高考数学总复习专题讲解17---利用导数解决函数的单调性问题

合集下载

【2021新高考数学】利用导数求函数的单调性、极值 、最值

【2021新高考数学】利用导数求函数的单调性、极值 、最值
当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接
【举一反三】
1.函数 y=4x2+1的单调增区间为________. x
1,+∞ 【答案】 2
【解析】

y=4x2+1,得 x
y′=8x-x12(x≠0),令
y′>0,即
8x-x12>0,解得
x>1, 2
∴函数
y=4x2+1的单调增区间为
2
.
2
2
当 x (, 2 ) 时,函数为增函数;当 x ( 2 , ) 时,函数也为增函数.
2
2
令 f (x) 6x2 3 0 ,解得 2 x 2 .当 x ( 2 , 2 ) 时,函数为减函数.
2
2
22
故函数 f (x) 2x3 3x 的单调递增区间为 (, 2 ) 和 ( 2 , ) ,单调递减区间为 ( 2 , 2 ) .
当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接
【举一反三】 1.函数 y=4x2+1的单调增区间为________.
x 2.函数 f(x)=x·ex-ex+1 的单调增区间是________. 3.已知函数 f(x)=xln x,则 f(x)的单调减区间是________. 4.已知定义在区间(-π,π)上的函数 f(x)=xsin x+cos x,则 f(x)的单调增区间是_______.
2x 2 (1)求 a 的值; (2)求函数 f(x)的极值.
第十四讲 利用导数求函数的单调性、极值 、最值
【套路秘籍】
一.函数的单调性 在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这个区间内单调递增;如果 f′(x)<0,那么函数 y=f(x) 在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数 y=f(x)的极值的方法 解方程 f′(x)=0,当 f′(x0)=0 时:

高考数学提分:利用导数解决单调性中求参数问题(选填)含答案

高考数学提分:利用导数解决单调性中求参数问题(选填)含答案

利用导数解决单调性中求参数问题(选填)热点题型归纳 1题型一:已知函数y =f (x )在区间D 上单调 1题型二:已知函数f x 在区间D 上存在单调区间 6题型三:已知函数f x 在区间D 上不单调 8题型四:已知函数f x 的单调区间恰为D 11题型五:已知函数f x 有三个单调区间 13最新模考题组练 16热点题型归纳题型一:已知函数y =f (x )在区间D 上单调【典型例题】例题1.(2022·重庆市第七中学校高二阶段练习)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A.[1,+∞)B.(-∞,-1]C.(1,+∞)D.(-∞,-2]例题2.(2022·全国·高二课时练习)若函数f (x )=x 2-ax +a e x 在区间(-1,0)内单调递减,则实数a 的取值范围是( )A.(-∞,3]B.[3,+∞)C.[1,+∞)D.(-∞,1]例题3.(2022·陕西咸阳中学高三阶段练习(理))已知函数f x =ax 2+2x -e x ,若对∀m ,n ∈0,+∞ ,m >n ,都有f m -f nm -n <2成立,则a 的取值范围是( )A.-∞,12B.-∞,1C.-∞,e2D.-∞,e 【提分秘籍】已知函数f x 在区间D 上单调①已知f x 在区间D 上单调递增⇔∀x ∈D ,f x ≥0恒成立.②已知f x 在区间D 上单调递减⇔∀x ∈D ,f x ≤0恒成立.注:已知单调性,等价条件中的不等式含等号.【变式演练】1.(2021·四川·宜宾市叙州区第一中学校高二阶段练习(文))若f (x )=-12x 2+(a +2)x +ln x 在(1,+∞)上是减函数,则实数a 的取值范围是( )A.(-∞,-2)B.(-2,+∞)C.[-2,+∞)D.-∞,-22.(2022·全国·高三专题练习)设函数f (x )=ln x -ax 2在(1,+∞)上单调递减,则实数a 的取值范围是( )A.0,12B.12,+∞C.(0,1]D.[1,+∞)3.(2022·陕西省宝鸡市长岭中学高二期中(理))若函数h x =2x -kx在1,+∞ 上是增函数,则实数k 的取值范围是( )A.-2,+∞B.2,+∞C.-∞,-2D.-∞,24.(2022·山西临汾·高三期中)设函数f (x )=ln x +mx ,若对任意b >a >1,f (b )-f (a )b -a <1恒成立,则m 的取值范围是( )A.0,+∞B.0,+∞C.14,+∞D.14,+∞题型二:已知函数f x 在区间D 上存在单调区间【典型例题】例题1.(2022·江西·上高二中高二阶段练习(文))若函数g (x )=ln x +12x 2-b -1 x 存在单调递减区间,则实数b 的取值范围是( )A.3,+∞B.3,+∞C.-∞,3D.-∞,3例题2.(2022·全国·高三专题练习)若函数f (x )=12ax 2+x ln x -x 存在单调递增区间,则a 的取值范围是( )A.-1e,1 B.-1e,+∞ C.-1,+∞D.-∞,1e【提分秘籍】已知函数f x 在区间D 上存在单调区间①已知f x 在区间D 上存在单调增区间⇔∃x ∈D ,f (x )>0有解.②已知f x 在区间D 上存在单调减区间⇔∃x ∈D ,f (x )<0有解.【变式演练】1.(2022·全国·高三专题练习)若函数f (x )=ln x +12x 2-(b -1)x 在12,2 存在单调递减区间,则实数b 的取值范围是A.[3,+∞)B.(3,+∞)C.72,+∞D.72,+∞2.(2022·福建·福州黎明中学高三阶段练习)若函数f (x )=x 2-4ex -ax 在R 上存在单调递增区间,则实数a 的取值范围为__________.题型三:已知函数f x 在区间D 上不单调【典型例题】例题1.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))已知函数f x =1-x ln x +ax 在1,+∞ 上不单调,则a 的取值范围是( )A.0,+∞B.-∞,0C.0,+∞D.-∞,0例题2.(2022·广西河池·高二阶段练习(理))若函数f x =2x 2-ln x 在定义域内的一个子区间k -1,k +1上不是单调函数,则实数k 的取值范围是( )A.-12,32B.32,2C.1,2D.1,32【提分秘籍】已知函数f x 在区间D 上不单调⇔∃x 0∈D ,使得f x 0 =0(其中x 0为变号零点)【变式演练】1.(2022·安徽·合肥一中高二阶段练习)若函数f (x )=x 3+2-a x 2+a3x +1在其定义域上不单调,则实数a 的取值范围为( )A.a <1或a >4B.a ≤1或a ≥4C.1<a <4D.1≤a ≤42.(2022·四川省资阳中学高二期中(理))已知函数f (x )=ln x -ax -2在区间(1,2)上不单调,则实数a 的取值范围为( )A.12,1B.12,1C.13,12D.12,233.(2022·江西·金溪一中高二阶段练习(理))已知函数f x =x 2-a ln x +1在1,3 内不是单调函数,则实数a 的取值范围是( )A.2,18B.2,18C.-∞,2 ∪18,+∞D.2,184.(2022·上海大学市北附属中学高一期中)若函数y =2x 2-kx +8在区间2,5 上不是单调函数,则实数k 的取值范围________.题型四:已知函数f x 的单调区间恰为D【典型例题】例题1.(2021·四川省成都市玉林中学高二期中(文))已知函数f (x )=x 2-ax -1 e x -1在(-∞,-2)单调递增,在(-2,1)单调递减,则函数f (x )在[-2,2]的值域是( )A.[-1,e ]B.[-e ,e 2]C.[e -1,5e -2]D.[5e -2,e 2]例题2.(2022·全国·高二课时练习)已知函数f x =13x 3+ax 2+x +1在-∞,0 、3,+∞ 上为增函数,在1,2 上为减函数,则实数a 的取值范围为( )A.-∞,-1B.-53,-54C.-53,1D.-53,-54【变式演练】1.(2022·全国·高二课时练习)已知函数f (x )=13ax 3+12bx 2+cx +d (a ,b ,c ,d ∈R )的单调递增区间是(-3,1),则( )A.a <b <cB.b <c <aC.b <a <cD.a <c <b2.(2022·福建漳州·高二期末)已知函数f (x )=x 3+ax 2+bx +c 的单调递减区间是[-4,-2],则关于x 的不等式f (-2)≤f (x )≤f (-4)的解集是__________.题型五:已知函数f x 有三个单调区间【典型例题】例题1.(2019·河北省隆化存瑞中学高三阶段练习(理))若函数f x =43x 3-2ax 2-a -2 x +5恰好有三个单调区间,则实数a 的取值范围为A.-1≤a ≤2B.-2≤a ≤1C.a >2或a <-1D.a >1或a <-2例题2.(2019·江苏盐城·一模)已知函数f x =x -a ln x a ∈R ,若函数f x 存在三个单调区间,则实数a 的取值范围是__________.【提分秘籍】已知函数f x 有三个单调区间⇔f (x )=0有两个不同的实数根.【变式演练】1.(2022·宁夏·永宁县文昌中学高三期末(文))若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是________________.2.(2022·江西省信丰中学高二阶段练习(文))若函数f (x )=ax 3+x 在定义域R 上恰有三个单调区间,则a 的取值范围是( )A.(-∞,0)B.(0,+∞)C.-∞,0D.0,+∞3.(2016·黑龙江双鸭山·高二阶段练习)若函数f (x )=ax 3+3x 2-x 恰有三个单调区间,则实数a 的取值范围为A.(-3,+∞)B.-3,+∞C.(-3,0)⋃(0,+∞)D.(-∞,0)⋃(0,3)4.(2020·全国·高三专题练习)已知函数f x =x 3+3ax 2+3a +2 x +1恰有三个单调区间,则实数a 的取值范围是__________.最新模考题组练一、单选题1.(2019·四川自贡·高二期末(理))函数f x =ax 3+x 2+5x -1恰有3个单调区间的必要不充分条件是( )A.-∞,115B.0,115C.-∞,0 ∪0,115D.-∞,02.(2019·河北省隆化存瑞中学高三阶段练习(理))若函数f x =43x 3-2ax 2-a -2 x +5恰好有三个单调区间,则实数a 的取值范围为A.-1≤a ≤2B.-2≤a ≤1C.a >2或a <-1D.a >1或a <-23.(2022·河南·驻马店市第二高级中学高三阶段练习(文))若函数f x =kx -ln x 在区间12,+∞ 上单调递增,则k 的取值范围为( )A.12,+∞B.2,+∞C.14,+∞D.4,+∞4.(2021·江苏·张家港高级中学高三期中)若函数f x =ln x +ax 2-2在区间12,2内存在单调递增区间,则实数a 的取值范围是( )A.-2,+∞B.-18,+∞ C.-18,-2D.-2,+∞5.(2023·全国·高三专题练习)若函数f (x )=x 2+x -ln x -2在其定义域的一个子区间(2k -1,2k +1)内不是单调函数,则实数k 的取值范围是( )A.-32,34B.12,3C.-32,3 D.12,346.(2022·福建福州·高三期中)已知函数f x =ae x +4x ,对任意的实数x 1,x 2∈(-∞,+∞),且x 1≠x 2,不等式f x 1 -f x 2 x 1-x 2>x 1+x 2恒成立,则实数a 的取值范围是( )A.2e ,+∞B.2e 3,+∞ C.2e,+∞D.2e 3,+∞7.(2023·全国·高三专题练习)已知函数f x =ax 4+x -1 e x 在区间1,3 上不是单调函数,则实数a 的取值范围是( )A.-e 4,-e 216B.-e 4,-e 216C.-e 336,-e 216D.-e 4,-e 3168.(2022·安徽·合肥一中高二阶段练习)若函数f (x )=x 3+2-a x 2+a3x +1在其定义域上不单调,则实数a 的取值范围为( )A.a <1或a >4B.a ≤1或a ≥4C.1<a <4D.1≤a ≤4二、填空题9.(2016·山东济宁·高二阶段练习(文))若函数f (x )=x 3+bx 2+x 恰有三个单调区间,则实数b 的取值范围为___________.10.(2015·江苏宿迁·高二期中)若函数y =-43x 3+bx 2-2x +5有三个单调区间,则实数b 的取值范围为______.11.(2022·福建·莆田第三中学高三阶段练习)已知函数f x =3ln x -kx +kx,若f x 在定义域内为单调递减函数,则实数k 的最小值为__________________.12.(2022·上海·上外附中高三阶段练习)f x =-13x 3+12x 2+2ax ,若f x 在23,+∞ 上存在单调递增区间,则a 的取值范围是_______13.(2022·全国·模拟预测)若函数y =a x 3-x 的单调递增区间是-∞,-33 ,33,+∞ ,则实数a 的取值范围是______.14.(2021·江苏·高二专题练习)已知函数f(x)=x3-ax2在[2,4]上不是单调函数,则实数a的取值范围是_________.利用导数解决单调性中求参数问题(选填)热点题型归纳 1题型一:已知函数y=f(x)在区间D上单调 1题型二:已知函数f x 在区间D上存在单调区间 6题型三:已知函数f x 在区间D上不单调 8题型四:已知函数f x 的单调区间恰为D 11题型五:已知函数f x 有三个单调区间 13最新模考题组练 16热点题型归纳题型一:已知函数y=f(x)在区间D上单调【典型例题】例题1.(2022·重庆市第七中学校高二阶段练习)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )A.[1,+∞)B.(-∞,-1]C.(1,+∞)D.(-∞,-2]【答案】A【详解】由题意得,f(x)的定义域为(0,+∞),f (x)=k-1 x,因为f(x)在(1,+∞)上单调递增,所以f (x)≥0在(1,+∞)上恒成立,即k≥1x,又函数y=1x在(1,+∞)上单调递减,所以k≥1.故选:A例题2.(2022·全国·高二课时练习)若函数f(x)=x2-ax+ae x在区间(-1,0)内单调递减,则实数a的取值范围是( )A.(-∞,3]B.[3,+∞)C.[1,+∞)D.(-∞,1]【答案】D【详解】由f(x)=x2-ax+ae x得f x =e x x2+2-ax=xe x x+2-a,由于函数f(x)=x2-ax+ae x在区间(-1,0)内单调递减,即f x ≤0在(-1,0)上恒成立,即x+2-a≥0,即得a≤x+2在(-1,0)恒成立,所以a≤1,故选:D.例题3.(2022·陕西咸阳中学高三阶段练习(理))已知函数f x =ax 2+2x -e x ,若对∀m ,n ∈0,+∞ ,m >n ,都有f m -f nm -n <2成立,则a 的取值范围是( )A.-∞,12B.-∞,1C.-∞,e 2D.-∞,e 【答案】C【详解】因为对∀m ,n ∈0,+∞ ,m >n ,都有f m -f nm -n<2成立,所以对∀m ,n ∈0,+∞ ,m >n ,都有f m -2m <f n -2n .设g x =f x -2x =ax 2-e x ,则g x 在0,+∞ 为减函数.g x =2ax -e x ,等价于x ∈0,+∞ ,2ax -e x ≤0恒成立,即x ∈0,+∞ ,2a ≤e xx恒成立.