中考数学第八章 二元一次方程组(讲义及答案)及答案

合集下载

专题12 第八章 二元一次方程组2020-2021学年度人教版七年级数学下册(解析版)

专题12  第八章  二元一次方程组2020-2021学年度人教版七年级数学下册(解析版)

2020-2021学年度人教版七年级数学下册新考向多视角同步训练第八章 二元一次方程组[能力提优测评卷]时间:90分钟 满分:120分一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020广西钦州四中月考,2)下列方程组中,为二元一次方程组的是( )A.⎩⎨⎧3x+4y =65z -6y =4B. ⎩⎪⎨⎪⎧x+y =31x -1y=2C.⎩⎨⎧x+y =2x 2-y 2=8D.⎩⎨⎧x+y =2.5x -y =42.(2020北京海淀期末,4)若{x =是关于x 和y 的二元一次方程mx+ny =3的解,则2m -4n 的值等于( ) A.3B.6C.-1D.-23.(2020湖南长沙一中月考,4)如果方程组⎩⎨⎧2x+y =□x -2y =3的解为,那么“口”和“△”所表示的数分别是( )A.14,4B.11,1C.9,-1D.6,-44.(2020河南郑州八中期末,5)用加减消元法解方程组⎩⎨⎧3x -2y =10①4x -y =15②时,最简捷的方法是( )A.②×2+①,消去yB.②x 2-①,消去yC.①x 4-②×3,消去xD.①4+②×3,消去x5.(2020陕西延安实验中学月考,4)三元一次方程组⎩⎪⎨⎪⎧x+y =3y+z =5x+z =4 的解为( )A.⎩⎪⎨⎪⎧x =1y =3z =2 B.⎩⎪⎨⎪⎧x =2y =1z =3 C.⎩⎪⎨⎪⎧x =3y =2z =1 D.⎩⎪⎨⎪⎧x =1y =2z =3 6.(2020黑龙江牡丹江中考,8)若⎩⎨⎧a =2b =1是二元一次方程组⎩⎪⎨⎪⎧32 ax+by =5ax -by =2 的解,则x+2y 的算术平方根为( )A.3B.3,-3C. 3D. 3 ,- 37.(2019山东临沂一模,8)将两块完全相同的长方体木块先按图①的方式放置,再按图②的方式放置,测得的数据(单位:cm)如图所示,则桌子的高度为( )A. 30 cmB. 35 cmC.40 cmD. 45 cm8.(2019黑龙江齐齐哈尔中考,8)学校计划购买和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元学校准备将1500元全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( ) A.3种B.4种C.5种D.6种二、填空题(本大题共8小题,每小题4分,共32分)9.(2020黑龙江哈尔滨三中月考,10)若x|2m -3|+(m -2)y =6是关于x 、y 的二元一次方程,则m =________。

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】—2024年中考数学高频考点精讲(全国通用)(解析版)

二元一次方程组【四大题型】一、解二元一次方程组【高频考点精讲】1.用“代入法”解二元一次方程组的一般步骤(1)从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来; (2)将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求出x (或y )的值;(4)将求得未知数的值代入变形后的关系式,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

2.用“加减法”解二元一次方程组的一般步骤(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程; (3)解这个一元一次方程,求得x (或y )的值;(4)将求得未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值; (5)把求得的x 、y 的值写在一起,用的形式表示,就是方程组的解。

【热点题型精练】1.(2023•无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( ) A .{x =1y =2B .{x =2y =0C .{x =0.5y =3D .{x =−2y =4解:A 、把x =1,y =2代入方程,左边=2+2=右边,所以是方程的解; B 、把x =2,y =0代入方程,左边=右边=4,所以是方程的解; C 、把x =0.5,y =3代入方程,左边=4=右边,所以是方程的解; D 、把x =﹣2,y =4代入方程,左边=0≠右边,所以不是方程的解. 答案:D .2.(2023•南通)若实数x ,y ,m 满足x +y +m =6,3x ﹣y +m =4,则代数式﹣2xy +1的值可以是( ) A .3B .52C .2D .32解:由题意可得{x +y =6−m 3x −y =4−m,解得:{x =5−m 2y =7−m 2, 则﹣2xy +1=﹣2×5−m 2×7−m2+1=−(5−m)(7−m)2+1 =−m 2−12m+352+1=−(m 2−12m+36)−12+1=−(m−6)22+32≤32,∵3>52>2>32,∴A ,B ,C 不符合题意,D 符合题意, 答案:D .3.(2023•眉山)已知关于x ,y 的二元一次方程组{3x −y =4m +1x +y =2m −5的解满足x ﹣y =4,则m 的值为( )A .0B .1C .2D .3解:∵关于x 、y 的二元一次方程组为{3x −y =4m +1①x +y =2m −5②,①﹣②,得:2x ﹣2y =2m +6, ∴x ﹣y =m +3, ∵x ﹣y =4, ∴m +3=4, ∴m =1. 答案:B .4.(2022•株洲)对于二元一次方程组{y =x −1①x +2y =7②,将①式代入②式,消去y 可以得到( )A .x +2x ﹣1=7B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7解:{y =x −1①x +2y =7②,将①式代入②式,得x +2(x ﹣1)=7, ∴x +2x ﹣2=7, 答案:B .5.(2022•雅安)已知{x =1y =2是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 .解:把{x =1y =2代入ax +by =3得:a +2b =3,则原式=2(a +2b )﹣5=2×3﹣5=6﹣5=1. 答案:1.6.(2023•杭州二模)已知二元一次方程x +3y =14,请写出该方程的一组整数解 . 解:x +3y =14, x =14﹣3y , 当y =1时,x =11,则方程的一组整数解为{x =11y =1.答案:{x =11y =1(答案不唯一).7.(2023•苏州一模)若一个二元一次方程的一个解为{x =2y =−1,则这个方程可能是 .解:这个方程可能是:x +y =1,答案不唯一. 答案:x +y =1,答案不唯一. 8.(2023•连云港)解方程组{3x +y =8①2x −y =7②.解:{3x +y =8①2x −y =7②,①+②得:5x =15, 解得:x =3,将x =3代入①得:3×3+y =8, 解得:y =﹣1,故原方程组的解为:{x =3y =−1.二、由实际问题抽象出二元一次方程组【高频考点精讲】1.由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系;2.一般来说,有几个未知量就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相符。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?【答案】18.【解析】设李叔叔购买“无核荔枝”x千克,购买“鸡蛋芒果”y千克,根据总质量为30千克,总花费为708元,可得出方程组,解出即可.试题解析:解:设李叔叔购买“无核荔枝” x千克,购买“鸡蛋芒果” y千克,由题意,得:,解得:.答:李叔叔购买“无核荔枝”12千克,购买“鸡蛋芒果”18千克.【考点】二元一次方程组的应用.2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.解方程组.【答案】.【解析】先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:解:,①+②得:7x=14,解得:x=2,把x=2代入①得6+y=3,解得:y=﹣3,∴原方程组的解是.【考点】解二元一次方程组.4.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种B.3种C.4种D.5种【答案】B【解析】设小虎足球队胜了x场,平了y场,负了z场,依题意得,把③代入①②得,解得z=(k为整数).又∵z为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1.综上所述,小虎足球队所负场数的情况有3种情况.故选:B.【考点】二元一次方程的应用5.二元一次方程组的解为【答案】.【解析】利用加减消元法求出解即可.试题解析:①×3-②×2得:11x=33,即x=3,将x=3代入②得:y=2,则方程组的解为.【考点】解二元一次方程组.6.若x、y满足方程组,则x﹣y的值等于()A.﹣1B.1C.2D.3【答案】A.【解析】,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选A【考点】解二元一次方程组.7.方程组的解是 .【答案】.【解析】将代入得.∴方程组的解是.【考点】解二元一次方程组.8.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A、B 两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y.(1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax-y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率.(请用树形图或列表法求解)【答案】(1)a="2" (2)P=【解析】(1)将x=2,y=-1代入方程计算即可求出a的值;(2)列表得出所有等可能的情况数,找出甲、乙随机抽取一次的数恰好是方程ax-y=5的解的情况数,即可求出所求的概率.试题解析:(1)将x=2,y=-1代入方程得:2a+1=5,即a=2;(2)列表得:所有等可能的情况有9种,其中(x,y)恰好为方程2x-y=5的解的情况有(0,-5),(2,-1),(3,1),共3种情况,则P==【考点】1、列表法和树状图发;2、二元一次方程的解.9.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中的三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是 _.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S= .(用数值作答)【答案】7、3、10; 11.【解析】由图可知图中格点多边形DEFGHI所对应的S,N,L分别是7、3、10.不妨设某个格点四边形由两个小正方形组成,此时,S=1,N=0,L=6∵格点多边形的面积S=aN+bL+c,∴结合图中的格点三角形ABC及多边形DEFGHI可得,解得.∴.将N=5,L=14代入可得S=11.【考点】1.探索规律题(图形的变化类);2.新定义;3.网格问题;4.认识平面图形;5.特殊元素法和待定系数法的应用.10.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格(单位:元)为()A.19B.18C.16D.15【答案】C.【解析】要求出第三束气球的价格,根据第一、二束气球的价格列出方程组,应用整体思想求值:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,两式相加,得,4x+4y=32,即2x+2y=16.故选C.【考点】1.二元一次方程组的应用;2.求代数式的值;3.整体思想的应用.11.解方程组:【答案】或.【解析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.由①得,即或,∴原方程组可化为或.解得;解得.∴原方程组的解为或.【考点】解二元二次方程组.12.已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.±2B.C.2D.4【答案】C【解析】由是二元一次方程组的解,根据二元一次方程根的定义,可得,即可求得m与n的值,继而求得2m﹣n的算术平方根.解:∵是二元一次方程组的解,∴,解得:,∴2m﹣n=4,∴2m﹣n的算术平方根为2.故选C.13.若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是________.【答案】k>2【解析】①+②,得3x+3y=3k-3,x+y=k-1∵x+y>1,∴k-1>1,k>2.∴k的取值范围是k>2.14.解方程组:【答案】解:①+②可得:3x=6,解得:x=2,将x=2代入①可得:y=﹣1。

