分析化学PPT课件:第五章-配位滴定法-第一节-络合平衡
合集下载
分析化学第五章 配位滴定法PPT
NaOH 无蓝色沉淀Cu(OH)2生成
NaS 有黑色沉淀CuS生成
无Cu2+??
有Cu2+??
解离
[Cu(NH3 )4 ] 2
Cu2 4NH3
配合
2022/10/18
四、 配位平衡常数
1. 稳定常数
Cu2 4NH3
[Cu(NH3 )4 ] 2
K0 MY
c([Cu(NH 3
)2 4
])
c(Cu2 ) c4 (NH3 )
(2)配位比简单,EDTA与大多数金属离子形成 配合物的配位比为1:1
(3)反应速率快,符合滴定要求 (4)与无色金属离子配位形成的配合物是无色的,与
有色金属离子配位形成的配合物颜色加深
2022/10/18
例: Cu2+显浅蓝色而CuY2-为深蓝色, Ni2+显浅绿色, 而NiY2-为蓝绿色, Mn2+显粉红色,而MnY2-为紫红色 Fe3+显棕黄色,而FeY-为黄色
2.在一定反应条件下,只形成一种配位数的配合物; 3.配位反应速度要快; 4.有适当的方法确定反应的等量点。
2022/10/18
三、配位剂的分类 无机配位剂(不适合用于配位滴定)
有机配位剂 (易形成具有环状结构的 螯合物,非常稳定。使用最多的是氨羧配 位剂,其中应用最广泛的是EDTA)
2022/10/18
4. 指示剂与金属离子配合物应易溶于水,指示剂比 较稳定,便于贮藏和使用
2022/10/18
三、 常用的金属指示剂
1. 铬黑T(BET)
铬黑T是弱酸性偶氮染料
1-(1-羟基-2萘偶氮)-6硝基-2-萘酚-4-磺酸钠
H
H
H 2 In
第五章配位滴定法分析化学
4) 计量点后 加入EDTA的体积为20.02ml。
[Y ] 0.02 0.01000 5106 mol L1 20.00 20.02
[CaY ] 20.00 0.01000 5103 mol L1 20.00 20.02
NH4
H NH3
Zn
+
OH-
Zn(NH3) Zn(OH)
Y
H+
HY
ZnY
····· ·
····· ·
···· ·
lgY(H)=1.4
Zn = Zn(NH3) + Zn(OH) -1 = 103.2 + 100.2 - 1= 103.2
lg KZnY = lg KZnY - lg Zn - lg Y = 16.50 - 3.2 - 1.4 = 11.9
=
[Y]+[N1Y]+[N2Y]+…+[NnY] [Y]
= 1+KN1Y[N1]+KN2Y[N2]+…+KNnY[Nn]
=Y(N1)+Y(N2)+…+Y(Nn)-(n-1)
Y的总副反应系数 Y
[Y] Y= [Y]
= [Y]+[HY]+[H2Y]+ ···+[NY] [Y]
= Y(H) + Y(N) -1
EDTA: -pH图
1.0
0.8
0.6
0.4
0.2
0.0
0
H6Y2+
H2Y2-
HY3-
Y4-
H5Y+ H3Y-
H4Y
2
4
6
8 10 12 14
分析化学课件: 第五章 配位滴定法
5
• 3.EDTA:结构式
• 水溶液:
• 从结构上看EDTA为四元酸,常用H4Y表示,在 水溶液中,两个羧基上的氢原子转移到氮原子 上,形成双偶极离子。它的六个配位原子,能 与金属离子形成稳定的“螯合物”。
分析化学
第五章 配位滴定法
6
• EDTA一般用H4Y表示,当它溶于水时,若溶液 的酸度很高,可形成H6Y2+,相当于六元酸,有 六级解离平衡。记录时省略电荷:H6Y, H5Y,…,Y。
金属离子配位能力降低的现象称为酸效应,其
影响程度可用EDTA的酸效应系数αY(H)来表示:
Y
H
=
Y'
Y
分析化学
第五章 配位滴定法
17
• 酸效应系数表示在一定酸度下,反应达到平衡时, 未参加配位反应的EDTA总浓度[Y´]与能参加配 位反应的Y4-离子的平衡浓度[Y4-](有效浓度) 之比。
• 酸效应系数等于Y4-的分布系数δY的倒数:
H+ 4
+
Ka6
K K K K K K K K K a6 a5
a6 a5 a4
a6 a5 a4 a3
H+ 5
+
H+ 6
K K K K K K K K K K K a6 a5 a4 a3 a2
a6 a5 a4 a3 a2 a1
分析化学
第五章 配位滴定法
19
• 由上式可知,溶液的H+浓度越大,酸效应系数αY(H)
• ③反应必须迅速。
• ④要有适当的方法确定滴定终点。
• ⑤反应产物最好是可溶的。
分析化学
第五章 配位滴定法
2
三、配合物分类
