0),F 2(1,0),则直线AF 2的斜率k =0-31-0=-3,于是经过点F 1垂直于直线AF 2的直线l 的斜率k ′=33,直线l 的倾斜角是30°,所以直线l 的参数方程是⎩⎪⎨⎪⎧ x =-1+t cos30°,y =0+t sin30°(t 为参数),即⎩⎪⎨⎪⎧x =32t -1,y =12t (t 为参数). (2)法一:直线AF 2的斜率k =0-31-0=-3,倾斜角是120°,设P (ρ,θ)是直线AF 2上任一点,则根据正弦定理得ρsin60°=1-θ, 即ρsin(120°-θ)=sin60°, 即ρsin θ+3ρcos θ= 3. 法二:直线AF 2的直角坐标方程是y =-3(x -1),将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入得直线AF 2的极坐标方程:ρsin θ=-3ρcos θ+3,即ρsin θ+3ρcos θ= 3.。

高中数学选修4-4北师大版 圆的参数方程学案 Word版

高中数学选修4-4北师大版 圆的参数方程学案 Word版

2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程1.能依据圆锥曲线的几何性质,选择适当的参数,写出它们的参数方程. 2.能利用圆锥曲线的参数方程来解决简单的实际问题.1.圆的参数方程(1)圆x 2+y 2=r 2的参数方程是______________,参数α的几何意义是________________(O 为坐标原点,P 为圆上任意一点).(2)圆(x -a )2+(y -b )2=r 2的参数方程是__________________.参数α的几何意义是OP 与x 轴正方向的夹角(P 为圆上任意一点,O 为圆心).(3)圆的圆心在原点,半径为r ,它与x 轴负半轴的交点为A (-r,0),点P (x ,y )是圆周上任意不同于A 的一点,此时,圆的参数方程是⎩⎪⎨⎪⎧x = 1-k 2r 1+k2,y =2kr1+k2(k 为参数).参数k 的几何意义是直线AP 的斜率.选取不同的参数,可以得到不同形式的圆的参数方程.其中(1)(2)两种形式可结合推导过程记忆,(3)了解就行.【做一做1-1】已知圆的方程为x 2+y 2=4x ,则它的参数方程是__________.【做一做1-2】直线3x -4y -9=0与圆⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( ).A .相切B .相离C .直线过圆心D .相交但直线不过圆心 2.椭圆的参数方程(1)椭圆x 2a 2+y 2b2=1(a >b >0)的参数方程是________________.参数φ的几何意义是以原点为圆心,a 为半径所作圆上一点和椭圆中心的连线与x 轴正半轴的夹角.(2)中心在点C (x 0,y 0),长轴平行于x 轴的椭圆的参数方程是__________________.参数φ的几何意义是以C 为圆心,以a 为半径所作圆上一点P 和椭圆中心C 的连线CP 与x轴正半轴的夹角.【做一做2-1】椭圆x 24+y 29=1的参数方程为__________.【做一做2-2】椭圆⎩⎨⎧x =32cos φ,y =23sin φ(φ为参数)的焦距是__________.3.双曲线的参数方程双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程是________________.【做一做3】已知某条曲线的参数方程为⎩⎪⎨⎪⎧x =12⎝ ⎛⎭⎪⎫a +1a ,y =12⎝ ⎛⎭⎪⎫a -1a (a 为参数),则该曲线是( ).A .线段B .圆C .双曲线D .圆的一部分1.椭圆的参数方程中参数φ的几何意义剖析:从几何变换的角度看,通过伸缩变换,令⎩⎪⎨⎪⎧x ′=1ax ,y ′=1b y ,椭圆x 2a 2+y 2b2=1可以变成圆x ′2+y ′2=1.利用圆x ′2+y ′2=1的参数方程⎩⎪⎨⎪⎧x ′=cos φ,y ′=sin φ(φ是参数)可以得到椭圆x 2a 2+y 2b 2=1的参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ是参数).因此,参数φ的几何意义应是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为离心角),而不是OM 的旋转角,如图.2.圆锥曲线的参数方程不是唯一的剖析:同一条圆锥曲线的参数方程形式是不唯一的.例如,椭圆x 2a 2+y 2b2=1的参数方程可以是⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的形式,也可以是⎩⎪⎨⎪⎧x =a sin φ,y =b cos φ的形式,二者只是形式上不同而已,但实质上都是表示同一个椭圆.同样对于双曲线、抛物线也可以用其他形式的参数方程来表示,只是选取的参数不同,参数的几何意义也就不同.答案:1.(1)⎩⎪⎨⎪⎧x =r cos α,y =r sin α(α为参数) OP 与x 轴正方向的夹角(2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数)【做一做1-1】⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π) x 2+y 2=4x 可化为(x-2)2+y 2=4,∴圆心为(2,0),半径r =2.∴参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数,0≤θ<2π).【做一做1-2】D 将圆的参数方程化为普通方程为x 2+y 2=4,所以圆心到直线3x -4y -9=0的距离d =|-9|32+42=95<2,∴直线与圆相交. 点(0,0)不在直线3x -4y -9=0上,故直线与圆相交但不过圆心.2.(1)⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ(φ为参数) (2)⎩⎪⎨⎪⎧x =x 0+a cos φ,y =y 0+b sin φ(φ为参数) 【做一做2-1】⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数) 根据题意,a =2,b =3,∴参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数).【做一做2-2】26 根据参数方程,可知a =32,b =23.∴c =32 2- 23 2=18-12=6, ∴焦距为2c =2 6.3.⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ(φ为参数)【做一做3】C题型一 圆的参数方程的应用【例1】已知点P (x ,y )在圆x 2+y 2=1上,求x 2+2xy +3y 2的最大值和最小值. 分析:利用参数方程,转化成三角函数的问题来解决.反思:利用参数方程求最值问题是其常见的应用,求解时注意三角公式的应用. 题型二 椭圆的参数方程的应用【例2】在平面直角坐标系xOy 中,设P (x ,y )是椭圆x 23+y 2=1上一个动点,求x +y的最大值.分析:将普通方程化为参数方程,利用三角函数的相关知识求最值.反思:利用圆锥曲线的参数方程求最值问题,实质是利用三角函数求最值问题. 题型三 双曲线的参数方程的应用【例3】如图,设P 为等轴双曲线x 2-y 2=1上的一点,F 1,F 2是两个焦点,证明|PF 1|·|PF 2|=|OP |2.分析:设P ⎝⎛⎭⎪⎫1cos φ,tan φ,证明等式两边等于同一个式子即可.反思:利用圆锥曲线的参数方程证明恒等式,方法简单、明确,有利于掌握应用.答案:【例1】解:圆x 2+y 2=1的参数方程为⎩⎪⎨⎪⎧x =cos α,y =sin α(α为参数).∴x 2+2xy +3y 2=cos 2α+2cos αsin α+3sin 2α=1+cos 2α2+sin 2α+3×1-cos 2α2=2+sin 2α-cos 2α=2+2sin(2α-π4).则当α=k π+3π8(k ∈Z )时,x 2+2xy +3y 2取最大值为2+2,当α=k π-π8(k ∈Z )时,x 2+2xy +3y 2取最小值为2- 2.【例2】解:椭圆方程x 23+y 2=1的参数方程为⎩⎨⎧x =3cos θ,y =sin θ(θ为参数).设椭圆上任一点P (3cos θ,sin θ),则x +y =3cos θ+sin θ=2sin ⎝⎛⎭⎪⎫θ+π3. ∵sin ⎝⎛⎭⎪⎫θ+π3∈[-1,1], ∴当sin ⎝⎛⎭⎪⎫θ+π3=1时,x +y 取最大值2. 【例3】证明:设P ⎝ ⎛⎭⎪⎫1cos φ,tan φ,∵F 1(-2,0),F 2(2,0),∴|PF 1|=⎝ ⎛⎭⎪⎫1cos φ+22+tan 2φ =2cos 2φ+22cos φ+1, |PF 2|=⎝ ⎛⎭⎪⎫1cos φ-22+tan 2φ =2cos 2φ-22cos φ+1. ∴|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫2cos 2φ+12-8cos 2φ=2cos φ-1. ∵|OP |2=1cos 2φ+tan 2φ=2cos 2φ-1,∴|PF 1|·|PF 2|=|OP |2.1如图,已知椭圆24x +y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P ,Q 两点,则|OP |·|OQ |的值是( ).A .1B .2C .3D .42点M 0(0,2)到双曲线x 2-y 2=1的最小距离(即双曲线上任一点M 与点M 0的距离的最小值)是( ).A .1B .2 C.3 3参数方程=4sin ,=5cos x y θθ⎧⎨⎩(θ为参数)表示的曲线为__________.4已知抛物线y 2=2Px ,过顶点的两条弦OA ⊥OB ,求以OA ,OB 为直径的两圆的另一交点Q 的轨迹.答案:1.D 设M (2cos φ,sin φ),B 1(0,-1),B 2(0,1).则MB 1的方程为y +1=sin φ+12cos φx ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程为y -1=sin φ-12cos φx ,∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ·⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.2.C ∵双曲线方程为x 2-y 2=1,∴a =b =1.∴双曲线的参数方程为⎩⎪⎨⎪⎧x =1cos θ,y =tan θ.设双曲线上一动点为M ⎝⎛⎭⎪⎫1cos θ,tan θ,则|M 0M |2=1cos θ+(tan θ-2)2=(tan 2θ+1)+(tan 2θ-4tan θ+4)=2tan 2θ-4tan θ+5=2(tan θ-1)2+3.当tan θ=1时,|M 0M |2取最小值3, 此时有|M 0M |= 3.3.椭圆 参数方程⎩⎪⎨⎪⎧x =4sin θ,y =5cos θ(θ为参数)可化为⎩⎪⎨⎪⎧sin θ=x4,cos θ=y5(θ为参数)①②①2+②2,得x 216+y 225=1,所以曲线为椭圆.4.分析:用参数方程形式设出A ,B 的坐标,求出以OA ,OB 为直径的圆的方程,再求交点.解:设A (2pt 21,2pt 1),B (2pt 22,2pt 2),设Q (x ,y ),则以OA 为直径的圆的方程为x 2+y 2-2pt 21x -2pt 1y =0,以OB 为直径的圆的方程为x 2+y 2-2pt 22x -2pt 2y =0,即t 1,t 2为关于t 的方程2pxt 2+2pyt -x 2-y 2=0的两根.∴t 1t 2=- x 2+y 22px.又OA ⊥OB ,∴t 1t 2=-1,x 2+y 2-2px =0(x ≠0).∴另一交点Q 的轨迹是以(p,0)为圆心,p 为半径的圆(除去原点(0,0)).。