中考数学模拟试卷精选汇编:二元一次方程(组)及其应用附答案

中考数学模拟试卷精选汇编:二元一次方程(组)及其应用附答案

二元一次方程(组)及其应用一、选择题1.(2015•山东东营•一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =523x +2y =20 B.⎩⎪⎨⎪⎧x +y =522x +3y =20 C.⎩⎪⎨⎪⎧x +y =202x +3y =52 D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D2.(2015·广东中山·4月调研)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是( )A .22056,2328x y x y +=⎧⎨+=⎩B .20256,2328x y x y +=⎧⎨+=⎩C .20228,2356x y x y +=⎧⎨+=⎩D .2228,20356x y x y +=⎧⎨+=⎩3.(2015·山东枣庄·二模)二元一次方程组233x y x y ⎧⎨⎩+=−=的解为( ) A .21x y ⎧⎨⎩== B .21x y ⎧⎨⎩==− C .21x y ⎧⎨⎩=−=− D .21x y ⎧⎨⎩=−=答案:B4.(2015·山东省东营区实验学校一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =523x +2y =20B.⎩⎪⎨⎪⎧x +y =522x +3y =20C.⎩⎪⎨⎪⎧x +y =202x +3y =52D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D5.(2015·江西省·中等学校招生考试数学模拟)已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=+−.54,23y x y x 的解,则b a 2+的值为( )A . 4B . 5C . 6D . 7答案:选D .命题思路:考查二元一次方程组的解法与消元、整体思想的运用.6.(2015·重点高中提前招生数学练习)在△ABC 中,点D ,E 分别在AB ,AC 上,CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形ADFE 的面积等于( D )图1A .22B .24C .36D .44答案:D7.(2015•山东潍坊广文中学、文华国际学校•一模)已知一个等腰三角形的两边长a 、b 满足方程组2a b 3a b 3−=⎧⎨+=⎩则此等腰三角形的周长为 ( )A .5B .4C .3D .5或4答案:A ;8.(2015·广东广州·一模)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A.⎩⎪⎨⎪⎧ x =y -18,y -x =18-yB.⎩⎪⎨⎪⎧ y -x =18,x -y =y +18C. ⎩⎪⎨⎪⎧ x +y =18,y -x =18+yD.⎩⎪⎨⎪⎧y =18-x ,18-y =y -x 答案:D9.(2015·江苏江阴长泾片·期中)已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=−=+17by ax by ax 的解,则a b −的值为( )A .-1B .1C .2D .3答案:A二、填空题1.(2015•山东济南•网评培训)方程组257x y x y +=⎧⎨−=⎩,的解是 . 答案:43y x =⎧⎨=−⎩, 2.(2015•山东潍坊广文中学、文华国际学校•一模)如图1,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是_______.答案:(56,57−); 3. (2015·江苏高邮·一模)若a +3b -2=0, 则3a ×27b 的值为 ▲ .答案:9;三、解答题 1.(2015·锡山区·期中)(本题满分10分)无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐在同一列高铁上;根据报名人数,若都买一等座单程火车票需6175元,若都买二等座单程火车票且花钱最少,则需3150元;已知学生家长与教师的人数之比为2:1,无锡到上海的火车票价格(高铁学生票只有二等座.....可以打7.5折)如下表所示:运行区间票价上车站下车站一等座二等座无锡上海95(元)60(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?答案:解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意得:,(2分)解得:答:参加社会实践的老师、家长与学生分别有5人、10人、50人.(4分)(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:学生都买学生票共50张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x-50)+95(65-x),即y=-35x+5425(50≤x<65),(5分)②当0<x<50时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65-x)张,∴火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75x +95(65-x ),即y =-50x +6175(0<x <50), (6分) 答:购买火车票的总费用(单程)y 与x 之间的函数关系式是y =-35x +5420(50≤x <65)或y = -50x +6175(0<x <50). (7分)(3)由(2)小题知,当50≤x <65时,y = -35x +5425,∵-35<0,y 随x 的增大而减小, ∴当x =64时,y 的值最小,最小值为3185元,当x =50时,y 的值最大,最大值为3675元. (8分) 当0<x <50时,y = -50x +6175,∵-50<0,y 随x 的增大而减小,∴当x =49时,y 的值最小,最小值为3725元,当x =1时,y 的值最大,最大值为6125元. (9分) 所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元. (10分)2.(2015·江苏无锡崇安区·一模)解方程组:⎩⎪⎨⎪⎧3x -y =7,x +3y =-1.答案:由①得y =3x -7代入②,x +3(3x -7)=-1,得x =2……………………………(2分)于是y =-1……………… (3分) 故原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1…………………(4分) 3. (2015•山东东营•一模) 某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:, 解得:, 答:A 、B 两种型号电风扇的销售单价分别为250元、210元;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,解得:a ≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.1.(2015·广东从化·一模)(本小题满分9分解方程组:533x y x y +=⎧⎨−=⎩答案:解: 533x y x y +=⎧⎨−=⎩ (2)(1) (1)+(2)得:48x = ……………………………………………2分 解得:2=x (3) ……………………………………………4分 把(3)代入(1)得: 52=+y ………………………………………6分 解得:3=y ………………………………………8分所以原方程组的解为:⎩⎨⎧==32y x …………………………………9分 4.( 2015·呼和浩特市初三年级质量普查调研)(5分)解方程组:211342x y y x −=⎧⎪⎨+−=⎪⎩答案:解原方程可化为:21618x y x y −=⎧⎨−−=⎩,48,2x x ==两式相减得:,2213x x y y =−==把代入得;23x y =⎧⎨=⎩所以方程组得解为; 5. (2015·山东省济南市商河县一模) (本小题满分4分)解方程组:⎩⎨⎧=−=+②①72552y x y x解:⎩⎨⎧=−=+②①72552y x y x ①+② 得: ···································································· 1分 6x =12,x =2, ···································································································· 2分 把x =2代入①得:y =23, ················································································ 3分 ∴方程组的解为:⎪⎩⎪⎨⎧==232y x ··············································································· 4分6. (2015·辽宁盘锦市一模)20.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:20002400x y y x +=⎧⎨−=⎩ 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件7.(2015·网上阅卷适应性测试)(1)计算:()21342|8|−−−⨯+−⎩⎨⎧=+=+1137y x y x (2)⎩⎪⎨⎪⎧3x +y =3,①x +y =1.② 答案:(1)()21342|8|−−−⨯+−=9―2+8=15(2)解:由①—②,得2x =2,x =1. ③将③代入②中,得 y =0.所以,方程组的解为:⎩⎪⎨⎪⎧x =1,y =0.8. (2015·福建漳州·一模)请从以下三个二元一次方程: x +y =7, 173+−=x y , x +3y =11中,任选两个方程构成一个方程组,并解该方程组.(1)所选方程组是: .(2)解方程组:答案:(1) ①② …………………………………………………………2分(2)解:②-①得:42=y …………………………………………………………4分 ∴2=y …………………………………………………………………5分把2=y 代入①得 :5x = ………………………………………………7分∴⎩⎨⎧==25y x …………………………………………………………………8分 9.(2015·广东广州·二模)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件? 解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:---------1分 20002400x y y x +=⎧⎨−=⎩ -----------------------------------------------------------------------------5分 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件 --------- ---------7分10. (2015·安庆·一摸)某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2015年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这-年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2015年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本答案:解:(1)设每条全自动生产线的成本为x 万元,每条半自动生产线的成本为y 万元,根据题意,得⎩⎨⎧=+=+283262y x y x ,解得⎩⎨⎧==610y x . 答:每条全自动生产线的成本为10万元,每条半自动生产线的成本为6万元.…………5分(2)设2015年该加工厂需兴建全自动生产线a 条,根据题意,得(26-10)a +(16-6)(10-a )≥120,解得a ≥331,由于a 是正整数,所以a 至少取4.即2015年该加工厂至少需投资兴建4条全自动生产线.…………10分。

中考数学专题练习 二元一次方程组(含解析)

中考数学专题练习 二元一次方程组(含解析)