分析化学第五章 配位滴定法
第五章
配位滴定法
化学分析
四、滴定方式
•直接滴定:符合滴定分析要求的 直接滴定: 直接滴定 •返滴定: 反应慢,水解,指示剂等方面的 返滴定: 反应慢,水解, 返滴定
问题
•间接滴定 配合物不稳定或不发生配位反应 间接滴定 : •置换滴定:方式灵活多样,扩大应用范围 置换滴定: 置换滴定 方式灵活多样,
化学分析
2. 计量点的计算
1 ' pM' = ( pcM(SP) + lg K MY ) 2
在配位滴定中,通过计量点的计算, 在配位滴定中,通过计量点的计算,在计 量点附近选择指示剂。 量点附近选择指示剂。
第五章
配位滴定法
化学分析
三、金属指示剂
1. 作用原理
金属指示剂是一种有机染料(HIn),它与被滴定 , 金属指示剂是一种有机染料 金属离子发生配位反应, 金属离子发生配位反应,形成一种与染料本身 颜色不同的配合物(MgIn): 颜色不同的配合物 :
' K MY [M ' ] 2 + (
VY c Y − V M c M VM ' ⋅ K MY + 1) ⋅ [M ' ] − ⋅ cM = 0 VM + VY VM + V Y
从而可求得在滴定的任一阶段的[M′ 值 从而可求得在滴定的任一阶段的 ′]值, 进而得出pM′值。 进而得出 ′
第五章
配位滴定法
羟基配位效应
第五章
配位滴定法
化学分析
条件稳定常数: 条件稳定常数:
' K MY
α MY [MY] α MY = = K MY ⋅ α M [M] ⋅α Y [Y] α Mα Y
配位平衡和配位滴定法PPT课件
第2页/共44页
形成配合物的条件
配位键是配合物与其它物质最本质的区别
第3页/共44页
第4页/共44页
(1)中心原子:
中心原子又称中心体。根据配位化合物的 定义,中心原子是配合物中具有接受孤对 电子或能提供空轨道的离子或原子。
例: [SiF6]2-
[FeF6]3- Fe(CO)5 Ni(CO)4
22
第22页/共44页
4.无外界的配合物
[Ni(CO)4] 四羰基合镍 [Pt(NH3)2Cl2] 二氯•二氨合铂(Ⅱ)
第23页/共44页
练习:命名下列配合物
Cu(3)N 4SH O 4 硫酸四氨合铜(Ⅱ) K3Fe(NC 6S) 六异硫氰根合铁(Ⅲ)酸钾
Cu(3)N 4(H O2H)氢氧化四氨合铜(Ⅱ) Co2)(3(N N 3)O 3H三硝基•三氨合钴(Ⅲ)
EDTA配合物的结构
第10页/共44页
第11页/共44页
不是配体
(3) 配位数(coordination number) 的数目 配合物中,直接与中心原子配合的配位原 子的数目称为中心原子的配位数。
单齿配体: 配位数 = 配体的总数 多齿配位体:配位数 = 配体数*齿数
第12页/共44页
[Ca(EDTA)]2-或CaY2-
④同一金属离子,配体离子半径越大,配位数越小
如[AlF6]3- , [AlCl4]-
第16页/共44页
4、 配离子的电荷
配离子的电荷数 = 中心离子与配位体电荷的 代数和
如[Fe(CN)6]x x = 3 + (-1) 6 = 3
可由外界离子所带的电荷总数求得
[Co(en)3]Cl3
[Co(en)3]3+
形成配合物的条件
配位键是配合物与其它物质最本质的区别
第3页/共44页
第4页/共44页
(1)中心原子:
中心原子又称中心体。根据配位化合物的 定义,中心原子是配合物中具有接受孤对 电子或能提供空轨道的离子或原子。
例: [SiF6]2-
[FeF6]3- Fe(CO)5 Ni(CO)4
22
第22页/共44页
4.无外界的配合物
[Ni(CO)4] 四羰基合镍 [Pt(NH3)2Cl2] 二氯•二氨合铂(Ⅱ)
第23页/共44页
练习:命名下列配合物
Cu(3)N 4SH O 4 硫酸四氨合铜(Ⅱ) K3Fe(NC 6S) 六异硫氰根合铁(Ⅲ)酸钾
Cu(3)N 4(H O2H)氢氧化四氨合铜(Ⅱ) Co2)(3(N N 3)O 3H三硝基•三氨合钴(Ⅲ)
EDTA配合物的结构
第10页/共44页
第11页/共44页
不是配体
(3) 配位数(coordination number) 的数目 配合物中,直接与中心原子配合的配位原 子的数目称为中心原子的配位数。
单齿配体: 配位数 = 配体的总数 多齿配位体:配位数 = 配体数*齿数
第12页/共44页
[Ca(EDTA)]2-或CaY2-
④同一金属离子,配体离子半径越大,配位数越小
如[AlF6]3- , [AlCl4]-
第16页/共44页
4、 配离子的电荷
