正比例与反比例复习总结课件.ppt-[的]

合集下载

六年级下册正比例和反比例复习ppt课件

六年级下册正比例和反比例复习ppt课件
A. y k(一定) B. xy k(k一定) C. y kx(k一定) x
C 4. x的 3 与y的 2 相等,且x、y均不为0,x与y的比值是( )
4
7
A. 4
B. 7
8
C.
7
4
21
A 5.如果甲÷ 乙=丙,当甲一定时,乙和丙( );当乙一定
B B 时,甲和丙( );当丙一定时,甲和乙( )。
A.成反比例
B.成正比例
C.不成比例
1.用长30厘米,宽24厘米的长方形砖铺一 条路,需用900块。如果改用边长20厘米 的方砖铺,需用多少块?
30×24=720(平方厘 20×20=400(平方厘米) 米) 解:设需用x块。
720:400=x:900 400x=648000
x=64800x0=÷1642000
关系式为:x y k(一定)
3.正比例、反比例的区别与联系
名称
不同点
相同
意义不同点 变化方向不 关系式不 点


正比例 反比例
两种量中相对 应的两个数的 比值,也就是 商一定。
两种量中相 对应的两个 数的积一定。
一种量扩大 (或缩小), 另一种量也随 之扩大(或缩 小)。
一种量扩大 (或缩小), 另一种量反而 缩小(或扩 大)。
( 反比例 )关系。 6.如果, y 6 那么x和y成( 反比例)关系。
x
1.圆的周长和半径成正比例。
(√ )
2.父子两人的年龄成正比例。
(× )
× 3.小丽跳高的高度和她的身高成正比例。 ( )
× 4.圆的周长一定,圆周率和直径成反比例。( )
× 5.长方形的周长一定,它的长和宽成反比例。( )

《比例》正比例和反比例PPT课件 图文

《比例》正比例和反比例PPT课件 图文
是啊!人生的缘份就是如此奇妙,像一朵浮云与飞鸟的相逢,不期而至。眉间滑过的光阴,犹如那山涧流淌的溪泉,平缓而柔软。而你我,就如同飘飞的枫叶,相遇相逢,徐徐飘落,寂静悠美,直至泥土。如若有缘,此生你我注定会在光阴的渡口相见,如若离散,请在我筑起的幽梦里,互道一声“珍重”! 一旦进入到婚姻,就剩下为家庭奔波,为孩子操劳,再也不讲什么浪漫惊喜。
“十年生死两茫茫,不思量,自难忘。千里孤坟,无处话凄凉。纵使相逢应不识,尘满面,鬓如霜“。如若今生,你我遇到一个愿意为自己陪伴一生的人,那么,请握紧现在手中的幸福,珍惜彼此,别等失去,再话凄凉…… 可惜,世间不是所有的缘份都来得刚刚好,在合适的季节里你我相遇相逢。就如徐志摩遇到林徵因,写下“轻轻的我走了,正如我轻轻的来;我轻轻的招手,作别西天的云彩……”一首再别康桥道出无尽的思念,却因是一场三角之恋,不得不放手。还有张爱玲遇见文人汉奸胡兰成,在信里写道:“在你面前我变得很低很低,低到尘埃里。但我的心里是喜欢的,从尘埃里开出花来。” 多么卑微,往往当一个人遇到一份情缘,再怎么高傲,冷漠。也会变得很低很低,变得温柔而多情。虽然两年后,终究两人还是劳雁纷飞,各奔东西。像天空璀璨的烟花,绽放之后只剩薄凉。也许,他们彼此相遇,只是为了来世间为我们讲述一段故事,写下一段文字,弹奏一曲琴瑟之音!世间,不是所有的缘份与感情都能修得正果,厮守一生。但它们如同投在你心湖的一颗石子,荡起层层微光,即便短暂,仍也波光粼粼,晶莹闪烁!
比是表示两个数相除,只有两 个项。比例表示两个比相等的式 子,有四个项。
填数游戏
在下面的括号中你能填什么 数?你能发现什么?
1 = 2 ︰()=() ︰
1 2
例2:把下面四个比例两个内项和两个 外项相乘,你发现了什么?
2 ︰3=4 ︰6 6 ︰ 8=15 ︰20