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 极坐标系》14

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 极坐标系》14

§直线与圆的极坐标方程一、教学目标1、理解直线与圆的极坐标方程的本质特点2、掌握求直线与圆的极坐标方程的方法3、类比直角坐标系中求曲线方程的方法,求极坐标系中曲线的方程二、教学重点与难点重点:求直线与圆的极坐标方程难点:掌握求直线与圆的极坐标方程的方法三、教材分析本节内容是北师大版选修4-4第二章第三节的内容,在学习了极坐标的概念,点的极坐标与直角坐标的互化以后安排的求直线与圆的极坐标方程,本节内容有承上启下的作用,是点的极坐标方程的延伸,求圆锥曲线统一的极坐标方程的基础,是高考的考点之一四、学情分析学生在必修的学习中,已经有了在直角坐标系中求曲线方程的基础,理解了求曲线方程的方法,又在前两节学习极坐标系的概念及点的极坐标与直角坐标的互化的基础上,学习直线与圆的极坐标方程是容易理解的五、教学方法启发引导与自主探究相结合(学生讲解展示答案教师指导总结)六、教学过程1、复习回顾(1)一般地,在直角坐标系中,如果曲线C上的点与一个二元方程(,)0f x y 的实数解建立了如下关系:① 曲线C 上的点的坐标都是方程的解,② 以方程(,)0f x y =的解为坐标的点都在曲线上,那么把这个方程叫做曲线的方程,这条曲线叫做方程的曲线(2) 在直角坐标系中,求曲线方程的步骤:① 设点的坐标② 建立等量关系③ 化简得到方程(,)0f x y =(3)点的极坐标2、新知探究曲线的极坐标方程的定义:一般地,如果极坐标系中的曲线C 与方程(,)0f ρθ=之间建立了如下关系: ①曲线C 上的任意一点的无穷多个极坐标中至少有一个适合方程(,)0f ρθ= ②满足方程(,)0f ρθ=的C 点都在曲线上,那么方程(,)0f ρθ=叫做曲线C 的极坐标方程3、实例分析例1、求从极点出发,倾斜角为4π解:画出倾斜角4π的直线与射线,就是直线的极坐标方程,这就是所求射线的点是射线上任意一点,则设404)0)(,(πθρθρ=≥≥M M .3223A 12)且和极轴平行的直线,()过点(;)并与极轴垂直的直线,()过点(坐标方程、求适合下列条件的极例ππB ;)并与极轴垂直的直线,(画出过点分析:π3A )1(.,3cos 3)cos(3A ),(线极坐标方程这就是所求直,即在直角三角形中上任意一点,)并与极轴垂直的直线,(是过点设-==-θρθπρπθρM 等量关系用三角函数的定义建立转化在直角三角形中利,)且和极轴平行的直线,(画出过点)类比(32)1(2πB 的直线的极坐标方程;)、倾斜角为,(、求经过点例6023πA.),(602方程系,化简得所求直线的定理建立等量关,在三角形中利用正弦设直线上任意点的直线的极坐标方程,)、倾斜角为,(分析:画出经过点θρπM A 的圆的极坐标方程)、半径为)(,、求圆心在(例a 0a 0a 4>分析:画出圆心在a,0半径为a 的圆,设圆上任意一点的极坐标),(θρM ,在直角三角形中利用三角函数的定义建立等量关系。