二元一次方程组一、填空题1.用加减消元法解方程组,由①×2﹣②得.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= ,当x=3时,y= .3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ;当m=2,n=﹣3时代数式的值是.4.已知方程组与有相同的解,则m= ,n= .5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为,根据题意得方程组.7.如果是方程6x+by=32的解,则b= .8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= .9.已知a2﹣a+1=2,那么a﹣a2+1的值是.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= .二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣212.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=113.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.414.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.015.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>116.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠217.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.118.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4三、解答题19.解方程组:.20.解方程组:.21.解方程组:.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量已知关于x、y的方程组与有相同的解,求a、b的值.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5 乙种货车辆(辆) 3 6 累计运货吨数(吨)15.5 35二元一次方程组参考答案与试题解析一、填空题1.用加减消元法解方程组,由①×2﹣②得2x=﹣3 .【考点】解二元一次方程组.【专题】计算题.【分析】此题主要考查加减消元法的应用,按照题目要求解答即可.【解答】解:①×2﹣②得,6x+2y﹣(4x+2y)=﹣2﹣1,合并同类项得,2x=﹣3.【点评】注意掌握二元一次方程的加减消元法.2.在方程3x﹣y=5中,用含x的代数式表示y为:y= 12x﹣20 ,当x=3时,y= 16 .【考点】解二元一次方程.【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【解答】解:①由已知方程3x﹣y=5,移项,得,系数化为1,得y=12x﹣20;②当x=3代入y=12x﹣20,得y=16.【点评】本题考查的是方程的基本运算技能:移项,合并同类项,系数化为1等.3.在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k= ﹣2 ;当m=2,n=﹣3时代数式的值是﹣7 .【考点】代数式求值.【分析】直接把m=﹣2,n=1代入代数式,求得k,再利用代入法求代数式的解.【解答】解:∵m=﹣2,n=1∴3m+5n﹣k=1∴k=﹣2∵m=2,n=﹣3,k=﹣2∴3m+5n﹣k=3×2+5×(﹣3)﹣(﹣2)=﹣7.【点评】解题关键是先把m=﹣2,n=1代入代数式求出k的值,再把k的值,m=2,n=﹣3代入代数式求值.4.已知方程组与有相同的解,则m= ,n= 12 .【考点】同解方程组.【专题】计算题.【分析】解此题可先将第二个方程组解出x、y的值,再代入第一个方程组,化为只有m、n的方程组,即可求出n、m.【解答】解:由(1)×2+(2),得10x=20,x=2,代入,得y=0.将x、y代入第一个方程组可得,解,得.【点评】此题考查的是考生对二元一次方程组的解的理解和二元一次方程组的解法,解出x、y的值,再代入方程组求出m、n的值、最重要的是将方程化简到只含有两个未知数.5.若(2x﹣3y+5)2+|x+y﹣2|=0,则x= ,y= .【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值.【解答】解:∵(2x﹣3y+5)2+|x+y﹣2|=0,∴,解,得x=,y=.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为10y+x ,根据题意得方程组.【考点】由实际问题抽象出二元一次方程组.【分析】如果设原两位数的个位数字为x,十位数字为y,那么原两位数可表示为10y+x.此题中的等量关系有:①有一个两位数,它的两个数字之和为11可得出方程x+y=11;②根据“把这个两位数的个位数字与十位数字对调,所得的新数比原数大63”,可得出方程为(10x+y)﹣(10y+x)=63,那么方程组是.【解答】解:根据数位的意义,该两位数可表示为10y+x.根据有一个两位数,它的两个数字之和为11,可得方程x+y=11;根据把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,可得方程(10x+y)﹣(10y+x)=63.那么方程组是.故答案为:10y+x,.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意两位数的表示方法.7.如果是方程6x+by=32的解,则b= 7 .【考点】二元一次方程的解.【专题】方程思想.【分析】将x=3,y=2代入方程6x+by=32,把未知数转化为已知数,然后解关于未知系数b的方程.【解答】解:把x=3,y=2代入方程6x+by=32,得6×3+2b=32,移项,得2b=32﹣18,合并同类项,系数化为1,得b=7.【点评】本题的关键是将方程的解代入原方程,把关于x、y的方程转化为关于系数b的方程,此法叫做待定系数法,在以后的学习中,经常用此方法求函数解析式.8.若是关于x、y的方程ax﹣by=1的一个解,且a+b=﹣3,则5a﹣2b= ﹣43 .【考点】二元一次方程的解.【分析】要求5a﹣2b的值,要先求出a和b的值.根据题意得到关于a和b的二元一次方程组,再求出a和b的值.【解答】解:把代入方程ax﹣by=1,得到a+2b=1,因为a+b=﹣3,所以得到关于a和b的二元一次方程组,解这个方程组,得b=4,a=﹣7,所以5a﹣2b=5×(﹣7)﹣2×4=﹣35﹣8=﹣43.【点评】运用代入法,得关于a和b的二元一次方程组,再解方程组求解是解决此类问题的关键.9.已知a2﹣a+1=2,那么a﹣a2+1的值是0 .【考点】代数式求值.【专题】整体思想.【分析】先求出a2﹣a的值,再把原式化为﹣(a2﹣a)+1的形式进行解答.【解答】解:∵a2﹣a+1=2,∴a2﹣a=1,∴a﹣a2+1=﹣(a2﹣a)+1,=﹣1+1=0.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a2﹣a的值,然后利用“整体代入法”求代数式的值.10.若|3a+4b﹣c|+(c﹣2b)2=0,则a:b:c= ﹣2:3:6 .【考点】解三元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】解此题可以根据函数的非负性进行求解,含不等式的式子必大于0,含平方的式子也必大于0,因此可知|3a+4b﹣c|=0,且(c﹣2b)2=0,据此可以求出a,b,c的比.【解答】解:依题意得:|3a+4b﹣c|=0,且(c﹣2b)2=0,∴,∴由②得3a=﹣2b,即a=﹣b,∴a:b:c=﹣b:b:2b=﹣2:3:6.故答案为:﹣2:3:6.【点评】此题考查的是非负数的性质,据此可以列出二元一次方程组,求出相应的比,就可以计算出此题.二、选择题11.如果3a7x b y+7和﹣7a2﹣4y b2x是同类项,则x,y的值是()A.x=﹣3,y=2 B.x=2,y=﹣3 C.x=﹣2,y=3 D.x=3,y=﹣2【考点】同类项;解二元一次方程组.【专题】计算题.【分析】本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.【解答】解:由同类项的定义,得,解这个方程组,得.故选B.【点评】根据同类项的定义列出方程组,是解本题的关键.12.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1 B.3a+2b=1 C.4b﹣9a=﹣1 D.9a+4b=1【考点】二元一次方程组的解.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.13.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.4【考点】解三元一次方程组.【专题】计算题.【分析】由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx﹣9中,求得k的值.【解答】解:解得:,代入y=kx﹣9得:﹣1=2k﹣9,解得:k=4.故选D.【点评】本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.14.若二元一次方程3x﹣2y=1有正整数解,则x的取值应为()A.正奇数B.正偶数C.正奇数或正偶数D.0【考点】解二元一次方程.【分析】应先用方程表示y的值,然后再根据解为正整数分析解的情况.【解答】解:由题意,得,要使x,y都是正整数,必须满足3x﹣1大于0,且是2的倍数.根据以上两个条件可知,合适的x值为正奇数.故选A.【点评】解题关键是把方程做适当的变形,再确定符合条件的x的取值范围.15.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【考点】解二元一次方程组;解一元一次不等式.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解答】解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.16.方程ax﹣4y=x﹣1是二元一次方程,则a的取值为()A.a≠0 B.a≠﹣1 C.a≠1 D.a≠2【考点】二元一次方程的定义.【专题】计算题.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求a的取值.【解答】解:方程ax﹣4y=x﹣1变形得(a﹣1)x﹣4y=﹣1,根据二元一次方程的概念,方程中必须含有两个未知数,所以a﹣1≠0,即a≠1.故选C.【点评】二元一次方程必须符合以下三个条件:(1)方程中必须只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.解本题时是根据条件(1).17.(2013春•苏州期末)当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时这个式子的值为()A.6 B.﹣4 C.5 D.1【考点】代数式求值.【专题】整体思想.【分析】把x=2代入ax3+bx+1=6,得到8a+2b=5;又当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1.所以把8a+2b当成一个整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,即8a+2b+1=6,∴8a+2b=5①当x=﹣2时,ax3+bx+1=﹣8a﹣2b+1=﹣(8a+2b)+1②把①代入②得:ax3+bx+1=﹣5+1=﹣4.故选B.【点评】此题考查的是代数式的性质,将已知变形然后求解.18.设A、B两镇相距x千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为u千米/小时、v千米/小时,并有:①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米.求x、u、v.根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是()A.x=u+4 B.x=v+4 C.2x﹣u=4 D.x﹣v=4【考点】由实际问题抽象出二元一次方程.【专题】行程问题.【分析】首先由题意可得,甲乙各走了一小时的路程.根据题意,得甲走的路程差4千米不到2x千米,即u=2x﹣4或2x﹣u=4;乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.【解答】解:根据甲走的路程差4千米不到2x千米,得u=2x﹣4或2x﹣u=4.则C正确;根据乙走的路程差4千米不到x千米,则v=x﹣4或x=v+4、x﹣v=4.则B,D正确,A错误.故选:A.【点评】此题的关键是用代数式表示甲、乙走一小时的路程,同时用到了路程公式,关键是能够根据题中的第三个条件得到甲、乙所走的路程分别和总路程之间的关系.三、解答题19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】观察本题可知x的系数的最小公倍数较小,应考虑消去x,具体用加减消元法.【解答】解:(1)×7+(2)×2得:﹣11y=66,y=﹣6,把y=﹣6代入(1)得:2x+18=8,x=﹣5,∴原方程组的解为.【点评】两个未知数系数的符号都相反,可考虑消去最小公倍数较小的未知数.20.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】在方程2中,y的系数为1,所以可用含x的式子表示y,即用代入消元法比较简单.【解答】解:由(2)变形得:y=3x+1,代入(1)得:x+2(3x+1)=9,解得:x=1.代入y=3x+1得:y=4.∴方程组的解为.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.21.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.【解答】解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.【点评】本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.22.王大伯承包了25亩土地,今年春季改种黄瓜和西红柿两种大棚蔬菜,用去了44 000元,其中种黄瓜每亩用了1700元,获纯利润2600元;种西红柿每亩用了1800元,获纯利润2800元,问王大伯一共获纯利润多少元?【考点】二元一次方程组的应用.【专题】应用题.【分析】根据建立方程组,先求到两种蔬菜种植的亩数,再求一共获的纯利润.【解答】解:设王大伯种了x亩黄瓜,y亩西红柿,根据题意可得.共获纯利润=2600×10+2800×15=68 000(元)答:王大伯一共获纯利润68 000元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题一共获的纯利润指黄瓜和西红柿的利润和.23.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段某市的一环路、二环路、三环路的车流量(2014春•惠山区校级期末)已知关于x、y的方程组与有相同的解,求a、b的值.【考点】同解方程组.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:据题意得,解得,代入其他两个方程,可得方程组为,解得.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.28.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如表所示.现租用该公司的甲种货车3辆乙种货车5辆,一次刚好运完这批货物,如果按每吨付运费30元计算,问货主应付运费多少元?第一次第二次甲种货车辆(辆) 2 5乙种货车辆(辆) 3 6累计运货吨数(吨)15.5 35【考点】二元一次方程组的应用.【分析】应先算出甲种货车和乙种货车一次各运多少吨货物.等量关系为:2×每辆甲种车的载重+3×每辆乙种车的载重=15.5;5×每辆甲种车的载重+6×每辆乙种车的载重=35.【解答】解:设甲种车每辆装x吨,乙种车每辆装y吨.则解得,运费为30×(3×4+5×2.5)=735(元).答:货主应付运费735元.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.。

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案学校:___________班级:___________姓名:___________考号:___________温故而知新:二元一次方程组 1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是( 2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。

7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

练习题一、选择题:(本题共8小题,每小题5分,共40分.) 1.方程组02x y x y -=⎧⎨+=⎩的解为( )A .11x y =⎧⎨=-⎩B .11x y =-⎧⎨=⎩C .20x y =⎧⎨=⎩D .11x y =⎧⎨=⎩2.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x 元,购买1个编程机器人需y 元,则可列方程组为( )A .23473480x y x y =⎧⎨+=⎩B .3=24+7=3480x yx y ⎧⎨⎩C .2=37+4=3480x yx y ⎧⎨⎩D .3=27+4=3480x yx y ⎧⎨⎩3.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( ) A .2a =和5b = B .3a =和2b =C .3a =-和2b =D .2a =和=5b -4.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚( ) A .22 B .16 C .14 D .12 5.已知 12x y =-⎧⎨=⎩是关于 x y 、 的二元一次方程 3mx y -= 的一个解,则 m 的值是( ) A .-1B .1C .-5D .56.若方程组31331x y ax y a +=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( )A .-1B .1C .0D .无法确定7.已知关于x ,y 的方程组 111222a x b y c a x b y c +=⎧⎨+=⎩ 的解为 24x y =⎧⎨=⎩,则关于方程组()()()()11122212131213a x b y c a x b y c ++-=⎧⎪⎨++-=⎪⎩ 的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩8.已知关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩,有下列说法:①当a =2时,方程的两根互为相反数;②不存在自然数a ,使得x ,y 均为正整数;③x ,y 满足关系式x -5y =6;④当且仅当a =-5时,解得x 为y 的2倍.其中正确的是( ) A .①②③④ B .①③④ C .②③ D .①②④ 二、填空题:(本题共5小题,每小题3分,共15分.)9.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,根据题意可列方程组为 . 10.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买 支.11.以方程组 12y x y x =+⎧⎨=-+⎩的解为坐标的点(x,y)在第 象限.12.已知 21x y =⎧⎨=⎩ 是二元一次方程组 71ax by ax by +=⎧⎨-=⎩ 的解,则 a b - = 。