正比例图像正比和反比例PPT课件

正比例图像正比和反比例PPT课件

(2)连接图中各点,你有什么发现?
路程/千米
G F
答:图中各点都在一条直线上。
E D
C
(3)根据图像判断,这辆汽车2.5小时行驶多少千米?行驶440 千米需要多少小时?
路程/千米
G F
E D
C
这辆汽车2.5小时行驶 200千米,行驶440千米 需要5.5小时。
小玲用计算机打字的数量和所用的时间如下表:
小玲用计算机打字的数量和所用的时间如下表:
时间/分 2
4
6
8
10
12
14
……Biblioteka 数量/个 100 200 300 400 500 600 700 ……
(2)在下图中描出打字数量和时间所对应的点,再按顺序连接起来。
数量/个
时间/分
(3)根据图像判断,小玲5分钟可以打多少个字?打750个字 需要多少分钟?
例1表中的各组数据,可以用下图中的点表示。
路程/千米
G F
E D
C
(1)图中的点 A 表示1小时 行 80千米,点 B 表示5小时 行400千米。其他各点呢?
1 2 3 4 5 6 7 8 时间/小时
点C 表示2小时行160千米 点D 表示3小时行240千米 点E 表示4小时行320千米 点 F 表示6小时行480千米 点 G 表示7小时行560千米
答:购买彩带的总价和长度成正比例,因为它们的比值一定。
(4)根据图像判断,购买3.5米彩带需要多少元?
答:购买3.5米彩带需 要17.5元。
总价/元
长度/米
正比例的图像
正比例的图像
1.是一条直线。 2.作图时,先描点,再连线。
一根弹簧挂上物体后长度会伸长,(所挂物体的质量不超过20 千克)物体的质量与伸长的长度如下:

正比例与反比例ppt

正比例与反比例ppt

我明白:
因为杯子的底面积一定,所以水的体积随着高度的
变化而变化。水的高度增加,体积也相应
水的高度降低,体积也相应 减少
增加

。而水的体积和高
度的 比值 一定,我们就说体积和高度成 正 比例, 体积和高度叫做成 正 比例的量。
思考、合作、交流
什么条件下,两个量成正比例?
(1)两个量相关联; (2)一个量增加,另一个量也增加;一个量减 少,另一个量也减少; (3)两个量的比值相同。
本课件适用于人教版六年级数学下册正比例的意义
• • • • • • • • • • 第一部分:课题 第二部分:课件简介 第三部分:正比例意义(视频)讲解 第四部分:阐述正比例的意义 第五部分:用字母表示正比例(视频) 第六部分:交流、举例正比例 第七、八部分:利用正比例图像,解决问题 第九、十、十一部分:做一做 第十二部分:智慧时间(优生拔尖) 第十三部分:谈收获
路程/km
480 400 320 240 160 80 0
·
·
·
· · · ·
1 2 3 4 5 6 7
时间/小时
智慧时间
路程/km
左图表示斑马和长颈鹿的奔跑情况。 (1)斑马的奔跑路程和奔跑时间是 否成正比例?长颈鹿呢?
(都成正比例) 掌声送给你
24 20 16
12
8
(2)估计一下,斑马和长颈鹿18分 钟各跑多少千米?(结果取整数)
(1)写出几组路程和相对应的时间的比,并比较 比值的大小。说一说这个比值表示什么? 80:1=80 240:3=80 400:5=80
160:2=80
320:4=80 480:6=80
80表示汽车消失的速度
(2)在下图中描出表示路程和相应时间的点,然后把它们按 顺序连起来。并估算一下行驶120千米大约要有多长时间。

“正比例和反比例”复习课讲义

“正比例和反比例”复习课讲义
• 如果用字母x、y表示这两种相关联 的量,正比例关系可以用式子表示 为: x k k为常数 或者 y ax (a为常数)
y
• 反比例的意义: 两种相关联的量,一种量增加,另一种量
也随着减少;如果这两种量中相对应的两 个数的乘积一定,这两种量就叫做成反比 例的量,它们的关系叫做反比例关系 。
• 如果用字母x、y表示这两种相关联 的量,反比例关系可以用式子表示 为:x×y=k (k为常数)
• 比例尺的表示方式
二、常见题型:
• 正反比例关系概念理解、应用 • 解比例 • 利用比例解应用题 • 正反比例关系的图像的理解 • 比例尺的理解及应用
例1:
三、易错题:
正方形边长/cm 1 2 正方形面积/cm2 1 4 s与a比值(不一定) 1 2
3 4 …… 9 16 …… 3 4 ……
判断正误:正方形的边长增加,面积也增加,所以 正方形边长和面积成正比例关系。
借出的本数
12345
剩余的本数
98765
借与剩的和(一定) 10 10 10 10 10
判断正误:借出本数和剩余本数的和一定, 所以他们是成比例的量。
易错题讲解: 定量
• 一辆垃圾清运车两次 可以清理5吨垃圾,某
市一天的生活垃圾有 3000吨,
每辆车每次可 以清运2.5吨 垃圾,一天的 垃圾3000吨
• 解:5mm:4cm=5mm:40mm=1:8 • 所以这幅图纸的比例尺是1:8。
对吗?
四、典例解析:
• 例一、判断下面各题中的两种量是 否成比例。如果成比例,成什么比 例?(见学案)
方法小结:
第一,这两种量是不是相互关联?其 中一种量是否随着另一种量的变化 而变化?
第二,这两种量中每一组对应的数的 比值(或积)是否一定 ?(比值 一定,二者是正比例关系,乘积一 定,二者是反比例关系。)这两个 条件缺一不可。