2022年 高中数学新北师大版精品教案《北师大版高中数学选修4-4坐标系与参数方程 极坐标系》14

2022年 高中数学新北师大版精品教案《北师大版高中数学选修4-4坐标系与参数方程 极坐标系》14

§直线与圆的极坐标方程一、教学目标1、理解直线与圆的极坐标方程的本质特点2、掌握求直线与圆的极坐标方程的方法3、类比直角坐标系中求曲线方程的方法,求极坐标系中曲线的方程二、教学重点与难点重点:求直线与圆的极坐标方程难点:掌握求直线与圆的极坐标方程的方法三、教材分析本节内容是北师大版选修4-4第二章第三节的内容,在学习了极坐标的概念,点的极坐标与直角坐标的互化以后安排的求直线与圆的极坐标方程,本节内容有承上启下的作用,是点的极坐标方程的延伸,求圆锥曲线统一的极坐标方程的根底,是高考的考点之一四、学情分析学生在必修的学习中,已经有了在直角坐标系中求曲线方程的根底,理解了求曲线方程的方法,又在前两节学习极坐标系的概念及点的极坐标与直角坐标的互化的根底上,学习直线与圆的极坐标方程是容易理解的五、教学方法启发引导与自主探究相结合〔学生讲解展示答案教师指导总结〕六、教学过程1、复习回忆(1)一般地,在直角坐标系中,如果曲线C上的点与一个二元方程的实数解建立了如下关系:①曲线C上的点的坐标都是方程的解,②以方程的解为坐标的点都在曲线上,那么把这个方程叫做曲线的方程,这条曲线叫做方程的曲线(2)在直角坐标系中,求曲线方程的步骤:①设点的坐标②建立等量关系③化简得到方程〔3〕点的极坐标2、新知探究曲线的极坐标方程的定义:一般地,如果极坐标系中的曲线C与方程之间建立了如下关系:①曲线C上的任意一点的无穷多个极坐标中至少有一个适合方程②满足方程的C点都在曲线上,那么方程叫做曲线C的极坐标方程3、实例分析例1解:画出倾斜角的直线与射线,分析:画出圆心在a,0半径为a的圆,设圆上任意一点的极坐标,在直角三角形中利用三角函数的定义建立等量关系。

分析:画出圆心在点A〔3,0〕、半径为1的圆,设圆周上点的极坐标,在三角形中利用余弦定理建立等量关系课堂练习小结1、理解曲线的极坐标方程的求法2、求不过极点的直线和圆极坐标方程是利用正弦定理和余弦定理建立等量关系课后作业:课本18页习题3、4板书设计§直线与圆的极坐标方程1、曲线的极坐标方程的定义例22、求曲线的极坐标方程的步骤例3例1 例4。

高中数学第二章参数方程2.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程课件北师大版选修4_4

高中数学第二章参数方程2.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程课件北师大版选修4_4

圆 , 则 圆 心 (1 , 3 ) 到 直 线 x + 3 y - 2 = 0 的 距 离 为
|1+ 3× 12+
33-2 2|=1,故直线和圆相切.
(2)设圆上的点 P(1+cos θ, 3+sin θ)(0≤θ<2π).
|OP|= 1+cos θ2+ 3+sin θ2= 当 θ=43π时,|OP|min=1.
的参数方程为xy==23scions
φ, φ
(φ 为参数),
设 P(x,y)是椭圆上在第一象限内的一点,
则 P 点的坐标是 P(3cos φ,2sin φ),
内接矩形面积为
S=4xy=4×3cos φ·2sin φ=12sin 2φ.
当 sin 2φ=1,即 φ=45°时,面积 S 有最大值 12,
这时 x=3cos 45°=322,y=2sin 45°= 2.
故面积最大的内接矩形的长为 3 2,宽为 2 2,最大面积为
12.
与椭圆上的动点 M 有关的最值、定值、轨迹等 问题一般利用其参数方程求解.
2.在平面直角坐标系 xOy 中 ,设 P(x,y)是椭圆x32+y2=1 上一个动点,求 x+y 的最大值. 解:椭圆方程x32+y2=1 的参数方程为xy==sin3cθos θ, (θ 为参数). 设椭圆上任一点 P( 3cos θ,sin θ), 则 x+y= 3cos θ+sin θ=2sinθ+π3. ∵sinθ+π3∈[-1,1], ∴当 sinθ+π3=1 时,x+y 取最大值 2.
x=rcos α, OM=OPcos α,MP=OPsin α,即 y=rsin α (α 为参
数).这就是圆心在原点、半径为 r 的圆的参数方程.参数
α 的几何意义是 OP 与 x 轴正方向的夹角.

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 极坐标系》64

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 极坐标系》64

课题:极坐标和参数方程教学目标1、通过近五年的高考题,发现全国卷的命题规律和特点,举一反三。

教学重点参数方程与普通方程的互化;一般要求是把参数方程化成普通方程,较高要求是利用设参求曲线的轨迹方程或研究某些最值问题;极坐标与直角坐标的互化。

教学难点研究极坐标方程、直角坐标方程和参数方程的互化以及求解相关最值问题教学过程一、考试说明对本节的要求1、坐标系(1)理解坐标系的作用;了解在平面直角坐标系伸缩变换作用下平面图形的变化情况(2)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标系和直角坐标的互化(3)能在极坐标系中给出简单图形的方程。

了解柱坐标系、球坐标系中表示空间中点的位置的方法。

(不做要求)2、参数方程(1)了解参数方程以及参数的意义;能选择适当的参数写出直线、圆和圆锥曲线的参数方程。

(2)了解平摆线、渐开线的生成过程,并能推导出他们的参数方程。

(不做要求)二、全国卷极坐标和参数方程的命题趋向根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及他们的位置关系的数据确立。

有些问题用极坐标系解决比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手简单,计算简便。

高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程和普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题、交点问题和位置关系的判定。