中考数学一轮复习第八章 二元一次方程组练习题附解析

中考数学一轮复习第八章 二元一次方程组练习题附解析

中考数学一轮复习第八章 二元一次方程组练习题附解析一、选择题1.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x ay b=⎧⎨=⎩是哪一个方程的解( )A .34x y +=B .34x y -=C .439x y -=D .439x y +=2.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩3.三元一次方程5x y z ++=的正整数解有( ) A .2组B .4组C .6组D .8组4.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x 平方千米,林地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A .1800250xy y x +=⎧⎪⎨-=⎪⎩ B .1800250x y x y +=⎧⎪⎨-=⎪⎩ C .1800250x y x y +=⎧⎪⎨=⋅⎪⎩ D .1800250x y y x +=⎧⎪⎨=⋅⎪⎩5.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律, A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(2,-506)6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元7.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:28.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( ) A .173 B .888 C .957 D .69 9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A .1.B .2.C .3.D .4.10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 二、填空题11.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满. 12. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 13.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.14.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 15.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)17.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.18.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .19.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 20.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示: 运行区间 大人票价 学生票 出发站 终点站 一等座二等座二等座泉州福州65(元) 54(元) 40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.23.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A 款瓷砖的数量比B 款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A 款瓷砖的用量比B 款瓷砖的2倍少14块,且恰好铺满地面,则B 款瓷砖的长和宽分别为_ 米(直接写出答案). 24.a 取何值时(a 为整数),方程组2420x ay x y +=⎧⎨-=⎩的解是正整数,并求这个方程组的解.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组:}}1{,?{?3{39,311?4max x x ymin x x y-=++=. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x ay b =⎧⎨=⎩分别代入四个选项即可.【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩,当31x y =⎧⎨=-⎩时,30x y +=,A 选项错误;36x y -=,B 选项错误; 4315x y -=,C 选项错误; 439x y +=,D 选项正确;【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.2.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x尺,绳子长为y尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.3.C解析:C【分析】最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.【详解】解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1,有2组正整数解;当x=3时,y+z=2,y分别取1,此时z分别对应1,有1组正整数解;所以正整数解的组数共:3+2+1=6(组).故选:C.【点睛】本题考查三元一次不定方程的解,解题关键是确定x、y、z的值,分类讨论.4.C解析:C【解析】设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18025% x yx y+=⎧⎨=⨯⎩.故选C解析:A 【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n2,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.6.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.7.C解析:C 【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值. 【详解】 ∵4520430x y z x y z -+=⎧⎨+-=⎩①②∴由①×3+②×2,得2x y = 由①×4+②×5,得3x z = ∴:::2:31:2:3x y z x x x == 故选:C . 【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.8.A解析:A 【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案. 【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018 =a 12+a 22+…+a 20142+2156, 设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173, ∴有888个1,957个-1,173个0, 故答案为173. 【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C 【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35, 整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数, 所以y=4或8或12, 所以有3种装法, 故选C.10.B解析:B 【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可. 【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=,116x l ∴=.∴标号为①的正方形的边长116l.故选:B.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.二、填空题11..【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进解析:38 17.【分析】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,根据题意,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入124%32x y--中即可求出结论.【详解】设每个进水口每小时进水量为x,每个出水口每小时出水量为y,依题意,得:()() 534115% 243115%x yx y⎧-=-⎪⎨-=-⎪⎩,解得:0.170.085 xy=⎧⎨=⎩,∴124%38 3217x y-=-.故答案为:38 17.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.13.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.14.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.15.3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.16.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程解析:8 9【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.17.11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax+by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得,解得.解析:11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax +by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得4523a ba b⎧⎨⎩+=+=,解得11ab⎧⎨⎩==.当a=1,b=1时,x※y=x+y2.所以2※3=2+32=11.故答案为11.点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.18.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 19.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.20.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合 解析:613【解析】由题意得:227{3393a b a b ++=-+-=, 解得:a=13,b=133, 则13※b=13a+b²+13=116913619993++=, 故答案为613. 点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a 、b 的值.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)购买一等票为 195m;购买二等票为162m;(2)210;(3)180,193.【分析】(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.(2)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.【详解】解:(1)购买一等票为:65•3m =195m ;购买二等票为:54•3m =162m ,(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180m n ==, 则2m =20,总人数为:10+20+180=210(人)经检验,符合题意;答:参加活动的总人数为210人.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:719311x ≤, ∵x 为整数,∴x 的最大值是193.【点睛】本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.23.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15. 【解析】【分析】(1)设A 款瓷砖单价x 元,B 款单价y 元,根据“一块A 款瓷砖和一块B 款瓷砖的价格和为140元;3块A 款瓷砖价格和4块B 款瓷砖价格相等”列出二元一次方程组,求解即可; (2)设A 款买了m 块,B 款买了n 块,且m>n ,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A 款正方形瓷砖边长为a 米,B 款长为a 米,宽b 米,根据图形以及“A 款瓷砖的用量比B 款瓷砖的2倍少14块”可列出方程求出a 的值,然后由92b b-+是正整教分情况求出b 的值.【详解】解: (1)设A 款瓷砖单价x 元,B 款单价y 元, 则有14034x y x y +=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.24.当a=0时,21xy=⎧⎨=⎩;当a=-2时,42xy=⎧⎨=⎩;当a=-3时,84xy=⎧⎨=⎩【分析】先把a当作已知求出x、y的值,再根据方程组有正整数解,得到关于a的一元一次不等式组,求出m的取值范围,再找出符合条件的正整数a的值即可.【详解】解:方程组2420x ay x y +=⎧⎨-=⎩解得:8444x a y a ⎧=⎪⎪+⎨⎪=⎪+⎩∵方程组的解是正数,∴a >-4,∵方程组的解是正整数,a >-4,∴a=-3,-2,0,它的所有正整数解为:84x y =⎧⎨=⎩,42x y =⎧⎨=⎩,21x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是先把m 当作已知表示出x 、y 的值,再根据方程组有正整数解得出关于m 的不等式组,求出m 的正整数解即可.25.1{ 3x y == 或 35{?95x y =-= 【解析】分析: }1max{x x y 3-,=,需要分类讨论,当x≥-x 时,x =1y 3;当x <-x 时,-x =1y 3;因为3x +9<3x +11,所以}min{3x 93x 114y +,+=所表示的方程为3x +9=4y ,则可得到两个二元一次方程组. 详解:当x≥-x 时,x =1y 3,原方程组变形为:1{3394x y x y=+=,解得1{3x y ==. 当x <-x 时,-x =1y 3,原方程组变形为:1{3394x y x y -=+=,解得35{95x y -==. 点睛:本题考查了新定义及二次一次方程组的解法,对于新定义,要理解它所规定的运算规则,再根据这个规则,列式或列方程(组),解二元一次方程组的基本思路是消元,通过消元化二元一次方程组为一元一次方程,解一元一次方程求出其中的一个未知数,再代入原方程组中的一个方程中,求另一个未知数,消元的方法有两种:代入消元法和加减消元法,用加减消元法时,尽量消系数的最小公倍数比较小的字母.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙。

2023年湖南省中考数学真题分类汇编:二元一次方程组、不等式与不等式组(含答案)

2023年湖南省中考数学真题分类汇编:二元一次方程组、不等式与不等式组(含答案)

;2023年湖南省中考数学真题分类汇编:二元一次方程组、不等式与不等式组一、选择题1.(2023·衡阳)《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设有x只鸡,y只兔.依题意,可列方程组为( )A.x+y=35,4x+2y=94B.x+y=94,4x+2y=35C.x+y=35,2x+4y=94D.x+y=94,2x+4y=352.(2023·长沙)不等式组2x+4>0x―1≤0的解集在数轴上表示正确的是( )A.B.C.D.3.(2023·常德)不等式组x―3<23x+1≥2x的解集是( )A.x<5B.1≤x<5C.―1≤x<5D.x≤―14.(2023·郴州)一元一次不等式组3―x≥0x+1>0的解集在数轴上表示正确的是( )A.B.C.D.5.(2023·邵阳)不等式组x―1<0―2x≤4的解集在数轴上可表示为( )A.B.C.D.二、填空题6.(2023·株洲)关于x的不等式12x―1>0的解集为 .三、计算题7.(2023·衡阳)解不等式组:x―4≤0①2(x+1)<3x②8.(2023·常德)解方程组:x―2y=1①3x+4y=23②9.(2023·岳阳)解不等式组:2x+1>x+3,①2x―4<x.②四、综合题10.(2023·长沙)为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共16个班级参加.(1)比赛积分规定:每场比赛都要分出胜负,胜一场积3分,负一场积1分.某班级在15场比赛中获得总积分为41分,问该班级胜负场数分别是多少?(2)投篮得分规则:在3分线外投篮,投中一球可得3分,在3分线内(含3分线)投篮,投中一球可得2分,某班级在其中一场比赛中,共投中26个球(只有2分球和3分球),所得总分不少于56分,问该班级这场比赛中至少投中了多少个3分球?11.(2023·张家界)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)4560租金(元/辆)200300(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?12.(2023·常德)“六一”儿童节将至,张老板计划购买A型玩具和B型玩具进行销售,若用1200元购买A型玩具的数量比用1500元购买B型玩具的数量多20个,且一个B型玩具的进价是一个A型玩具进价的1.5倍.(1)求A型玩具和B型玩具的进价分别是多少?(2)若A型玩具的售价为12元/个,B型玩具的售价为20元/个,张老板购进A,B型玩具共75个,要使总利润不低于300元,则A型玩具最多购进多少个?13.(2023·郴州)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?14.(2023·邵阳)低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台500元,乙型自行车进货价格为每台800元.该公司销售3台甲型自行车和2台乙型自行车,可获利650元,销售1台甲型自行车和2台乙型自行车,可获利350元.(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?(2)为满足大众需求,该公司准备加购甲、乙两种型号的自行车共20台,且资金不超过13000元,最少需要购买甲型自行车多少台?15.(2023·怀化)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?答案解析部分1.【答案】C2.【答案】A3.【答案】C4.【答案】C5.【答案】A6.【答案】x>27.【答案】解:x―4≤0①2(x+1)<3x②解不等式①得:x≤4解不等式②得:x>2∴不等式组的解集为:2<x≤48.【答案】解:将①×2得:2x―4y=2③②+③得:x=5将x=5代入①得:y=2所以x=5y=2是原方程组的解.9.【答案】解:∵2x+1>x+3,①2x―4<x.②,解①的解集为x>2;解②的解集为x<4,∴原不等式组的解集为2<x<4.10.【答案】(1)解:设胜了x场,负了y场,根据题意得:x+y=153x+y=41,解得x=13 y=2,答:该班级胜负场数分别是13场和2场;(2)解:设班级这场比赛中投中了m个3分球,则投中了(26―m)个2分球,根据题意得:3m+2(26―m)≥56,解得m≥4,答:该班级这场比赛中至少投中了4个3分球.11.【答案】(1)解:设参加此次研学活动的师生有x人,原计划租用45座客车y辆依题意得45y+15=x 60(y―3)=x解得:x=600 y=13,答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;(2)解:∵要使每位师生都有座位,∴租45座客车14辆,则租60座客车10辆,14×200=2800,10×300=3000,∵2800<3000∴租14辆45座客车较合算.12.【答案】(1)解:设A型玩具的单价为x元/件.由题意得:1200x―15001.5x=20,解得:x=10经检验,x=10是原方程的解B型玩具的单价为10×1.5=15元/个∴A型,B型玩具的单价分别是10元/个,15元/个.(2)解:设购进A型玩具m个.(12―10)m+(20―15)(75―m)≥300解得:m≤25∴最多可购进A型玩具25个.13.【答案】(1)解:设这两个月中该景区游客人数的月平均增长率为x,由题意,得:1.6(1+x)2=2.5,解得:x=0.25=25%(负值已舍掉);答:这两个月中该景区游客人数的月平均增长率为25%;(2)解:设5月份后10天日均接待游客人数是y万人,由题意,得:2.125+y≤2.5(1+25%),解得:y≤1;∴5月份后10天日均接待游客人数最多是1万人.14.【答案】(1)解:该公司销售一台甲型、一台乙型自行车的利润分别为x,y元,根据题意得,3x+2y=650x+2y=350,解得:x=150 y=100,答:该公司销售一台甲型、一台乙型自行车的利润分别为150,100元;(2)解:设需要购买甲型自行车a台,则购买乙型自行车(20―a)台,依题意得,500a+800(20―a)≤13000,解得:a≥10,∵a为正整数,∴a的最小值为10,答:最少需要购买甲型自行车10台.15.【答案】(1)解:设原计划租用A种客车x辆,根据题意得,45x+30=60(x―6),解得:x=26所以60×(26―6)=1200(人)答:原计划租用A种客车26辆,这次研学去了1200人;(2)解:设租用A种客车a辆,则租用B种客车(25―a)辆,根据题意,得25―a≤745a+60(25―a)≥1200解得:18≤a≤20,∵a为正整数,则a=18,19,20,∴共有3种租车方案,方案一:租用A种客车18辆,则租用B种客车7辆,方案二:租用A种客车19辆,则租用B种客车6辆,方案三:租用A种客车20辆,则租用B种客车5辆,(3)解:∵A种客车租金为每辆220元,B种客车租金每辆300元,∴B种客车越少,费用越低,方案一:租用A种客车18辆,则租用B种客车7辆,费用为18×220+7×300=6060元,方案二:租用A种客车19辆,则租用B种客车6辆,费用为19×220+6×300=5980元,方案三:租用A种客车20辆,则租用B种客车5辆,费用为20×220+5×300=5900元,∴租用A种客车20辆,则租用B种客车5辆才最合算.。

题库 中考 试卷---初中数学7年级下册第8章 二元一次方程组 同步试题及答案(23页)(人教版)

题库 中考 试卷---初中数学7年级下册第8章 二元一次方程组 同步试题及答案(23页)(人教版)

