二次函数拓展课

合集下载

二次函数课程教案(全)

二次函数课程教案(全)

课题:1.1二次函数教学目标:1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。

2、理解二次函数的概念,掌握二次函数的形式。

3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

4、会用待定系数法求二次函数的解析式。

教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

教学设计:一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2)(一)教师组织合作学习活动:1、先个体探求,尝试写出y 与x 之间的函数解析式。

2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。

(1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112(二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。

二次函数知识精讲与拓展训练

二次函数知识精讲与拓展训练

二次函数知识精讲与拓展训练【知识精讲】1.二次函数:形如的函数叫做二次函数.2.二次函数的图像性质:〔1〕二次函数的图像是;〔2〕二次函数),,,0(2为常数c b a a c bx ax y ≠++=通过配方可得c b a a ab ac a b x a y ,,,0(44)2(22≠-++=为常数〕,其顶点坐标为。

〔3〕当0>a 时,抛物线开口,并向上无限延伸;在对称轴左侧)2(a bx -<即时,y 随x 的增大而减小;在对称轴右侧)2(abx ->即时,y 随x 的增大而增大;当a b x 2-=时,函数有.当0<a 时,抛物线开口,并向下无限延伸;在对称轴左侧)2(abx -<即时,y 随着x 的增大而增大;在对称轴右侧)2(abx ->即时,y 随着x 的增大而减小;当,2时a b x -=函数有。

3.二次函数的图像平移:〔1〕二次函数k h x a y h x a y ax y +-=-==222)(,)(,的图像都是抛物线,并且形状一样,只是位置不同〔a 的取值决定抛物线的形状〕.将2ax y =的图像向右〔h>0〕、向左〔h<0〕平移h 个单位,就得到函数2)(h x a y -=的图像;再将此抛物线向上(k>0)、向下(k<0)平移k 个单位得到函数k h x a y +-=2)(的图像.上述平移的规律是:“h 值正、负、右、左移;k 值正、负、上、下移.〞 4.抛物线与坐标轴的交点:〔1〕抛物线).,0(2c y c bx ax y 轴交于点与++= 〔2〕假设方)0,)(0,(,,0212212x x x c bx ax y x x c bx ax 轴点交则抛物线有两根++==++考点㈠二次函数的图像性质例1定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ]的函数的一些结论:①当m = – 3时,函数图象的顶点坐标是(31,38); ②当m > 0时,函数图象截x 轴所得的线段长度大于23; ③当m < 0时,函数在x >41时,y 随x 的增大而减小;④当m ≠ 0时,函数图象经过同一个点.其中正确的结论有 A. ①②③④ B. ①②④ C. ①③④ D. ②④ 变式训练1.二次函数2y ax bx c =++的图像如下图,那么以下结论正确的选项是〔〕A.a >B.c < C.240b ac -<D.0a b c ++>第〔1〕题第〔3〕题2.二次函数2y ax bx c =++(0a ≠)的图象如下图,有以下结论:〔〕①240b ac ->;②0abc >;③80a c +>;④930a b c ++<. 3. 二次函数)0(2≠++=a c bx ax y 的图象如下图,有以下5个结论:①0>abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤)(b am m b a +>+,〔1≠m 的实数〕其中正确的结论有〔〕A. 2个 B. 3个 C. 4个 D. 5个考点㈡二次函数图像平移例2. 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,那么b 、c 的值为〔〕 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2变式训练1.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,那么平移后抛物线的表达式〔〕2.假设把函数y=x 的图象用E 〔x ,x 〕记,函数y=2x+1的图象用E 〔x ,2x+1〕记,……那么E 〔x ,122+-x x 〕可以由E 〔x ,2x 〕怎样平移得到?3.如图,点A ,B 的坐标分别为〔1, 4〕和〔4, 4〕,抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点〔C 在D 的左侧〕,点C 的横坐标最小值为3-,那么点D 的横坐标最大值为( )A .-3B .1C .5D .8第〔2〕题yxOy· O y x1考点㈢确定二次函数解析式例3如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. 〔1〕求点B 的坐标;〔2〕求过点A O B 、、的抛物线的表达式;〔3〕连接AB ,在〔2〕中的抛物线上求出点P ,使得ABP ABO S S =△△. 变式训练1.二次函数23y x mx =-+的图象与x 轴的交点如下图,根据图息可得到m 的值是.第2题图 2.二次函数()()221y x a a =-+-〔a 为常数〕,当a 取不同的值时,其图象构成一个“抛物线系〞.以下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y =. 3.如图,二次函数c bx x y ++-=221的图象经过A 〔2,0〕、B 〔0,-6〕两点。

九年级数学上册二次函数教案模板优秀8篇

九年级数学上册二次函数教案模板优秀8篇

九年级数学上册二次函数教案模板优秀8篇二次函数教案篇一一、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。

果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(6005x)=-5x2+100x+ 60000.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况。

你能根据表格中的数据作出猜测吗 ?自己试一试。

x/棵y/个三。

做一做银行的储蓄利率是随时间的变化而变化的。

也就是说,利率是一个变量。

在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的。

设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).四、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。

例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数。

我们以前学过的正方形面积A与边长a的关系A=a2,圆面积s与半径r的关系s=Try2等也都是二次函数的例子。

随堂练习1.下列函数中(x,t是自变量),哪些是二次函数?y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.(1)写出y与x之间的关系表达式;(2)当圆的半径分别增加lcm、㎝、2㎝时,圆的面积增加多少?五、课时小结1. 经历探索和表示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!二次函数数学活动教案(热门16篇)教学工作计划能够确保教学活动有条不紊地进行,提高教师的教学效率。

初中数学重点梳理:二次函数拓展

初中数学重点梳理:二次函数拓展

二次函数拓展知识定位本节主要内容有运用两点式求二次函数表达式,以及二次函数中一些技巧规律和方法,综合题函数与方程的转化思想,二次函数也一直都是高考和高中联赛一试的重要内容之一.本节我们通过一些实例的求解,旨在介绍数学竞赛中与二次函数相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理1、二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.注意点:二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.2.抛物线的三要素:开口方向、对称轴、顶点①a 的符号决定抛物线的开口方向:当0>a 时,开口向上; 当0<a 时,开口向下;当a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .注意点:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.3.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 4.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故: ①0=b 时,对称轴为y 轴;②0>a b(即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点;②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 5.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)两点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 6.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121例题精讲【试题来源】1996年全国高中数学联赛【题目】如果在区间[1,2]上,函数f (x )=x 2+px +q 与g (x )=x +1x 2在同一点取相同的最小值,求f (x )在该区间上的最大值 【答案】4-5232+34【解析】 解:由于g(x)= x +1x 2=12x +12x+1x 2≥3314=3232.当且仅当12x=1x 2,即x=32时等号成立. 由于32∈[1,2],故x=32时g(x)取得最小值.因为f (x )=x 2+px +q =22()24p p x q ++-,所以-p 2=32且 4q -p 24=3232, 解得p =-232,q =3232+34. 由于32-1<2-32.故在[1.2]上f(x)的最大值为f(2)=4-5232+34.【知识点】二次函数拓展 【适用场合】当堂例题 【难度系数】4【试题来源】1992年全国高中数学联赛【题目】求函数f (x )=x 4-3x 2-6x +13-x 4-x 2+1的最大值。