配离子的电荷数 = 中心离子与配位体电荷的 代数和
如[Fe(CN)6]x x = 3 + (-1) 6 = 3
可由外界离子所带的电荷总数求得
[Co(en)3]Cl3
[Co(en)3]3+
第05章配位滴定法资料
2020年10月8日3时32分
分析化学中的络合物
简单配体络合物
螯合物
多核络合物
Cu(NH
3
)
2 4
O
C H2C O CH2
H2C N OC
CH2
O
Ca N
CH2
O
OC
C CH2 O
O
OH
[(H2O)4Fe
Fe(H2O)4]4+
OH
2020年10月8日3时32分
五、无机配位剂与有机配位剂
1、单基配位体:提供一对电子以形成配价键的配位体。 2、多基配位体:提供两对或更多对电子以形成配价键 的配位体。
第五章:配位滴定法
§5.1概述 §5.2EDTA与金属离子的配合物及稳定性 §5.3外界条件对EDTA与金属离子配合物及稳
定性的影响 §5.4配位滴定曲线 §5.5金属离子指示剂及其它指示终点的方法 §5.6混合离子的分别滴定 §5.7配位滴定方式及其应用 习题
2020年10月8日3时32分
§5.1 概述
阳离子
lgKMY
阳离子
lgKMY
阳离子
lgKMY
Na+
1.66
Ce4+
15.98
Cu2+
18.80
Li+
2.79
Al3+
16.3
Ga2+
20.3
Ag+
7.32
Co2+
16.31
Ti3+
21.3
Ba2+
7.86
Pt2+
16.31
Hg2+
21.8
Mg2+
分析化学中的络合物
简单配体络合物
螯合物
多核络合物
Cu(NH
3
)
2 4
O
C H2C O CH2
H2C N OC
CH2
O
Ca N
CH2
O
OC
C CH2 O
O
OH
[(H2O)4Fe
Fe(H2O)4]4+
OH
2020年10月8日3时32分
五、无机配位剂与有机配位剂
1、单基配位体:提供一对电子以形成配价键的配位体。 2、多基配位体:提供两对或更多对电子以形成配价键 的配位体。
第五章:配位滴定法
§5.1概述 §5.2EDTA与金属离子的配合物及稳定性 §5.3外界条件对EDTA与金属离子配合物及稳
定性的影响 §5.4配位滴定曲线 §5.5金属离子指示剂及其它指示终点的方法 §5.6混合离子的分别滴定 §5.7配位滴定方式及其应用 习题
2020年10月8日3时32分
§5.1 概述
阳离子
lgKMY
阳离子
lgKMY
阳离子
lgKMY
Na+
1.66
Ce4+
15.98
Cu2+
18.80
Li+
2.79
Al3+
16.3
Ga2+
20.3
Ag+
7.32
Co2+
16.31
Ti3+
21.3
Ba2+
7.86
Pt2+
16.31
Hg2+
21.8
Mg2+
分析化学-第五章络合滴定幻灯片
数
H3Y -
0.2
H4Y
0.0
0 2 4 6 8 10 12 14 EDTA 各种型体分布图 pH
配位性质
Analytical Chemistry 分析化学
EDTA 有 6 个配位基
HOO 2CCH H -OO2CH N + CH2CH2
+ N
CH2COO-
H CH2COOH
.. 2个氨氮配位原子 4个羧氧配位原子
[MY] KMY= [M][Y]
亦可用K稳表示
离解常数(K不稳)
K不稳
1 K稳
M + L = ML
逐级稳定常数 Ki
[ML] K1= [M][L]
ML + L = ML2
K2=
[ML2] [ML][L]
Analytical Chemistry 分析化学
累积稳定常数
1=K1=
[ML] [M][L]
6.4 络合滴定中酸度的控制
6.4.1 单一离子滴定的酸度控制 6.4.2 分别滴定的酸度控制 6.4.3 提高络合滴定选择性的途径
6.5 络合滴定的方式和应用 6.5.1 络合滴定的方式 6.5.2 络合滴定的应用
Analytical Chemistry 分析化学
6.1 络合滴定法概述
定义: 以络合反响为根底的一种滴定分析方法
Fe 2+ + 3
NN
邻二氮菲
NN e
2+ 3
桔红色 max
Analytical Chemistry 分析化学
分析化学中的络合物
简单配体络合物
螯合物
多核络合物
Cu(N3H)24
H2C H2C
分析化学 第五章_配位滴定法
共存离子(干扰离子)效应系数Y(N)
Y' Y + NY Y(N) = 1 K NY N Y Y
注:[Y] ——Y与N形成配合物的平衡浓度和参 与主配位反应Y的平衡浓度之和 [Y] ——参与主配位反应的Y的平衡浓度