第八章 二元一次方程组测试1 二元一次方程组学习要求理解二元一次方程、二元一次方程组及它们的解的含义;会检验一对数是不是某个二元一次方程(组)的解.课堂学习检测一、填空题1.方程2x m +1+3y 2n =5是二元一次方程,则m =______,n =______. 2.如果⎩⎨⎧==2,1y x 是二元一次方程3mx -2y -1=0的解,则m =______.3.在二元一次方程组⎩⎨⎧-==-y m x y x 32,4中有x =6,则y =______,m =______.4.若⎩⎨⎧==2,1y x 是方程组⎩⎨⎧=+=-3,0by x y ax 的解,则a =______,b =______.5.方程(m +1)x +(m -1)y =0,当m ______时,它是二元一次方程,当m ______时,它是一元一次方程. 二、选择题6.下列各式中,是关于x ,y 的二元一次方程的是( ). (A)2x -y(B)xy +x -2=0(C)x -3y =-1(D)02=-y x7.下列方程组中,是二元一次方程组的是( ).(A)⎩⎨⎧=-=+.31,52x y x(B)⎩⎨⎧⋅-==-y x y x 423,1)(2(C)⎩⎨⎧==+.1,122y y x(D)⎪⎩⎪⎨⎧=-=.2,1y x x y 8.已知二元一次方程组⎩⎨⎧=+=+②①923,545y x y x 下列说法正确的是( ).(A)适合方程②的x ,y 的值是方程组的解 (B)适合方程①的x ,y 的值是方程组的解(C)同时适合方程①和②的x ,y 的值是方程组的解(D)同时适合方程①和②的x ,y 的值不一定是方程组的解 9.方程2x -y =3与3x +2y =1的公共解是( ). (A)⎩⎨⎧-==.3,0y x(B)⎩⎨⎧-==.1,1y x(C)⎪⎩⎪⎨⎧⋅==21,0y x(D)⎪⎩⎪⎨⎧-==.2,21y x三、解答题10.写出二元一次方程2x +y =5的所有正整数解.11.已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+23,4y nx my x 的解是⎩⎨⎧-==,3,1y x 求m +n 的值.综合、运用、诊断一、填空题12.已知(k -2)x |k |-1-2y =1,则k ______时,它是二元一次方程;k =______时,它是一元一次方程. 13.若|x -2|+(3y +2x )2=0,则yx的值是______. 14.二元一次方程4x +y =10共有______组非负整数解.15.已知y =ax +b ,当x =1时,y =1;当x =-1时,y =0,则a =______,b =______.16.已知⎩⎨⎧-==1,2y x 是二元一次方程mx +ny =-2的一个解,则2m -n -6的值等于_______.二、选择题17.已知二元一次方程x +y =1,下列说法不正确的是( ).(A)它有无数多组解 (B)它有无数多组整数解 (C)它只有一组非负整数解 (D)它没有正整数解18.若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4 (B)-3∶4 (C)-1∶4 (D)-1∶12三、解答题19.已知满足二元一次方程5x +y =17的x 值也是方程2x +3(x -1)=12的解,求该二元一次方程的解.20.根据题意列出方程组:(1)某班共有学生42人,男生比女生人数的2倍少6人,问男、女生各有多少人?(2)某玩具厂要生产一批玩具,若每天生产35个,则差10个才能完成任务;若每天生产40个,则可超额生产20个.求预定期限是多少天?计划生产多少个玩具?拓展、探究、思考21.若等式0|21|)42(2=-+-y x 中的x 、y 满足方程组⎩⎨⎧=+=+,165,84n y x y mx 求2m 2-n +41mn 的值.22.现有足够的1元、2元的人民币,需要把面值为10元人民币换成零钱,请你设计几种兑换方案.测试2 消元(一)学习要求会用代入消元法解二元一次方程组.课堂学习检测一、填空题1.已知方程6x -3y =5,用含x 的式子表示y ,则y =______.2.若⎩⎨⎧-==1,1y x 和⎩⎨⎧==3,2y x 是关于x ,y 的方程y =kx +b 的两个解,则k =______,b =______.3.在方程3x +5y =10中,若3x =6,则x =______,y =______.二、选择题 4.方程组⎩⎨⎧=++=143,5y x y x 的解是( ).(A)无解(B)无数解(C)⎩⎨⎧=-=.3,2y x(D)⎩⎨⎧-==.2,3y x5.以方程组⎩⎨⎧-=+-=1,2x y x y 的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限6.下列方程组中和方程组⎩⎨⎧=+-=732,43y x y x 同解的是( ).(A)⎩⎨⎧=+=.732,11y x x(B)⎩⎨⎧=+=.732,5y x y(C)⎩⎨⎧=+--=.7386,43y x y x(D)⎩⎨⎧-==.43,1y x x三、用代入消元法解下列方程7.⎩⎨⎧=+=+.53,1y x y x8.⎩⎨⎧=+=+.643,02b a b a综合、运用、诊断一、填空题9.小明用36元买了两种邮票共40枚,其中一种面值1元,一种面值0.8元,则小明买了面值1元的邮票______张,面值0.8元的邮票______张. 10.已知⎩⎨⎧-==.2,1y x 和⎩⎨⎧==.0,2.y x 都是方程ax -by =1的解,则a =______,b =______.11.若|x -y -1|+(2x -3y +4)2=0,则x =______,y =______.二、选择题12.用代入消元法解方程组⎩⎨⎧=-=+②①52,243y x y x 使得代入后化简比较容易的变形是( ).(A)由①得342yx -= (B)由①得432xy -=(C)由②得25+=y x (D)由②得y =2x -5 13.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y14.把x =1和x =-1分别代入式子x 2+bx +c 中,值分别为2和8,则b 、c 的值是( ).(A)⎩⎨⎧==4,3c b(B)⎩⎨⎧-==4,3c b(C)⎩⎨⎧-=-=4,3c b(D)⎩⎨⎧=-=4,3c b三、用代入消元法解下列方程组 15.⎩⎨⎧-=-=-.234,423x y y x16.⎩⎨⎧==-.3:4:,52y x y x拓展、探究、思考17.如果关于x ,y 的方程组⎪⎩⎪⎨⎧-=-+=-321,734k y x k y x 的解中,x 与y 互为相反数,求k 的值.18.研究下列方程组的解的个数:(1)⎩⎨⎧=-=-.342,12y x y x (2)⎩⎨⎧=-=-.32,12y x y x (3)⎩⎨⎧=-=-.242,12y x y x你发现了什么规律?19.对于有理数x ,y 定义新运算:x *y =ax +by +5,其中a ,b 为常数.已知1*2=9,(-3)*3=2,求a ,b 的值.测试3 消元(二)学习要求会用加减消元法解二元一次方程组.课堂学习检测一、填空题 1.已知方程组⎩⎨⎧-=-=-②①138,447y x y x 方程②-①得______.2.若x -y =2,则7-x +y =______. 3.已知⎩⎨⎧==4,3y x 是方程组⎩⎨⎧=+=+256,7y a by ax 的解,那么a 2+2ab +b 2的值为______.二、选择题 4.方程组⎩⎨⎧=-=+7283y x y x 的解是( ).(A)⎩⎨⎧-=-=.1,3y x(B)⎩⎨⎧=-=.3,1y x(C)⎩⎨⎧-==.1,3y x(D)⎩⎨⎧=-=.1,3y x三、用加减消元法解下列方程组 5.⎩⎨⎧=+=+.1543,2525y x y x6.⎩⎨⎧=-=+.05,1323n m n m综合、运用、诊断一、填空题7.用加减消元法解方程组⎩⎨⎧-=+=-②235,623b a b a ①时,把①×3+②×2,得_______.8.已知二元一次方程组⎩⎨⎧=+=+②①8272,y x y x 那么x +y =______,x -y =______.9.已知方程ax +by =8的两个解为⎩⎨⎧=-=0,1y x 和⎩⎨⎧==4,1y x 则a +b =______.二、选择题10.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48°.设∠BAE和∠BAD 的度数分别为x ,y ,那么x ,y 所适合的方程组是()(A)⎩⎨⎧=+=-.90,48x y x y(B)⎩⎨⎧==-.2,48x y x y(C)⎩⎨⎧=+=-.902,48x y x y(D)⎩⎨⎧=+=-.902,48x y y x11.下列方程组中,只有一组解的是( ).(A)⎩⎨⎧=+=+.033,1y x y x(B)⎩⎨⎧=+=+.333,0y x y x(C)⎩⎨⎧=-=+.333,1y x y x(D)⎩⎨⎧=+=+.333,1y x y x12.关于x ,y 的方程组⎩⎨⎧=-=+1935,023by ax by ax 的解为⎩⎨⎧-==.1,1y x 则a ,b 的值分别为( ).(A)2和3 (B)2和-3(C)-2和3(D)-2和-3三、用加减消元法解下列方程组13.⎩⎨⎧=-=+.732,423t s t s14.⎪⎪⎩⎪⎪⎨⎧=+-=-.732,143n m nm15.已知使3x +5y =k +2和2x +3y =k 成立的x ,y 的值的和等于2,求k 的值.拓展、探究、思考 16.已知:关于x ,y 的方程组⎩⎨⎧=++=-02254,53by ax y x 与⎩⎨⎧-=+=-53,8y x by ax 的解相同.求a ,b 的值.17.已知⎩⎨⎧=+-=++②①.15232,25c b a c b a 求b 的值.18.甲、乙两人同时解方程组⎩⎨⎧-=-=+.23,2y cx by ax 甲正确解得⎩⎨⎧-==;1,1y x 乙因为抄错c 的值,错得⎩⎨⎧-==.6,2y x 求a ,b ,c 的值.测试4 消元(三)学习要求能选择适当的消元方法解二元一次方程组及相关问题.课堂学习检测一、填空题1.二元一次方程x +y =4有______组解,有_______组正整数解.2.二元一次方程2x -y =10,当x =______时,y =5;当x =5,y =______.3.若⎩⎨⎧⋅-==1,1y x 是方程组⎩⎨⎧-=-=+124,2a by x b y ax 的解,则a =_______,b =_______.二、选择题4.已知2a y +5b 3x 与b 2-4y a 2x 是同类项,那么x ,y 的值是( ). (A)⎩⎨⎧=-=.2,1y x(B)⎩⎨⎧-==.1,2y x(C)⎪⎩⎪⎨⎧⋅-==53,0y x(D)⎩⎨⎧==.0,7y x5.若x ∶y =3∶4,且x +3y =-10,则x ,y 的值为( ).(A)⎪⎩⎪⎨⎧⋅==38,2y x(B)⎪⎩⎪⎨⎧⋅-=-=38,2y x(C)⎩⎨⎧-=-=.3,1y x(D)⎩⎨⎧==.4,3y x6.在式子x 2+ax +b 中,当x =2时,其值是3;当x =-3时,其值是3;则当x =1时,其值是( ). (A)5 (B)3 (C)-3 (D)-1三、选择合适的方法解下列方程组 7.⎩⎨⎧⋅-==-y x y x 2113,238.⎩⎨⎧-=++=-).3(3)1(2),3(2)1(5n m n m综合、运用、诊断一、填空题9.若2x -5y =0,且x ≠0,则yx yx 5656+-的值是______.10.若⎩⎨⎧==⎩⎨⎧-==2,21,1y x y x 和⎩⎨⎧==cy x ,3都是方程ax +by +2=0的解,则c =______. 11.已知方程组⎩⎨⎧=-=+3,1y x y x 与方程组⎩⎨⎧=-=+2,1by ax by ax 的解相同,则a =______,b =______.二、选择题 12.与方程组⎩⎨⎧=+=-+02,032y x y x 有完全相同的解的是( ).(A)x +2y -3=0 (B)2x +y =0(C)(x +2y -3)(2x +y )=0(D)|x +2y -3|+(2x +y )2=013.若方程组⎩⎨⎧=+=+84,42y x my x 的解为正整数,则m 的值为( ).(A)2(B)4(C)6(D)-4三、解下列方程组14.⎩⎨⎧=+=+.1034,1353y x y x15.⎪⎩⎪⎨⎧=++-=-.927532,232y y x y x拓展、探究、思考16.在方程(x +2y -8)+λ(4x +3y -7)=0中,找出一对x ,y 值,使得λ无论取何值,方程恒成立.17.已知方程组⎩⎨⎧=--=-+01523,0172c a b c b a 其中c ≠0,求c b a cb a -++-的值.18.当k ,m 分别为何值时,关于x ,y 的方程组⎩⎨⎧+-=+=4)12(,x k y m kx y 至少有一组解?测试5 再探实际问题与二元一次方程组(一)学习要求能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力.课堂学习检测一、填空题1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 4.如果一个两位正整数的十位上的数字与个位上的数字的和是6,那么符合这个条件的两位数的个数是______. 二、选择题5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ). (A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ). (A)⎩⎨⎧==+.34,42y x y x(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧⋅==+y x y x 43,4234(D)⎩⎨⎧⋅==+y x y x 34,4243三、列方程组解应用题7.某单位组织了200人到甲、乙两地旅游,到甲地的人数比到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.大盒、小盒每盒各装多少瓶?9.某车间工人举行茶话会,如果每桌12人,还有一桌空着;如果每桌10人,则还差两个桌子.此车间共有工人多少名?综合、运用、诊断一、填空题 10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17.则k =_______,b =______. 11.在公式s =v 0t +21at 2中,当t =1时,s =13;当t =2时,s =42.则v 0=_______,a =______,并且当t =3时,s =______. 二、选择题12.出境旅游者问某童:“你有几个兄弟、几个姐妹?”答:“有几个兄弟就有几个姐妹。

