新课标高二数学(人教A版)必修5课件:2.3数列、等差数列复习

合集下载

人教版高中数学必修5(A版) 等差数列的前n项和 PPT课件

人教版高中数学必修5(A版) 等差数列的前n项和 PPT课件

10 9 S10 10 500 50 7250 (万元 ) 2
答:从2001到2010年,该市在“校校通”工程中的总投入 是7250元。
等差数列的前 n 项和公式:
n(a1 an ) Sn 2 n(n 1) S n na1 d 2
问题:1.两个公式中共有几个量?
若一个数列的前 n项和为Sn pn2 qn, 其中p, q为常数, 且p 0, 那么这个数列一定是等 差数列吗?
若一个数列的前 n项和为Sn pn2 qn r (r 0), 其中p, q 为常数,且 p 0, 那么这个数列一定是等 差数列吗?
小结:
1.知识点小结:1)等差数列的前
例1:2000年11月14日教育部下发了《关于在中小学实施“校
校通”工程的通知》,某市计划从2001年起用10年的时间,在 全市中小学建成不同标准的校园网。据测算,2001年该市用于 “校校通”工程的经费为500万元。为了保证工程的顺利实施, 计划每年投入的资金都比上一年增加50万元。那么从2001年起 的未来10年内,该市在“校校通”工程中的总投入是多少? 解:由题可知,从2001年起各年投入的资金构成等差数列, 设为{an },则 a1 500, d 50 则到2010年,投入的资金总额为
16
等差数列的前 n 项和公式:
n(n 1) S n na1 d 2
d 2 d n (a1 )n 2 2

d 0 时, Sn 是 n的二
次函数形式,且常数项为 0
例2:已知一个等差数列{an }前10项的和是310,前20项的和是
解:由题意知 代入公式 得
1220,由这些条件能确定这个等差数列的前n项和的公式吗?

新课标人教A版数学必修5全部课件:等差数列性质应(1)

新课标人教A版数学必修5全部课件:等差数列性质应(1)

f ( n )( n N ), 且 f (1) 2 求 f (101 )的值 tg ( A C )的值
(6)在 ABC 中 , A 、 B 、 C 成等差数列,求
练习题 2 (7)等差数列 a1 1 25 , 第10 项大于 1,求公差 d 的范围
(8 ) 若 a b , 且 a , x1 , x 2 , , x m , b 和 a , y1 , y 2 , , y n , b 都是 等差数列,试用 (9)已知等差数列 x 2 x1 m 、 n 的值表示 之值。 y 2 y1
a n , 满足 a 3 a 7
12 , a 4 a 6 4 94 , 数
求数列 a n 的通项公式 . (10 )四个数成等差数列,其 第一个数与第四个数的 的积少 18,求这四个数。 中四个数的平方和为 积比第二个数与第三个
练习题 1: (1)在等差数列中 a 3 5 , a 5 9 , 求 a10 的值 a15 33 , a 25 66 , 求 a 35的值 a 5 10 , a1 a 2 a 3 3, 求: a1、 d 使这五个数 。

( 2)在等差数列中, (3)在等差数列中,
( 4 .) 在 1与 7 之间依次插入三个数, 成等差数列,求此数列 (5)设 f ( n 1) 1 2
( 2 ) 若 lg 2、 2 1)、 2 3) 成等差数列,则 lg( lg(
x x
x?
(3)三数成等差数列,其
和为 9, ;
积为 15,求此三数 ( 若是五个数成等差数列 四个数成等差数列又如 何设未知数? )
(4)首项为 24 的等差数列,从第 为正数,求公差 d 的取值范围