结论:
Y(N) , [Y] 副反应越严重
' lg K MY lg K MY lg M lg Y lg MY
lg K MY = lg K MY - lg a M - lg a Y 条件稳定常数对数式:
讨论:
'
M↓ , Y↓ ,K MY↑ ,配合物稳定性↑
'
四、酸效应曲线及应用 不同pH值时的lgαY(H)
(complex-formation titration)
§ 第五章 配位滴定法
• • • • • • •
§第1节 §第2节 §第3节 §第4节 §第5节 §第6节 §第7节
概述 乙二胺四乙酸的性质及其配合物 配合物的稳定性及其影响因素 金属指示剂 配位滴定干扰的消除方法 配位滴定的应用 EDTA标准溶液的配制及标定
第一节 概述
配位滴定法:又称络合滴定法,以生成配位化合 物为基础的滴定分析方法。 常用有机氨羧配位剂 ——乙二胺四乙酸(EDTA)
第二节 乙二胺四乙酸的性质及其配合物
一、EDTA(乙二胺四乙酸)及其二钠盐
HOOCH2C NH+
:
:
-
OOCH2C
CH2COOH
:
C H2
C H2
NH+
:
CH2COO-
' K 条件稳定常数 MY
[MY' ] ' ' [M ][Y ]
2020高中化学竞赛—分析化学(入门篇)-第五章__配位滴定法(共109张PPT)
Zn( NH 3 )24的逐级累计稳定常数为:
1=186,2 4.07 104, 3 1.02107 , 4 1.15109
Zn(NH3) 1 i[NH3]i 1.26105
2020/4/12
Zn Zn(NH3 ) Zn(OH ) 1
1.26105 102.4 1 1.26105
Ka2 101.6
Ka3 102.0 Ka4 102.67
Ka5 106.16
K稳3 102.67
Ka6 1010.26 K稳1 1010.26 K稳2 106.16
K稳4 102.0
K稳5 101.6
K稳6 100.9
1 ~ 6分别为1010.26 ,1016.42 ,1019.09 ,1021.09 ,1022.69和1023.59
Ka2 101.6
Ka3 102.0
Ka4 102.67
K
H 稳6
100.9
K H 101.6 稳5
K稳H 4 102.0
K
H 稳3
102.67
Ka5 106.16
K H 106.16 稳2
HY 3 ƒ Y 4 H
Ka6 1010.26
K H 1010.26 稳1
2020/4/12
解:查表得
lg KZnY 16.50
(1) pH 2.00,
lgY (H ) 13.51
lg
K' ZnY
lg KZnY
lgY (H )
16.50 13.51
2.99
(2) pH 5.00, lgY (H ) 6.45
lg
K' ZnY
lg KZnY
lgY (H )
16.50 6.45
分析化学第五章配位滴定法PPT
滴定曲线与滴定终点
滴定曲线是指滴定过程中溶液的pH 值随滴定剂加入量的变化曲线。
滴定终点是指滴定过程中指示剂颜色 突变的位置,是滴定的关键点,其准 确判断对于保证滴定结果的准确性至 关重要。
滴定误差与准确度
01
滴定误差是指由于多种因素导致的滴定结果与真实值之间的偏 差。
02
准确度是指滴定结果的可靠性,即多次重复测定结果的平均值
配位滴定法的应用
01
02
03
金属离子分析
配位滴定法广泛应用于金 属离子分析,如铁、钴、 镍、铜、锌等离子的测定。
环境监测
在环境监测中,配位滴定 法可用于测定水体中重金 属离子的含量,评估环境 质量。
食品分析
在食品分析中,配位滴定 法可用于检测食品中微量 元素和重金属离子的含量, 确保食品安全。
配位滴定法的历史与发展
绿色化学在配位滴定法中的应用
无毒或低毒试剂的使用
开发无毒或低毒的配位剂和辅助试剂,减少对环境和人体的危害。
高效分离技术的研发
研究和发展高效、环保的样品前处理和分离技术,降低实验过程中 废液的产生。
循环利用和减少废弃物
优化实验流程,实现试剂和仪器的循环利用,减少废弃物的产生。
THANKS
感谢观看
配制标准溶液和待测溶液
根据实验需要,准确配制标准溶液和 待测溶液。
滴定操作
将待测溶液放入烧杯中,加入缓冲溶 液和指示剂,用标准溶液进行滴定, 并观察颜色变化。
数据记录
记录滴定过程中的数据,如滴定管读 数、实验时间等。
实验数据处理与分析
数据整理
将实验数据整理成表格, 列出各项数据。
数据分析
根据实验数据,计算待测 溶液的浓度、相对误差和 不确定度等。