数学 中考 第一轮 单元讲义(含中考真题)第08章 二元一次方程组

数学 中考 第一轮 单元讲义(含中考真题)第08章 二元一次方程组

第八章二元一次方程组本章小结小结1 本章概述二元一次方程组是从实际生活中抽象出来的数学模型,它是解决实际问题的有效途径,更是今后学习的重要基础.它是在一元一次方程的基础上来进一步研究末知量之问的关系的,教材通过实例引入方程组的概念,同时引入方程组解的概念,并探索二元一次方程组的解法,具体研究二元一次方程组的实际应用.小结2 本章学习重难点【本章重点】会解二元一次方程组,能够根据具体问题中的数量关系列出方程组.【本章难点】列方程组解应用性的实际问题.【学习本章应注意的问题】在复习解一元一次方程时,明确一元一次方程化简变形的原理,类比学习二元一次方程组、三元一次方程组的解法,同时在学习二元一次方程组、三元一次方程组的解法时,要认真体会消元转化的思想原理,在学习用方程组解决突际问题时,要积极探究,多多思考,正确设未知数,列出恰当的方程组,从而解决实际问题.小结3 中考透视在考查基础知识、基本能力的题目中,单独知识点考查类题目及多知识点综合考查类题目经常出现,在实际应用题及开放题中大量出现.所以在学习本章内容的过程中一定要结合其他相应的知识与方法,本章是中考的重要考点之一,围绕简单的二元一次方程组的解法命题,能根据具体问题的数量关系列出二元一次方程组,体会方程是描述现实世界的一个有效模型,并根据具体问题的实际意义用观察、体验等手段检验结果是否合理.考试题型以选择题、填空题、应用题、开放题以及综合题为主,高、中、低档难度的题目均有出现,占4~7分.知识网络结构图专题总结及应用一、知识性专题专题1 运用某些概念列方程求解【专题解读】在学习过程中,我们常常会遇到二元一次方程的未知数的指数是一个字母或关于字母的代数式,让我们求字母的值,这时巧用定义,可简便地解决这类问题例1 若212135a b a b x y ++--==0,是关于x,y 的二元一次方程,则a =_______,b =_______.分析 依题意,得 解得 答案:2545-【解题策略】准确地掌握二元一次方程的定义是解此题的关键.专题2 列方程组解决实际问题【专题解读】方程组是描述现实世界的有效数学模型,在日常生活、工农业生产、城市规划及国防领域都有广泛的应用,列二元一次方程组的关键是寻找相等关系,寻找相等关系应以下两方面入手;(1)仔细审题,寻找关键词语;(2)采用画图、列表等方法挖掘相等关系.例2 一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干后离去,再由乙完成,实际上甲只做了计划时间的一半因事离去,然后由乙单独承担,而乙完成任务的时间恰好是计划时间的2倍,则原计划甲、乙各做多少天?分析 由甲、乙单独完成所需的时间可以看出甲、乙两人的工作效率,设总工作量2a+b +1=1, a -2b -1=1,2,545a b ==-为1,则甲每天完成112,乙每天完成118.解:设原计划甲做x 天,乙做y 天,则有 解这个方程组,得答:原计划甲做8天,乙做6天.【解题策略】若总工作量没有具体给出,可以设总工作量为单位“1”,然后由时间算出工作效率,最后利用“工作量=工作效率×工作时间”列出方程.二、规律方法专题专题3 反复运用加减法解方程组【专题解读】反复运用加减法可使系数较大的方程组转化成系数较小的方程组,达到简化计算的目的. 例3 解方程组分析 当方程组中未知数的系数和常数项较大时,注意观察其特点,不要盲目地利用加减法或代入法进行消元,可利用反复相加或相减得到系数较小的方程组,再求解.解:由①-②,得x-y =1,③ 由①+②,得x+y =5,④将③④联立,得解得 即原方程组的解为【解题策略】此方程组属于 型,其中|1c -2c |=k|a-b |,1c +2c =m|a+b|,k,m 为整数.因此这样的方程组通过相加和相减可得到型方程组,显然后一个方程组容易求解.专题4 整体代入法解方程组【专题解读】结合方程组的形式加以分析,对于用一般代入法和加减法求解比较繁琐的方程组,灵活灵用整体代入法解题更加简单.例4 解方程组 分析 此方程组中,每个方程都缺少一个未知数,且所缺少的未知数又都不相同,每个未知数的系数都是1,这样的方程组若一一消元很麻烦,可考虑整体相加、整体代入的方法.解:①+②+③+④,得3(x+y+z+m)=51,111,12181112 1.12218x y x y +=⨯+⨯= x =8, y =6. 8359x +1641y =28359,①1641x +8359y =21641.② x-y =1, ③x+y =5,④ x =3, y =2. x =3,y =2. ax+by=1c , bx+ay=2cx+y=m, x-y=k x+y+z=8,① x+y+m =12,② x+z+m =14,③ y+z+m =17.④即x+y+z+m=17,⑤⑤-①,得m=9,⑤-②,得z=5.⑤-③,得y=3,⑤-④,得x=0.所以原方程组的解为x=0, y=3, z=5, m=9.专题5 巧解连比型多元方程组【专题解读】连比型多元方程组通常采用设辅助未知数的方法来求解. 例5 解方程组 解:设234x y t x y t k +++===,则x+y =2k ,t+x =3k ,y+t =4k , 三式相加,得x+y+t =92k ,将x+y+t =92k 代入②,得92k =27,所以k =6,所以②-⑤,得x =3,②-④,得y =9,②-③,得t =15. 所以原方程组的解为三、思想方法专题 专题6 转化思想【专题解读】对于直接解答有难度或较陌生的题型,可以根据条件,将其转化成易于解答或比较常见的题型.例 6 二元一次方程x+y =7的非负整数解有 ( )A.6个B.7个C.8个D.无数个分析 将原方程化为y =7-x ,因为是非负整数解,所以x 只能取0,1,2,3,4,5,6,7,与之对应的y 为7,6,5,4,3,2,1,0,所以共有8个非负整数解.故选C.【解题策略】对二元一次方程求解时,往往需要用含有一个未知数的代数式表示出另一个未知数,从而将求方程的解的问题转化为求代数式的值的问题.专题7 消元思想【专题解读】 将未知数的个数由多化少,逐一解决的思想即为消元思想. 例7 解方程组[ 分析 解三元一次方程组可类比解二元一次方程组的代入法和加减法,关键是“消元”,把“三元”变为“二元”,再化“二元”为“一元”,进而求解.,234x y t x y t+++==① 27.x y t ++=X+y =12, ③t+x =18, ④y+t =24. ⑤x =3, y =9, t =15. 3x +4y+z =14,① x +5y +2z =17,② 2x +2y-z =3.③解法1:由③得z =2x +2y -3.④把④代入①,得3x +4y +2x +2y -3=14, 即5x +6y =17.⑤把④代入②,得x +5y +2(2x +2y -3)=17, 即5x +9y =23.⑥由⑤⑥组成二元一次方程组 解得把x =1,y =2代入④,得z =3. 所以原方程组的解为解法2:由①+③,得5x +6y =17.⑦ 由②+③×2,得5x +9y =23.⑧ 同解法1可求得原方程组的解为 解法3:由②+③-①,得3y =6,所以y =2.把y =2分别代入①和③,得 解得所以原方程组的解为【解题策略】消元是解方程组的基本思想,是将复杂问题简单化的一种化归思想,其目的 是将多元的方程组逐步转化为一元的方程,即三元 二元 一元.2011中考真题精选1. (2011四川凉山,3,4分)下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .⎪⎩⎪⎨⎧=-=+51302y x z x D .5723z x y =⎧⎪⎨+=⎪⎩考点:二元一次方程组的定义.分析:组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.解答:解:A 、第一个方程值的xy 是二次的,故此选项错误;B 、第二个方程有x1,不是整式方程,故此选项错误;C 、含有3个未知数,故此选项错误;D 、符合二元一次方程定义,故此选项正确. 故选D .5x +6y =17, ⑤ 5x +9y =23, ⑥ x =1, y =2. x =1, y =2, z =3. x =1, y =2, z =3. x =1, y =2,z =3. 消元 转化 消元 转化点评:此题主要考查了二元一次方程的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案. 2. 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .⎪⎩⎪⎨⎧=-=+51302y x z x D .5723z x y =⎧⎪⎨+=⎪⎩ 考点:二元一次方程组的定义.分析:组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.解答:解:A 、第一个方程值的xy 是二次的,故此选项错误;B 、第二个方程有x1,不是整式方程,故此选项错误;C 、含有3个未知数,故此选项错误;D 、符合二元一次方程定义,故此选项正确. 故选D .点评:此题主要考查了二元一次方程的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.3. (2011河北,19,8分)已知错误!未找到引用源。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支.【答案】1或2或3【解析】∵小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,∴当买中性笔1只,则可以买橡皮5只,当买中性笔2只,则可以买橡皮3只,当买中性笔3只,则可以买橡皮1只,【考点】二元一次方程的应用2.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A.21cm B.22cm C.23cm D.24cm【答案】C.【解析】设碗的个数为x个,碗的高度为ycm,由题意可知碗的高度和碗的个数的关系式为y=kx+b,由题意得,,解得:,则11只饭碗摞起来的高度为: ×11+5=(cm).更接近23cm.故选C.【考点】二元一次方程组的应用.3.方程组的解是()A.B.C.D.【答案】D.【解析】解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选D.【考点】解二元一次方程组4.解方程组:.【答案】【解析】由加减消元法即可求出方程组的解试题解析:,①+②得:3x=9,即x=3,将x=3代入②得:y=﹣1,则方程组的解为【考点】二元一次方程组的解法5.解方程组:【答案】或.【解析】将①左边因式分解,化为两个二元一次方程,分别与②联立构成两个二元一次方程组求解即可.由①得,即或,∴原方程组可化为或.解得;解得.∴原方程组的解为或.【考点】解二元二次方程组.6.(1)计算:(2)A、B两人共解方程组,由于A看错了方程(1)中的a,得到的解是,而B 看错了方程(2)中的b, 得到的解是,试求的值.【答案】(1)9;(2)2.【解析】(1)根据负整数指数幂、零次幂、特殊角的三角函数值及二次根式的意义进行计算即可求出答案.(2)把A解得的方程组的解代入方程组第2个方程,求出b的值,再把B求得的方程组的解代入方程组第一个方程求出a的值,然后把a、b的值代入所给的代数式中,利用乘方的意义进行计算即可.试题解析:(1)原式=9+2+1-3=9.(2)由题意有-12-b=-2,5a+20=15解得a=-1 , b=-10则有=1+1=2.考点: 1.实数的混合运算;2.二元一次方程组的解.7.已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.3【答案】A【解析】∵是二元一次方程组的解,∴解得∴a-b=-1.8.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是9.甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早9小时完成,则乙应在A地植树小时后立即转到B地。