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。

2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。

教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。

问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。

二次函数拓展定理及公式

二次函数拓展定理及公式

二次函数拓展定理及公式
二次函数拓展定理和公式可以帮助我们更深入地理解二次函数的性质和应用。

以下是一些相关的拓展定理和公式:
1. 顶点公式:对于二次函数y = ax2 + bx + c,其顶点的横坐标为x = -b / (2a),顶点的纵坐标为y = a(x - b / (2a))2 + c -b2 / (4a2)。

2. 对称性:二次函数关于顶点的对称轴对称,即如果二次函数的顶点为(h, k),那么关于对称轴对称的二次函数为y = a(x - h)2 + k。

3. 开口方向:二次函数的开口方向由二次项的系数a确定。

如果a > 0,则开口向上;如果a < 0,则开口向下。

4. 最值和最小值:二次函数的最大值和最小值由顶点公式给出。

对于二次函数y = ax2 + bx + c,其最大值为k + c - b2 / (4a2),最小值为k - b^2 / (4a2)。

5. 二次函数的图像:二次函数的图像是一个开口向上或向下的抛物线,其顶点是最高点或最低点。

如果a > 0,则抛物线向上开口;如果a < 0,则抛物线向下开口。

6. 二次函数与线性函数的关系:对于二次函数y = ax2 + bx + c,如果b = 0,那么它可以表示为两个线性函数的和,即y = ax + c和y = bx + c。

7. 二次函数的应用:二次函数在物理、工程、经济学等
多个领域都有广泛的应用,例如描述物体的运动轨迹、计算抛物线的高度、描述人口增长等问题。

总之,二次函数拓展定理和公式为我们理解和应用二次函数提供了更深入的视角和工具,有助于我们更好地理解和解决实际问题。

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。

二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。

同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。

进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。

而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。

所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。

4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。

最新-二次函数数学教案(优秀11篇)二次函数教案

最新-二次函数数学教案(优秀11篇)二次函数教案

二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。

《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。

【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。

【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。

【教学重点】二次函数的概念。

【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。

一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。

二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。

注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。

《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案

北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。

这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。

但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。

三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。

四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。

如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。

请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。

例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。

3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。

例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。

4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

二次函数数学教案优秀5篇

二次函数数学教案优秀5篇

二次函数数学教案优秀5篇初二二次函数教案篇一一。

学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

二。

知识导学(一)情景导学1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S与半径r之间的函数关系式是。

2.用16米长的篱笆围成长方形的生物园饲养小兔,怎样围可使小兔的活动范围较大?设长方形的长为x 米,则宽为米,如果将面积记为y平方米,那么变量y与x之间的函数关系式为.3.要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元,如果其他费用为1000元,门宽0.8米,那么总费用y为多少元?在这个问题中,地板的费用与有关,为元,踢脚线的费用与有关,为元;其他费用固定不变为元,所以总费用y(元)与x(m)之间的函数关系式是。

(二)归纳提高。

上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同?一般地,我们称表示的函数为二次函数。

其中是自变量,函数。

一般地,二次函数中自变量x的取值范围是,你能说出上述三个问题中自变量的取值范围吗?(三)典例分析例1、判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c的值。

(1) y=1― (2)y=x(x-5) (3)y=-x+1 (4) y=3x(2-x)+3x2(5)y=(6) y=(7)y=x4+2x2-1 (8)y=ax2+bx+c例2.当k为何值时,函数为二次函数?例3.写出下列各函数关系,并判断它们是什么类型的函数.⑴正方体的表面积S(cm2)与棱长a(cm)之间的函数关系;⑴圆的面积y(cm2)与它的周长x(cm)之间的函数关系;⑴某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;⑴菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.三。

二次函数拓展(1)

二次函数拓展(1)

知识精要一、 二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.二、 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.三、 二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点1212(,0),(,0)()A x B x x x ≠,其中的12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.热身练习1. 抛物线228y x x =--与x 轴的交点坐标为____________2. 抛物线2318y x x =+-与x 轴的两个交点坐标的距离为__________3. 已知抛物线2y ax x c =++与x 轴交点的横坐标是-1,则a c +=__________4. 已知抛物线2y ax bx c =++过点(2,5)和(4,5)两点,则对称轴为__________5. 如果一元二次方程20x mx n -+=有两个相等的实数根123x x ==,那么二次函数2y x mx n =-+的图像的顶点坐标为__________6. 已知二次函数2y ax bx c =++的图像与x 轴交于A(1, 0)、B(3, 0)两点,与y 轴交于点C(0,3),则二次函数的图像的顶点坐标是___________7. 抛物线2y ax bx c =++与x 轴交于A 、B 两点,A 在B 的左边,交y 轴正半轴于点C ,且AC=20,BC=15,∠ACB=90°,则此抛物线的解析式为________________8. 二次函数2y ax bx c =++的图像如图所示,则下列正确的是( )A 0,0,0b c >>∆>B 0,0,0b c <<∆>C 0,0,0b c ><∆<D 0,0,0b c <<∆<9. 已知抛物线245y x x k =-+与x 轴有交点,且交点都在原点的右侧,那么k 的取值范围是( )A 0k >B 25016k <<C 25016k <≤ D 以上都不对 10. 已知抛物线的顶点的纵坐标为3,它与x 轴的一个公共点的坐标为(10,0),与y 轴的公共点的坐标为5(0,)3,求抛物线解析式精解名题1. 已知抛物线的顶点为P (3,-2),且在x 轴上截得的线段AB 长为4(1) 求抛物线解析式(2) 画出抛物线草图(3) 这条抛物线上是否存在点Q ,使△QAB 的面积等于12?如果存在,求出点Q 坐标;如果不存在,请说明理由2. 二次函数2y ax bx c =++的图像如图所示(1) 分别确定解析式中a 、b 、c 的符号(2) 分别确定代数式2224,2,()ac a b a b c -++-b 的值的符号(3) 设图中抛物线的顶点为P ,它与x 轴的两个公共点分别为A 、B ,分别用含有a 、b 、c字母的代数式表示线段AB 的长和点P 到x 轴的距离3. 公园要建一个喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰好在水池中心,OA 的高为1.25米. 安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上抛物线路径如图所示. 为使水流形状较为漂亮,设计成水流到OA 距离为1米处达到距水面最大高度2.25米. 如果不计其它因素,那么水池的半径至少要多少米,才能使喷出的水流不落到池外?4. 已知二次函数222(8)2(6)y x m x m =-+++,设抛物线顶点坐标为A(1) 求证:不论m 取什么值,抛物线与x 轴总有两个交点(2) 设抛物线与x 轴交于B 、C 两点,是否存在实数m ,使得△ABC 为等腰直角三角形?若存在,求出m 的值;若不能存在,请说明理由5. 在平面直角坐标系xOy 中,△AOB 的位置如图所示,已知∠AOB =90°,∠A =60°,点A 的坐标为(3-,1).求:(1) 点B 的坐标;(2) 图象经过A 、O 、B巩固练习1. 已知抛物线经过点A (1,0),点B (0,-3),且它的对称轴是直线x=2。