2011-分析化学课件-第五章-配位滴定法
❖ Ka1
Ka2
❖ 10-0.90 1 0-1.60
Ka3
10-2.00
Ka4
10-2.67
Ka5
10-6.16
Ka6
10-10.26
❖ 其中Ka1~Ka4分别对应于四个羧基的解离,而 Ka5和Ka6则对应于氨氮结合的两个H+的解离, 释放较困难。
第五章 配位滴定法
13
4. EDTA在溶液中各型体的分布
第五章 配位滴定法
18
图5-2 EDTA-Co(III)螯合物的立体结构
第五章 配位滴定法
19
EDTA与金属离子形成的配合物具有下列特点
❖ 1.配位比较简单,绝大多数为1:1,没有逐级 配位的现象。
❖ 2.配位能力强,配合物稳定,滴定反应进行 的完全程度高。
❖ 3.配合物大多带电荷,水溶性较好。 ❖ 4.配位反应的速率快,除Al、Cr、Ti等金属
❖ 第n级累积解离常数又称配合物总解离常数。
❖ 总形成常数与总解离常数互为倒数关系,即
❖ K离解=1/ K形
❖ 累积形成常数的应用:由各级累积形成常数计算溶 液中各级配合物型体的平衡浓度。
❖ [ML]= 1[M][L]
❖ [ML2]= 2[M][L]2
❖
︰
❖ [MLn]= n[M][L]n
第五章 配位滴定法
❖第一级累积形成常数: 1=K1 ❖第二级累积形成常数: 2=K1×K2 ❖第三级累积形成常数: 3=K1×K2×K3 ❖第四级累积形成常数: 4=K1×K2×K3×K4 ❖ …… ❖第n级累积形成常数: n=K1×K2×K3×K4…
×Kn
第五章 配位滴定法
28
3.总形成常数和总解离常数
分析化学课件-配位滴定法
例2 计算pH = 11, [NH3] = 0.1 时的lgZn
解
Zn2+ + Y
ZnY
Zn(NH3)42+ 的lg 1~lg4分
OH-
NH3
别为2.27, 4.61, 7.01, 9.06
Zn(OH) Zn(NH3 )
Zn(NH3) 1 i[NH3]i
Zn
Zn(NH3) 1 102.271.0 104.612.0 107.013.0 109.064.0
(一)配位剂的副反应系数αY
配位剂的副反应系数αY是αY=[Y’]/[Y] 它表示未与M离子配位的配位剂各型体的总浓度[Y’]是游离 配位剂[Y]的多少倍。
1. 滴定剂的副反应系数- Y(H)
Y(H)
[Y] [Y]
[Y]
[HY]
[H2Y] [Y]
[H6Y]
[Y] [Y][H ]1 [Y][H ]2 2 [Y][H ]6 6
KHMHY=[MHY]/[MY][H] KHMHY是MY和H+形成MHY的稳定常数,副反应系数 αMY(H)=([MY]+[MHY])/[MY]=1+[H] KHMHY
(四)配合物的条件稳定常数
当有副反应发生时,应用条件常数K’MY来衡量配合物 的稳定性,即
5.2 配合物的稳定性
K’MY = [(MY)’]/[M’][Y’] = KMY( αMY / αM αY )
Zn(NH3 ) 105.10
查附录五表:pH = 11.0
lg Zn(OH) 5.4
Zn Zn(NH 3 ) Zn(OH) 1 105.10 105.40
105.6
lgZn 5.6
5.2 配合物的稳定性
《配位滴定》PPT课件
Y
[Y '] [Y ]
[H
6Y
2
]
[H
5Y
] [Y
4 ]
[Y
4
]
[
NY
]
[H
6Y
2
]
[H5Y ] [Y 4 ]
10.346.242.752.071.60.9
[Y ] [Y ']
Y (H )
0.02 106.60
7 109 mol / L
共存离子效应:由于其他金属离子存在使EDTA 主反应配位能力降低的现象
M+Y
MY
主反应
N NY
干扰离子效应引起的副反应
2. 共存离子(干扰离子)效应系数
结论:pH ,[H ] Y (H ) ,[Y 4 ] 副反应越严重
pH Y(H) ;pH 12 Y (H ) 1,配合物稳定
练习
例:计算pH5时,EDTA的酸效应系数及对数值,若 此时EDTA各种型体总浓度为0.02mol/L,求[Y4 -]
Y(H)
H 6
H
5
K a1
Ka1Ka2 Ka3Ka4 Ka5Ka6
Ka1Ka2 Ka3Ka4 Ka5Ka6
1 H
H 6
Ka6
Ka6 Ka5Ka4 Ka3Ka2 Ka1
注:[Y’]——EDTA所有未与M 配位的七种型体总浓度 [Y] ——EDTA能与 M 配位的Y4-型体平衡浓度
(一)配位剂Y的副反应和副反应系数
EDTA的副反应:酸效应