设h x =e x x ,h x =e x x -e xx 2=e x x -1 x 2,所以x ∈0,1 ,h x <0,h x 为减函数,x ∈1,+∞ ,h x >0,h x 为增函数,所以h x min =h 1 =e ,所以2a ≤e ,即a ≤e2.故选:C【提分秘籍】已知函数f x 在区间D 上单调①已知f x 在区间D 上单调递增⇔∀x ∈D ,f x ≥0恒成立.②已知f x 在区间D 上单调递减⇔∀x ∈D ,f x ≤0恒成立.注:已知单调性,等价条件中的不等式含等号.【变式演练】1.(2021·四川·宜宾市叙州区第一中学校高二阶段练习(文))若f (x )=-12x 2+(a +2)x +ln x 在(1,+∞)上是减函数,则实数a 的取值范围是( )A.(-∞,-2) B.(-2,+∞)C.[-2,+∞)D.-∞,-2【答案】D【详解】由题意可得:当x >1时,f x =-x +a +2 +1x ≤0,即a ≤x -1x-2.因为y =x 和y =-1x 在(1,+∞)上单增,所以y =x -1x-2在(1,+∞)上单增,所以y >-2,所以a ≤-2.故选:D2.(2022·全国·高三专题练习)设函数f (x )=ln x -ax 2在(1,+∞)上单调递减,则实数a 的取值范围是( )A.0,12B.12,+∞C.(0,1]D.[1,+∞)【答案】B【详解】解:∵函数f (x )=ln x -ax 2在(1,+∞)上单调递减,∴当x ∈(1,+∞)时,f ′(x )=1-2ax 2x ≤0,∴a ≥12x 2在x ∈(1,+∞)时恒成立,即a ≥12x 2 max ,x ∈(1,+∞),又∵y =12x 2在1,+∞ 单调递减,故y max =12×12=12,故a ∈12,+∞ .故选:B .3.(2022·陕西省宝鸡市长岭中学高二期中(理))若函数h x =2x -kx在1,+∞ 上是增函数,则实数k 的取值范围是( )A.-2,+∞ B.2,+∞C.-∞,-2D.-∞,2【答案】A【详解】h x =2+k x 2=2x 2+kx 2,因为h x 在1,+∞ 上是增函数,所以h x ≥0对x ∈1,+∞ 恒成立,则2x 2+k x 2≥0对x ∈1,+∞ 恒成立,所以k ≥-2x 2对x ∈1,+∞ 恒成立,则k ≥-2,即k ∈[-2,+∞).故选:A .4.(2022·山西临汾·高三期中)设函数f (x )=ln x +m x ,若对任意b >a >1,f (b )-f (a )b -a<1恒成立,则m 的取值范围是( )A.0,+∞ B.0,+∞C.14,+∞D.14,+∞【答案】A【详解】由题设f (b )-b <f (a )-a ,且b >a >1,令g (x )=f (x )-x =ln x +mx-x 且x >1,则g (b )<g (a ),故g (x )在x ∈(1,+∞)上递减,所以g(x )=1x -m x 2-1=-x 2-x +m x2≤0恒成立,即m ≥x -x 2在x ∈(1,+∞)上恒成立,而y =x -x 2=-x -12 2+14在x ∈(1,+∞)上值域为(-∞,0),所以m ≥0.故选:A题型二:已知函数f x 在区间D 上存在单调区间【典型例题】例题1.(2022·江西·上高二中高二阶段练习(文))若函数g (x )=ln x +12x 2-b -1 x 存在单调递减区间,则实数b 的取值范围是( )A.3,+∞ B.3,+∞C.-∞,3D.-∞,3【答案】B【详解】函数g (x )=ln x +12x 2-b -1 x 的定义域为0,+∞ ,且其导数为g x =1x+x -(b -1).由g x 存在单调递减区间知g x <0在0,+∞ 上有解,即1x+x -(b -1)有解.因为函数g x 的定义域为0,+∞ ,所以x +1x ≥2.要使1x +x -(b -1)有解,只需要1x+x 的最小值小于b -1,所以2<b-1,即b >3,所以实数b 的取值范围是3,+∞ .故选:B .例题2.(2022·全国·高三专题练习)若函数f (x )=12ax 2+x ln x -x 存在单调递增区间,则a 的取值范围是( )A.-1e ,1 B.-1e,+∞ C.-1,+∞D.-∞,1e【答案】B【详解】f (x )=ax +ln x ,∴f (x )>0在x ∈0,+∞ 上有解,即ax +ln x >0在x ∈0,+∞ 上有解,即a >-ln x x 在x ∈0,+∞ 上有解.令g (x )=-ln x x ,则g ′(x )=-1-ln x x 2,∴g (x )=-ln xx 在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )=-ln x x 的最小值为g (e )=-1e ,∴a >-1e.故选:B .【提分秘籍】已知函数f x 在区间D 上存在单调区间①已知f x 在区间D 上存在单调增区间⇔∃x ∈D ,f (x )>0有解.②已知f x 在区间D 上存在单调减区间⇔∃x ∈D ,f (x )<0有解.【变式演练】1.(2022·全国·高三专题练习)若函数f (x )=ln x +12x 2-(b -1)x 在12,2 存在单调递减区间,则实数b 的取值范围是A.[3,+∞) B.(3,+∞)C.72,+∞D.72,+∞【答案】B【详解】因为函数f (x )=ln x +12x 2-(b -1)x 在12,2 存在单调递减区间,故f x <0在区间12,2上有解.即1x +x -b -1 <0在区间12,2 有解.即存在x ∈12,2 ,使得b -1>x +1x ,又y =x +1x 在12,1 单调递减,在1,2 单调递增.且x =12时,y =52;x =1时y =2;x =2时,y =52,故要满足题意,只需b -1>2即可,解得b >3.故选:B .2.(2022·福建·福州黎明中学高三阶段练习)若函数f (x )=x 2-4ex -ax 在R 上存在单调递增区间,则实数a 的取值范围为__________.【答案】-∞,-2-2ln2【详解】因为f (x )=x 2-4ex -ax ,所以f ′(x )=2x -4ex -a .由题意,f ′(x )=2x -4ex -a >0,即a <2x -4ex 有解.令g (x )=2x -4ex ,则g ′(x )=2-4ex .令g ′(x )=0,解得x =-ln2.当x ∈(-∞,-ln2)时,函数g (x )=2x -4ex 单调递增;当x ∈(-ln2,+∞)时,函数g (x )=2x -4ex 单调递减.所以当x =-ln2时,g (x )=2x -4ex 取得最大值-2-2ln2,所以a <-2-2ln2.题型三:已知函数f x 在区间D 上不单调【典型例题】例题1.(2022·陕西·蒲城县蒲城中学高三阶段练习(文))已知函数f x =1-x ln x +ax 在1,+∞ 上不单调,则a 的取值范围是( )A.0,+∞ B.-∞,0C.0,+∞D.-∞,0【答案】A【详解】依题意f ′x =-ln x +1x +a -1,故f ′(x )在1,+∞ 上有零点,令g (x )=-ln x +1x+a -1,令g (x )=0,得a =ln x -1x +1,令z (x )=ln x -1x+1,则z ′(x )=1x +1x2,由x >1,得z ′(x )>0,z (x )单调递增,又由z (1)=0,得z (x )>0,故a =z (x )>0,所以,a 的取值范围0,+∞ 故选:A例题2.(2022·广西河池·高二阶段练习(理))若函数f x =2x 2-ln x 在定义域内的一个子区间k -1,k +1上不是单调函数,则实数k 的取值范围是( )A.-12,32B.32,2C.1,2D.1,32【答案】D【详解】由题意得,函数定义域为0,+∞f x =4x -1x ,令f x =0,解得在定义域内x =12,当x <12时,f x <0,f x 单调递减,当x >12时,f x >0,f x 单调递增,函数在区间k -1,k +1 内不单调,所以k -1<12<k +1,解得-12<k <32,又因为k -1≥0,得k ≥1,综上k ∈1,32 ,故选:D .【提分秘籍】已知函数f x 在区间D 上不单调⇔∃x 0∈D ,使得f x 0 =0(其中x 0为变号零点)【变式演练】1.(2022·安徽·合肥一中高二阶段练习)若函数f (x )=x 3+2-a x 2+a3x +1在其定义域上不单调,则实数a 的取值范围为( )A.a <1或a >4 B.a ≤1或a ≥4C.1<a <4D.1≤a ≤4【答案】A【详解】由题意,函数f (x )=x 3+2-a x 2+a 3x +1,可得f (x )=3x 2+4-2a x +a 3,因为函数f (x )=x 3+2-a x 2+a3x +1在其定义域上不单调,即f (x )=3x 2+4-2a x +a3=0有变号零点,结合二次函数的性质,可得Δ=(4-2a )2-4a >0,即a 2-5a +4>0,解得a <1或a >4,所以实数a 的取值范围为(-∞,1)∪(4,+∞).故选:A .2.(2022·四川省资阳中学高二期中(理))已知函数f (x )=ln x -ax -2在区间(1,2)上不单调,则实数a 的取值范围为( )A.12,1 B.12,1C.13,12D.12,23【答案】B 【详解】由f (x )=1x -a =1-axx,①当a ≤0时函数f (x )单调递增,不合题意;②当a >0时,函数f (x )的极值点为x =1a ,若函数f (x )在区间(1,2)不单调,必有1<1a <2,解得12<a<1.故选:B .3.(2022·江西·金溪一中高二阶段练习(理))已知函数f x =x 2-a ln x +1在1,3 内不是单调函数,则实数a 的取值范围是( )A.2,18B.2,18C.-∞,2 ∪18,+∞D.2,18【答案】A【详解】∵f 'x =2x -a x,f x =x 2-a ln x +1在1,3 内不是单调函数,故2x -ax=0在1,3 存在变号零点,即a =2x 2在1,3 存在零点,∴2<a <18.故选:A .4.(2022·上海大学市北附属中学高一期中)若函数y =2x 2-kx +8在区间2,5 上不是单调函数,则实数k 的取值范围________.【答案】8,20【详解】解:因为y =2x 2-kx +8,所以函数的对称轴为x =k4,因为函数在区间2,5 上不是单调函数,所以2<k4<5,解得8<k <20,即实数k 的取值范围为8,20 .故答案为:8,20题型四:已知函数f x 的单调区间恰为D【典型例题】例题1.(2021·四川省成都市玉林中学高二期中(文))已知函数f (x )=x 2-ax -1 e x -1在(-∞,-2)单调递增,在(-2,1)单调递减,则函数f (x )在[-2,2]的值域是( )A.[-1,e ] B.[-e ,e 2]C.[e -1,5e -2]D.[5e -2,e 2]【答案】A【详解】解:f ′(x )=(2x -a )e x -1+(x 2-ax -1)e x -1=(x 2-ax +2x -a -1)e x -1,∵f (x )在(-∞,-2)单调递增,在(-2,1)单调递减,∴f ′(-2)=0,即(4+2a -4-a -1)e -3=0,∴a =1,∴f (x )=(x 2-x -1)e x -1,f ′(x )=(x +2)(x -1)e x -1,当2>x >1,x <-2时,f ′(x )>0,当-2<x <1时,f ′(x )<0,∴f (x )在[-2,1)上单调递减,在[1,2],-∞,-2 上单调递增,∴a =1符合题意,又f (-2)=5e -3,f (1)=-1,f (2)=e ,∴函数f (x )在[-2,2]的值域是[-1,e ].故选:A .例题2.(2022·全国·高二课时练习)已知函数f x =13x 3+ax 2+x +1在-∞,0 、3,+∞ 上为增函数,在1,2 上为减函数,则实数a 的取值范围为( )A.-∞,-1 B.-53,-54C.-53,1D.-53,-54【答案】B【详解】因为f x =13x 3+ax 2+x +1,则f x =x 2+2ax +1,由题意可知,f x 有两个不等的零点,设为x 1、x 2且x 1<x 2,因为函数f x =13x 3+ax 2+x +1在-∞,0 、3,+∞ 上为增函数,在1,2 上为减函数,则x 1∈0,1 、x 2∈2,3 ,所以,f 0 =1>0f1 =2+2a ≤0f2 =4a +5≤0f3 =6a +10≥0 ,解得-53≤a ≤-54.故选:B .【变式演练】1.(2022·全国·高二课时练习)已知函数f (x )=13ax 3+12bx 2+cx +d (a ,b ,c ,d ∈R )的单调递增区间是(-3,1),则( )A.a <b <c B.b <c <aC.b <a <cD.a <c <b【答案】C【详解】解:由题可得f (x )=ax 2+bx +c ,则f (x )>0的解集为(-3,1),即f (x )=a (x +3)(x -1)=0,a <0,可得b =2a ,c =-3a ,∴b <a <c ,故选:C .2.(2022·福建漳州·高二期末)已知函数f (x )=x 3+ax 2+bx +c 的单调递减区间是[-4,-2],则关于x 的不等式f (-2)≤f (x )≤f (-4)的解集是__________.【答案】[-5,-1]【详解】f x =3x 2+2ax +b ,f (x )的单调递减区间是[-4,-2],则不等式f x ≤0的解集为[-4,-2],所以-4,-2是f (x )=0的两根,故a =9,b =24,所以f (x )=x 3+9x 2+24x +c ,f (-2)=c -20,f (-4)=c -16.令f (x )≤f (-4),得x 3+9x 2+24x +16≤0,即(x +4)(x 2+5x +4)=(x +4)2(x +1)≤0,得x ≤-1;令f (-2)≤f (x ),得x 3+9x 2+24x +20≥0,即(x +2)(x 2+7x +10)=(x +2)2(x +5)≥0,得x ≥-5;所以不等式f (-2)≤f (x )≤f (-4)的解集为[-5,-1].