初中数学重点梳理:关于二次函数及拓展

初中数学重点梳理:关于二次函数及拓展

二次函数知识定位本节主要内容有运用函数的有关定义、概念,解析式,图像画法、图像平移,配方、顶点式、对称性,开口方向,对称轴两边,图像变化等性质解决函数自身的问题,二次函数也一直都是高考和高中联赛一试的重要内容之一.本节我们通过一些实例的求解,旨在介绍数学竞赛中与二次函数相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

知识梳理1、 二次函数的分类顶点式:y=ax 2,y=a (x-h )2,y=a (x-h )2+k ,两点式:y=a(x-x 1`)(x-x 2)一般式:y=ax 2+bx+c (各式中,a ≠0)2、 二次函数图像的性质1)二次函数y=ax 2,y=a (x-h )2,y=a (x-h )2+k ,y=ax 2+b x+c (各式中,a ≠0)•的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式 y=ax 2 y=(ax-h ) 2 y=a (x-h ) 2+k y=a x 2+bx+c顶点坐标 (0,0) (h ,0) (h ,k ) (-2b a,244ac b a ) 对称轴 x=0 x=h x=h x=-2b a (1) 当h>0时,y=a (x-h )的图象可由抛物线y=ax 向右平行移动h 个单位得到,(2) 当h<0时,则向左平行移动│h │个单位得到.(3) 当h>0,k>0时,将抛物线y=ax 2向右平行移动h 个单位,再向上移动k 个单位,就可以得到y=a (x-h )2+k 的图象;(4) 当h>0,k<0•时,•将抛物线y=ax 2向右平行移动h 个单位,再向下移动│k │个单位可得到y=a (x-h )2+k 的图象;(5) •当h<0,k>0时,将抛物线y=a x 2向左平行移动│h │个单位,再向上移动k 个单位可得到y=a (x-h )2+k 的图象;(6) 当h<0,k<0时,将抛物线y=ax 2向左平行移动│h │个,•再向下移动│k │个单位可得到y=a (x-h )2+k 的图象;因此,研究抛物线y=a x 2+b x+c (a ≠0)的图象,通过配方,将一般式化为y=a (x-h )2+k 的形式,可确定其顶点坐标、对称轴,•抛物线的大体位置就很清楚了.这给画图象提供了方便.2)抛物线y=ax 2+bx+c (a ≠0)的图象:当a>0时,开口向上,当a<0时,开口向下,•对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a -). 3)抛物线y=a x 2+bx+c (a ≠0):若a>0,当x ≤-2b a 时,y 随x 的增大而减小;当x ≥-2b a时,y•随x 的增大而增大. 若a<0,当x ≤-2b a 时,y 随x 的增大而增大;当x ≥-2b a 时,y 随x 的增大而减小. 4)抛物线y=a x 2+bx+c 的图象与坐标轴的交点:(1)图象与y 轴一定相交,交点坐标为(0,c );(2)当△=b 2-4ac>0,图象与x 轴交于两点A (x 1,0)和B (x 2,0),其中的x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根.这两点间的距离AB=│x 1-x 2│=||a ∆. 当△=0,图象与x 轴只有一个交点;当△<0,图象与x 轴没有交点.当a>0时,图象落在x 轴的上方,x 为任何实数,•都有y>0;当a<0时,图象落在x 轴的下方,x 为任何实数时,都有y<0.3、用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x 、y 的三对对应值时,可设解析式为一般形式:y=a x 2+bx +c (a ≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=•a (x-h )2+k (a ≠0).(3)当题给条件为已知图象与x 轴的两个交点坐标时,可设解析式为两根式:y=a (x-x 1)(x-x 2)(a ≠0).例题精讲【试题来源】2006年全国初中数学竞赛(浙江赛区)初赛试题【题目】作抛物线A 关于x•轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是y=2(x+1)2-1,则抛物线A 所对应的函数表达式是下列( )(A )y=-2(x+3)2-2; (B )y=-2(x+3)2+2;(C )y=-2(x-1)2-2; (D )y=-2(x-1)2+2【答案】D【解析】 解:将抛物线C 再变回到抛物线A :即将抛物线y=2(x+1)2-1向下平移1个单位,再向右平移2个单位,得到抛物线y=2(x-1)2-2,而抛物线y=2(x-1)2-2关于x轴对称的抛物线是y=-2(x-1)2+2.评注:抛物线的平移主要抓住顶点坐标的变化,•需要注意的是通常要将二次函数解析式化为顶点式,且平移时二次项系数不变.【知识点】二次函数【适用场合】当堂例题【难度系数】2【试题来源】2006年全国初中数学竞赛(海南赛区)【题目】根据下列表格的对应值,判断方程a x2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()x 3.23 3.24 3.25 3.26ax2+bx+c -0.06 -0.02 0.03 0.07(A)3<x<3.23 (B)3.23<x<3.24(C)3.24<x<3.25 (D)3.25<x<3.26【答案】C【解析】解:观察表格知,随x(x>0)的增大,二次函数y=a x2+bx+c的值由负到正.而:当x取3.24时,a x2+bx+c=-0.02是负数;当x取3.25时,a x2+bx+c=0.03是正数.所以可以推知借于3.24和3.25之间的某一x值,必然使a x2+bx+c=0.评注:本题利用方程的解就是它对应的函数图象与x轴的交点,•以此估计一元二次方程的一个解的大致范围.它以表格才形式提出了部分信息,考查了学生合情推理的能力.解题关键是观察表格的对应值.【知识点】二次函数【适用场合】当堂练习【难度系数】3【试题来源】2006年芜湖市鸠江区初中数学竞赛试题【题目】函数y=ax 2+bx+c 图象的大致位置如右图所示,则ab ,bc ,2a+b ,(a+c )2-b 2,(a+b )2-c 2,b 2-a 2等代数式的值中,正数有( )(A )2个 (B )3个 (C )4个 (D )5个【答案】A【解析】 解:显然,a<0,c<0,b>0,由-2b a<1, 得b<-2a ,所以2a+b<0;由a-b+c<0得(a+c )2-b 2=(a+b+c )(a-b+c )<0;由a+b+c>0得a+b>-c>0,因此(a+b )2-c 2>0,│b │>│a │,b 2-a 2>0.综上所述,仅有(a+b )2-c 2,b 2-a 2为正数.