共存离子(干扰离子)效应
EDTA的副反应系数:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
δML=[ML]/cM = 1[L]/(1+1[L]+2[L]2+…+n[L]n) = δM1[L]
● ● ●
δMLn=[MLn]/cM = n[L]n/(1+1[L]+2[L]2+…+n[L]n) = δMn[L]n
2020/8/25
酸可看成质子络合物
Y4- + H+ = HY3HY3- + H+ = H2Y2H2Y2- + H+ = H3YH3Y- + H+ = H4Y H4Y + H+ = H5Y+ H5Y+ + H + = H6Y2+
环己烷二胺四乙酸(CyDTA) 乙二醇二乙醚二胺四乙酸 (EGTA) 乙二胺四丙酸(EDTP)
2020/8/25
EDTA
HOOCH2C
CH2COO-
:: ::
·· ··
NH+ C
C
NH+
H2 H2
-OOCH2C
CH2COOH
乙二胺四乙酸 (H4Y) 乙二胺四乙酸二钠盐 (Na2H2Y)
➢ EDTA分子中含有氨氮和羧氧配位原子
(P89)
Y
H+
N
HY NY
● ● ●
H6Y
Y
= MY
2020/8/25
(a) 酸效应系数 Y(H):——用来衡量酸效应大小的值。
[Y]
Y(H)= [Y] =
[Y]+[HY]+[H2Y]+…+[H6Y] [Y]
=
1
Y
=
[Y]+[Y][H+]1+[Y][H+]22+…+[Y][H+]66
[Y]
=1+1[H+]+2[H+]2+…+6[H+]6
0.4
= 7.7 - 4.7 = 3.0
0.2
(1) [AgL]最大时,
pL
=
lg
K1
- lg 2
K2
+ lg
K2
=
4.7
2
3.0
+
3.0
=
3.85
2020/8/25
0.0 6
5432
lgK1 lgK2
10 pL
(2) [AgL2]存在的主要范围,
pL lg K2 = 3.0
三、副反应系数和条件稳定常数
lgK
Fe2+ 14.3 Al3+ 16.1 Zn2+ 16.5 Cd2+ 16.5 Pb2+ 18.0 Cu2+ 18.8
lgK
Hg2+ 21.8 Th4+ 23.2 Fe3+ 25.1 Bi3+ 27.9
2020/8/25
稳定常数具有以下规律:
a .碱金属离子的配合物最不稳定,lg KMY<3; b.碱土金属离子的 lgKMY=8-11; c.过渡金属、稀土金属离子和Al3+的lgKMY=15-19 d.三价,四价金属离子及Hg2+的lgKMY>20.
ML + L = ML2
● ● ●
MLn-1 + L = MLn
[ML2] = 2 [M] [L]2
● ● ●
[MLn ]= n [M] [L]n
cM=[M]+[ML]+[ML2]+…+[MLn]
=[M](1+ 1 [L]+ 2 [L]2+…+ n [L]n)
2020/8/25
分布分数
δM=[M]/cM = 1/(1+1[L]+2[L]2+…+n[L]n)
2020/8/25
EDTA——各级稳定常数
H6Y2+ =H+ + H5Y+ H5Y+ =H+ + H4Y H4Y =H+ + H3YH3Y- =H+ + H2Y2H2Y2- =H+ + HY3HY3- =H+ + Y4-
Ka1=
[H+][H5Y]
[H6Y]
Ka2=
[H+][H4Y] [H5Y]
= 10-0.90 = 10-1.60
1
K1= Ka6 = 1010.26 1=K1= 1010.26
1
K2= Ka5 = 106.16 2=K1K2= 1016.42
1
K3= Ka4 = 102.67 3=K1K2K3= 1019.09
1
K4= Ka3 = 102.00 4=K1K2K3K4= 1021.09
1
K5= Ka2 = 101.60 5=K1K2..K5= 1022.69
lg Y(H)~pH图
对其它络合剂(L),类似有: L(H) = 1+ i[H]i
2020/8/25
表5-2 不同pH值时的lgαY(H)(P89)
讨论:由上式和表中数据可见
a.酸效应系数随溶液酸度增 加而增大,随溶液pH增大而减 小;
b.αY(H)的数值越大,表示
酸效应引起的副反应越严重;
c.通常αY(H) >1,
多个五元环
2020/8/25
(3) EDTA与金属离子的配合物 及其稳定性
金属离子与EDTA的配 位反应,略去电荷,可简 写成:
M + Y = MY
稳定常数:
KMY=[MY]/[M][Y]
表中数据有何规律?