极坐标和参数方程在高考中的地位在全国卷1中以主观题形式出现,题序为第22题,分值为10分。

全国卷考情扫描2021年全国卷以椭圆和圆为背景,求解直角坐标点和取值范围的问题;2021年全国卷Ⅰ以圆为背景,考查参数方程与极坐标方程的互化及应用;2021年全国卷Ⅰ以直线与椭圆为背景,考查直角坐标方程与参数方程的互化以及距离的最值问题;2021年全国卷Ⅰ以直线与圆为背景,考查直角坐标方程与极坐标方程的互化以及三角形的面积的求解; 2021年全国卷Ⅰ以直线和圆为背景,考查参数方程、极坐标方程与直角坐标方程的互化与应用.三、模拟练习题再现1、(2021年全国1)在直角坐标系xoy 中,曲线1C 的参数方程为)0a (sin 1cos >⎩⎨⎧+==为参数,t ta y t a x ,在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C(1)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程(2)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 和2C 的公共点都在3C 上,求a2、(2021年全国1)在直角坐标系xOy 中,直线1C :x=2-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系。

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 直线和圆锥曲线的参数方程》9

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 直线和圆锥曲线的参数方程》9

直线的参数方程宿州学院附属实验中学罗风云一、教材分析数学就是一副“眼镜”,透过它能看清复杂问题的简单本质,而要把握数学本质,教师自己要先吃透.“直线的参数方程”是是高考二选一内容中的一部分本节课是“平面解析几何初步”和“圆锥曲线与方程”等知识的进一步延伸,同时也是研究直线与圆、直线与圆锥曲线的另一种思维角度本节内容是在认识了曲线的参数方程概念的基础上,进一步探究直线的参数方程,笔者认为这样编排的意图主要有两点:①从抽象到具体:从一般的曲线的参数方程概念到直线的参数方程;②本节提供学生深入理解参数思想的一个契机.因此笔者将本节课定位为:如何探究直线的参数方程,体会参数的思想,进一步体现参数方程的优势.二、学情分析授课对象是高二年级的学生,他们已经学完了高中数学的所有必修内容,具备了一定的向量基础知识,对于直线和圆锥曲线也有较系统的学习三、教学目标1知识与技能:掌握直线参数方程的标准形式并理解其参数的几何意义;会应用参数的几何意义求解有关距离、点的坐标等相关问题2过程与方法:在探索参数方程的过程中,体现了数学抽象、逻辑推理、数学建模、直观想象等数学核心素养,通过例2,让学生利用直线方程的不同形式求解,从涉及知识点的数量、求解的运算量等角度引导学生进行比较,体验直线的参数方程在解答此类试题中的优越性,从而提升学生的数学运算素养3.情感、态度与价值观:在直线参数方程的推导过程中,培养学生逻辑思维的严谨性;在师生间平等、和谐的交流中,激发学生学习数学的热情四、教学重点与难点经过上述分析,由此确定本节课的教学重点为分析直线的几何条件,选择适当的参数写出直线的参数方程教学难点为如何选择恰当的参数.突破难点的策略为从普通方程变换与平面向量变换两个角度出发进行探究.五、教法、学法分析当前,高中数学新课程标准进一步强调培养学生的数学核心素养,提出“用数学的眼光观察世界”、“用数学的思维分析世界”、“用数学的语言表达世界”.那么如何在高中数学课堂教学中,培养学生的数学核心素养呢?笔者认为,数学课堂教学须突出数学本质,教师应当设法引导学生主动参与知识的建构过程,将发现问题、分析问题、解决问题的思想方法和思想观念教给学生.本节课笔者以问题为载体,唤醒学生进行自主探究,注重学生探究能力与自主学习能力的培养,体现了“以生为本”的课改新理念六、教学过程(一)问题引导,新知探究上节课我们已经学过了曲线的参数方程的概念,今天我们将学习直线的参数方程首先来看一下问题:问题1:确定一条直线的几何条件是什么?两个定点;一个定点和直线的倾斜角问题2:已知一条直线过点,倾斜角为,求直线的普通方程直线的普通方程是.设计意图:通过回忆所学知识,为学生推导直线的参数方程做好准备.问题3:已知一条直线过点,倾斜角为,求直线的参数方程【视角一:普通方程变换】(师生共同探究)(1)当时,直线的普通方程是.即,也即,不妨设,整理得到:(为参数).(2)当时,也满足上述的参数方程.综上所述,(为参数)为所求直线的参数方程.【视角二:平面向量变换】我们来看一下问题:思考1:数轴是怎样建立的?有三要素:原点,单位长度,正方向.思考2:数轴上点的坐标的几何意义是什么?你能利用平面向量的知识进行解释吗?几何意义:,图中有:.思考3:在问题2中直线过点,倾斜角为,如果把这个平面直角坐标系中的直线作为数轴,那么怎样选择原点、单位长度和方向呢?如图所示,可以这样选择:以为原点,单位长度为直线的方向向量中的单位向量的长度,方向选择向上.思考4:你能根据直线的倾斜角确定直线的一个单位方向向量吗?根据三角函数定义,由直线的倾斜角得到直线的一个单位方向向量为.思考5:你能根据直线的单位方向向量确定直线的参数方程吗?师:在直线上,任取一个点,则与具有什么位置关系?位置关系:共线,即.师:设,能否用表示出这种关系?,用坐标表示为:.设计意图:综合运用所学知识,获取直线的方向向量和单位方向向量之间的关系,培养学生探索精神,体会数形结合思想,为接下来学生推导直线的参数方程做好了充分的准备.师:由上面的分析过程,你能求出过定点且倾斜角为的直线的参数方程吗?,即.于是,,即,.因此,经过定点,倾斜角为的直线的参数方程为:(为参数).(*)师(补充):仅当参数方程形如上式,才代表直线的倾斜角.问题4:上述直线的参数方程中哪些是变量?哪些是常量?参数的取值范围又是什么?,是常量,是变量;;【课堂小练习】1直线为参数的倾斜角是.设计意图:(识别)强调仅当参数方程形如(*)式,才代表直线的倾斜角.2直线的参数方程(为参数),那么它的普通方程为..设计意图:通过练习2,使得学生掌握直线的一般方程和参数方程之间的互化.变式拓展:同学们请观察直线(为参数)的图像,其中直线过定点,回答一下问题:(1)求点对应的参数与;(2)求点对应的参数与(3)联想它们之间的关系.如图所示,可以得出:点在点的上方,对应参数取对应距离是点在点下方 ,对应参数取对应距离是联想关系:到点的距离和参数有如下对应关系:在点上方的点对应,两点间的距离和的数值相等, 在点下方的点对应,两点间的距离等于的绝对值设计意图:由特殊到一般,有简单到复杂,符合学生学习规律问题5:根据表达式,你能证明刚才的结论吗?,因此,对于直线上任意一点,都有;当,,则直线的单位方向向量的纵坐标恒正,即的方向总是向上的.此时,若,则与同向,即方向向上;若,则与反向,则方向向下;若,,点与重合.师:上面分别从距离与方向两方面说明了参数的几何意义.但是同学们请注意:仅当直线的参数方程形如(*)式,参数才有上述几何意义.设计意图:把向量转化为坐标,获得了直线的参数方程,在此基础上分析直线参数方程的特点,体会参数的几何意义.(二)新知应用,巩固提升例1直线过点,且它的倾斜角是(1)写出直线的参数方程;(2)求直线与直线的交点坐标解:(1)直线的参数方程是(为参数),即(为参数)(2)把直线的参数方程代入,得,即将代入直线的参数方程,得到交点坐标为设计意图:让学生理解并学会使用直线的参数方程,为例2的顺利解答做好铺垫.例2已知直线过点,且它的倾斜角是直线与抛物线交于两点求(1);(2);(3)线段中点的坐标解:直线的普通方程是,由,得.(#)由(#)解得,.所以.则(1);(2);(3)线段中点的坐标为思考:你能根据参数方程利用的几何意义求解此题吗?解:直线的参数方程是(为参数),即(为参数).把它代入抛物线的方程,得,知.由参数的几何意义得:(1);(2);(3)线段的中点对应的参数,则线段中点的坐标为.设计意图:对于此题,初学者往往习惯用普通方程求解,但是会发现计算很复杂,而用参数方程求解则要简单的多,加深学生对参数的几何意义的理解,进一步体会研究直线的参数方程的价值.总结提炼:已知过定点,倾斜角为的直线参数方程为,直线与曲线交于两点,且对应的参数分别为、,回顾直线参数方程的建立过程,回答以下问题:(1)曲线的弦的长是多少?(2)线段的中点对应的参数的值是多少?先由学生思考,讨论,最后师生共同得到:解:(1)、分别对应参数、,则,,,则(2)由直线参数方程的定义知、的坐标可写成以下形式:,,,则,即线段的中点M对应的参数为.注意:由探究过程可知仅当直线的参数方程形如(*)式,这两个结论才成立(四)课堂小结,布置作业设计意图: 引导学生从本节课探究的思路进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会这样既可以使学生完善知识建构,又可以培养其能力【分层作业】设计意图:分层作业,让不同层次的学生各有所获,均能体会到学数学的成功感,又能恰当的提高学生的兴趣【板书设计】直线的参数方程1直线的参数方程例1 例22参数的几何意义。