初二数学二元一次方程组试题答案及解析

初二数学二元一次方程组试题答案及解析

初二数学二元一次方程组试题答案及解析1.若关于x,y的二元一次方程组的解满足x+y<3,则a的取值范围为.【答案】【解析】由可得,即由可得,解得.【考点】1.解二元一次方程组;2.解一元一次不等式2.甲乙两人解方程组,由于甲看错了方程①中的,而得到方程组的解为乙看错了方程②中的,而得到的解为,=" ___" =___【答案】a=1,b=10.【解析】本题考查了二元一次方程组的解:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.解题时,把甲乙所得的方程的解分别代入没看错的方程中,即可求解.根据题意把代入②得-3×4+b=-2,可求得b=10,把代入①得5a+5×4=15,可求得a=1,所以,a=1,b=10.【考点】二元一次方程组的解.3.福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条。

(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?【答案】(1)制作衬衫和裤子的人分别为15人,9人;(2)需要安排18名工人制作衬衫.【解析】本题中每人每天生产的衬衫或裤子的数目不变,每件衬衫或裤子的利润也不变,这是解题的关键.(1)设安排x人制作衬衫,安排y人制作裤子.由关键语句“现有24名制作服装的工人”和“每天制作的衬衫和裤子数量相等”,可得到等量关系.(2)同样的,设制作衬衫和裤子的人数为a,b,利用“现有24名制作服装的工人”和“每天获得利润不少于2100元”,也可列出方程组求解.试题解析:解:设制作衬衫和裤子的人为x,y.可得方程组解得:答:制作衬衫和裤子的人为15人,9人.(2)设安排a人制作衬衫,b人制作裤子,可获得要求的利润2100元.可列方程组:解得:答:需要安排18名工人制作衬衫.【考点】二元一次方程组的应用.4.若关于x、y的二元一次方程组的解满足0≤x+y<2,则a的取值范围为【答案】【解析】可得4x+4y=4+a。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.【答案】(1)y=15﹣2x.;(2)共有7种购买方案:x=1,y=13;x=2,y=11;x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;(3).【解析】(1)首先由题意可得:2x+y=15,继而求得y与x之间的关系式.(2)根据每种奖品至少买1件,即可求得所有可能的结果.(3)由买到的中性笔与笔记本数量相等的只有1种情况,直接利用概率公式求解即可求得答案.试题解析:解:(1)根据题意得:2x+y=15,∴y与x之间的关系式为y=15﹣2x.(2)购买方案:x=1,y=13;x=2,y=11;x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;∴共有7种购买方案.(3)∵买到的中性笔与笔记本数量相等的只有1种情况,∴买到的中性笔与笔记本数量相等的概率为:.【考点】1.一次函数的应用;2.概率.2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.如果单项式与是同类项,那么的值为.【答案】-4.【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程组,求出x,y的值,再代入代数式计算即可.根据题意得:解得:∴.【考点】同类项.4.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种【答案】C【解析】设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,答:有3种不同的安排.【考点】二元一次方程的应用.5.列方程或方程组解应用题某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价-进价)若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?【答案】100,60.【解析】方程(组)的应用解题关键是找出等量关系,列出方程(组)求解.本题等量关系为:进甲、乙两种商品共160件;销售完这批商品后能使利润达到1100元.设甲种商品应购进x件,乙种商品应购进y件.根据题意,得,解得.答:甲种商品购进100件,乙种商品购进60件.【考点】二元一次方程组的应用(销售问题).6.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则的值为.【答案】10【解析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据=,代入数值计算即可.解:由题意知,x1+x2=﹣=﹣6,x1x2=3,所以===10.7.由方程组可得出x与y的关系是()A.2x+y=4B.2x﹣y=4C.2x+y=﹣4D.2x﹣y=﹣4【答案】A【解析】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.把②中m的值代入①即可求出x与y的关系式.解:,把(2)代入(1)得2x+y﹣3=1,即2x+y=4.故选A.8.已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.3【答案】A【解析】∵是二元一次方程组的解,∴解得∴a-b=-1.9.已知(x-y+3)2+=0.则x+y=________.【答案】1【解析】由题意,得解得∴x+y=-1+2=1.10.已知是二元一次方程组的解,则2m-n的算术平方根为 ()A.4B.2C.D.±2【答案】B【解析】把代入方程组,得解得∴==2,故选B.11.若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是________.【答案】k>2【解析】①+②,得3x+3y=3k-3,x+y=k-1∵x+y>1,∴k-1>1,k>2.∴k的取值范围是k>2.12.把下图折成正方体后,如果相对面所对应的值相等,那么xy的值为_________。

(浙教版)2020中考数学复习 二元一次方程组 (包含答案)

(浙教版)2020中考数学复习     二元一次方程组 (包含答案)

第08讲 二元一次方程组【考点整理】1. 二元一次方程组的有关概念二元一次方程:含有________个未知数,并且含有未知数的项的次数都是________的整式方程. 二元一次方程的解:适合一个二元一次方程的每一对未知数的值.任何一个二元一次方程都有无数解.由这些解组成的集合,叫做这个二元一次方程的解集. 【智慧锦囊】求特殊解时,解是有限个,如写出x +2y =6的自然数解⎩⎪⎨⎪⎧x =6,y =0,⎩⎪⎨⎪⎧x =2,y =2,⎩⎪⎨⎪⎧x =0,y =3.⎩⎪⎨⎪⎧x =4,y =1. 2.二元一次方程组的解法常用方法:代入消元法,加减消元法.二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.3.二元一次方程组的应用列方程组的应用题的一般步骤:1.审;2.设;3.列;4.解;5.验;6.答. 【智慧锦囊】工程问题中的基本量之间的关系:工作效率=工作总量工作时间.(1)甲、乙合做的工作效率=甲的工作效率+乙的工作效率. (2)通常把工作总量看做“1”. 【解题秘籍】 1.代入法和加减法解二元一次方程组时,若方程组其中一个方程中的未知数的系数为1或-1,用代入法;若相同的未知数的系数相等或互为相反数时,则用加减法. 2.化归思想解二元一次方程组的基本思想是“消元”,即化“二元”为“一元”,这种方法体现了数学中的化归思想,具体地说就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂问题”转化为“简单问题”.这是中考的热点考题. 【易错提醒】1.在用代入法求解时,不能正确用其中一个未知数去表示另一个未知数.在求用一个未知数表示另一个未知数时,还原代入.2.方程组中,看错系数问题:看错方程组中哪个方程的系数,所得的解既是方程组中看错系数的方程的解,也是方程组中没有看错系数的方程的解,把解代入没有看错系数的方程中,构成新的方程组,然后解方程组. 【题型解析】1. 二元一次方程(组)的有关概念 【例题1】已知⎩⎪⎨⎪⎧mx +y =5,x +ny =2的解为⎩⎪⎨⎪⎧x =3,y =-1,则(2mn )m等于( )A .4B .8C .16D .322. 二元一次方程组的解法【例题2】甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =10, ①4x -by =-2, ②由于甲错抄方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =3.(1)求出a ,b 的值; (2)求2a -3b +5的立方根; (3)此方程组正确的解应该是多少?3.利用二元一次方程组解决生活实际问题【例题3】(2019湖南益阳10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元. (1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【同步检测】一、选择题:1. (2019•湖南怀化•4分)一元一次方程x ﹣2=0的解是( ) A .x =2B .x =﹣2C .x =0D .x =12. (2019▪贵州黔东▪4分)如果3ab 2m ﹣1与9ab m +1是同类项,那么m 等于( ) A .2B .1C .﹣1D .03. (2019湖北仙桃)(3分)把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A .3种B .4种C .5种D .9种4. (2019•浙江嘉兴)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .B .C .D .5.(2019•浙江宁波•4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元 B .30元C .25元D .19元二、填空题:6. (2019•湖南常德•3分)二元一次方程组⎩⎨⎧=+=+726y x y x 的解为 .7. (2019•湖北省鄂州市•3分)若关于x 、y 的二元一次方程组的解满足x +y ≤0,则m的取值范围是 .8. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 . 三、解答题9. (2019•浙江丽水•6分)解方程组:⎩⎨⎧=-=--.12,5)2(43y x y x x10. (2019•山东潍坊•5分)己知关于x ,y 的二元一次方程组的解满足x >y ,求k 的取值范围.11. (2019•山东省聊城市•8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【参考答案】【考点整理】:两个,一次【题型解析】1. 二元一次方程(组)的有关概念【例题1】已知⎩⎪⎨⎪⎧mx +y =5,x +ny =2的解为⎩⎪⎨⎪⎧x =3,y =-1,则(2mn )m 等于( ) A .4 B .8 C .16 D .32【解析】 将x =3,y =-1代入原方程组得⎩⎪⎨⎪⎧3m -1=5,3-n =2,解得m =2,n =1,则(2mn )m=(2×2×1)2=16. 2. 二元一次方程组的解法【例题2】甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =10, ①4x -by =-2, ②由于甲错抄方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =3.(1)求出a ,b 的值; (2)求2a -3b +5的立方根; (3)此方程组正确的解应该是多少?【解析】:(1)将x =-3,y =-1代入②,得-12+b =-2, 即b =10,将x =5,y =3代入①,得5a +15=10,即a =-1; (2)∵a =-1,b =10,∴2a -3b +5=-2-30+5=-27, 则-27的立方根为-3;(3)方程组为⎩⎪⎨⎪⎧-x +5y =10, ③4x -10y =-2, ④③×2+④得2x =18,即x =9, 将x =9代入①得y =3.8,则方程组的解为⎩⎪⎨⎪⎧x =9,y =3.8.3.利用二元一次方程组解决生活实际问题【例题3】(2019湖南益阳10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z﹣20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会达到640千克.【同步检测】一、选择题:1. (2019•湖南怀化•4分)一元一次方程x﹣2=0的解是()A.x=2 B.x=﹣2 C.x=0 D.x=1【分析】直接利用一元一次方程的解法得出答案.【解答】解:x﹣2=0,解得:x=2.故选:A.2. (2019▪贵州黔东▪4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2 B.1 C.﹣1 D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.3. (2019湖北仙桃)(3分)把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A .3种B .4种C .5种D .9种【分析】可列二元一次方程解决这个问题. 【解答】解:设2m 的钢管b 根,根据题意得:a +2b =9,∵a 、b 均为整数, ∴,,,.故选:B .4. (2019•浙江嘉兴)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A .B .C .D .【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:.故选:D .5.(2019•浙江宁波•4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元【分析】设每支玫瑰x 元,每支百合y 元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x ,y 的二元一次方程,整理后可得出y =x+7,再将其代入5x+3y+10﹣8x 中即可求出结论. 【解答】解:设每支玫瑰x 元,每支百合y 元, 依题意,得:5x+3y+10=3x+5y ﹣4, ∴y =x+7,∴5x+3y+10﹣8x =5x+3(x+7)+10﹣8x =31. 故选:A . 二、填空题:6. (2019•湖南常德•3分)二元一次方程组⎩⎨⎧=+=+726y x y x 的解为 .【分析】由加减消元法或代入消元法都可求解.【解答】解:②-①得x =1 ③ 将③代入①得y =5 ∴故答案为7. (2019•湖北省鄂州市•3分)若关于x 、y 的二元一次方程组的解满足x +y ≤0,则m的取值范围是 m ≤﹣2 .【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y ≤0即可得到关于m 的不等式,求得m 的范围. 【解答】解:,①+②得2x +2y =4m +8, 则x +y =2m +4, 根据题意得2m +4≤0, 解得m ≤﹣2. 故答案是:m ≤﹣2.8. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 . 【分析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于x ,y 的二元一次方程组,此题得解。