《正比例与反比例整理和复习》示范教学PPT课件【小学数学北师大版六年级下册】

《正比例与反比例整理和复习》示范教学PPT课件【小学数学北师大版六年级下册】
第四单元 正比例与反比例
整理和复习
一知识呢?请你结合 下面的提纲,回忆一下吧?
变化的量
变量的意义
比例
正比例 画一画
什么是正比例 正比例的图形
反比例
什么是反比例
一、复习回顾
一、变化的量
当一个量随着另一个量的变化而发生变化时, 这两个量都叫做变量。
一、复习回顾
每天修的米数/m 10 20 30 40 需要的天数/天 30 15 10 7.5
(2) 20 天
(3)12 m
再见
二、基础练习
1. 在括号里填上“每时生产零件个数”“生产时间”或 “生产零件总数”。 ( 生产零件总数 )一定,(每时生产零件个数)和( 生产时间 )成反比例; ( 生产时间 )一定,( 生产零件总数)和(每时生产零件个数 )成正比例。
二、基础练习
2. 填空。
(1)一个比例的两个外项互为倒数,其中一个内项是3,另一个内
(1)10×80=800(千米) (2)600÷80=7.5(时)
四、拓展练习
2. 修一条水渠,每天修的米数和所需要的天数如下表。 (1)每天修的米数和所需要的天数有什么关系? (2)如果每天修15 m,修完这条水渠共需要多少天? (3)修完这条水渠一共用了25 天,每天修多少米?
(1)每天修的米数和所需 要的天数成反比例。
项是( 1
)。
3
(2)已知A÷B=C(B≠0),当A一定时,B和C成( 反 )比例;当B一
定时,A和C成( 正 )比例;当C一定时,A和B成( 正 )比例。
(3)某地上午10时电线杆的高度与地上留下影子的长度比是4∶3, 已知影子长6米,电线杆的高度是( 8 )米。
二、基础练习

六年级下册正比例图像正比和反比例PPT课件

六年级下册正比例图像正比和反比例PPT课件

小玲用计算机打字的数量和所用的时间如下表:
时间/分 2
4
6
8
10
12
14
……
数量/个 100 200 300 400 500 600 700 ……
(2)在下图中描出打字数量和时间所对应的点,再按顺序连接起来。
数量/个
时间/分
(3)根据图像判断,小玲5分钟可以打多少个字?打750个字 需要多少分钟?
时间
因为路程和时间的比值是一定的。
小军和家人周末骑车去森林动物园游玩。下面的图像表示他们骑
车行的路程和时间的关系。
路程/千米
(2)利用图像估计,他们20 分钟大约行多少千米?行10千 米大约要用多少分钟?
时间/分
答:他们20分钟大约行5千米,行10千米大约要用38分钟。
一种彩带每米售价5元,购买2米、3米……各需要多少元?
例1表中的各组数据,可以用下图中的点表示。
路程/千米
G F
E D
C
(1)图中的点 A 表示1小时 行 80千米,点 B 表示5小时 行400千米。其他各点呢?
1 2 3 4 5 6 7 8 时间/小时
点C 表示2小时行160千米 点D 表示3小时行240千米 点E 表示4小时行320千米 点 F 表示6小时行480千米 点 G 表示7小时行560千米
苏教版 数学 六年级 下册
正比例的图像
正比例和反比例
第六单元 第2课时
1.初步理解图像上点所表示的实际意义,即每个点都表示路程和时间的一组 相对应的数值。 2.借助直观的图像,进一步认识成正比例量的变化规律,初步体会正比例图 像的实际应用,为今后学习函数及函数图像等知识打下一定的基础。 3.培养动手操作能力和观察能力。