评注:二次函数y=ax 2+b x+c 中有关字母系数a 、b 、c 的代数式符号确定,是竞赛热点问题,解题时,要抓住抛物线开口方向、对称轴、与x 轴交点情况综合考虑.【知识点】二次函数【适用场合】当堂例题【难度系数】3【试题来源】2006年芜湖市鸠江区初中数学竞赛试题【题目】若二次函数y =ax 2+bx+c (a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0)•则S=•a+•b+•c•的值的变化范围是__________.【答案】0<S<2【解析】 解:将(0,1),(-1,0)代入y=a x 2+bx+c 得1,1,0 1.c c a b c a b ==⎧⎧⎨⎨-+==-⎩⎩ 即 ∴S=a+b+c=2b .∵二次函数y=ax 2+bx+c 顶点在第一象限,∴-2b a>0,又a=b-1, ∴-2(1)b b ->0,即2b (b-1)<0. ∴0<b<1,即0<S<2【知识点】二次函数【适用场合】当堂练习题【难度系数】3【试题来源】1993年江苏初中数学竞赛试题 【题目】已知mn 是两位数,二次函数y=x 2+mx+n•的图象与x 轴交于不同的两点,这两点间距离不超过2.(1)求证:0<m 2-4n ≤4;(2)求出所有这样的两位数mn .【答案】如下解析【解析】 解:(1)设y=x 2+m x+n 的图象与x 轴的两交点为A (x 1,0),B (x 2,0),x 1≠x 2.则x 1,x 2为方程x 2+mx+n=0的两个不同实根.∴x 1+x 2=-m ,x 1·x 2=n .又0<│x 1-x 2│≤2, 即0<(x 1+x 2)2-4x 1x 2≤4,也即0<m 2-4n ≤4;(2)∵m ,n 为整数(m ≠0),∴m 2-4n=1,2,3,4,而m 2被4除余0或1,故m 2-4n 被4除也余0或1, 从而只能有m 2-4n=1或m 2-4n=4.解这两个不定方程,得:1,3,5,0,2,6,m m m n n n ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ 2,4,6,0,3,8.m m m n n n ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ ∴所求两位数为10,32,56,20,43,68.评注:一元二次函数y=ax 2+bx+c 与x 轴两交点的横坐标即是方程ax 2+bx+c=0的两根,利用韦达定理即可求解.【知识点】二次函数【适用场合】当堂例题【难度系数】4【试题来源】1997年天津市初中数学竞赛试题【题目】已知函数y=x 2-│x │-12的图象与x 轴交于相异两点A ,B ,另一抛物线y=ax 2+bx+c 过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c .【答案】a=-14,b=0,c=4 【解析】 解:考试方程x 2-│x │-12=0,当x>0时,x 2-x-12=0,解得x 1=4,x 2=-3(舍去);当x<0时,x 2+x-12=0,解得x 1=-4,x 2=3(舍去).∴A 、B 两点的坐标是(4,0),(-4,0).∵y=ax 2+bx+c 过A 、B 两点,即过(4,0),(-4,0),∴可设y=a x 2+bx+c 为y=a (x-4)(x+4)∵△APB 为等腰直角三角形,而A 、B 为顶点,∴AB 可为斜边,也可为直角边.当AB 为斜边,求得P 点坐标为(0,4)或(0,-4);当AB 为直角边时,•这种情况不满足题设条件.所以将P (0,4)代入①得a=14,则①变为 y=-14(x 2-16)=-14x 2+4,故有a=-14,b=0,c=4.将P(0,-4)代入①得a=14,则①变为y=14(x2-16)=14x2-4,故有a=14,b=0,c=-4.评注:求符合某种条件的点的坐标,需根据问题中的数量关系和几何元素间的关系建立关于纵横坐标的方程(组),解方程(组)便可以求得有关点的坐标,对于几何问题,还应注意图形的分类讨论.【知识点】二次函数【适用场合】当堂练习题【难度系数】4【试题来源】2006年全国初中数学竞赛(海南赛区)【题目】已知A1、A2、A3是抛物线y=12x2上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C.(1)如图(a),若A1、A2、A3三点的横坐标依次为1、2、3,求线段CA2的长;(2)如图(b),若将抛物线y=12x2改为抛物线y=12x2-x+1,A1、A2、A3•三点的横坐标为连续整数,其他条件不变,求线段CA2的长;(3)若将抛物线y=12x2改为抛物线y=ax2+bx+c,A1、A2、A3三点的横坐标为连续整数,其他条件不变,请猜想线段CA2的长(用a、b、c表示,并直接写出答案).【答案】如下解析【解析】 解:(1)方法1:∵A 1、A 2、A 3三点的横坐标依次为1、2、3,∴A 1B 1=12×12=,A 2B 2=12×22=2,A 3B 3=12×32=92. 设直线A 1A 3的解析式为y=kx+b . ∴12239322k k b b k b ⎧==+⎧⎪⎪⎪⎨⎨=-⎪⎪=+⎩⎪⎩解得 ∴直线A 1A 3的解析式为y=2x-32. ∴CB 2=2×2-32=52. ∴C A 2=CB 2-A 2B 2=52-2=12. 方法2:∵A 1、A 2、A 3三点的横坐标依次为1、2、3,∴A 1B 1=12×12=12,A 2B 2=12×22=2,A 3B 3=12×32=92. 由已知可得A 1B 1∥A 3B 3,∴C B 2=12(A 1B 1+A 3B 3)=12(12+92)=52. ∴CA 2=CB 2-A 2B 2=52-2=12. (2)方法1:设A 1、A 2、A 3三点的横坐标依次为n-1、n 、n+1.则A 1B 1=12(n-1)2-(n-1)+1, A 2B 2=12n 2-n+1,A 3B 3=12(n+1)2-(n+1)+1. 设直线A 1A 3的解析式为y=kx+b .∴ 221(1)(1)(1)121(1)(1)(1)12n k b n n n k b n n ⎧-+=---+⎪⎪⎨⎪++=+-++⎪⎩ 解得211322k n b n =-⎧⎪⎨=-+⎪⎩ ∴直线A 1A 3的解析式为y=(n-1)x-12n 2+32.∴CB2=n(n-1)-12n2+32=12n2-n+32∴C A2=CB2-A2B2=12n2-n+32-12n2+n-1=12.方法2:设A1、A2、A3三点的横坐标依次为n-1、n、n+1.则A1B1=12(n-1)2-(n-1)+1,A2B2=12n2-n+1,A3B3=12(n+1)2-(n+1)+1由已知可得A1B1∥A3B3,∴CB2=12(A1B1+A3B3)=12[12(n-1)2-(n-1)+1+12(n+1)2-(n+1)+1]= 12n2-n+32.∴CA2=CB2-A2B2=12n2-n+32-(12n2+n-1)=12.(3)当a>0时,CA2=a;当a<0时,CA2=-a.