2020/8/25
某些金属离子与EDTA的形成常数
lgK
Na+ 1.7
lgK
Mg2+ 8.7 Ca2+ 10.7
d. 与大多数金属离子1∶1配位, 计算 方便;
e. 与无色金属离子形成无色的络合物,
与有色的金属离子形成颜色更深的络合
物2020/8/25
右图为 NiY
结构
M-EDTA螯合物的立体构型
O
H2C
C O
C H2C O
N
Ca O
O
H2 C CH2
N CH2
OC CH2 O
C
O
EDTA 通常 与金属离子 形成1:1的螯 合物
Y=
[Y] [Y]
(b) Y(N): 共存离子效应系数
(2) 金属离子的 M(OH)
(b) M(L)
(3) 络合物的副反应系数
MY=
[MY] [MY]
2020/8/25
(1) 络合剂的副反应系数
Y:
Y=
[Y] [Y]
M+
Y(H): 酸效应系数 (P88)
Y(N): 共存离子效应系数
M :被测金属离子;Y:滴定剂(EDTA) KMY:金属-EDTA配合物的稳定常数
2020/8/25
M + L = ML
ML + L = ML2
● ● ●
MLn-1 + L = MLn
逐级稳定常数 Ki [ML]
K1= [M][L]
K2=
[ML2] [ML][L]
● ● ●
Kn=
[MLn] [MLn-1][L]
Ka3=
[H+][H3Y] [H4Y]
= 10-2.00
Ka4=
[H+][H2Y] [H3Y]
Ka5= Ka6=
[H+][HY] [H2Y]
[H+][Y] [HY]
= 10-2.67 = 10-6.16 = 10-10.26
2020/8/25
讨论:
➢ 在pH较低的溶液中, H4Y的两个羧酸根可再接 受H+形成H6Y2+,这样它相当于一个六元酸,有 六级离解常数
累积稳定常数
1=K1=
[ML] [M][L]
2=K1K2=
[ML2] [M][L]2
●
●
●
n=K1K2 ···Kn=
[MLn] [M][L]n
2020/8/25
K 表示相邻络合 物之间的关系
表示络合物与
配体之间的关系
(2) 溶液中各级络合物的分布
M + L = ML
[ML] = 1 [M] [L]
1
K6= Ka1 = 10 0.90 6=K1K2..K6 = 1023.59
2020/8/25
分布分数与各种型体分布的关系
——铜氨络合物各种型体的分布
分布系数
1.0
0.8
Cu2+
Cu(NH3)42+
0.6
Cu(NH3)22+
0.4 0.2 Cu(NH3)2+
Cu(NH3)32+
0.0
6543210
M=
[M] [M]
Y=
[Y] [Y]
MY=
[MY] [MY]
2020/8/25
配位滴定中的副反应
有利于MY配合物生成的副反应? 不利于MY配合物生成的副反应? 如何控制不利的副反应? 控制酸度;掩蔽;
2020/8/25
M
OH-
L
+Y
H+
N
MOH
● ● ● ● ● ●
ML
● ● ● ● ● ●
HY
● ● ● ● ● ●
NY
M(OH)n MLn H6Y
[M]
[Y]
稳定常数
K = [MY] lgKMY [M][Y]
● ● ●
δMLn=[MLn]/cM = n[L]n/(1+1[L]+2[L]2+…+n[L]n) = δMn[L]n
2020/8/25
酸可看成质子络合物
Y4- + H+ = HY3HY3- + H+ = H2Y2H2Y2- + H+ = H3YH3Y- + H+ = H4Y H4Y + H+ = H5Y+ H5Y+ + H + = H6Y2+
环己烷二胺四乙酸(CyDTA) 乙二醇二乙醚二胺四乙酸 (EGTA) 乙二胺四丙酸(EDTP)
2020/8/25
EDTA
HOOCH2C
CH2COO-
:: ::
·· ··
NH+ C
C
NH+
H2 H2
-OOCH2C
CH2COOH
乙二胺四乙酸 (H4Y) 乙二胺四乙酸二钠盐 (Na2H2Y)
➢ EDTA分子中含有氨氮和羧氧配位原子
(P89)
Y
H+
N
HY NY
● ● ●
H6Y
Y
= MY
2020/8/25
(a) 酸效应系数 Y(H):——用来衡量酸效应大小的值。
[Y]
Y(H)= [Y] =
[Y]+[HY]+[H2Y]+…+[H6Y] [Y]
=
1
Y
=
[Y]+[Y][H+]1+[Y][H+]22+…+[Y][H+]66
[Y]
=1+1[H+]+2[H+]2+…+6[H+]6
0.4
= 7.7 - 4.7 = 3.0
0.2
(1) [AgL]最大时,
pL
=
lg
K1
- lg 2
K2
+ lg
K2
=
4.7
2
3.0
+
3.0
=
3.85
2020/8/25
0.0 6
5432
lgK1 lgK2
10 pL
(2) [AgL2]存在的主要范围,
pL lg K2 = 3.0
三、副反应系数和条件稳定常数
lgK
Fe2+ 14.3 Al3+ 16.1 Zn2+ 16.5 Cd2+ 16.5 Pb2+ 18.0 Cu2+ 18.8
lgK
Hg2+ 21.8 Th4+ 23.2 Fe3+ 25.1 Bi3+ 27.9
2020/8/25
稳定常数具有以下规律:
a .碱金属离子的配合物最不稳定,lg KMY<3; b.碱土金属离子的 lgKMY=8-11; c.过渡金属、稀土金属离子和Al3+的lgKMY=15-19 d.三价,四价金属离子及Hg2+的lgKMY>20.