正比例和反比例ppt课件

正比例和反比例ppt课件

反比例的性质及证明
01 反比例的定义
当两个量的乘积恒定时,称这两个量成反比例。
02 反比例的性质
反比例的两个量具有相反的符号,当一个量增加 时,另一个量会相应减少,且它们的乘积恒定。
03 反比例的证明
可以通过绘制图表或使用代数方法证明两个量之 间的反比例关系。
正比例和反比例的练习题及
05
解析
正比例的练习题及解析
函数
正比例关系是函数关系中的一种,其中自变量和因变量之间的比例常数k称为正比例系数。通过 掌握正比例函数的性质和图像,我们可以更好地理解其他函数的关系和性质。
正比例和反比例在实际问题中的意义
资源分配
在资源分配过程中,正比例关系可以帮助我们更好地规划资 源的分配,确保各项任务能够按照比例完成。例如,在多个 部门协同工作时,通过调整各部门之间的任务分配比例,可 以更好地完成任务。
06
总结与回顾
正比例和反比例的重要性和应用价值
正比例和反比例是数学中重要的概念,对于理解 函数和变量之间的关系以及解实际问题具有重 要意义。
在实际生活中,正比例和反比例关系广泛存在, 如购物时的价格和数量、速度和时间等。掌握正 比例和反比例的概念和应用有助于解决日常生活 中的问题。
正比例和反比例的异同点及注意事项
02 正比例中,当一个量增加时,另一个量也增加; 而在反比例中,当一个量增加时,另一个量减少 。
02 正比例和反比例可以相互转化,比如时间和距离 的关系就是典型的正比例关系,但如果考虑速度 恒定的情况下,时间和距离就成反比例关系。
02
正比例和反比例的应用
在生产生活中的实际应用
生产计划
在生产过程中,企业需要制定生产计划,根据产品的需 求量和库存量来确定每日的生产量。正比例关系可以帮 助企业更好地规划生产,避免库存积压或缺货现象。

北师大版六年级下册数学《正比例》正比例与反比例说课教学复习课件

北师大版六年级下册数学《正比例》正比例与反比例说课教学复习课件
3
y
这节课你们都学会了哪些知识?
判断两个量是否成正比例,先判断两个量是 否相关联,若两个量相关联,再看它们的比值 (即商)是否一定,若一定,则这两个量成正比 例,它们的关系是正比例关系。
作业1:完成教材相关练习题。 作业2:完成对应的练习题。
正方形的面积 边长
=边长(固定不变);
一辆汽车以90千米/时的速度行驶,行驶的路程与时 间如下表。把右表填写完整,你从表中发现了什么?
8 450 540 630 720
在表格中你发现了什么? 快分享给老师和同学们吧!
我发现路程是随着时间的变化而变 化的,它们是两个相关联的量。
时间增加,路程也随着增加。
写出几组生产量与天数的比,并求出比值,这 个比值表示什么意义?
70 = 140 = 210 = 280 = 70
1
2
3
4
这节课你们都学会了哪些知识?
1、两个相关联的量,如果一个量随着另一个量 的变化而变化,且它们的比值一定,那么这 两个量就成正比例,这样的两个量叫作成正 比例的量,它们之间的关系叫作正比例关系。
爸爸的年龄随着乐乐年龄的增加而增 加,所以爸爸的年龄与乐乐的年龄是两个相 关联的量。
34 35 36 37
虽然乐乐和爸爸的年龄是两种相 关联的量,但是这两种量的比值 不固定,所以乐乐和爸爸的年龄 不成正比例。
分别举一个成正比例和一个不成正 比例的例子,与同伴交流。
(1)成正比例关系的量。 示例:圆的周长与直径成正比例。 理由:圆的周长随着直径的变化而变化,它 们是两个相关联的量。 图上距离 =圆周 实际距离 率(一定),所以它们成正比例。
定,也就是( 单)价一定,练习本的本数和总价成
( 正比例 )关系。