故答案为:[-5,-1]题型五:已知函数f x 有三个单调区间【典型例题】例题1.(2019·河北省隆化存瑞中学高三阶段练习(理))若函数f x =43x 3-2ax 2-a -2 x +5恰好有三个单调区间,则实数a 的取值范围为A.-1≤a ≤2 B.-2≤a ≤1C.a >2或a <-1D.a >1或a <-2【答案】D【详解】因为函数f x =43x 3-2ax 2-a -2 x +5恰好有三个单调区间,所以f (x )=4x 2-4ax -(a -2)有两个不等零点,则Δ=16a 2+16(a -2)=16(a -1)(a +2)>0,解得a>1或a <-2.故选D .例题2.(2019·江苏盐城·一模)已知函数f x =x -a ln x a ∈R ,若函数f x 存在三个单调区间,则实数a 的取值范围是__________.【答案】-1e 2,0【详解】f 'x =ln x +1x x -a =ln x +1-ax 函数f x =x -a ln x a ∈R ,若函数f x 存在三个单调区间即f 'x =0有两个不等实根,即a =x ln x +1 有两个不等实根,转化为y =a 与y =x ln x +1 的图像有两个不同的交点y '=ln x +2令ln x +2=0,即x =1e 2,即y =x ln x +1 在0,1e 2 上单调递减,在1e2,+∞ 上单调递增.y min =-1e 2,当x ∈0,1e 2 时,y <0,所以a 的范围为-1e 2,0 【提分秘籍】已知函数f x 有三个单调区间⇔f (x )=0有两个不同的实数根.【变式演练】1.(2022·宁夏·永宁县文昌中学高三期末(文))若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是________________.【答案】b >0【详解】试题分析:由已知可得y '=-4x 2+b =0在R 上有不等实根⇒b >0.2.(2022·江西省信丰中学高二阶段练习(文))若函数f (x )=ax 3+x 在定义域R 上恰有三个单调区间,则a的取值范围是( )A.(-∞,0) B.(0,+∞)C.-∞,0D.0,+∞【答案】A【详解】因为函数f (x )=ax 3+x 在定义域R 上恰有三个单调区间,所以其导函数在定义域R 上有两个不同的零点,由f (x )=3ax 2+1可得3ax 2+1=0,即x 2=-13a,所以只需a <0,方程3ax 2+1=0在R 上有两个不同的实数根.故选:A .3.(2016·黑龙江双鸭山·高二阶段练习)若函数f (x )=ax 3+3x 2-x 恰有三个单调区间,则实数a 的取值范围为A.(-3,+∞) B.-3,+∞C.(-3,0)⋃(0,+∞)D.(-∞,0)⋃(0,3)【答案】D【详解】试题分析:由题意得,函数f (x )的导数为f (x )=3ax 2+6x -1,因为函数f (x )=ax 3+3x 2-x 恰有三个单调区间,所以a ≠0且f (x )=0有两个根,即Δ=62+4×3a >0,解得a <3且a ≠0,故选D .4.(2020·全国·高三专题练习)已知函数f x =x 3+3ax 2+3a +2 x +1恰有三个单调区间,则实数a 的取值范围是__________.【答案】a <-1或a >2【详解】分析:求出函数的导函数,利用导数有两个不同的零点,说明函数恰好有三个单调区间,从而求出a 的取值范围.详解:∵函数f x =x 3+3ax 2+3a +2 x +1,∴f ′(x )=3x 2+6ax +3a +2 ,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,∴3x 2+6ax +3a +2 =0满足:△=36a 2-36a +2 >0,解得a <-1或a >2,故答案为:a <-1或a >2.最新模考题组练一、单选题1.(2019·四川自贡·高二期末(理))函数f x =ax 3+x 2+5x -1恰有3个单调区间的必要不充分条件是( )A.-∞,115B.0,115C.-∞,0 ∪0,115D.-∞,0【答案】A【详解】解:由f (x )=ax 3+x 2+5x -1,得f ′(x )=3ax 2+2x +5,当a =0时,由f ′(x )=0,解得x =-52,函数f (x )有两个单调区间;当a >0时,由Δ=4-60a >0,解得a <115,即0<a <115,此时函数f (x )=ax 3+x 2+5x -1恰有3个单调区间;当a <0时,Δ=4-60a >0,解得a <115,即a <0,此时函数f (x )=ax 3+x 2+5x -1恰有3个单调区间.∴综上所述a ∈-∞,0 ∪0,115是函数f (x )=ax 3+x 2+5x -1恰有3个单调区间的充要条件,分析可得a ∈-∞,115是其必要不充分条件.故选:A .2.(2019·河北省隆化存瑞中学高三阶段练习(理))若函数f x =43x 3-2ax 2-a -2 x +5恰好有三个单调区间,则实数a 的取值范围为A.-1≤a ≤2 B.-2≤a ≤1C.a >2或a <-1D.a >1或a <-2【答案】D【详解】因为函数f x =43x 3-2ax 2-a -2 x +5恰好有三个单调区间,所以f (x )=4x 2-4ax -(a -2)有两个不等零点,则Δ=16a 2+16(a -2)=16(a -1)(a +2)>0,解得a>1或a <-2.故选D .3.(2022·河南·驻马店市第二高级中学高三阶段练习(文))若函数f x =kx -ln x 在区间12,+∞ 上单调递增,则k 的取值范围为( )A.12,+∞B.2,+∞C.14,+∞D.4,+∞【答案】B【详解】f (x )=k -1x ,因为函数f x =kx -ln x 在区间12,+∞ 上单调递增,所以f (x )=k -1x≥0在12,+∞ 上恒成立,即k ≥1x 在12,+∞ 上恒成立.因为y =1x 在12,+∞ 上单调递减,所以当x ∈12,+∞ 时,y <2,所以k ≥2,则k 的取值范围为2,+∞ .故选:B4.(2021·江苏·张家港高级中学高三期中)若函数f x =ln x +ax 2-2在区间12,2内存在单调递增区间,则实数a 的取值范围是( )A.-2,+∞ B.-18,+∞ C.-18,-2D.-2,+∞【答案】D【详解】∵f (x )=ln x +ax 2-2,∴f (x )=1x+2ax ,若f x 在区间12,2 内存在单调递增区间,则f (x )>0,x ∈12,2 有解,故a >-12x2,令g (x )=-12x 2,则g (x )=-12x2在12,2 单调递增,∴g (x )>g 12=-2,故 a >-2.故选:D .5.(2023·全国·高三专题练习)若函数f (x )=x 2+x -ln x -2在其定义域的一个子区间(2k -1,2k +1)内不是单调函数,则实数k 的取值范围是( )A.-32,34B.12,3 C.-32,3 D.12,34【答案】D【详解】因为函数f (x )的定义域为(0,+∞),所以2k -1≥0,即k ≥12,f (x )=2x +1-1x =2x 2+x -1x =(x +1)(2x -1)x ,令f (x )=0,得x =12或x =-1(舍去),因为f (x )在定义域的一个子区间(2k -1,2k +1)内不是单调函数,所以2k -1<12<2k +1,得-14<k <34,综上,12≤k <34,故选:D6.(2022·福建福州·高三期中)已知函数f x =ae x +4x ,对任意的实数x 1,x 2∈(-∞,+∞),且x 1≠x 2,不等式f x 1 -f x 2 x 1-x 2>x 1+x 2恒成立,则实数a 的取值范围是( )A.2e ,+∞B.2e 3,+∞C.2e ,+∞D.2e 3,+∞【答案】B【详解】不妨设x 1>x 2,由f x 1 -f x 2 x 1-x 2>x 1+x 2,得f x 1 -f x 2 >x 21-x 22,即f x 1 -x 21>f x 2 -x 22,令g (x )=f (x )-x 2,所以对任意的实数x 1,x 2∈(-∞,+∞),x 1>x 2时,都有g x 1 >g x 2 ,即g (x )在(-∞,+∞)上单调递增,所以g (x )=ae x -2x +4≥0在x ∈(-∞,+∞)上恒成立,即a ≥2x -4e x.在x ∈(-∞,+∞)上恒成立.令h (x )=2x -4e x.则h (x )=6-2xe x,令h (x )>0,解得x <3,令h (x )<0,解得x >3,所以h (x )在(-∞,3)上单调递增,在(3,+∞)上单调递减,所以h (x )max =h (3)=2e 3,所以a ≥2e 3,即实数a 的取值范围是2e 3,+∞ .故选:B .7.(2023·全国·高三专题练习)已知函数f x =ax 4+x -1 e x 在区间1,3 上不是单调函数,则实数a 的取值范围是( )A.-e 4,-e 216 B.-e 4,-e 216C.-e 336,-e 216D.-e 4,-e 316【答案】A【详解】因为f x =ax 4+(a -1)e x 在区间1,3 上不是单调函数,所以f x =4ax 3+xe x =0在区间1,3 上有解,即-4a =e xx2在区间1,3 上有解.令g x =e xx 2,则g 'x =x -2 e xx 3.当x ∈1,2 时,g 'x <0;当x ∈2,3 时,g 'x >0.故g x 在1,2 上单调递减,在2,3 上单调递增.又因为g 1 =e ,g 2 =e 24,g 3 =e 39<e ,且当a =-e 216时,f x =-e 24x 3+xe x =x 3e xx2-e 24 ≥0,所以f x 在区间1,3 上单调递增,所以e 24<-4a <e ,解得-4e <a <-e 216.故选:A8.(2022·安徽·合肥一中高二阶段练习)若函数f (x )=x 3+2-a x 2+a3x +1在其定义域上不单调,则实数a 的取值范围为( )A.a <1或a >4 B.a ≤1或a ≥4C.1<a <4D.1≤a ≤4【答案】A【详解】由题意,函数f (x )=x 3+2-a x 2+a 3x +1,可得f (x )=3x 2+4-2a x +a 3,因为函数f (x )=x 3+2-a x 2+a3x +1在其定义域上不单调,即f (x )=3x 2+4-2a x +a3=0有变号零点,结合二次函数的性质,可得Δ=(4-2a )2-4a >0,即a 2-5a +4>0,解得a <1或a >4,所以实数a 的取值范围为(-∞,1)∪(4,+∞).故选:A .二、填空题9.(2016·山东济宁·高二阶段练习(文))若函数f (x )=x 3+bx 2+x 恰有三个单调区间,则实数b 的取值范围为___________.【答案】b <-3或b >3【详解】试题分析:由f (x )=x 3+bx 2+x , 求导:f (x )=3x 2+2bx +1,恰有三个单调区间则有两个极值, 即令;Δ=4b 2-12>0,b >3或b <-3.10.(2015·江苏宿迁·高二期中)若函数y =-43x 3+bx 2-2x +5有三个单调区间,则实数b 的取值范围为______.【答案】-∞,-22 ∪22,+∞ 【详解】试题分析:函数有3个单调区间,等价于导函数有2个不同零点,y =-4x 2+2bx -2,Δ=4b 2-32>0∴b ∈-∞,-22 ∪22,+∞11.(2022·福建·莆田第三中学高三阶段练习)已知函数f x =3ln x -kx +kx,若f x 在定义域内为单调递减函数,则实数k 的最小值为__________________.【答案】32##1.5【详解】由题意知f x =3ln x -kx +k x ,(x >0),则 f (x )=3x -k -kx2,f x 在定义域内为单调递减函数,则f (x )≤0当x >0时恒成立,则可得: k ≥3x +1xmax, 因为x >0,x +1x ≥2 当且仅当x =1时等号成立,则 3x +1x≤32 ,故 k ≥32 ,即实数k 的最小值为32,故答案为:3212.(2022·上海·上外附中高三阶段练习)f x =-13x 3+12x 2+2ax ,若f x 在23,+∞ 上存在单调递增区间,则a 的取值范围是_______【答案】-19,+∞【详解】因为f x =-13x 3+12x 2+2ax ,则f x =-x 2+x +2a ,有已知条件可得:∃x ∈23,+∞ ,使得f x >0,即a >12x 2-x ,当y =12x 2-x >1223 2-23 =-19,所以a >-19.故答案为:-19,+∞ .13.(2022·全国·模拟预测)若函数y =a x 3-x 的单调递增区间是-∞,-33 ,33,+∞ ,则实数a 的取值范围是______.【答案】0,+∞【详解】y =a 3x 2-1 ,令y =0,得x =±33,由函数y =a x 3-x 的单调递增区间是-∞,-33 ,33,+∞ ,得导函数y =a 3x 2-1 的图象是开口向上的抛物线,所以a >0.故答案为:0,+∞14.(2021·江苏·高二专题练习)已知函数f (x )=x 3-ax 2在[2,4]上不是单调函数,则实数a 的取值范围是_________.【答案】(3,6)【详解】因为f (x )=x 3-ax 2,则f (x )=3x 2-2ax ,若函数f (x )=x 3-ax 2在[2,4]上是单调递增的函数,则f (x )=3x 2-2ax ≥0在[2,4]上恒成立,即a ≤32x 在[2,4]上恒成立,因此a ≤3;若函数f (x )=x 3-ax 2在[2,4]上是单调递减的函数,则f (x )=3x 2-2ax ≤0在[2,4]上恒成立,即a ≥32x 在[2,4]上恒成立,因此a ≥6;因为函数f (x )=x 3-ax 2在[2,4]上个是单调函数,所以3<a <6故答案为:(3,6)。