人教A版2019年高中数学必修5讲义:第二章 2.3 等差数列的前n项和_含答案

人教A版2019年高中数学必修5讲义:第二章 2.3 等差数列的前n项和_含答案

等差数列的前n 项和[新知初探]1.数列的前n 项和对于数列{a n },一般地称a 1+a 2+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+…+a n .2.等差数列的前n 项和公式 [小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n 项和就是指从数列的第1项a 1起,一直到第n 项a n 所有项的和( ) (2)a n =S n -S n -1(n ≥2)化简后关于n 与a n 的函数式即为数列{a n }的通项公式( ) (3)在等差数列{a n }中,当项数m 为偶数2n 时,则S 偶-S 奇=a n +1( ) 解析:(1)正确.由前n 项和的定义可知正确. (2)错误.例如数列{a n }中,S n =n 2+2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又∵a 1=S 1=3,∴a 1不满足a n =S n -S n -1=2n -1,故命题错误. (3)错误.当项数m 为偶数2n 时,则S 偶-S 奇=nd . 答案:(1)√ (2)× (3)×预习课本P42~45,思考并完成以下问题2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n (n +1)2解析:选D 因为a 1=1,d =1,所以S n =n +n (n -1)2×1=2n +n 2-n 2=n 2+n 2=n (n +1)2,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20, 即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2d =-5, 解得n =15或n =-4(舍).(2)由已知,得S8=8(a1+a8)2=8(4+a8)2=172,解得a8=39,又∵a8=4+(8-1)d=39,∴d=5.[活学活用]设S n是等差数列{a n}的前n项和,已知a2=3,a8=11,则S9等于() A.13B.35C.49 D.63解析:选D∵{a n}为等差数列,∴a1+a9=a2+a8,∴S9=9(a2+a8)2=9×142=63.[典例]已知数列{a n}的前n项和S n=-2n2+n+2.(1)求{a n}的通项公式;(2)判断{a n}是否为等差数列?[解](1)∵S n=-2n2+n+2,∴当n≥2时,S n-1=-2(n-1)2+(n-1)+2=-2n2+5n-1,∴a n=S n-S n-1=(-2n2+n+2)-(-2n2+5n-1)=-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4, 但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2; (2)S n =3n -1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质: S n ,S 2n -S n ,S 3n -S 2n 成等差数列. 所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53[活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18B .17C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n (3+2n +1)2=n 2+2n , 所以S nn =n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得 25×17+17×(17-1)2d =25×9+9×(9-1)2d , 解得d =-2, [法一 公式法] S n =25n +n (n -1)2×(-2)=-(n -13)2+169. 由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0,得⎩⎨⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2B .-32n 2-n 2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n (-1+2-3n )2=-32n 2+n 2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选C 由等差数列的性质及求和公式得,S 13=13(a 1+a 13)2=13a 7>0,S 15=15(a 1+a 15)2=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92(a 1+a 9)52(a 1+a 5)=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1 =(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n ,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45,即⎩⎪⎨⎪⎧a 2=11,a 3=9, 所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C.3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a nb n=a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -12(2n -1)b 1+b 2n -12(2n -1)=A 2n -1B 2n -1=7(2n -1)+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28. (1)求数列{a n }的通项公式;(2)若b n =S n n +c(c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴(a 1+a 4)×42=28,a 1+a 4=14,a 2+a 3=14, 又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c , ∴b 1=11+c ,b 2=62+c ,b 3=153+c. 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧a 1=50,d =-3, ∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0;当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n (n -1)2d =-32n 2+1032n . 当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n=2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝⎛⎭⎫-32×172+1032×17-⎝⎛⎭⎫-32n 2+1032n =32n 2-1032n +884. ∴S n=⎩⎨⎧-32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。

高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和

高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和
99 an= 9×10n
n=1 n≥2.
返回
在等差数列{an}中,S10=100,S100=10.求S110.
[解] 法一:(基本量法)设等差数列{an}的首项为 a1,
1010-1 d=100, 10a1+ 2 公差为 d,则 100a +100100-1d=10. 1 2
2
返回
返回
点击此图片进入 NO.1 课堂强化
返回
点击此图片进入 NO.2 课下检测
返回
1 022,求公差d;
(2)已知等差数列{an}中,a2+a5=19,S5=40,求a10.
返回
nn-1 解:(1)因为 an=a1+(n-1)d,Sn=na1+ 2 d, 又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, 所以 1 n+2nn-1d=-1 022. ① ②
返回
返回
[研一题] [例1] 在等差数列{an}中,已知d=2,an=11,Sn=
35,求a1和n.
返回
[自主解答]
an=a1+n-1d, 由 nn-1 Sn=na1+ 2 d,
பைடு நூலகம்
a1+2n-1=11, 得 nn-1 na1+ 2 ×2=35,
n=5, 解方程组得 a1=3, n=7, 或 a1=-1.
2 . 3
课前预习·巧设计
第 二 章 数 列
等 差 数 列 的 前
第一 课时 等差 数列 的前 n项 和
名 师 课 堂 · 一 点 通
创 新 演 练 · 大 冲 关
考点一 考点二 考点三
n
项 和
N0.1 课堂强化 N0.2 课下检测
返回
返回