正比例与反比例ppt课件

正比例与反比例ppt课件

-1-
第 1 课时 变化的量
■考点 认识“变化的量” 生活中存在着许多互相依存的变量,其中一个量随着另一个量的变化而
变化。例如一天的气温随着时间的变化而变化;汽车行驶的路程随着行驶时间 的变化而变化;生产总量随着生产天数的变化而变化等。
-2-
例1 连一连,把相互变化的量连起来。
路程
正方形周长
边长
-16-
第 4 课时 反比例
■考点 反比例的意义与判断方法 1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中
相对应的两个数的积一定,这两种量就叫作成反比例的量,它们的关系叫作反 比例关系。
2.如果用字母y和x表示两种相关联的量,用k表示它们的积(一定),反比例 关系可以用字母表示:xy=k(一定)。
-4-
例2 说一说,一个量怎样随另一个量变化? 一种故事书每本3元,买书的总价与书的本数。 解析:每本故事书的单价一定,买书的总价随着买书的本数的变化而变化, 买的本数越多,总价越多,本数越少,总价越少。 正确答案:买书的总价随着书的本数的增加而增加。 易错答案:买书的总价随着书的本数的变化而变化。 错因分析:错解错在没有点明书的总价随着本数的变化怎样变化。 满分备考:解决两个变化的量的问题时,要联系生活实际和以前学过的关 系,仔细分析,得出结论,并把两个量之间的变化关系描述出来。
刘奇的睡眠时间和天数是否成正比例关系?李英的呢? 解析:分别求出刘奇和李英的睡眠时间和对应天数的比值,如果比值一定则 成正比例关系。 正确答案:刘奇: =10, =10, =10, =10,刘奇的睡眠时间和对应 天数的比值一定,所以成正比例。
-12-
李英: =8, =8, =8, =8, =8,李英的睡眠时间和对应天数的 比值一定,所以成正比例关系。

正比例与反比例的比较复习课件

正比例与反比例的比较复习课件

正比例和反比例在生活中的应 用有哪些?
请举出几个正比例和反比例的 例子。
答案及解析
正比例
两个量之间的比值保持不变,即y/x=k(k为常数)。例如,速度一定 时,路程与时间成正比。
反比例
两个量之间的乘积为常数,即xy=k(k为常数)。例如,压强一定时, 压力与受力面积成反比。
应用
在物理学、工程学、经济学等领域中,正比例和反比例的概念都有广 泛的应用。例如,电流与电压成正比,电阻与电压成反比等。
比的。
正比例关系可以用直线表示,其 中一种量作为横轴,另一种量作 为纵轴,它们的交点即为正比例
关系的常数。
正比例关系在生活中常见,如速 度一定时,路程与时间成正比; 当底边一定时,三角形面积与高
成正比等。
反比例的性质
当两个量成反比例关系时,一个量随 另一个量的增大而减小或随另一个量 的减小而增大,即它们的变化规律是 成反比的。
正比例可以用等式表示为 y/x = k(k为常数),当x增大时,y 也按相同的比例增大。
反比例可以用等式表示为 xy = k(k为常数),当x增大时,y 会按相反的比例减小。
02 正比例与反比例的性质
正比例的性质
当两个量成正比例关系时,一个 量随另一个量的变化而等比例地 变化,即它们的变化规律是成正
反比例的应用场景
距离一定时,速度与时间成反 比。
压强一定时,压力与受力面积 成反比。
温度一定时,热量与加热时间 成反比。
正比例与反比例的应用比较源自正比例关系中,两个量同时增加或减少, 且比值保持不变;反比例关系中,一个 量增加时,另一个量减少,但乘积保持
不变。
正比例关系适用于描述量与量之间的直 在实际应用中,正比例关系较为常见, 接关系,如速度与时间的关系;反比例 反比例关系在某些特定情境下出现较多, 关系适用于描述量与量之间的间接关系, 如物理、化学等学科中的一些现象。

正比例与反比例整理复习的课件ppt

正比例与反比例整理复习的课件ppt
三、选择题(选择正确答案的序号填在括号里)
A (1)比例尺一定,图上距离与实际距离 ( )
A、成正比例,B、成反比例,C、不成比例
A (2)订《中国少年报》的份数与所需钱数( )
A、成正比例,B、成反比例,C、不成比例
实际应用
树高与影长
在同一时间、同一地点,测得不同树的高度与 影长如下表:
树高/m 1 2 3 4 5 6 … 影长/m 0.4 0.8 1.2 1.6 2 2.4 …
•思考题 学校操场是一个周长360米的长方 形,长和宽的比是5 ∶ 4,把它画在比 例尺为1 ∶ 1000的平面图上,图上面 积是多少平方厘米?
4
• 360÷2=180米 ,
180×
4 5
4
=80米
180× 5 4 =100米,
长:100米=10000厘米,10000 × 1/1000=10厘米
1、根据表中的数据,树高与影长是否成比 例?成什么比例?
树高与影长
在同一时间、同一地点,测得不同树的高度 与影长如下表:
树高/m 1 2 3 4 5 6 … 影长/m 0.4 0.8 1.2 1.6 2 2.4 …
2、如果一棵数的高为3.5米,影长约为多 少米?
树高与影长
在同一时间、同一地点,测得不同树的高 度与影长如下表:
3、⑴如果y=8x,x和y成( 正)比例。 ⑵如果y= 8 ,x和y成( )反比例。
x
巩实际固应与用应用
1、在比例尺是 0 30 60 90 120千米 中,量得 两地距离上8厘米,实际距 离是多少?
2、甲、乙两地之间的距离是80千米, 如果画在比例尺是1 :4000000地图 上,甲、乙两地应画多少厘米?
6︰12