[学习资料]高中数学 2.2圆的参数方程及应用教案 北师大版选修4-4

[学习资料]高中数学 2.2圆的参数方程及应用教案 北师大版选修4-4

第二课时 圆的参数方程及应用一、教学目标:知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。

利用圆的几何性质求最值(数形结合)过程与方法:能选取适当的参数,求圆的参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:能选取适当的参数,求圆的参数方程教学难点:选择圆的参数方程求最值问题.三、教学方法:启发、诱导发现教学. 四、教学过程:(一)、圆的参数方程探求1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。

)(sin cos 为参数θθθ⎩⎨⎧==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。

说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。

(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。

思考交流:你能回答课本第33页的思考交流题吗?3、若如图取<PAX=θ,AP 的斜率为K ,并阅读课本P33页。

结论:4,反思归纳:求参数方程的方法步骤。

(二)、应用举例例1、【课本P33页例3】已知两条曲线的参数方程⎩⎨⎧==θθsin 5cos 5:1y x C (θ为参数)和⎩⎨⎧+=+=00245sin 345cos 4:t y t x C (t 为参数) 为参数、指出参数方程)(sin 235cos 22ααα+=-=⎩⎨⎧y x(1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。

学生练习,教师准对问题讲评。

(二)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合)例2、1、已知点P (x ,y )是圆x2+y2- 6x- 4y+12=0上动点,求(1) x2+y2 的最值, (2)x+y 的最值,(3)P 到直线x+y- 1=0的距离d 的最值。

解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1,用参数方程表示为 由于点P 在圆上,所以可设P (3+cos θ,2+sin θ),(1) x2+y2 = (3+cos θ)2+(2+sin θ)2 =14+4 sin θ +6cos θsin(θ +ψ). (其中tan ψ =3/2) ∴ x2+y2 的最大值为。

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 直线和圆锥曲线的参数方程》5

高中数学新北师大版精品教案《北师大版高中数学选修4-4:坐标系与参数方程 直线和圆锥曲线的参数方程》5

§2直线和圆锥曲线的参数方程2.1直线的参数方程---利用t的几何意义解题技巧一、教学目标知识与技能:巩固直线参数方程的条件及参数的意义过程与方法:能根据直线的参数方程及参数t的意义,迅速进行解题情感,态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、教学重难点重点:会利用直线的参数方程中t的几何意义解决若点A,B在L上,对应的参数值分别为t A,t B,则(1)线段AB的长度AB=|t B-t A|.(2)某曲线的弦AB的中点为M,则PM=|t M|=|t A+t B|/2.(3)若定点P恰是某曲线的弦AB的中点,则有t A+t B=0.(4)若过定点P的直线交曲线C与A、B两点,当P在A、B同一侧时,|PA|+|PB|=|t B+t A|;当P在A、B 之间时,|PA|+|PB|=|t B-t A|.(5)若过定点P的直线交曲线C与A、B两点,|PA||PB|=|t B t A|.难点:直线的参数方程中t的几何意义的应用。