高中数学人教A版必修5《等差数列》PPT课件

高中数学人教A版必修5《等差数列》PPT课件
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)

推荐-高二数学人教A版必修5课件2.3.2 等差数列前n项和的性质与应用

推荐-高二数学人教A版必修5课件2.3.2 等差数列前n项和的性质与应用

=nd;若项数为2n-1(n∈N*),则S2n-1=(2n-1)an(an为中间项),且S奇-S偶
=an,S偶∶S奇=(n-1)∶n.
(3)设{an},{bn}均为等差数列,An 为数列{an}的前 n 项和,Bn 为数列{bn}
的前 n 项和,则������������������������ = ������������22������������--11.
S6=
.
解析:(1)设公差为d,由题意得S偶-S奇=30-15=5d,故d=3.
(2)∵S2,S4-S2,S6-S4成等差数列,
∴4+(S6-9)=2×5,∴S6=15.
答案:(1)C (2)15
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 A YI JIE HUO
D当堂检测 ANGTANG JIANCE
3
即当 n≤34 时,an>0;
当 n≥35 时,an<0.
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 A YI JIE HUO
D当堂检测 ANGTANG JIANCE
探究一
探究二
探究三
思维辨析
(1)当 n≤34 时,
Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=-32n2+2025n. (2)当 n≥35 时,
分析解答本题可用多种方法,根据S17=S9找出a1与d的关系,转化 为Sn的二次函数求最值,也可以用通项公式找到通项的变号点,再 求解.
首页
X新知导 I学NZHI DAOXUE
D答疑解惑 A YI JIE HUO
D当堂检测 ANGTANG JIANCE

高二数学必修5第二章 数列2-3课件(共22张PPT)

高二数学必修5第二章 数列2-3课件(共22张PPT)
第二章 数列
2.3 等差数列前n项和公式
第一页,编辑于星期一:一点 二十分。
本节主要学习等差数列前n项和公式及其简单应用。以泰姬陵中的 宝石数为引子,研究求和公式。用高斯小时候的故事来讲解求和公式。 问题探究一:用倒序相加法得出公式并总结变形公式。用例1加以巩 固。问题探究二:公式的灵活应用,知三求二,用变式2、3加以巩固。
第十一页,编辑于星期一:一点 二十分。
第十二页,编辑于星期一:一点 二十分。
(II)在等差数列 an中,已知: d 4 , n 20 , sn 460

a1

a 20
.
解: 利用 公式2
Sn
na1
n(n 1) 2
d
a1= -15
再根据
a20= 61
第十三页,编辑于星期一:一点 二十分。
例2 2000年11月14日教育部下发了《关于在中小学实施“校校 通”工程的通知》。某市据此提出了实施“校校通”工程的总目 标:从2001年起用10年的时间,在全市中小学建成不同标准的 校园网。据测算,2001年该市用于“校校通”工程的经费为500 万元。为了保证工程的顺利实施,计划每年投入的资金都比上一 年增加50万元。那么从2001年起的未来10年内,该市在“校校
通”工程中的总投入是多少?
第十四页,编辑于星期一:一点 二十分。
解:根据题意,从2001~2010年,该市每年投入“校校通”工程的经 费都比上一年增加50万元。所以,可以建立一个等差数列{an},表示从 2001年起各年投入的资金,其中 那么,到2010年(n=10),投入的资金总额为
答:从2001~2010年,该市在“校校通”工程中的总投入是7250万元。
问题1:图案中,第1层到第21层一共有多少颗宝石?

新课标人教A版数学必修5全部课件:等差数列与等比数列

新课标人教A版数学必修5全部课件:等差数列与等比数列
5 1 2
B.
5 1 2
C.
1 2
5
D.
5 1 2

5 1 2
9 4.等比数列{an}中,a4+a6=3,则a5(a3+2a5+a7)=_________
5.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则2a10-a12 的 值为( C ) A.20 B.22 C.24 D.28
4.重要性质: m+n=p+q am+an=ap+aq(等差数列) (m、n、p、q∈N*) am·n=ap·q(等比数列) a a
特别地 m+n=2p am+an=2ap(等差数列)
am·n=a2p(等比数列) a
返回
课前热身
1.观察数列:30,37,32,35,34,33,36,( 31 点,在括号内适当的一个数是_____. ),38的特
返回
能力·思维·方法
1.四个正数成等差数列,若顺次加上2,4,8,15后成等比 数列,求原数列的四个数.
【解题回顾】本题是利用等差数列、等比数列的条件设未 知数,充分分析题设条件中量与量的关系,从而确定运用 哪些条件设未知数,哪些条件列方程是解这类问题的关键 所在.
2.{an}是等差数列,且a1-a4-a8-a12+a15=2,求a3+a13的值.
①写出{cn}的前5项.
②证明{cn}是等比数列.
【解题回顾】依定义或通项公式,判定一个数列为等差或等 比数列,这是数列中的基本问题之一.
返回
误解分析
1.在用性质m+n=p+q则am+an=ap+aq时,如果看不清下标关 系,常会出现错误.