正比例的意义正比例和反比例PPT课件

正比例的意义正比例和反比例PPT课件
时间
答:生产零件的数量和时间成正比例,因为它们的比值是一定的。
做同一种服装, 做的套数和用布的米数如下表:
服装数量/套 1
2
3
4
5

用数量/米 2.2
4.4 6.6
8.8
11

做的套数和用布的米数成正比例吗?为什么?
做的套数和用布的米数成正比例吗?为什么?
4.4 << 2.2 2
6.6 << 2.2 3
(2)写出几组相对应的总价和数量的比,并比较比值的大小。
0.4 << 0.4 1
1.6 << 0.4 4
0.8 << 0.4 2 2 << 0.4 5
1.2 << 0.4 3
2.4 << 0.4 6
…… 比值相等
购买一种铅笔的数量和总价如下表:
数量/支 1
2
3
4
5
总价/元 0.4
0.8
1.2
1.6
时间/时 1
2
3
4
5
6
7
……
路程/千米 80
160
240
320
400
480
560
80÷1 = 80 160÷2= 80 ……行驶的速度不变。
观察表中的数据,你有什么发现?
你能写出几组相对应的路程和时间的比,并求出比值吗?
80 << 80 1
160 << 80 2
240 << 80 3
320 << 80 4
8.8 << 2.2 4
11 << 2.2 5

初二数学《正比例函数和反比例函数》PPT复习

初二数学《正比例函数和反比例函数》PPT复习
的坐标及k、m的值。
案例分析三
已知正比例函数y=ax(a≠0)的 图像与反比例函数y=b/x(b≠0) 的图像交于C、D两点,且C、D 两点关于原点对称,若点C的坐 标为(3,2),求a、b的值及D点
的坐标。
05 典型例题解析与思路拓展
典型例题选讲
例题1
已知正比例函数 y = kx (k ≠ 0) 的图像经过点 (2, -4),求该正比
在同一平面直角坐标系中,正比例函数 的图像是一条过原点的直线,且关于原 点对称。
比例系数k决定了直线的倾斜程度,k>0 时,直线从左下方向右上方延伸;k<0 时,直线从左上方向右下方延伸。
性质 图像是一条经过原点的直线。
反比例函数定义及性质
性质
图像是分布在两个象限内的双曲 线。
比例系数k决定了双曲线的形状和位置 ,k>0时,双曲线位于第一、三象限; k<0时,双曲线位于第二、四象限。
06 课堂互动环节
学生提问答疑
学生可以向老师提出关于正比例函数 和反比例函数概念、性质、图像等方 面的疑问。
老师会针对学生的问题,进行详细的 解答和辅导,确保学生能够理解和掌 握相关知识。
小组讨论分享学习心得
学生可以分组进行讨论,分享自己在学习正比例函数和反比 例函数过程中的心得和体会。
小组内成。
例题2
已知反比例函数 y = k/x (k ≠ 0) 的图像经过点 (3, 4),求该反比例 函数的解析式。
例题3
已知正比例函数 y = 2x 和反比例函 数 y = 8/x,求这两个函数图像的交 点坐标。
解题思路与方法总结
对于正比例函数,已知一点坐 标,可以通过代入法求出函数 的解析式。
经济学问题

正比例和反比例课件

正比例和反比例课件
添加文档副标题
目录
01.
02.
03.
04.
05.
06.
定义:两个量之间的比值是常数时,它们成正比例 性质:当两个量成正比例时,它们的比值是常数,它们的图象是一条直线 实例:路程和时间成正比例,它们的比值是速度 应用:在现实生活中,很多事物之间都存在正比例关系,如速度、时间、路程等
比值一定:当两个量的比值一定时,它们成正比例关系 乘积是常数:当两个量的乘积是常数时,它们成反比例关系 图像:正比例关系的图像是一条经过原点的直线 实际应用:在现实生活中,正比例关系可以用来描述许多事物的变化规律
验证解的正确性:在得到解后,需要进行验证,确保解的正确性和合理性。
物理学中的应用: 解释物理现象和规 律,如速度、加速 度与时间的关系
经济学中的应用: 分析成本、收益与 数量的关系,预测 市场趋势
生物学中的应用: 研究生物体生长、 繁殖与环境因素的 关系
地理学中的应用:探 索地理现象之间的相 互关系,如气候、地 形与人口分布
参加数学竞赛:参 加数学竞赛可以锻 炼自己的数学思维 和解题能力,同时 也可以增强对正比 例和反比例知识的 理解和掌握。
添加标题
反比例的数学表达:如果两个量x和y满足xy=k(k为常数),则称x和y成反比例关系。
反比例在生活中的应用
反比例在生产中的应用
反比例在科学实验中的应用
反比例在数学中的应用
定义不同:正比例是两种相关联的量,一种量变化,另一种量也随着变化;反比例是两种相 关联的量中,一种量变化,另一种量也随着变化,但积一定
数学建模:通过建立正比例模型,可以表示两个量之间的比例关系
求解方法:通过代入法或消元法等方法求解正比例方程
应用:正比例关系在生活和生产中广泛存在,如速度与时间的关系、路程与速度的关系 等