三、教学过程(一)基础回顾[基础·初探]教材整理1参数方程的概念一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t =f (t ),=g (t )①,并且对于t 取的每一个允许值,由方程组①所确定的点P (x ,y )都在这条曲线上,那么方程组①就叫作这条曲线的,联系x ,y 之间关系的变数t 叫作,简称.相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.教材整理2直线的参数方程1.经过点P (x 0,y 0),倾斜角是α的直线的参数方程为=x 0+t cos α,=y 0+t sin α(t 为参数).①其中M (x ,y )为直线上的任意一点,参数t 的几何意义是,可以用有向线段PM →的数量来表示.(二)例题评析例1如图2-2-2所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y 2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:图2-2-2【自主解答】 (1)∵直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45, ∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数).(*)∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中,整理得8t 2-15t -50=0,Δ=152+4×8×50>0.设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点,根据t的几何意义,得|PM |=⎪⎪⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516, 将此值代入直线l 的参数方程的标准形式(*), 得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝ ⎛⎭⎪⎫4116,34. (3)|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=5873.【精彩点拨】先求得直线l 的参数方程的标准形式,然后代入抛物线方程,得到关于参数t 的一元二次方程,再利用参数t 的几何意义,逐个求解.例2.设直线l 过点P (-3,3),且倾斜角为5π6.(1)写出直线l 的参数方程;(2)设此直线与曲线C=2cos θ,=4sin θ(θ为参数)交于A ,B 两点,求|PA |·|PB |.【解】 (1)直线l 的参数方程为 ⎩⎪⎨⎪⎧x =-3+t cos 56π=-3-32t ,y =3+t sin 56π=3+t2(t 为参数).(2)把曲线C 的参数方程中参数θ消去,得4x 2+y 2-16=0. 把直线l 的参数方程代入曲线C 的普通方程中,得4⎝⎛⎭⎪⎪⎫-3-32t 2+⎝ ⎛⎭⎪⎫3+12t 2-16=0, 即13t 2+4(3+123)t +116=0. 由t 的几何意义,知|P A |·|PB |=|t 1·t 2|, 故|P A |·|PB |=|t 1·t 2|=11613.(三)跟踪练习跟踪练习.过抛物线y 2=4x 的焦点F 作倾斜角为34π的直线,它与抛物线交于A ,B 两点,求这两点的距离.【解】 抛物线y 2=4x 的焦点为F (1,0),设过焦点F (1,0),倾斜角为34π的直线的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =22t(t 为参数),将此代入y 2=4x ,得t 2+42t -8=0,设这个方程的两个根分别为t 1,t 2, 由根与系数的关系, 有t 1+t 2=-42,t 1·t 2=-8,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=(-42)2+32=64=8.∴A ,B 两点间的距离是8.(四)巩固强化[再练一题]以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l 经过点P (1,1),倾斜角α=π6.(1)写出直线l 的参数方程;(2)设l 与圆ρ=2相交于两点A ,B ,求点P 到A ,B 两点的距离之积.【解】 (1)直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t(t 是参数).(2)圆ρ=2的普通方程为x 2+y 2=4.=1+32t ,=1+12t代入x 2+y 2=4,得+32t+12t =4.整理得t 2+(3+1)t -2=0,点P 到A ,B 的距离之积为|t 1|·|t 2|=|t 1t 2|=2.例3、【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系xOy 中,已知曲线1C的参数方程为5()x y ϕϕϕ⎧=⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l 的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值.【解析】(1)曲线1C 的普通方程为:22(5)10x y -+=,曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=,由两圆心的距离32)d =∈,所以两圆相交,所以两方程相减可得交线为6215x -+=,即52x =.所以直线的极坐标方程为5cos 2ρθ=.(五)巩固提高(2)直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M ,直线l的参数方程为242x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩,带入曲线1C 22(5)10x y -+=得2310t ++=.设,A B 两点的参数为1t ,2t,所以12t t +=-,1231t t =,所以1t ,2t 同号.所以1212MA MB t t t t +=+=+=巩固提高【河南省周口市2018–2019学年度高三年级(上)期末调研考试数学】在直角坐标系xOy 中,直线l的参数方程为4, 32x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223sin 12ρθ+=().(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A B ,两点,且设定点21P (,),求PB PA PAPB+的值.【解析】(1)由直线l 的参数方程消去t ,得普通方程为10x y --=.223sin 12ρθ+=()等价于2223sin 12ρρθ+=,将222sin x y y ρρθ=+=,代入上式,得曲线C 的直角坐标方程为222312x y y ++=(),即22143x y +=.四、课堂小结若点A ,B 在L 上,对应的参数值分别为t A ,t B ,则 (1)线段AB 的长度AB =|t B -t A |.(2)某曲线的弦AB 的中点为M ,则PM =|t M |=|t A +t B |/2. (3)若定点P 恰是某曲线的弦AB 的中点,则有t A +t B =0. (4)若过定点P 的直线交曲线C 与A 、B 两点, 当P 在A 、B 同一侧时,|PA|+|PB|=|t B +t A |; 当P 在A 、B 之间时,|PA|+|PB|=|t B -t A |.(5) 若过定点P 的直线交曲线C 与A 、B 两点,|PA||PB|=|t B t A |.五、作业布置优化方案:第二章第二节(2)点21P (,)在直线10x y --=上,所以直线l的参数方程可以写为2 1x t y ⎧=+⎪⎪⎨⎪=⎪⎩,(为参数),将上式代入22143x y +=,得2780t ++=.设AB ,对应的参数分别为12t t ,,则121287t t t t +==,所以22||PA PB PBPA PAPBPA PB++=22PA PB PA PB PA PB+-=()21212122t t t t t t +-=()2121212||2t t t t t t +-⋅==⋅2828677877-⨯=(.。