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。

高三数学利用导数判断函数的单调性PPT教学课件

高三数学利用导数判断函数的单调性PPT教学课件

• 注意:(1)用曲线的切线的斜率来理解法则, 当切线斜率非负时,切线的倾斜角小于90°, 函数曲线呈向上增加状态;当切线斜率为负 时,切线的倾斜角大于90°,小于180°,函数 曲线呈向下减少状态.
• (2)如果在某个区间内恒有f′(x)=0,则f(x)在 这个区间上等于常数.
• (3)对于可导函数f(x)来说,f′(x)>0是f(x)在(a, b)上为单调增函数的充分不必要条件,f′(x)<0 是f(x)在(a,b)上为单调减函数的充分不必要 条件,例如:f(x)=x3在R上为增函数,但f′(0) =0,所以在x=0处不满足f′(x)>0.
• [答案] C
• 求函数f(x)=3x2-2lnx的单调区间.
[解析] 函数的定义域为(0,+∞), f′(x)=6x-2x=23xx2-1. 由 f′(x)>0, 即3x2x-1>0,得 x> 33, ∴函数 f(x)的增区间为( 33,+∞),
•判断或证明函数的单调性
函数.
试证明:函数 f(x)=lnxx在区间(0,2)上是单调递增
•构造函数证明不等式
已知 0<x<π2,求证 tanx>x. [解题提示] 设 f(x)=tanx-x,x∈[0,π2),注意到 f(0)=tan0 -0=0,要证的不等式变为:当 0<x<π2时,f(x)>f(0).这只需证 明 f(x)在[0,π2)上单调递增.
当 x>0 时,证明不等式 ln(x+1)>x-12x2. [解析] 令 f(x)=ln(x+1)-x+12x2,定义域为(-1,+∞), 则 f′(x)=1+1 x-1+x=1+x2 x. 当 x∈(-1,+∞)时,f′(x)>0, ∴f(x)在(-1,+∞)上是增函数. 于是当 x>0 时,f(x)>f(0)=0,

导数与函数的单调性解析与归纳

导数与函数的单调性解析与归纳

导数与函数的单调性解析与归纳导数与函数的单调性在微积分中占据着重要的地位,它们能够帮助我们更深入地了解函数的性质。

本文将围绕导数与函数的单调性展开讨论,并对其中的解析与归纳进行详细阐述。

一、导数的定义与计算方法函数的导数可以理解为函数在某一点上的变化率。

导数的定义可以用极限来表达,即函数在某点处的导数等于该点附近的函数值变化量与自变量变化量的比值,在数学中可以表示为:\[ f'(x) = \lim_{{\Delta x\to 0}}\frac{{f(x+\Delta x)-f(x)}}{{\Delta x}} \]具体计算导数的方法有多种,如基本的导数运算法则、链式法则、高阶导数等。