评注:本题强调从“知识立意”向“能力立意”转变的课程理念,重视基础与能力并重,突出了“观察、猜想、探究”等方面的考查,具有明显层次性,渗透了数形结合的思想方法.同时,本题还给擅长不同思维方式的学生提供了不同的解题思路.【知识点】二次函数【适用场合】当堂例题【难度系数】4【试题来源】【题目】设抛物线C的解析式为y=x2-2kx+3+k)k,k为实数.(1)求抛物线的顶点坐标和对称轴方程(用k表示);(2)任意给定k 的三个不同实数值,请写出三个对应的顶点坐标,试说明当k•变化时,抛物线C 的顶点在一条定直线L 上,求出直线L 的解析式并画出图象;(3)在第一象限有任意两圆O 1、O 2相外切,且都与x 轴和(2)中的直线L 相切,设两圆在x 轴上的切点分别为A 、B (OA<OB ),试问:OA OB是否为一定值?若是,请求出该定值;若不是,请说明理由;(4)已知一直线L 1与抛物线C 中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.【答案】如下解析【解析】 解:(1)配方,得y=(x-k )23k ,∴顶点坐标为(k 3k ),对称轴为x=k .(2)设顶点为(x ,y ),则x=k ,3消去k 得直线L 的解析式为3,如图(a )所示,令k=1,2,3得三个对应顶点坐标为(1,3,(2,3),(3,3.(3)在3上任取一点(a ,3a ),设直线与x 轴成角为a (0°<a<90°),则tana=3a a 3 ∴a=60°,由切线长定理可知,OO 1平分∠a ,∴∠O 1OA=30°,如图(a )所示,即O 1O=2O 1A ,OO 2=2O 2B ,又OO 2-O O 1=O 1O 2=O 1A+O 2B =2(O 2B-O 1A )∴O 1A :O 2B=1:3.又12O A OA OB O B ,∴OA OB =13,即OA OB为一定值. (4)如图(b )要使该直线与抛物线C 中任意一条相截且截得线段长都为6,•则该直线必平行于3.设其为3x+b,考虑其与y=x2相交,则:2,3. y xy x b ⎧=⎪⎨=+⎪⎩即x23≥0,设此方程两根为x A,x B.又│BC│=[12│AB│]2=32,9=│x A-x B│2=(x A+x B)2-4x A x B=3+4b,∴b=32,即L1为y=332.评注:(2)中消去参数k求x、y的函数关系应掌握;(4)抛物线C的顶点轨迹为直线3,若直线L1与抛物线截得的线段等长,则L1必与3x平行,在利用截线段长为6时,•只须考虑一种最简单的解析式y=x2与3的联立方程组即可.【知识点】二次函数【适用场合】当堂练习题【难度系数】5【试题来源】【题目】已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0).(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由【答案】如下解析【解析】解:(1)依题意,抛物线的对称轴为y=x-2.∵抛物线与x轴的一个交点为A(-1,0),∴由抛物线的对称性,可得抛物线与x轴的另一个交点B的坐标为(-3,0).(2)∵抛物线y=a x2+4ax+t与x轴的一个交点为A(-1,0),∴a(-1)2+4a(-1)+t=0,•∴t=3a.∴y=ax2+4ax+3a.∴D(0,3a).∵梯形ABCD中,AB∥CD,且点C在抛物线y=a x2+4ax+3a上,∴C(-4,3a),∴AB=2,CD=4,∵梯形ABCD的面积为9,∴12(AB+CD)·OD=9.∴12(2+4)│3a│=9,∴a=±1.∴所求抛物线的解析式为y=x2+4x+3或y=-x2-4x-3.(3)设点E坐标为(x0,y0),依题意x0<0,y0>0,且0||yx=52.∴y=-52.①点E在抛物线y=x2+4x+3上,∴y0=x02+4x0+3.②解方程组000200005621540y x xyx x x⎧=-=-⎧⎪⎨⎨=⎩⎪=++⎩得∴1`25`4xy⎧=-⎪⎪⎨⎪=⎪⎩∵点E与点A•在对称轴x=-2的同侧,∴点E坐标为(-12,54),设在抛物线的对称轴x=-2上存在一点P,使△APE的周长最小.∵AE长为定值,∴要使△APE的周长最小,只须PA+PE最小.∵点A•关于对称轴x=-2的对称点是B (-3,0), ∴几何知识可知,P 是直线BE 与对称轴x=-2的交点.• 设过点E 、B 的直线的解析式为y=mx+n ,∴1152243302m m n m n n ⎧=⎧⎪-+=⎪⎪⎨⎨⎪⎪-+==⎩⎪⎩解得 ∴直线BE 的解析式为y=12x+32,把x=-2•代入上式,得y=12, ∴点P 坐标为(-2,-12). ③ 点E 在抛物线y=-x 2-4x-3上,④ ∴y 0=-x 02-4x 0-3.解方程0020005243y x x x x ⎧=-⎪⎨⎪=---⎩ 消去y 0,得x 02+32x 0+3=0, ∴△<•0,∴此方程无实数根.综上.在抛物线的对称轴上存在点P (-2,12),使△APE 的周长最小. 【知识点】二次函数 【适用场合】当堂例题 【难度系数】5【试题来源】【题目】如图,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0),B (•18,6),C (8,6),四边形OABC 是梯形,点P 、Q 同时从原点出发,分别坐匀速运动,•其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,•当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC 的解析式及经过O 、A 、C 三点的抛物线的解析式.(2)试在(1)中的抛物线上找一点D ,使得以O 、A 、D 为顶点的三角形与△AOC 全等,请直接写出点D的坐标.(3)设从出发起,运动了t秒,如果点Q的速度为每秒2个单位,试写出点Q的坐标,•并写出此时t的取值范围.(4)设从出发起,运动了t秒,当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,•请求出t 的值;如不可能,请说明理由.【答案】如下解析【解析】解:(1)∵O,C两点的坐标分别为O(0,0),C(8,6),设OC的解析式为y=kx+b,将两点坐标代入得:k=34,b=0,∴y=34x.∵抛物线过O,A,C三点,这三点的坐标为O(0,0),A(18,0),C(8,6).∵A,O是x轴上两点,故可设抛物线的解析式为y=a(x-0)(x-18).再将C(8,6)代入得:a=-3 40.∴y=-340x2+2720x.(2)D(10,6).(3)当Q在OC上运动时,可设Q(m,34 m),依题意有:m2+(34m)2=(2t)2,∴m=85t,∴Q(85t,65t)•,(0≤t≤5).当Q在CB上时,Q点所走过的路程为2t.∵OC=10,∴CQ=2t-10,∴Q点的横坐标为2t-10+8=2t-2.∴Q(2t-2,6),(5<t≤10).(4)∵梯形OABC的周长为44,当Q点在OC上时,P运动的路程为t,则Q运动的路程为(22-t).