ML + L = ML2
● ● ●
MLn-1 + L = MLn
[ML2] = 2 [M] [L]2
● ● ●
[MLn ]= n [M] [L]n
cM=[M]+[ML]+[ML2]+…+[MLn]
=[M](1+ 1 [L]+ 2 [L]2+…+ n [L]n)
2020/8/25
分布分数
δM=[M]/cM = 1/(1+1[L]+2[L]2+…+n[L]n)
2020/8/25
EDTA——各级稳定常数
H6Y2+ =H+ + H5Y+ H5Y+ =H+ + H4Y H4Y =H+ + H3YH3Y- =H+ + H2Y2H2Y2- =H+ + HY3HY3- =H+ + Y4-
Ka1=
[H+][H5Y]
[H6Y]
Ka2=
[H+][H4Y] [H5Y]
= 10-0.90 = 10-1.60
1
K1= Ka6 = 1010.26 1=K1= 1010.26
1
K2= Ka5 = 106.16 2=K1K2= 1016.42
1
K3= Ka4 = 102.67 3=K1K2K3= 1019.09
1
K4= Ka3 = 102.00 4=K1K2K3K4= 1021.09
1
K5= Ka2 = 101.60 5=K1K2..K5= 1022.69
lg Y(H)~pH图
对其它络合剂(L),类似有: L(H) = 1+ i[H]i
2020/8/25
表5-2 不同pH值时的lgαY(H)(P89)
讨论:由上式和表中数据可见
a.酸效应系数随溶液酸度增 加而增大,随溶液pH增大而减 小;
b.αY(H)的数值越大,表示
酸效应引起的副反应越严重;
c.通常αY(H) >1,
多个五元环
2020/8/25
(3) EDTA与金属离子的配合物 及其稳定性
金属离子与EDTA的配 位反应,略去电荷,可简 写成:
M + Y = MY
稳定常数:
KMY=[MY]/[M][Y]
表中数据有何规律?
2020/8/25
某些金属离子与EDTA的形成常数
lgK
Na+ 1.7
lgK
Mg2+ 8.7 Ca2+ 10.7
d. 与大多数金属离子1∶1配位, 计算 方便;
e. 与无色金属离子形成无色的络合物,
与有色的金属离子形成颜色更深的络合
物2020/8/25
右图为 NiY
结构
M-EDTA螯合物的立体构型
O
H2C
C O
C H2C O
N
Ca O
O
H2 C CH2
N CH2
OC CH2 O
C
O
EDTA 通常 与金属离子 形成1:1的螯 合物
Y=
[Y] [Y]
(b) Y(N): 共存离子效应系数
(2) 金属离子的 M(OH)
(b) M(L)
(3) 络合物的副反应系数
MY=
[MY] [MY]
2020/8/25
(1) 络合剂的副反应系数
Y:
Y=
[Y] [Y]
M+
Y(H): 酸效应系数 (P88)
Y(N): 共存离子效应系数
M :被测金属离子;Y:滴定剂(EDTA) KMY:金属-EDTA配合物的稳定常数
2020/8/25
M + L = ML
ML + L = ML2
● ● ●
MLn-1 + L = MLn
逐级稳定常数 Ki [ML]
K1= [M][L]
K2=
[ML2] [ML][L]
● ● ●
Kn=
[MLn] [MLn-1][L]
Ka3=
[H+][H3Y] [H4Y]
= 10-2.00
Ka4=
[H+][H2Y] [H3Y]
Ka5= Ka6=
[H+][HY] [H2Y]
[H+][Y] [HY]
= 10-2.67 = 10-6.16 = 10-10.26
2020/8/25
讨论:
➢ 在pH较低的溶液中, H4Y的两个羧酸根可再接 受H+形成H6Y2+,这样它相当于一个六元酸,有 六级离解常数
累积稳定常数
1=K1=
[ML] [M][L]
2=K1K2=
[ML2] [M][L]2
●
●
●
n=K1K2 ···Kn=
[MLn] [M][L]n
2020/8/25
K 表示相邻络合 物之间的关系
表示络合物与
配体之间的关系
(2) 溶液中各级络合物的分布
M + L = ML
[ML] = 1 [M] [L]
1
K6= Ka1 = 10 0.90 6=K1K2..K6 = 1023.59
2020/8/25
分布分数与各种型体分布的关系
——铜氨络合物各种型体的分布
分布系数
1.0
0.8
Cu2+
Cu(NH3)42+
0.6
Cu(NH3)22+
0.4 0.2 Cu(NH3)2+
Cu(NH3)32+
0.0
6543210
M=
[M] [M]
Y=
[Y] [Y]
MY=
[MY] [MY]
2020/8/25
配位滴定中的副反应
有利于MY配合物生成的副反应? 不利于MY配合物生成的副反应? 如何控制不利的副反应? 控制酸度;掩蔽;
2020/8/25
M
OH-
L
+Y
H+
N
MOH
● ● ● ● ● ●
ML
● ● ● ● ● ●
HY
● ● ● ● ● ●
NY
M(OH)n MLn H6Y
[M]
[Y]
稳定常数
K = [MY] lgKMY [M][Y]