这些计算方法能够帮助我们在具体问题中快速求得函数的导数。

二、导数与单调性的关系函数的单调性指的是函数在定义域上的增减性质。

导数与函数的单调性有着密切的联系,具体而言,函数在某一区间上单调递增的条件是其导函数大于零,而单调递减的条件是导函数小于零。

通过导数的符号变化,我们可以判断函数的单调性。

三、导数与函数单调性的解析和证明为了判断函数的单调性,我们需要分析函数的导数在定义域内的符号变化。

具体解析单调性的方法有以下几个步骤:1. 求得函数的导数;2. 找出导数的零点,即导数为零的点,这些点即为函数可能改变单调性的位置;3. 针对导函数的零点,作出符号变化表,利用导函数的符号变化可以得出函数的单调性。

举个例子,考虑函数 $f(x) = x^3 - 3x^2 + 2x$,我们可以按照上述步骤解析其单调性:1. 求导得到 $f'(x) = 3x^2 - 6x + 2$;2. 根据 $f'(x) = 0$,我们可以解得导数的零点为 $x_1 = 1-\frac{{\sqrt{3}}}{{3}}$ 和 $x_2 = 1+\frac{{\sqrt{3}}}{{3}}$;3. 绘制导数的符号变化表:\[\begin{array}{ccccc}x & (-\infty, x_1) & x_1 & (x_1, x_2) & x_2 \\f'(x) & \text{负} & 0 & \text{正} & \text{负} \\\end{array}\]根据符号变化表可以得出函数在 $(-\infty, x_1)$ 单调递减,在 $(x_1, x_2)$ 单调递增,在 $(x_2, +\infty)$ 单调递减。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

利用导函数解决函数单调性问题

利用导函数解决函数单调性问题

利用导函数解决函数单调性问题函数在数学中是一个非常重要的概念,在数学中广泛应用。

在学习函数的过程中,其中一个特性就是函数的单调性。

函数的单调性是指函数在定义域上的变化趋势。

利用函数的导数可以帮助我们解决函数的单调性问题,本文将从导数的概念入手,依次介绍如何通过导数判断函数的单调性。

一、导数的概念首先,我们需要了解导数的概念。

在数学中,导数是函数在某一点的变化率。

可以理解为函数图像在某一点的切线斜率。

常见的记作方式为f'(x),表示函数f(x)在x处的导数。

二、导数与函数单调性的关系导数与函数的单调性之间有着密不可分的联系。

一般来说,在函数的单调性问题中,我们需要判断函数的导数是否大于等于0或小于等于0,从而来判断函数的单调性。

1.导数大于0的函数如果一个函数在其定义域内的任意一点处的导数大于0,则说明该函数在该点左侧是单调递增的,在该点右侧是单调递减的。

换言之,如果一个函数在每个点的导数都大于0,则该函数是单调递增的。

2.导数小于0的函数如果一个函数在其定义域内的任意一点处的导数小于0,则说明该函数在该点左侧是单调递减的,在该点右侧是单调递增的。

换言之,如果一个函数在每个点的导数都小于0,则该函数是单调递减的。

3.导数等于0的函数如果一个函数在其定义域内的任意一点处的导数等于0,则需要进一步分析该点的特性。

如果该点左侧的导数小于0,右侧的导数大于0,则该函数在该点达到局部最小值;反之,如果该点左侧的导数大于0,右侧的导数小于0,则该函数在该点达到局部最大值。

如果该点左右两侧的导数符号相同,则该点为函数的拐点。

三、使用导数解决函数单调性问题的例题下面我们通过一个例题来演示如何利用导数解决函数单调性问题。

例题:已知函数f(x) = 2x^3 - 12x + 5,求函数f(x)的单调区间。

解题思路:1.首先求函数f(x)的一阶导数:f '(x) = 6x^2 - 12 。

2.分析一阶导数的符号:当6x^2 - 12 > 0时,即x^2 > 2,x > sqrt(2)或x < -sqrt(2)时,f(x)单调递增。

导数在函数单调性与极值求解中的应用

导数在函数单调性与极值求解中的应用

导数在函数单调性与极值求解中的应用导数是研究函数的工具,导数进入新教材之后,给函数问题注入了生机和活力,开辟了许多解题新途径,拓展了高考对函数问题的命题空间。

所以把导数与函数综合在一起是顺理成章的事情,试题的命制往往融函数,导数,不等式,方程等知识于一体,通过演绎证明,运算推理等理性思维,解决单调性,极值,最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏。

解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与划归思想。

本文仅以历年高考试为例谈谈导数在函数单调性与极值求解中的应用问题问题,供鉴赏。

一、导数在单调性中的应用:函数的单调性是函数最基本的性质之一,是我们研究函数所要掌握的最基本的知识.它在中学数学中的用处是非常广泛的,其思维方法有:一、利用增(减)函数的定义判断单调性;二、导数法。

利用在(,)a b 内可导的函数()f x 在(,)a b 上递增(或递减)的充要条件是()0f x '≥(或()0f x '≤),(,)x ab∈恒成立(但()f x '在(,)a b 的任意子区间内都不恒等于0)。

方法一化简较为繁琐,比较适合解决抽象函数的单调性问题,而用导数知识来判断函数的单调性既快捷又容易掌握.,特别是对于具体函数更加适用。

1. 利用导数求单调区间:例1.函数y =x ln x 在区间(0,1)上是 A. 单调增函数 B. 单调减函数C.在(0,e1)上是减函数,在(e1,1)上是增函数D.在(0,e1)上是增函数,在(e1,1)上是减函数分析:本题主要考查利用求导方法判定函数在给定区间上的单调性. 解:y ′=ln x +1,当y ′>0时,解得x >e 1.又x ∈(0,1),∴e1<x <1时,函数y =x ln x 为单调增函数.同理,由y ′<0且x ∈(0,1)得0<x <e1,此时函数y =x ln x 为单调减函数.故应选C.答案:C例2.函数y =sin 2x 的单调递减区间是__________. 分析:本题考查导数在三角问题上的应用.解:y ′=2sin x cos x =sin2x . 令y ′<0,即sin2x <0, ∴2k π-π<2x <2k π,k ∈Z . ∴k π-2π<x <k π,k ∈Z .∴函数y =sin 2x 的单调递减区间是(k π-2π,k π),k ∈Z .2. 利用导数和单调性的关系,选择导函数与原函数的图像问题:例3.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如下图所示,则y =f (x )的图象最有可能是(AC BD分析:本题主要考查函数的导数与图象结合处理问题.要求对导数的含义有深刻理解、应用的能力.解:函数的增减性由导数的符号反映出来.由导函数的图象可大略知道函数的图象.由导函数图象知:函数在(-∞,0)上递增,在(0,2)上递减,在(2,+∞)上递增;函数f (x )在x =0处取得极大值,在x =2处取得极小值.答案:C例4.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中 ()y f x =的图象大致是( )解析:由()y xf x '=图象可知:)(/x f y =在]1,1[-上小于等于零,故原函数在]1,1[-上为减函数,故选C .评注:函数()y xf x '=图象提供了很多信息,但要抓住关键特点,如导数为零的点、导数为正值或负值的区间等.3. 利用导数和单调性的关系判断方程解的个数: 例5、方程3269100x x x -+-=的实根的个数是 ( )A 、3B 、2C 、1D 、0分析:此题是一个三次方程,不易猜根。

函数单调性求解技巧

函数单调性求解技巧
然后分析f'(x)在[a,b]上的正负性:
1) 若f'(x)>0,则f(x)单调递增。
2) 若f'(x)<0,则f(x)单调递减。
3) 若f'(x)恒大于0,则f(x)单调不减。
4) 若f'(x)恒小于0,则f(x)单调不增。
以上是求解函数单调性的一些常用技巧。求解函数单调性的目的是为了更好地理解函数的变化规律和确定函数的性质。在应用数学、优化算法等领域中,特别是在函数的最优解问题中,确定函数的单调性是至关重要的。因此,掌握这些技巧并加以灵活运用,对于解决实际问题将具有重要的参考价值。
3 < x < +∞:k(x)的零点个数为0,为偶数,所以k(x)在此区间单调性不变。
四、辅助图像法
在一些问题中,辅助图像法可以有效地求解函数的单调性。通过作出函数的函数图像和导数的图像,并分析两个图像的关系,可以得到函数的单调性。
例5:求函数y=f(x)在区间[a,b]上的单调性。
首先作出函数y=f(x)的图像,然后求出y=f(x)的导数f'(x)的图像。
由于g'(x)=3x^2大于0的只有x>0的区间,所以g(x)在x>0的区间上单调递增,在x<0的区间上单调递减。
二、二阶导数法
对于函数的单调性问题,二阶导数法是常用的求解技巧之一。具体来说,对于二阶可导的函数,若函数的一阶导数恒大于0(小于0),则函数的二阶导数恒大于等于0(小于等于0),函数在该区间上单调递增(递减);若一阶导数恒小于等于0(大于等于0),则二阶导数恒小于等于0(大于等于0),函数在该区间上单调不增(不减)。
例3:求函数h(x)=x^4的单调性。
首先求导:h'(x)=4x^3。再求二阶导数:h''(x)=12x^2。