△OPQ中,OP边上的高为:(22-t)×35.∴S△OPQ=12t(22-t)×35,S梯形OABC=12(18+10)×6=84.•依题意有:12t(22-t)×35=84×12.整理得:t2-22t+140=0.∵△=222-4×140<0,∴这样的t不存在.当Q在BC上时,Q走过的路程为22-t,∴CQ的长为:22-t-10=12-t,∴S梯形OCQP=12×6(22-t-10+t)=36≠84×12.∴这样的t值也不存在.综上所述,不存在这样的t值,使得P、Q两点同时平分梯形的周长和面积.【知识点】二次函数【适用场合】当堂练习题【难度系数】4【试题来源】【题目】已知抛物线cxbxay++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB,过点B作BC∥x轴交该抛物线于点C.(1)求这条抛物线的函数关系式.PB AC O xy Q图3B C y Q(2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式;② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状;③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由.【答案】如下解析【解析】 解: (1)∵ 抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3),∴ ⎪⎩⎪⎨⎧==+=+03390416c b a b a解得 0,334,33==-=c b a . ∴ 所求抛物线的函数关系式为x x y 334332+-=.(2)① 过点B 作BE ⊥x 轴于E ,则BE=3,AE=1,AB=2.由tan ∠BAE=3=AEBE,得∠BAE =60°. (ⅰ)当点Q 在线段AB 上运动,即0<t ≤2时,QA=t ,PA=4-t .过点Q 作QF ⊥x 轴于F ,则QF=t 23,∴ S=21PA ·QF -30 -1 -2 12 3 4S(万元)图41 2 3 4 5 6 t(月)t t 23)4(21⋅-=t t 3432+-=. (ⅱ)当点Q 在线段BC 上运动,即2≤t <4时,Q 点的纵坐标为3,PA=4-t .这时,S=3)4(21⋅-t 3223+-=t .②(ⅰ)当0<t ≤2时,3)2(4334322+--=+-=t t t S . ∵ 043<-,∴ 当t =2时,S 有最大值,最大值S=3. (ⅱ)当2≤t <4时,3223+-=t S ∵ 023<-, ∴ S 随着t 的增大而减小.∴ 当t =2时,S 有最大值,最大值332223=+⋅-=S . 综合(ⅰ)(ⅱ),当t =2时,S 有最大值,最大值为3.所以△PQA 是等边三角形. ③ 存在.当点Q 在线段AB 上运动时,要使得△PQA 是直角三角形,必须使得∠PQA =90°,这时PA=2QA ,即4-t =2t ,∴ 34=t .∴ P 、Q 两点的坐标分别为P 1(34,0),Q 1(310,332).当点Q 在线段BC 上运动时,Q 、P 两点的横坐标分别为5-t 和t ,要使得△PQA 是直角三角形,则必须5-t =t ,∴ 25=t∴ P 、Q 两点的坐标分别为P 2(25,0),Q 2(25,3).【知识点】二次函数 【适用场合】当堂例题 【难度系数】5【试题来源】【题目】如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y 轴相切于点B(0,4).(1)求经过B,C,D三点的抛物线的函数表达式;(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.【答案】如下解析【解析】解:(1)设抛物线的解析式为:y=ax2+bx+c,把B(0,4),C(﹣2,0),D(﹣8,0)代入得:,解得.∴经过B,C,D三点的抛物线的函数表达式为:y=x2+x+4;(2)∵y=x2+x+4=(x+5)2﹣,∴E(﹣5,﹣),设直线CE的函数解析式为y=mx+n,直线CE与y轴交于点G,则,解得.∴y=x+,在y=x+中,令x=0,y=,∴G(0,),如图1,连接AB,AC,AG,则BG=OB﹣OG=4﹣=,CG===,∴BG=CG,AB=AC,在△ABG与△ACG中,,∴△ABG≌△ACG,∴∠ACG=∠ABG,∵⊙A与y轴相切于点B(0,4),∴∠ABG=90°,∴∠ACG=∠ABG=90°∵点C在⊙A上,∴直线CE与⊙A相切;(3)存在点F,使△BDF面积最大,如图2连接BD,BF,DF,设F(t,t2+t+4),过F作FN∥y轴交BD于点N,设直线BD的解析式为y=kx+d,则,解得.∴直线BD的解析式为y=x+4,∴点N的坐标为(t,t+4),∴FN=t+4﹣(t2+t+4)=﹣t2﹣2t,∴S△DBF=S△DNF+S△BNF=OD•FN=(﹣t2﹣2t)=﹣t2﹣8t=﹣(t+4)2+16,∴当t=﹣4时,S△BDF最大,最大值是16,当t=﹣4时,t2+t+4=﹣2,∴F(﹣4,﹣2).点评:本题考查了待定系数法求函数的解析式,全等三角形的判定和性质,切线的判定,三角形面积的求法,勾股定理,根据题意正确的画出图形是解题的关键.【知识点】二次函数【适用场合】当堂例题【难度系数】5习题演练【试题来源】2005年全国初中数学竞赛试题【题目】Rt△ABC的三个顶点A,B,C•均在抛物线y=x2上,并且斜边AB平行于x轴.若斜边上的高为h,则()(A)h<1 (B)h=1 (C)1<h<2 (D)h>2【答案】B【解析】解:设点A的坐标为(a,a2),点C的坐标为(c,c2)(│c│<│a│),则点B的坐标为(-a,a2),由勾股定理,得A C2=(c-a)2+(c2-a2)2.BC2=(c+a)2+(c2-a2)2,AC2+BC2=AB2,所以(a2-c2)2=a2-c2.由于a2>c2,所以a2-c2=1,故斜边AB上高h=a2-c2=1.评注:本题渗透数形结合思想,通过将代数与几何有机结合一起,•考查学生综合应用数学知识解决问题的能力.【知识点】二次函数【适用场合】随堂课后练习【难度系数】3【试题来源】2004年河北省初中数学创新与知识应用竞赛决赛试题【题目】通过实验研究,•专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平衡的状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y•越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10≤x≤20和20≤x≤40时,图象是线段.(1)当0≤x≤10时,求注意力指标数y与时间x的函数关系式;(2)一道数学竞赛题需要讲解24分钟.问老师能否经过适当安排,•使学生在听这道题时,注意力的指标数都不低于36.【答案】(1)y=-15x2+245x+20,0≤x≤10;(2)师可以经过适当的安排,•在学生注意力指标数不低于36时,讲授完这道竞赛题.