【数学】2.3.2《等差数列前N项和公式》课件(新人教A必修5)

【数学】2.3.2《等差数列前N项和公式》课件(新人教A必修5)
n 大
2.已知an 1024 lg 21 n , 2 0.3010),n N ,问: (lg
中,S n为前n项和,公差d 2 3.在等差数列 an
且S 4 1 ,求:a17 a18 a19 a20的值
?
1 1、已知数列a n 且a n 0,n N ,前n项的和s n 满足s n (a n 4) 2 8 ( )求该数列的通项,并 1 判断该数列是否为等差 数列
一.等差数列an 的首项a1 0, 公差d 0时,前n项和S n 有最大值
1、利用S n:S n d n 2 (a1 d )n.借助二次函数最值问题 2 2
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
二.等差数列anቤተ መጻሕፍቲ ባይዱ 的首项a1 0, 公差d 0时,前n项和S n 有最小值
例1:已知数列an 的前n项和为S n n 2 1 n, 求这个数列的通项公式 , 2 并判断这个数列是等差 数列吗?如果是,它的 首项与公差各是多少?
解:根据 Sn a1 a2 an 1 an与Sn 1 a1 a2 an 1 (n1)

1 (2)若有bn a n 30,求数列bn 的前n项和Tn的最值与此时的n值。 2
练习2:已知数列an 的前n项的和为: S n 1 n 2 2 n 3, 4 3 求数列通项公式。
解:根据 S n 1 n 2 2 n 3与S n 1 1 (n 1) 2 2 (n 1) 3(n1) 4 3 4 3
所以数列an 的通项公式为: an 2n 1 2
由此题,如何通过 数列前n项和来求 数列通项公式?

2015年新课标A版高中数学必修五课件:2-3-等差数列的前n项和1

2015年新课标A版高中数学必修五课件:2-3-等差数列的前n项和1
第十页,编辑于星期五:十点 三十八分。
(2)若项数为2n,则 S偶-S奇=a2+a4+a6+…+a2n-a1-a3-a5-…-a2n-1=d+ d+…+d=nd, SS奇 偶=n2n2aa1+2+aa2n2-n1=22aan+n 1=aan+n 1.
第十一页,编辑于星期五:十点 三十八分。
(3)若项数为2n-1,则
第二十五页,编辑于星期五:十点 三十八分。
解得AB= =- 15473. , ∴S28=-73S12+154S20=1092.
第二十六页,编辑于星期五:十点 三十八分。
解法4:∵{an}为等差数列, ∴Sn=na1+nn-2 1d. ∴Snn=a1-d2+d2n. ∴{Snn}是等差数列. ∵12,20,28成等差数列, ∴S1122,S2200,S2288成等差数列. ∴2×S2200=S1122+S2288,解得S28=1092.
规律技巧 应用基本量法求出a1和d是解决此类问题的基本 方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开 阔思路,有时可以简化计算.
第二十九页,编辑于星期五:十点 三十八分。
三 求数列{|an|}的前n项 【例3】 在等差数列{an}中,已知a1=-60,a11=-30,
求数列{|an|}的前n项和. 【分析】 本题实际上是求数列{an}各项绝对值的和.由
第二十四页,编辑于星期五:十点 三十八分。
解法3:设S28=AS12+BS20,其中A,B∈R. ∵28a1+28×2 27d=A(12a1+12×2 11d)+ B·20a1+20×2 19d, ∴28a1+14×27d=(12A+20B)a1+(66A+190B)d. 比较两边对应项的系数,得1626AA++2109B0B==283,78,