考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。

利用导数研究函数的单调性-高中数学知识点讲解

利用导数研究函数的单调性-高中数学知识点讲解

利用导数研究函数的单调性1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0 在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0 的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0 在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0 的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0 的根;(4)用f′(x)=0 的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例 1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4 的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,1/ 3∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0 得x>﹣1,即f(x)>2x+4 的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例 2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为 45°,对于任意的t∈[1,2],函数푔(푥)=푥3+푥2[푓′(푥) +푚2]在区间(t,3)上总不是单调函数,求m 的取值范围;푙푛2(Ⅲ)求证:2×푙푛33×푙푛44×⋯×푙푛푛1푛(푛≥2,푛∈푁∗).<푛解:(Ⅰ)푓′(푥) =푎(1―푥)푥(푥>0)(2 分)当a>0 时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0 时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0 时,f(x)不是单调函数(4 分)(Ⅱ)푓′(2) =―푎2=1得a=﹣2,f(x)=﹣2lnx+2x﹣3 푚∴푔(푥)=푥3+(2―2푥,2+2)푥∴g'(x)=3x2+(m+4)x﹣2(6 分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣22/ 3∴{푔′(푡3))<0>0(8 分)由题意知:对于任意的 t ∈[1,2],g ′(t )<0 恒成立,푔′(1)<0所以有:{푔′(2)<0,∴― 푔′(3)>0 37 3 <푚< ― 9(10 分)(Ⅲ)令 a =﹣1 此时 f (x )=﹣lnx +x ﹣3,所以 f (1)=﹣2,由(Ⅰ)知 f (x )=﹣lnx +x ﹣3 在(1,+∞)上单调递增,∴当 x ∈(1,+∞)时 f (x )>f (1),即﹣lnx +x ﹣1>0,∴lnx <x ﹣1 对一切 x ∈(1,+∞)成立,(12 分)∵n ≥2,n ∈N *,则有 0<lnn <n ﹣1,푙푛푛 푛 ― 1∴0<<푛 푛푙푛2∴ 2 ⋅ 푙푛33 ⋅ 푙푛44 ⋅⋅ 푙푛푛 1 2 ⋅ < 푛2 3 ⋅ 3 4 ⋅⋅ 푛 ― 1 푛 = 1 푛(푛 ≥ 2,푛 ∈ 푁 ∗) 【解题方法点拨】若在某区间上有有限个点使 f ′(x )=0,在其余的点恒有 f ′(x )>0,则 f (x )仍为增函数(减函数的情形完 全类似).即在区间内 f ′(x )>0 是 f (x )在此区间上为增函数的充分条件,而不是必要条件.3/ 3。

新高考数学复习考点知识与题型专题讲解17---指数函数的概念(解析版)

新高考数学复习考点知识与题型专题讲解17---指数函数的概念(解析版)

新高考数学复习考点知识与题型专题讲解17 指数函数的概念1.指数函数的概念一般地,函数(a >0,且a ≠1)叫做指数函数,其中是自变量,函数的定义域是. 2.指数函数的图象和性质定义域 R 题型一 指数函数的图像及应用1.在同一直角坐标系中,函数()a f x x =与()xg x a -=在[)0,+∞上的图象可能是( ).A .B .C .D .【答案】A【解析】()a f x x =为幂函数,()1()-==xx g a ax 为指数函数A. ()1()-==x x g a a x 过定点(0,1),可知101<<a ,1a ∴>,()af x x =的图象符合,故可能.B. ()1()-==x x g a a x 过定点(0,1),可知101<<a ,1a ∴>,()af x x =的图象不符合,故不可能.C. ()1()-==x x g a a x 过定点(0,1),可知11a>,01a ∴<<,()af x x =的图象不符合,故不可能.D.图象中无幂函数图象,故不可能. 故选:A题型二 指数函数的定义域与值域2.函数1132,132,1x x x y x --⎧-≤=⎨->⎩的值域是( )A .()2,1--B .()2,-+∞C .(],1-∞-D .(]2,1-- 【答案】D【解析】当1x ≤时,函数132x y -=-单调递增,因为10x -≤,则1031x -<≤, 所以,12321x --<-≤-,此时,函数132x y -=-的值域为(]2,1--;当1x >时,函数1113223x xy --⎛⎫=-=- ⎪⎝⎭单调递减,因为10x ->,则11103x -⎛⎫< ⎝⎭<⎪.所以,112213x -⎛⎫-<-<- ⎪⎝⎭,此时,函数132x y -=-的值域为()2,1--.综上所述,函数1132,132,1x x x y x --⎧-≤=⎨->⎩的值域是(]2,1--.故选:D.题型三 指数函数的单调性3.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3【答案】B【解析】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增, ()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .题型三 指数函数的单调性4.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3【答案】B【解析】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .题型四 指数函数的最值问题5.若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为52,则a 的值可能是( ).A .2B .12C .3D .13【答案】AB【解析】设()x f x a =,当1a >时,指数函数()x f x a =单调递增,所以在区间[1,1]-上的最大值max (1)y f a ==,最小值min 1(1)y f a =-=.所以152a a +=,求得2a =或者12a =(舍); 当01a <<时,指数函数()x f x a =单调递减,所以在区间[1,1]-上的最大值max 1(1)y f a=-=,最小值min (1)y f a ==,所以152a a +=,求得2a =(舍)或者12a =. 综上所述:2a =或者12a =. 故选:AB1.函数y x a =+与1xy a ⎛⎫= ⎪⎝⎭,其中0a >,且1a ≠,它们的大致图象在同一直角坐标系中有可能是( )A .B .C .D .【答案】B【解析】解:对于A ,C ,由于函数y x a =+是增函数,图象应该呈上升趋势,所以A ,C 错误;对于B ,若函数y x a =+的图象是正确的,则1a >,所以101a <<,所以函数1xy a ⎛⎫= ⎪⎝⎭是正确的,所以B 正确;对于D ,若函数y x a =+的图象是正确的,则01a <<,所以11a >,所以函数1xy a ⎛⎫= ⎪⎝⎭是增函数,所以D 错误, 故选:B2.如果指数函数()xf x a =(0a >,且1a ≠)的图象经过点()2,4,那么a 的值是( )A .2C .3D .4 【答案】B【解析】由题意可知()224f a ==,解得2a =或2a =-(舍) 故选:B3.已知函数()f x 是R 上的偶函数,且()f x 的图象关于点()1,0对称,当[]0,1x ∈时,()22xf x =-,则()()()()0122020f f f f ++++的值为( )A .2-B .1-C .0D .1 【答案】D【解析】因为()f x 是R 上的偶函数,所以()()f x f x -=, 又()f x 的图象关于点()1,0对称,则()(2)f x f x =--,所以()(2)f x f x -=--,则()(2)f x f x =-+,得(4)(2)()f x f x f x +=-+=, 即(4)()f x f x +=-,所以()f x 是周期函数,且周期4T =,由[]0,1x ∈时,()22xf x =-,则(0)1,(1)0f f ==,(2)(0)1f f =-=-,(3)(3)(1)0f f f =-==,则(0)(1)(2)(3)0f f f f +++=, 则()()()()0122020f f f f ++++(0)5050(0)1f f =+⨯==故选:D4.已知函数log ()a y x b =-的大致图象如下图,则幂函数ba y x =在第一象限的图象可能是( )A .B .C .D .【答案】B【解析】由log ()a y x b =-的图象可知,1log (1)0log (2)0a a a b b >⎧⎪-<⎨⎪->⎩,所以101121a b b >⎧⎪<-<⎨⎪->⎩,得1a >,01b <<,所以01ba<<,所以幂函数b a y x =在第一象限的图象可能为B . 故选:B.5.已知函数()2x f x =,则[](2)f f =___. 【答案】16【解析】根据题意,函数()2x f x =,则()2224f ==, 则[]()4(2)4216f f f ===,故答案为:16.6.下列函数中指数函数的个数是_____________.①23x y =⋅;②13x y +=;③3x y =;④()21xy a =-(a 为常数,12a >,1a ≠);⑤3y x =; ⑥4x y =-;⑦()4xy =- 【答案】③④【解析】根据指数函数的定义直接判断:形如x y a =(0a >且1a ≠)的函数是指数函数. 可知只有③3x y =,④()21xy a =-(a 为常数,12a >,1a ≠)符合指数函数的定义. 故答案为:③④.7.已知常数0a >,函数()22xx f x ax =+的图象经过点65P p ⎛⎫ ⎪⎝⎭,,15Q q ⎛⎫- ⎪⎝⎭,.若236p q pq +=,则a =______. 【答案】6【解析】函数f (x )=22xx ax +的图象经过点P (p ,65),Q (q ,15-).则:226112255p q pq ap aq +=-=++, 整理得:22222222p q p q p qp qp q aq ap aq ap a pq+++++++++=1, 解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为68.已知点(2,9)在函数()x f x a =(0a >且1a ≠)图象上,对于函数()y f x =定义域中的任意1x ,()212x x x ≠,有如下结论:①()()()1212f x x f x f x +=⋅; ②()()()1212f x x f x f x ⋅=+; ③()()12120f x f x x x -<-;④()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭.上述结论中正确结论的序号是___________. 【答案】①④【解析】点(2,9)在函数()x f x a =(0a >且1a ≠)图象上,即29a =,3a ∴=,()3x f x =, ∵对于函数()3x f x =定义域中的任意的()1212,x x x x ≠,有()()()12121212333x x x xf x x f x f x ++==⋅=∴结论(1)正确;又()12123x x f x x =,()()121233x xf x f x +=+,()()()1212f x x f x f x ∴≠+,∴结论(2)错误;又()3x f x =是定义域R 上的增函数,∴对任意的12,x x ,不妨设12x x <,则()()12f x f x <,120x x ∴-<,()()120f x f x -<,()()12120f x f x x x -∴->,∴结论(3)错误;又1212232x xx x f ++⎛⎫= ⎪⎝⎭,()()12123322x x f x f x ++= ()()12211212121222122213312()(33)22332x x x x x x x x x x f x f x x x f --+++∴=+=++⎛⎫⎪⎝⎭,12x x ≠122122332x x x x --∴+>,()()1212212f x f x x x f +∴>+⎛⎫ ⎪⎝⎭∴结论(4)正确; 故答案为:(1),(4).9.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数1()12=-+x x e f x e ,则函数()f x 奇偶性是______函数,[][]()()=+-y f x f x 的值域是__________ 【答案】奇函数 {}1,0-【解析】∵()11()1221-=-=++x x x x e e f x e e ,()()11()()2121-----===-++x xx xe ef x f x e e , ∴()f x 为奇函数,化11111()1221x x xe f x e e +-=-=-++, ∵11x e +>,∴1011<<+x e ,则11112212-<-<+x e . ∴当1(),02⎛⎫∈- ⎪⎝⎭f x 时,[]()1=-f x ,[]()0-=f x ;当1()0,2f x ⎛⎫∈ ⎪⎝⎭时,[]()0=f x ,[]()1-=-f x ;当()0f x =时,[][]()()0=-=f x f x . ∴函数[][]()()=+-y f x f x 的值域是{}1,0-. 故答案为:奇函数,{}1,0-.10.已知()xf x ka -=(k a ,为常数,0a >1a ≠且)的图像过点()()01,38A B -,,. (1)求()f x 的解析式; (2)若函数()g x ()()11f x f x -=+,试判断()g x 的奇偶性并给出证明.【答案】(1)()2xf x -=;(2)奇函数;证明见解析.【解析】解:(1)∵ ()xf x ka -=的图像过点()()01,38A B -,, ∴()()30138f k f ka ⎧==⎪⎨-==⎪⎩,解得12k a ==,,故()2xf x -=; (2)由(1)知()g x =()()1211212112x xx xf x f x -----==+++,则()g x 的定义域为R ,关于原点对称, 且()()2112 2112x xxxg x g x ---==-=-++ 故()g x 为奇函数.。