【解析】分析:①由点(0,20),(5,39),(10,48),可求出抛物线的函数关系式,②分别求出指标数是36的各段函数中的自变量的值.解:(1)当0≤x≤10时,设抛物线的函数关系式为y=ax+bx+c,•由于它的图象经过点(0,20),(5,39),(10,48),所以20,25539, 1001048. ca b ca b c=⎧⎪++=⎨⎪++=⎩解得a=-15,b=245,c=20.所以y=-15x2+245x+20,0≤x≤10.(2)当20≤x≤40时,y=-75x+76.所以,当0≤x≤10时,令y=36,得36=-15x2+245x+20,解得x=4,x=20(舍去);当20≤x≤40时,令y=36,得36=-75x+76,解得x=2007=2847.因为2847-4=2447>24,所以,老师可以经过适当的安排,•在学生注意力指标数不低于36时,讲授完这道竞赛题.评注:本题情景新颖,关注了考生的学习、生活,既考查了学生基础知识和阅读理解能力,又考查了考生利用所学知识解决实际问题能力.【知识点】二次函数【适用场合】随堂课后练习【难度系数】4【试题来源】2005年全国初中数学竞赛浙江赛区试题【题目】直角坐标系中,抛物线y=x 2+mx-34m 2(m>0)与x 轴交于A ,B 两点,若A ,B 两点到原点的距离分别为OA ,OB ,且满足11OB OA -=23,则m•的值等于_______. 【答案】2【解析】 解:设方程x 2+mx-34m 2=0的两根分别x 1,x 2,且x 1<x 2, 则有x 1+x 2=-m<0,x 1x 2=-34m 2<0,•所以x 1<0,x 2>0, 由11OB OA -=23,可知OA>OB ,又m>0, 所以抛物线的对称轴y 轴的左侧,于是OA=│x 1│=-x 1,OB=x 2. 所以2111x x +=23,1212x x x x +=23, 故234mm --=23, 解得m=2.【知识点】二次函数 【适用场合】随堂课后练习 【难度系数】4【试题来源】【题目】抛物线y=ax 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,已知抛物线的对称轴为x=1,B (3,0),C (0,-3).(1)求二次函数y=ax 2+bx+c 的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;(3)平行于x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径.【答案】如下解析【解析】 解: (1)将C (0,-3)代入y=ax 2+bx+c ,得c=-3,将c=-3,B (3,0)代入y=a x 2+bx+c ,得9a+3b+c=0. ∵x=1是对称轴, ∴-2ba=-1.(2). 将(2)代入(1)得a=1,b=-2.• 所以二次函数得解析式是y=x 2-2x-3.(2)AC 与对称轴的交点P 即为到B 、C 的距离之差最大的点.∵ C 点的坐标为(0,-3),A 点的坐标为(-1,0). ∴直线AC 的解析式是y=-3x-3,又对称轴为x=1, ∴点P 的坐标(1,-6).(3)设M (x 1,y ),N (x 2,y ),所求圆的半径为r ,则x 2-x 1=2r ,(1)∵对称轴为x=1,∴x 2+x 1=2.(2) 由(1)、(2)得:x 2=r+1. (3) 将N (r+1,y )将代入解析式y=x 2-2x-3, 得y=(r+1)2-2(r+1)-3,(4)整理得:y=r 2-4.由于r=±y ,当y>0时,r 2-r-4=0, 解得r 1117+,r 2117-(舍去),•当y<0时,r2+r-4=0,解得r1=117+,r2=117-(舍去),所以圆的半径是1172+或1172-.【知识点】二次函数【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】如图,已知点D在双曲线y=(x>0)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线y=ax2+bx+c经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.(1)写出点D的坐标并求出抛物线的解析式;(2)证明∠ACO=∠OBC;(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.【答案】如下解析【解析】解:(1)∵以D为圆心的⊙D与y轴相切于点C(0,4),∴点D的纵坐标是4,又∵点D在双曲线y=(x>0)的图象上,∴4=,解得x=5,故点D的坐标是(5,4).如图1,过点D作DE⊥x轴,垂足为E,连接AD,BD,在RT△DAE中,DA=5,DE=4,∴AE==3,∴OA=OE﹣AE=2,OB=OA+2AE=8,∴A(2,0),B(8,0),设抛物线的解析式为y=a(x﹣2)(x﹣8),由于它过点C(0,4),∴a(0﹣2)(0﹣8)=4,解得a=,∴抛物线的解析式为y=x2﹣x+4.(2)如图2,连接AC,在RT△AOC中,OA=2,CO=4,∴tan∠ACO==,在RT△BOC中,OB=8,CO=4,∴tan∠CBO==,∴∠ACO=∠CBO.(3)∵B(8,0),C(0,4),∴直线BC的解析式为y=﹣x+4,如图3,分别过点Q,P作QF⊥x轴,PG⊥x轴,垂足分别为F,G,设P(t,t2﹣t+4),①AQ:AP=1:4,则易得Q(,),∵点Q在直线y=﹣x+4上,∴﹣+4=,整理得t2﹣8t﹣36=0,解得t1=4+2,t2=4﹣2,∴P1(4+2,11﹣),P2(4﹣2,11+),②AQ:AP=2:4,则易得Q(,),∵点Q在直线y=﹣x+4上,∴﹣•+4=,整理得t2﹣8t﹣12=0,解得P3=4+2,P4=4﹣2,∴P3(4+2,5﹣),P4(4﹣2,5+);③AQ:AP=3:4,则易得Q(,),∵点Q在直线y=﹣x+4上,∴﹣•+4=,整理得t2﹣8t﹣4=0,解得t5=4+2,t6=4﹣2,∴P5(4+2,3﹣),P6(4﹣2,3+),综上所述,抛物线上存在六个点P ,使Q 为线段AP 的三等分点, 其坐标分别为:P 1(4+2,11﹣),P 2(4﹣2,11+),P 3(4+2,5﹣),P 4(4﹣2,5+);P 5(4+2,3﹣),P 6(4﹣2,3+).点评:本题主要考查了二次函数的综合题,涉及双曲线,一次函数,三角函数及二次函数的知识,解题的关键是分三种情况讨论求解.【知识点】二次函数 【适用场合】随堂课后练习 【难度系数】5二次函数拓展知识定位本节主要内容有运用两点式求二次函数表达式,以及二次函数中一些技巧规律和方法,综合题函数与方程的转化思想,二次函数也一直都是高考和高中联赛一试的重要内容之一.本节我们通过一些实例的求解,旨在介绍数学竞赛中与二次函数相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。