高中数学第2章参数方程22.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程学案北师大版选修4_4

高中数学第2章参数方程22.2圆的参数方程2.3椭圆的参数方程2.4双曲线的参数方程学案北师大版选修4_4

2.2 圆的参数方程 2.3 椭圆的参数方程 2.4 双曲线的参数方程学习目标:1.了解圆锥曲线参数方程的推导过程.2.掌握圆和圆锥曲线的参数方程.(易错易混点)3.能用圆、椭圆参数方程解决有关问题.(难点)教材整理1 圆的参数方程 1.标准圆的参数方程已知一个圆的圆心在原点,半径为r ,设点P (x ,y )是圆周上任意一点,连结OP ,令OP 与x 轴正方向的夹角为α,则α唯一地确定了点P 在圆周上的位置.作PM ⊥Ox ,垂足为M ,显然,∠POM =α(如图).则在Rt△POM 中有OM =OP cos α,MP =OP sin α,即⎩⎪⎨⎪⎧x =r cos α,y =r sin α(α为参数).这就是圆心在原点,半径为r 的圆的参数方程.参数α的几何意义是OP 与x 轴正方向的夹角.2.一般圆的参数方程以(a ,b )为圆心,r 为半径的圆,普通方程为(x -a )2+(y -b )2=r 2,它的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(α为参数,a ,b 是常数).填空:(1)圆心为(2,1),半径为2的圆的参数方程是________. (2)在圆⎩⎪⎨⎪⎧x =-1+cos αy =sin α(α为参数)中,圆的圆心是________,半径是________.(3)圆⎩⎪⎨⎪⎧x =1+cos α,y =1+sin α(α为参数)上的点到O (0,0)的距离的最大值是________,最小值是________.[解析] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数).(2)由圆的参数方程知圆心为(-1,0),半径为1. (3)由圆的参数方程知圆心为(1,1),半径为1. ∵圆心到原点的距离为2,∴最大值为2+1, 最小值为2-1.[答案] (1)⎩⎪⎨⎪⎧x =2+2cos α,y =1+2sin α(α为参数)(2)(-1,0) 1 (3)2+1 2-1教材整理2 椭圆与双曲线的参数方程 1.椭圆的参数方程 (1)椭圆的中心在原点标准方程为x 2a 2+y 2b 2=1,其参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).参数φ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与x 轴正半轴的夹角. (2)椭圆方程不是标准形式其方程也可表示为参数方程的形式,如(x -x 0)2a2+(y -y 0)2b2=1(a >b >0),参数方程可表示为⎩⎪⎨⎪⎧x =x 0+a cos φ,y =y 0+b sin φ(φ为参数).2.双曲线的参数方程当以F 1,F 2所在的直线为x 轴,以线段F 1F 2的垂直平分线为y 轴建立直角坐标系,双曲线的普通方程为x 2a 2-y 2b2=1(a >0,b >0).此时参数方程为 (φ为参数).其中φ∈[0,2π)且φ≠π2,φ≠3π2.判断(正确的打“√”,错误的打“×”)(1)椭圆参数方程中,参数φ的几何意义是椭圆上任一点的离心角.( ) (2)在椭圆上任一点处,离心角和旋转角数值都相等.( ) (3)在双曲线参数方程中,参数φ的范围为[0,2π).( ) [解析] (1)√ 椭圆中,参数φ的几何意义就是离心角.(2)× 在四个顶点处是相同的,在其他任一点处,离心角和旋转角在数值上都不相等. (3)× 双曲线中,参数φ的范围是φ∈[0,2π)且φ≠π2,φ≠3π2.[答案] (1)√ (2)× (3)×【例1】 圆(x -r )2+y 2=r 2(r >0),点M 在圆上,O 为原点,以∠MOx =φ为参数,求圆的参数方程.[精彩点拨] 根据圆的特点,结合参数方程概念求解. [尝试解答] 如图所示,设圆心为O ′,连结O ′M ,∵O ′为圆心, ∴∠MO ′x =2φ,∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.1.确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题容易把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.2.由于选取的参数不同,圆有不同的参数方程.1.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.[解] 设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ(θ为参数),这就是所求的轨迹方程.它是以(1,0)为圆心,以12为半径的圆.【例2】 如图所示,已知点M 是椭圆a 2+b 2=1(a >b >0)上在第一象限的点,A (a,0)和B (0,b )是椭圆的两个顶点,O 为原点,求四边形MAOB 的面积的最大值.[精彩点拨] 本题可利用椭圆的参数方程,把面积的最大值问题转化为三角函数的最值问题求解.[尝试解答] M 是椭圆x 2a 2+y 2b2=1(a >b >0)上在第一象限的点,由椭圆x 2a 2+y 2b2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数),故可设M (a cos φ,b sin φ),其中0<φ<π2,因此,S 四边形MAOB =S △MAO +S △MOB=12OA ·y M +12OB ·x M =12ab (sin φ+cos φ)=22ab sin ⎝⎛⎭⎪⎫φ+π4.所以,当φ=π4时,四边形MAOB 面积的最大值为22ab .本题将不规则四边形的面积转化为两个三角形的面积之和,这是解题的突破口和关键,用椭圆的参数方程,将面积表示为参数的三角函数求最大值,思路顺畅,解法简捷,充分体现了椭圆的参数方程在解决与椭圆上点有关最值问题时的优越性.2.(2019·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t2,y =4t1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.[解] (1)因为-1<1-t 21+t 2≤1,且x 2+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x ≠-1).l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎪⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7.【例312|PF 1|·|PF 2|=|OP |2.[精彩点拨] 将双曲线方程化为参数方程⎩⎪⎨⎪⎧x =1cos φ,y =tan φ,再利用三角运算进行证明.[尝试解答] 因为双曲线的方程为x 2-y 2=1, 所以设P ⎝⎛⎭⎪⎫1cos φ,tan φ.∵F 1(-2,0),F 2(2,0), ∴|PF 1|=⎝ ⎛⎭⎪⎫1cos φ+22+tan 2φ=2cos 2φ+22cos φ+1, |PF 2|=⎝ ⎛⎭⎪⎫1cos φ-22+tan 2φ =2cos 2φ-22cos φ+1, ∴|PF 1|·|PF 2|=⎝ ⎛⎭⎪⎫2cos 2φ+12-8cos 2φ=2cos 2φ-1. ∵|OP |2=1cos 2φ+tan 2φ=2cos 2φ-1,∴|PF 1|·|PF 2|=|OP |2.1.与双曲线上点有关的问题,常利用其参数方程转化为三角的计算与证明问题. 2.对由参数方程给出的双曲线确定其几何性质问题,常将其化为普通方程后,再求解.3.求证:双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点到两渐近线的距离的乘积是一个定值.[证明] 由双曲线x 2a 2-y 2b2=1,得两条渐近线的方程是:bx +ay =0,bx -ay =0, 设双曲线上任一点的坐标为(a sec φ,b tan φ), 它到两渐近线的距离分别是d 1和d 2,则d 1·d 2=|ab sec φ+ab tan φ|b 2+a 2·|ab sec φ-ab tan φ|b 2+(-a )2=|a 2b 2(sec 2φ-tan 2φ)|a 2+b 2=a 2b2a 2+b 2(定值).[探究问题1.给定参数方程⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,其中a ,b 是常数.(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么? (2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?[提示] (1)参数方程表示的曲线是以(a ,b )为圆心,r 为半径的圆(r ≠0). (2)参数方程表示的曲线是过(a ,b )点,且倾斜角为α的直线. 2.圆的参数方程中,参数有什么实际意义?[提示] 在圆的参数方程中,设点M 绕点O 转动的角速度为ω(ω为常数),转动的某一时刻为t ,因此取时刻t 为参数可得圆的参数方程为:⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数),此时参数t 表示时间.若以OM转过的角度θ(∠M 0OM =θ)为参数,可得圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数),此时θ具有明显的几何意义.3.利用圆的参数方程表示其上任意点坐标时有什么优越性?[提示] 将其横纵坐标只用一个参数(角)来表示,可将与点的坐标有关的问题转化为三角问题求解.【例4】 设方程⎩⎨⎧x =1+cos θ,y =3+sin θ(θ为参数)表示的曲线为C .(1)判断C 与直线x +3y -2=0的位置关系; (2)求曲线C 上的动点到原点O 的距离的最小值;(3)点P 为曲线C 上的动点,当|OP |最小时(O 为坐标原点),求点P 的坐标; (4)点M 是曲线C 上的动点,求其与点Q (-1,-3)连线中点的轨迹.[精彩点拨] 本题考查圆的参数方程的应用,以及运算和转化与化归能力. (1)利用圆心到直线的距离与半径的关系判断. (2)设P 的坐标表示出|OP |,利用三角函数知识求最值. (3)利用(2)取最小值的条件即可.(4)设出点M 的坐标,进而表示出MQ 中点坐标,即得轨迹的参数方程.[尝试解答] (1)曲线C 是以(1,3)为圆心,半径为1的圆,则圆心(1,3)到直线x +3y -2=0的距离为|1+3×3-2|12+(3)2=1,故直线和圆相切. (2)设圆上的点P (1+cos θ,3+sin θ)(0≤θ<2π). |OP |=(1+cos θ)2+(3+sin θ)2=5+4cos ⎝⎛⎭⎪⎫θ-π3, 当θ=4π3时,|OP |min =1.(3)由(2)知,θ=4π3,∴x =1+cos 4π3=12,y =3+sin4π3=32,P ⎝ ⎛⎭⎪⎫12,32. (4)设MQ 的中点为(x ,y ).∵M (1+cos θ,3+sin θ),Q (-1,-3), ∴⎩⎪⎨⎪⎧x =1+cos θ-12=12cos θ,y =-3+3+sin θ2=12sin θ(θ为参数).所以中点轨迹是以原点为圆心,12为半径的圆.1.与圆的参数方程有关的问题求解时,可直接利用参数方程求解,也可转化为普通方程问题求解.2.与圆上点有关的距离最值问题,需建立目标函数求解时,常利用圆的参数方程,将圆上的点用角表示,从而将待求最值,转化为三角函数的最值问题求解,但要注意参数θ的取值范围.4.如图,设矩形ABCD 的顶点C 的坐标为(4,4),点A 在圆x 2+y 2=9(x ≥0,y ≥0)上移动,且AB ,AD 两边分别平行于x 轴,y 轴.求矩形ABCD 面积的最小值及对应点A 的坐标.[解] 设A (3cos θ,3sin θ)(0<θ<90°),则|AB |=4-3cos θ,|AD |=4-3sin θ, ∴S =|AB |·|AD |=(4-3cos θ)(4-3sin θ) =16-12(cos θ+sin θ)+9cos θsin θ.令t =cos θ+sin θ(1<t ≤2),则2cos θsin θ=t 2-1.∴S =16-12t +92(t 2-1)=92t 2-12t +232=92⎝ ⎛⎭⎪⎫t -432+72,∴t =43时,矩形ABCD 的面积S取得最小值72.此时⎩⎪⎨⎪⎧cos θ+sin θ=43,cos θsin θ=718,解得⎩⎪⎨⎪⎧cos θ=4±26,sin θ=4∓26.∴对应点A 的坐标为⎝ ⎛⎭⎪⎫2+22,2-22或 ⎝⎛⎭⎪⎫2-22,2+22.1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)[解析] 由圆的参数方程知,圆心为(2,0). [答案] D2.圆心在点(-1,2),半径为5的圆的参数方程为( ) A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π)B .⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π)C.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<π)D .⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π)[解析] 圆心在点C (a ,b ),半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).[答案] D3.曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.[解析] 由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. [答案] 234.双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.[解析] 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0).[答案] (-5,0),(5,0)5.能否在椭圆x 216+y 212=1上找一点,使这一点到直线x -2y -12=0的距离最小.[解] 设椭圆的参数方程为⎩⎨⎧x =4cos φ,y =23sin φ(φ是参数,0≤φ<2π).则d =|4cos φ-43sin φ-12|5=455⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫φ+π3-3,当cos ⎝⎛⎭⎪⎫φ+π3=1时, 即φ=53π时,d min =455,此时对应的点为(2,-3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时 圆的参数方程及应用
一、教学目标:
知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。