高中数学人教A版必修5课件 2-3 等差数列的前n项和 第10课时《等差数列前n项和的性质与应用》

高中数学人教A版必修5课件 2-3 等差数列的前n项和 第10课时《等差数列前n项和的性质与应用》
②如果顶点横坐标-2qp不是正整数,Sn 在最接近顶点横坐标的正 整数处取得最大值(p<0)或最小值(p>0).
【练习 2】 在等差数列{an}中,a1=25,S17=S9,求 Sn 的最大值.
解:解法一:利用前 n 项和公式和二次函数的性质. 由 S17=S9,得 25×17+127×(17-1)d=25×9+92×(9-1)d, 解得 d=-2. ∴Sn=25n+n2(n-1)(-2)=-(n-13)2+169. ∴由二次函数的性质,得当 n=13 时,Sn 有最大值 169.
法三:因为等差数列前 n 项和 Sn=an2+bn=a·nn+ba,根据已知, 可令 An=(7n+2)kn,Bn=(n+3)kn.
∴a5=A5-A4 =(7×5+2)k×5-(7×4+2)k×4=65k,
b5=B5-B4=(5+3)k×5-(4+3)k×4=12k.
∴ab55=6152kk=6152. 法四:由AB22nn--11=abnn,有ba55=AB99=7×9+9+3 2=6152.
解法二:由解法一,得 d=-2. ∵a1=25>0,
由aann=+1=252-5-2n2-n≤10≥,0, 得nn≤≥11321212
.
∴当 n=13 时,Sn 有最大值,最大值为 S13=13×25+13×2 12×(-
2)=169.
解法三:由 S17=S9,得 a10+a11+…+a17=0, 而 a10+a17=a11+a16=a12+a15=a13+a14, 故 a13+a14=0. 由解法一,得 d=-2<0,a1>0, ∴a13>0,a14<0. 故 n=13 时,Sn 有最大值,最大值为 S13=13×25+13×2 12×(-

人教版A版高中数学必修5:等差数列_课件26

人教版A版高中数学必修5:等差数列_课件26
等差数列
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数

10n n2 n2 10n

50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1

10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使

高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5

高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5
算上容易出现失误,不能准确 求出首项 a1 和公差 d; (2)基本公式中的项数或奇偶项的 确定不正确; (3)判断一个数列是否为等差数列
时,易忽略验证第一项.
[活学活用] 已知等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式;(2)若数列{an}的前 k 项和 Sk=-35,求 k 的值. 解:(1)设等差数列{an}的公差为 d,则 an=a1+(n-1)d. 由 a1=1,a3=-3 可得 1+2d=-3.解得 d=-2. 从而,an=1+(n-1)×(-2)=3-2n. (2)由(1)可知 an=3-2n.所以 Sn=n1+23-2n=2n- n2.进而由 Sk=-35,可得 2k-k2=-35. 又 k∈N*,故 k=7 为所求.
归纳小结
等差数列的前 n 项和公式
已知量 首项,末项与项数 首项,公差与项数
选用 公式
Sn=na12+an
Sn=na1+nn2-1d
[化解疑难] 等差数列前 n 项和公式的特点
(1)两个公式共涉及到 a1,d,n,an 及 Sn 五个基本量,它 们分别表示等差数列的首项,公差,项数,通项和前 n 项和.
[答案] B
(2)[解] ∵数列{an}为等差数列, ∴S10,S20-S10,S30-S20,…,S110-S100 也成等差数列. 设其公差为 D,则 S10+(S20-S10)+(S30-S20)+…+(S100 -S90)=S100,
即 10S10+10×2 9×D=S100=10. 又∵S10=100,代入上式,得 D=-22, ∴S110-S100=S10+(11-1)×D=100+10×(- 22)=-120, ∴S110=-120+S100=-110.
答案:104

高二数学人教A版必修5教学教案2-2等差数列(3)

高二数学人教A版必修5教学教案2-2等差数列(3)