北师大版六年级下册数学《反比例》正比例与反比例PPT课件(第1课时)

北师大版六年级下册数学《反比例》正比例与反比例PPT课件(第1课时)

请把上表补充完整,再回答下列问题。
⑴不同的人在打同一份稿件的过程中,哪个量 没有变? 不同的人在打同一份稿件的过程中,总字 数没有变。
⑵打字的速度和所用的时间有什么关系?
打字的速度随打字所用的时间的变化而变 化,并且它们的乘积一定(总字数为2400个),所 以它们成反比例。
⑶李老师打这份稿件用了24分,你知道她平均 每分打多少字吗? 平均1分钟打100个字。
返回作业设计
作业2
思维创新 提升培优 基础巩固
返回作业设计
1.(基础题)想一想,填一填。
(1)从甲城到乙城,不同车辆行驶的速度和所需时
间有如下关系。
速度/(千米/时) 6 15 20 30 60
时间/时
10 4 3 2 1
由表可知( 速度 )和( 时间 )是两种相关联的
量,( 时间 )随着( 速度 )的变化而变化,它们的
长方形的一条边长增加,相邻的边长减少。
表2 56 7 8
98 76 54 (1)在表2中,有哪几个变量? 长方形的相邻两边边长(即长和宽)这两个变量。
(2)这两个变量之间有什么关系呢?请完成表2。
长方形的一条边长增加,相邻的边长减少。
通过表1和表2我们发现,问题中的两个长方 形的相邻两边边长有着相同的变化规律。
题数成反比例。
(×)
3.(易错题)我是聪明的小法官。
(4)完成一项工程,工作效率和工作时间成反比例。 (√)
(5)将绳子剪成同样长的小段,剪成的段数和每
段的长度成正比例。
(× )
返回作业2
4.(变式题)a,b,c三种量的关系是 b×c=a。(a,b,c非零)
(1)如果a一定,那么b,c成( 反 )比例关系。

正、反比例复习课件

正、反比例复习课件

8、三角形的面积一定时,底和高成反比例。(√ )
9、减数一定,被减数和差成反比例。
(×)
智力大冲浪
1、如果 7 x = 8 y,x 和 y 成( 正)比例, 则 x∶ y=( 8)∶( 7)
2、A 、B 、C 三种量的关系是:A ×B = C
(1).如果 A一定,那么B 和 C成( 正 )比例; (2).如果 B一定,那么A 和 C成( 正 )比例; (3).如果 C一定,那么A 和 B成( 反 )比例.
小小裁判员
1方成正比例。 (√ )
3、圆的周长和圆的半径成正比例。
(√ )
4、正方形的周长和边长成正比例。
(√ )
5、正方形的面积和边长成正比例。
(× )
6、长方形的面积一定时,长和宽成反比例。(√ )
7、长方形的周长一定时,长和宽成反比例。(×)
请你牢记
看变量,找定量; 商一定,正比例; 积一定,反比例; 和、差一定,不成比例。
看谁答得妙
说出下列各题中的两个量成什么比例,并说明理由。 1、工作效率一定,工作总量和时间。(正比例) 2、学生总数一定,每排人数和所站的排数。(反比例) 3、小麦的出粉率一定,小麦的质量与面粉的质量(。正) 4、图上距离一定,实际距离和比例尺。(反比例) 5、一个人的身高和相貌。 (不成比例)
谢谢大家 同学们,再见!
北师大版六年级数学下册 新兴示范小学 裴启宏
整体回顾
第二单元我们学习了正比例、反比 例的有关知识,回想一下:
1、什么样的两种量叫做成正比例的 量?请举例说明。正比例关系用字母怎 样表示?正比例的图像是怎样的?
2、什么样的两种量叫做成反比例的 量?请举例说明。反比例关系用字母怎 样表示?反比例的图像是怎样的?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两种相关联的量,一种量变化,另一 种量也随着变化 ,如果这两种量中相 对应的两个数的积一定,这两种量就 叫做成反比例的量,它们的关系叫做 反比例关系。
如果用x和y表示两种相关联的量,用k表示它 们 的比值,那么上面这种数量关系式可以用
x×y=k (一定)来表示
1.圆柱的高一定,体积和底面积成( 正比例)关系。 2.时间一定,总产量和单产量成( 正比例)关系。
(1)如果
一定,