利用圆的几何性质求最值(数形结合)
过程与方法:能选取适当的参数,求圆的参数方程
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二、重难点:教学重点:能选取适当的参数,求圆的参数方程
教学难点:选择圆的参数方程求最值问题.
三、教学方法:启发、诱导发现教学. 四、教学过程:
(一)、圆的参数方程探求
1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。

)(sin cos 为参数θθ
θ⎩⎨
⎧==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。

说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。

(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。

(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。

思考交流:你能回答课本第33页的思考交流题吗?
3、若如图取<PAX=θ,AP 的斜率为K ,并阅读课本P33页。

结论:。

半径,并化为普通方程所表示圆的圆心坐标、为参数、指出参数方程)(sin 235cos 22ααα+=-=⎩

⎧y x
4,反思归纳:求参数方程的方法步骤。

(二)、应用举例
例1、【课本P33页例3】已知两条曲线的参数方程
⎩⎨⎧==θθ
sin 5cos 5:1y x C (θ为参数)和⎩⎨⎧+=+=0
0245
sin 345cos 4:t y t x C (t 为参数) (1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。

学生练习,教师准对问题讲评。

(二)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合)
例2、1、已知点P (x ,y )是圆x2+y2- 6x- 4y+12=0上动点,求(1) x2+y2 的最值, (2)x+y 的最值,
(3)P 到直线x+y- 1=0的距离d 的最值。

解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1,用参数方程表示为 由于点P 在圆上,所以可设P (3+cos θ,2+sin θ),
(1) x2+y2 = (3+cos θ)2+(2+sin θ)2 =14+4 sin θ +6cos θ
θ +ψ). (其中tan ψ =3/2) ∴ x2+y2 的最大值为。

(2) x+y= 3+cos θ+ 2+sin θ
( θ + 4
π
)∴ x+y 的最大值为
,最
小值为。

(3)2
|
)4
sin(24|2
|
1sin 2cos 3|π
θθθ++=
-+++=
d
3cos 2sin x y θ
θ
=+⎧⎨
=+⎩
显然当1)4
sin(±=+
π
θ时,d 取最大值,最小值,分别为1+1-2、 过点(2,1)的直线中,被圆x 2
+y 2
-2x+4y=0截得的弦:为最长的直线方程是_________;为
最短的直线方程是__________;
3、若实数x ,y 满足x 2
+y 2
-2x +4y =0,则x -2y 的最大值为 。

(三)、课堂练习:学生练习:1、2
(四)、小结:1、本课我们分析圆的几何性质,选择适当的参数求出圆的参数方程。

2、参数取的不同,可以得到圆的不同形式的参数方程。

从中体会参数的意义。

3、利用参数方程求最值。

要求大家掌握方法和步骤。

(五)、作业:课本P39页A 组6、7、8 B 组5
1、方程04524222=-+--+t ty tx y x (t 为参数)所表示的一族圆的圆心轨迹是(D )
A .一个定点
B .一个椭圆
C .一条抛物线
D .一条直线 2、已知)(sin cos 2为参数θθ
θ
⎩⎨
⎧=+=y x ,则22)4()5(++-y x 的最大值是6。

8.曲线y y x 222=+的一个参数方程为)(sin 1cos 为参数θθ
θ
⎩⎨
⎧+==y x。

相关文档
最新文档