普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。

在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。

高中数学人教A版必修5课件:2.3.1 等差数列的前n项和

高中数学人教A版必修5课件:2.3.1 等差数列的前n项和

-4-
第1课时 等差数列的 前n项和
1 2
M 目标导航
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
2.等差数列{an}的前 n 项和 设等差数列{an}的公差是 d,则 Sn=
������(������1+������������ ) 2
������(������1 +������������ ) 2
=
������ 6-2 2
53
= −5, 解得n=15.∴a15 =
=
8(4+������8 ) 2
= 172, 解得a8=39.
又 a8=4+(8-1)d=39,∴d=5. (3)由 ������������ = ������1 + (������-1)������, ������������ = ������������1 + ������ = 7, ������ = 5, 解方程组得 或 ������1 = 3 ������1 = -1.
-12-
第1课时 等差数列的 前n项和
题型一 题型二 题型三
M 目标导航
题型四
UBIAODAOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(2)设数列{an}的前 n 项和为 Sn,点
������
������������ ������, ������
D典例透析
IANLI TOUXI
【变式训练1】 (1)已知数列{an}的前n项和为Sn,且Sn=3· 2n+1,则 an= . 解析:当n=1时,a1=S1=7; 当n≥2时,an=Sn-Sn-1=3· 2n+1-3· 2n-1-1=3· 2n-3· 2n-1=3· 2n-1(21)=3· 2n-1. 当n=1时,不满足上式. 7,������ = 1, ∴an= 3· 2������ -1 ,������ ≥ 2. 7,������ = 1, 答案: 3· 2������ -1 ,������ ≥ 2

新课标人教A版数学必修5全部课件:等差、等比数列的运用(1)

新课标人教A版数学必修5全部课件:等差、等比数列的运用(1)
在利用an≥0,an+1≤0或an≤0、an+1≥0求等差数列前n项和Sn 的最值时,符号不能丢掉.
2.在能力· 思维· 方法4中,如果数不清项数,看不清下标, 将会出错.
返回
3.下列命题中正确的是( B
)
A.数列{an}的前n项和是Sn=n2+2n-1,则{an}为等差数列 B.数列{an}的前n项和是Sn=3n-c,则c=1是{an}为等比数列的 充要条件 C.数列既是等差数列,又是等比数列
D.等比数列{an}是递增数列,则公比q大于1
4.等差数列{an}中,a1>0,且3a8=5a13,则Sn 中最大的是 C ( ) (A)S10 (B)S11 (C)S20 (D)S21
返回
延伸·拓展
5.已知数列{an}和{bn}满足b n
1 a1 2 a 2 n a n 1 2 n
(n∈
N+),试证明:{an}成等差数列的充分条件是{bn}成等差数 列. 【解题回顾】题设中有a1+2a2+…+nan,应将其看做数列 {nan}的和Sn.而本题要证an+1-an为常数,故应在等式中消 去a1+2a2+…+(n-1)an-1,即消去Sn-1,因此,利用Sn-Sn-1, 就达到了用{bn}中的项表示an的目的.作差法是解决与数列 和有关的问题的常用方法.
第3课时 等差、等比数列的运用 要点·疑点·考点 课 前 热 身 能力·思维·方法
延伸·拓展
误 解 分 析
要点·疑点·考点
1.差数列前n项和的最值 设Sn是{an}的前n项和,则{an}为等差数列 Sn=An2+Bn,其中A、B是常数. {an}为等差数列, an ≥0 若a1>0,d<0,则Sn有最大值,n可由 确定 an+1≤0 若a1<0,d>0,则Sn有最小值,n可由 an≤0 an+1≥0 确定.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列、等差 数列复习
பைடு நூலகம்
知识框架图
基本概念 数 列 一般数列 定义 分类 通项公式 递推公式 图象法
定义 通项公式 特殊函数——等差数列 等差中项 前n项和公式 性质
五、判断一个数列为等差数列的方法:
★ ★
an an1 d ( n 1, n N * ) an 为等差数列
an pn q an为等差数列
求此数列的通项公式.
基本题型
题型二:等差数列的证明与计算
例4. Sn为数列{an}的前n项和,已知
S1=1, 且 Sn1 Sn 2 Sn Sn1 (n 2),
1 (1)求证 { } 是等差数列; Sn
(2)求数列{an}的通项公式.
思考题:
设函数 数列{an}满足 (1)求数列{an}的通项公式; (2)证明数列{an}为n的单调函数.
基本题型
题型一:求数列通项公式的问题 例2. 数列{an}中,已知 a1 1,
an an1 2n 1( n N 且n 2).
*
求此数列的通项公式.
基本题型
题型一:求数列通项公式的问题 例3. 数列{an}中,已知 a1 1,
an n * ( n N 且n 2), a n 1 n 1
an an 2 an1 ( n N * ) an 为等差数列 2

注意:证明一个数列为等差数列用第一、第三种方法.
湖南省长沙市一中卫星远程学校
基本题型
题型一:求数列通项公式的问题 例1. 已知数列{an}的首项a1=1,其递推
2 a * n 公式为 an1 ( n N 且n 2) an 2 求其前五项,并归纳出通项公式.
相关文档
最新文档