成正比例。
(2)如果
一定,

成正比例。
(3)如果
一定,

成反比例
一辆汽车在高速路上行驶,速度保持 在100千米/时,说一说汽车行驶的路程随 时间变化的情况,并说说可以用哪些方式 来表示这两个量之间的关系?
(1)可以列表
时间/时 1 2 3 4 5 ---
路程/千米 100 200 300 400 500 ---
点 随着另一种量变化。
不 比值(商)一定 积一定
同 点
y x

k (一定)x×y=k(一定)
正比例图像是 反比例图像不是
一条直线。 一条曲线。
一、填空。
1、在数量、单价和总价中:
(1)如果数量一定,

成正比例。
(2)如果单价一定,

成正比例。
(3)如果总价一定,

成反比例
2、已知 a × b=c。
一、正比例
两种相关联的量,一种量变化,另一种量 也随着变化,如果这两种量中相对应的两 个数的比的比值(商)一定,这两种量就 叫做成正比例量,它们之间的关系叫做正 比例关系。
如果用x和y表示两种相关联的量,用k表示它们 的比值,那么上面这种数量关系式可以用 y÷x =k (一定) 来表示。
二、反比例
整理与复习
正比例和反比例
1.圆的周长和半径成正比例。
(√ )
2.父子两人的年龄成正比例。
(× )
× 3.小丽跳高的高度和她的身高成正比例。 ( ) × 4.圆的周长一定,圆周率和直径成反比例。( )
√ 5.长方形的周长一定,它的长和宽成反比例。( )
6、正方形的周长和边长成正比例。
(√ )
•什么是正比例? •什么是反比例?
42 35 28 21 14 7
0 1 2 3 4 5 6 7 时间/分
7×2.5=17.5(千米)
课件PPT
1.用长ቤተ መጻሕፍቲ ባይዱ0厘米,宽24厘米的长方 形砖铺一条路,需用900块。如果 改用边长20厘米的方砖铺,需用 多少块?
2.六(2)班买来72米长 的绳子,剪下8米做5根 跳绳,照这样计算,买 来的绳子共可做跳绳多 少根?
课件PPT
课堂 总结
通过这节课的学习,你学会了什么?
判断两个量是不是成正比例的一般方法。 就是看这两个变量的比值(也就是商)是不是 一个不变的数,如果是就成正比例,如果不是 就不成正比例。
课件PPT
课堂 总结
通过这节课的学习,你学会了什么?
判断两个量是不是成反比例的一般方法。 判断两个量是不是成反比例关系,首先要看这 两个量是不是相关联的量,其次看这两个量的 积是不是一定的。
3.单价一定,数量和总价成( 正比例)关系。 4.长方形的长一定,宽和面积成(正比例 )关系。
5.煤的总量一定,每天烧煤量和能够烧的天数成
( 反比例 )关系。 6.如果, y 6 那么x和y成( 反比例)关系。
x
三、正比例和反比例的相同点和不同点:
正比例
反比例
相同 都有一个不变量;两个变量,一种量
(2)可以画图
路程/千米
500 400 300 200 100
0 12 34 5
时间/分
(3)可以用式子表示
• 如果用t表示汽车行驶 的时间,S表示汽车行 驶的路程,那么
S÷t=100
练一练
磁悬浮列车匀速行驶时,路程与 时间的关系如下。
时间/分 1 2 3 4 5 6 … 路程/千米 7 14 21 28 35 42 …
(1)图中的点A表示时间为1分时,磁悬浮列车驶 过的路程为7千米。请你试着描出其它他各点 路程/千米
42 35 28 21
14
A
7
0 1 2 3 4 5 6 7 时间/分
(2)连接各点,它们在一条直线上吗?
路程/千米
42 35 28 21 14 7
0 1 2 3 4 5 6 7 时间/分
(3)列车运行2分半时,行驶的路程是多少? 路程/千米
相关文档
最新文档