探索新的教学方法,拓展二次函数模型的教案

探索新的教学方法,拓展二次函数模型的教案

探索新的教学方法,拓展二次函数模型的教案拓展二次函数模型的教案随着教育的发展和时代的不断进步,教学方法也在不断地更新和改进。

对于二次函数模型的教学,教师需要不断探索新的教学方法,以满足学生的多样化需求和提高教学效果。

本教案将介绍一种新的教学方法,以拓展二次函数模型的教学,提高学生的学习兴趣和教学成果。

一、教学目标1、能够理解二次函数的基本概念和性质,并能正确解释它们在实际问题中的应用;2、能够熟练地掌握二次函数的基本公式和变形方法,快速求解相关问题;3、能够在实际问题中运用二次函数模型进行分析和解决问题,提升解决实际问题的能力。

二、教学方法1、板书授课法板书是教学的基本方式之一,是教师向学生传递知识的重要手段之一。

在本教学中,教师要求学生认真观察板书内容,理解二次函数的基本公式和性质。

同时,教师要配合着生动形象的图形来示意,使学生更好的理解和记忆。

2、实例操作法实例操作法是教学中的一种重要方法,它可以将抽象的理论知识变为具体的操作,提高学生的理解和运用能力。

在二次函数的教学中,教师可以挑选一些典型的例子来讲解,让学生通过实际操作来理解二次函数的公式和性质,从而更好地掌握和应用。

3、情境教学法情境教学法是一种根据具体情境和综合素质进行教学的方法,可以培养学生的创造性思维和解决实际问题的能力。

在二次函数的教学中,教师可以利用实际问题,将学生置身于情境之中,让学生自主思考和探索解决问题的方法,提高学生应用知识的能力和解决问题的效果。

三、教学内容1、二次函数的基本概念和性质二次函数是指y=ax²+bx+c(a≠0,a、b、c均为常数)这样一个函数。

在教学中,教师需要向学生介绍二次函数的基本概念和性质,并且要通过图像的方式让学生感性理解。

例如,二次函数的图像是一个抛物线,顶点坐标 x= -b/2a,比起直线,抛物线有最值,判断二次函数的开口向上还是向下,以及如何求解最/最小值等等。

2、二次函数的基本公式和变形方法二次函数的基本公式是y=ax²+bx+c,在此基础上,教师需要向学生介绍二次函数的变形方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栏目 导引
第二章
基本初等函数、导数及其应用
变式:函数f(x)=x2-2x+2在闭区间[t,t+1](t∈R)
上的最小值记为g(t). (1)试写出g(t)的函数表达式; (2)作g(t)的图象并写出g(t)的最小值.
栏目 导引
第二章
基本初等函数、导数及其应用
【解】
+1.
(1)f(x) = x2 - 2x + 2 = (x - 1)2
第二章
基本初等函数、导数及其应用
二次函数
栏目 导引
第二章
基本初等函数、导数及其应用
1.函数y=x2-x+2,x∈(-1,5)的值 7 域是________ [ ,22) . 4
栏目 导引
第二章
基本初等函数、导数及其应用
2 、 已 知 函 数 f(x) = - x2 + 2ax + 1 - a 在
当t+1<1,即t<0时,
函数在[t,t+1]上为减函数,
g(t)=f(t+1)=t2+1;
当0≤t<1时,g(t)=f(1)=1;
栏目 导引
第二章
基本初等函数、导数及其应用
当t≥1时,函数在[t,t+1]上为增函数

g(t)=f(t)=t2-2t+2.
t2+1 t<0 ∴g(t)=1 0≤t<1. 2 t -2t+2 t≥1
栏目 导引
x∈[0,1]时有最大值2,求a的值.
解:函数f(x)的图象的对称轴方程为x=a.
栏目 导引
第二章
基本初等函数、导数及其应用
①当 a<0 时,f(x)max=f(0)=1-a,∴1 -a=2,∴a=-1. ② 当 0≤a≤1 时 , f(x)max = -41-a-4a2 =1-a+a2, 4×-1 1± 5 2 ∴1-a+a =2,∴a= (皆舍去). 2 ③当 a>1 时,f(x)max=f(1)=a,∴a=2. 综上可知:a=-1 或 a=2.
栏目 导引
第二章
基本初等函数、导数及其应用

(2)g(t)的图象如图所示: ∴g(t)min=1.
栏目 导引
第二章
基本初等函数、导数及其应用
二次函数综合应用
例3:若二次函数f ( x) ax bx c( a 0)
2
满足f ( x 1) - f ( x ) 2 x, 且f (0) 1 (1)求f ( x )的解析式 ( 2)若在区间- 1,1上,不等式f ( x ) 2 x m 恒成立,求实数m的取值范围。
相关文档
最新文档