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析

初三数学二元一次方程组试题答案及解析1.解方程组。

【答案】【解析】先用加减消元法,再用代入消元法即可求出方程组的解。

试题解析:,①+②得,4x=14,解得x=,把x=代入①得,+2y=9,解得y=。

故原方程组的解为:【考点】解二元一次方程组。

2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.【答案】(1)S=3,N=1,L=6;(2)S=100.【解析】(1)理解题意,观察图形,即可求得结论;(2)根据格点多边形的面积S=N+aL+b,结合图中的格点三角形ABC及格点四边形DEFG,建立方程组,求出a,b即可求得S.试题解析:(1)根据图形可得:S=3,N=1,L=6;(2)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a,∴S=N+L﹣1,将N=82,L=38代入可得S=82+×38﹣1=100.【考点】1.图形的变化规律2.三元一次方程组的应用.4.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?【答案】(1)0.5万元、1.5万元;(2)15.【解析】(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.试题解析:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30-z)≤30,解得:z≥15,答:至少购买A种设备15台.【考点】1.一元一次不等式的应用;2.二元一次方程组的应用.5.某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?【答案】这个队胜9场,负7场.【解析】设该队胜x场,负y场,就有x+y=16,2x+y=25两个方程,联立方程组求解即可.试题解析:设该队胜x场,负y场,则解得.答:这个队胜9场,负7场.【考点】二元一次方程的应用.6.已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为A.B.C.D.【答案】C.【解析】设∠1=x°,∠2=y°,由题意得:.故选C.【考点】由实际问题抽象出二元一次方程组.7.方程组的解是.【答案】【解析】由两式相加得2x="2" ∴ x="1" ;将x=1代入x+y=3得y=2 ∴【考点】二元一次方程组的解法.8.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.B.C.D.【答案】B【解析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元,儿童票每张35元,共花了1225元”可得方程:70x+35y=1225,把两个方程组合即可.设其中有x张成人票,y张儿童票,根据题意得.【考点】由实际问题抽象出二元一次方程组.9.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【解析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选D10.以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】①+②得,2y=1,解得,y=.把y=代入①得,=-x+2,解得x=.∵>0,>0,根据各象限内点的坐标特点可知,点(x,y)在平面直角坐标系中的第一象限.故选A.考点: 1.解二元一次方程组;2.点的坐标.11.若是方程2x+y=0的一个解,则6a+3b+2=________.【答案】2【解析】把代入方程,得2a+b=03(2a+b)=06a+3b=0∴6a+3b+2=0+2=2.12.二元一次方程组的解是()A.B.C.D.【答案】D【解析】①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是13.关于的方程组,______.【答案】9.【解析】两个方程直接相加,整理即可得解.试题解析:①+②得,x+m+y-3=6+m,所以,x+y=9.考点: 解二元一次方程组.14.解方程组.【答案】解:,①-2×②得,-7y=7,解得y=-1;把y=-1代入②得,x+2×(-1)=-2,解得x=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学第八章 二元一次方程组(讲义及答案)及答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.下列各方程中,是二元一次方程的是( )A .253x y x y-=+B .x+y=1C .2115x y =+ D .3x+1=2xy3.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩4.用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;用一块B 型钢板可制成1块C 型钢板、4块D 型钢板.某工厂现需14块C 型钢板、36块D 型钢板,设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,则下列方程组正确的是( ) A .2143436x y x y +=⎧⎨+=⎩B .3214436x y x y +=⎧⎨+=⎩C .2314436x y x y +=⎧⎨+=⎩D .2144336x y x y +=⎧⎨+=⎩5.已知2x y a =⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =-B .1a =C .23a =D .32a =6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩7.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是( )A.2128xy=⎧⎨=⎩B.98xy=⎧⎨=⎩C.714xy=⎧⎨=⎩D.9787xy⎧=⎪⎪⎨⎪=⎪⎩8.方程组22{?23x y mx y+=++=中,若未知数x、y满足x-y>0,则m的取值范围是( ) A.m>1 B.m<1 C.m>-1 D.m<-19.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种10.下列四组数值中,方程组2534a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A.11abc=⎧⎪=⎨⎪=-⎩B.121abc=-⎧⎪=⎨⎪=-⎩C.112abc=-⎧⎪=⎨⎪=-⎩D.123abc=⎧⎪=-⎨⎪=⎩二、填空题11.已知对任意a b,关于x y,的三元一次方程()()a b x a b y a b--+=+只有一组公共解,求这个方程的公共解_____________.12.小明今年五一节去三峡广场逛水果超市,他分两次购进了A、B两种不同单价的水果.第一次购买A种水果的数量比B种水果的数量多50%,第二次购买A种水果的数量比第一次购买A种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A、B水果的总费用比第一次购买A、B水果的总费用少10%(两次购买中A、B两种水果的单价不变),则B种水果的单价与A种水果的单价的比值是______.13.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x斤,燕每只重y斤,则可列方程组为________________14.如图,长方形ABCD被分成若干个正方形,已知32cmAB=,则长方形的另一边AD=_________cm.15.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.16.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 17.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)18.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________.19.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理. 你认为哪种方案既省时又省钱?试比较说明.22.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=.①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?25.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?26.已知12xy=⎧⎨=⎩是二元一次方程2x y a+=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x,y),如果过其中任意两点作直线,你有什么发现?x013 y620【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:方程组利用加减消元法求出解即可.详解:22x yx y+⎧⎨--⎩=①=②,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为02x y ⎧⎨⎩==, 故选B .点睛:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.B解析:B 【解析】根据二元一次方程的定义对四个选项进行逐一分析. 解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .3.B解析:B 【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 4.A解析:A 【分析】根据“用一块A 型钢板可制成2块C 型钢板、3块D 型钢板;一块B 型钢板可制成1块C 型钢板、4块D 型钢板及A 、B 型钢板的总数”可得 【详解】设恰好用A 型钢板x 块,B 型钢板y 块,根据题意,得:2143436x y x y +=⎧⎨+=⎩,故选:A . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.5.B解析:B 【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值.【详解】解:根据题意,∵2x y a=⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.6.B解析:B 【分析】根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可. 【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩. 故选B.. 【点睛】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.7.C解析:C 【分析】先将111222327327a x b y c a x b y c +=⎧⎨+=⎩化简为11122232773277a x b y c a x b y c⎧+=⎪⎪⎨⎪+=⎪⎩,然后用“整体代换”法,求出方程组的解即可; 【详解】解:111222327327a x b y c a x b y c +=⎧⎨+=⎩,11122232773277a x b y c a x b y c ⎧+=⎪⎪∴⎨⎪+=⎪⎩,设3727x t y s ⎧=⎪⎪⎨⎪=⎪⎩,111222a t b s c a t b s c +=⎧∴⎨+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222a t b s c a t b s c +=⎧⎨+=⎩的解为34t s =⎧⎨=⎩,337247x y ⎧=⎪⎪∴⎨⎪=⎪⎩,解得:714x y =⎧⎨=⎩.故选C . 【点睛】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.8.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.9.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.10.B解析:B 【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0?25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.二、填空题11.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】 解:由已知得: ∴两式相加得:,即, 把代入得到,, 故此方程组的解为:. 故答案为:. 【点睛】 本题主要考解析:01x y =⎧⎨=-⎩ 【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】解:由已知得:(1)(1)0a x y b x y ---++= ∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =, 把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩.故答案为:01x y =⎧⎨=-⎩.【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.12.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255ax bx a x b x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.13.【分析】设每只雀有x 两,每只燕有y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可. 【详解】解:设每只雀有x 两,每只燕有y 两, 由题意得, 【解析:45561x y y xx y +=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.14.【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:76843【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:643322532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:768 43【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.15.26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册解析:26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册x本,购买大纪念册y本,则x,y为整数.则有题目可得二元一次方程:5x+7y=142,解得:x,y有4组整数解即:271xy=⎧⎨=⎩,206xy=⎧⎨=⎩,1311xy=⎧⎨=⎩,616xy=⎧⎨=⎩即有四种情况即:两种纪念册共买28、26、24或22本.故答案为28、26、24或22本.【点睛】本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.16.【解析】【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x解析:32 15【解析】【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可. 【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得:82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.17.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程解析:89【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a 袋,乙销售b 袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程进行整理即可得. 【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%+=45(元),甲中A 的成本为:3×6=18(元),则甲中B 、C 的成本之和为:45-18=27(元), 根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.18.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z=9.19.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .20.【分析】根据方程组解的定义,把x=5,y=10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组∵解为:x=5,y=10,∴,∴∵,∴,①−②,得3a解析:25 xy⎧⎨⎩==【分析】根据方程组解的定义,把x=5,y=10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩∵解为:x =5,y =10, ∴1122510=510=a c a c +⎧⎨+⎩,∴()12125a a c c -=- ∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩,∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②,①−②,得3a 1x−3a 2x =6a 1−6a 2, ∴x =2,把x =2代入①得,y =5,∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩,故答案为:=2=5x y ⎧⎨⎩. 【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键.三、解答题21.(1)60天,40天;(2)方案③既省时又省钱. 【分析】(1)设甲小组单独修完需要x 天,乙小组单独修完需要y 天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可. 【详解】解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天. 根据题意,得()16168,20.x y x y ⎧=+⎨-=⎩解得60,40.x y =⎧⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天. (2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元); 方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元).比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱. 【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解. 22.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m =【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可. 【详解】解:(1)224(1)16(4,1)413a b a bT ⨯+⨯-+-==-; 故答案为:163a b+; (2)①∵()2,02T -=-且()5,16T -=,∴42,225 6.4aa b ⎧=-⎪⎪-⎨+⎪=⎪⎩解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x yx y-+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--, ∴610610m m -=-+, 解得:53m =.【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键 23.(1)5040a b;(2)竖式无盖礼品盒200个,横式无盖礼品盒400个.【分析】(1)由图示利用板材的长列出关于a 、b 的二元一次方程组求解;(2)根据已知和图示计算出两种裁法共产生A 型板材和B 型板材的张数,然后根据竖式与横式礼品盒所需要的A 、B 两种型号板材的张数列出关于x 、y 的二元一次方程组,然后求解即可. 【详解】解:(1)由题意得:310200330200a b ab,解得:5040a b,答:图甲中a 与b 的值分别为:50、40;(2)由图示裁法一产生A 型板材为:3×625=1875,裁法二产生A 型板材为:1×125=125, 所以两种裁法共产生A 型板材为1875+125=2000(张),由图示裁法一产生B 型板材为:1×625=625,裁法二产生A 型板材为,3×125=375, 所以两种裁法共产生B 型板材为625+375=1000(张),设裁出的板材做成的竖式有盖礼品盒有x 个,横式无盖礼品盒有y 个, 则A 型板材需要(4x+3y )个,B 型板材需要(x+2y )个, 则有43200021000x y xy,解得200400x y.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a 、b 的值,根据图示列出算式以及关于x 、y 的二元一次方程组.+24.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元 【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可; (2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较. 【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩,答:A 种型号商品有5件,B 种型号商品有8件; (2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.25.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案. 【解析】 【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案. 【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨; (2)设租甲、乙两种车分别m 辆,n 辆, 由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆; 方案二:甲车3辆,乙车6辆; 方案三:甲车5辆,乙车3辆 方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆. 【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.26.(1)4;(2)见解析. 【解析】 【分析】(1)根据代入法,把已知的二元一次方程的解代入方程即可求解a 的值;(2)利用(1)中的a 值,得到二元一次方程组,代入求解完成表格,然后描点即可.【详解】(1)将12xy=⎧⎨=⎩代入2x+y=a,解得a=4.(2)完成表格如下:x-10123y6420-2由图可知,如果过其中任意两点作直线,其他点也在这条直线上.【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.。

相关文档
最新文档