如何利用导数解决函数的单调性问题

如何利用导数解决函数的单调性问题

如何利用导数解决函数的单调性问题
利用导数解决函数的单调性问题,是近几年高考考查的重点和热点之一,也是学生感到比较棘手的一类问题.
类型一利用导数判断函数的单调性
依据是:若函数f(x)在某
个区间(a,b)内的导数为f ‘(x),则
(1)若f ‘(x)>0,则函数f(x)在区间(a,b)内递增;
(2)若f ‘(x)0得x>1;由f ‘(x
0得x>1或01时,由f ‘(x)>0得x>a 或00 即a0 得x>
x2;由f ‘(x)0得0x2;由f ‘(x)—.
变式2:已知函数f(x)=x3+ax2+
x+1(a∈R)在区间(-—,-—)内存在单调递减区间,求实数a的取值范围.
解析:f ‘(x)=3x2+2ax+1
因为f(x)在区间(-—,-—)内存在单调递减区间,以f ‘(x)=3x2+
2ax+1-—x-—对x∈(-—,-—)有解.
令g(x)=-—x-—,x∈(-—,
-—),则g ‘(x)=-—x+—=—
所以g(x)在区间(-—,-—)内递减,在区间(-—,-—)内递增,故g (x)min=g(-—)=√3,所以实数a的取值范围是a>√3.
由函数在某区间上的单调性,求参数的取值范围问题,可以利用转化与化归的思想,将其转化为“不等式恒成立”问题,也可以利用函数与方程的思想及数形结合的思想,将其转化为“函数图像的交点”问题.。

利用导数研究函数的单调性-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

利用导数研究函数的单调性-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

考向15 利用导数研究函数的单调性【2022年新高考全国Ⅰ卷】设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【2022年新高考全国II 卷】已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥;()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.1.利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.2.利用函数的单调性求参数的取值范围的解题思路①由函数在区间[],a b 上单调递增(减)可知()0f x '≥ (()0f x '≤)在区间[],a b 上恒成立列出不等式;②利用分离参数法或函数的性质求解恒成立问题;③对等号单独检验,检验参数的取值能否使()f x '在整个区间恒等于0,若()f x '恒等于0,则参数的这个值应舍去;若只有在个别点处有()0f x '=,则参数可取这个值.【提醒】()f x 为增函数的充要条件是对任意的,()x a b ∈都有()0f x '≥且在(),a b 内的任意一个非空子区间上()0f x '≠.应注意此时式子中的等号不能省略,否则漏解.一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导);求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导.(7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根; (4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系);(5)导数图像定区间;1.(2022·全国·高三专题练习(理))已知0.02e a =, 1.02b =,ln2.02c =,则( ) A .c a b >> B .a b c >> C .a c b >>D .b a c >>2.(2022·全国·高三专题练习)已知函数()()321032a f x x x x a =--≥在区间()0,1上不是单调函数,则实数a 的取值范围是( )A .()02,B .[)0,1C .()0,∞+D .()2,+∞3.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f xf x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞4.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为( ) A .()(),12,-∞-+∞ B .()1,2- C .()(),21,-∞-+∞D .()2,1-5.(2022·吉林吉林·模拟预测(文))若函数()321f x x x ax =++-在(),-∞+∞上单调递增,则实数a 的取值范围( ) A .13a ≥ B .13a ≤C .13a >D .13a <1.(2022·青海·模拟预测(理))若01a b <<<,则( ) A .e e ln ln b a b a -<- B .e e ln ln b a b a -≥- C .e e a b b a ≤D .e e a b b a >2.(2022·河南·通许县第一高级中学模拟预测(文))定义:设函数()f x 的定义域为D ,如果[],m n D ⊆,使得()f x 在[],m n 上的值域为[],m n ,则称函数()f x 在[],m n 上为“等域函数”,若定义域为21,e e ⎡⎤⎢⎥⎣⎦的函数()xg x a =(0a >,1a ≠)在定义域的某个闭区间上为“等域函数”,则a 的取值范围为( ) A .221,e e ⎡⎫⎪⎢⎣⎭B .22e 1,e ⎡⎤⎢⎥⎣⎦C .221e e e ,e ⎡⎫⎪⎢⎪⎣⎭D .221e ee ,e ⎡⎤⎢⎥⎣⎦3.(2022·江苏无锡·模拟预测)已知1333,e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(2022·河南·开封市东信学校模拟预测(理))已知函数()()()2|| 1.00125()e ,log 3,log 8,2x f x x a f b f c f ===-=-,则a ,b ,c 的大小关系为( )A .a c b >>B .a b c >>C .c b a >>D .c a b >>5.(2022·青海玉树·高三阶段练习(文))定义在R 上的可导函数()f x 满足()2f x '<,若()()1262f m f m m --≥-,则m 的取值范围是( )A .(],1-∞-B .1,3⎛⎤-∞ ⎥⎝⎦C .[)1,-+∞D .1,3⎡⎫+∞⎪⎢⎣⎭6.(2022·贵州·贵阳一中高三阶段练习(理))已知奇函数()f x 的导函数为()f x ',且()f x 在π0,2⎛⎫⎪⎝⎭上恒有()()sin cos f x f x x x '<成立,则下列不等式成立的( ) A ππ264f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .ππ336f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C ππ3243⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D 2ππ334f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭7.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是 ( ) A .ln()1a b +> B .ln()0-<a b C .122a b +<D .3222a b +<8.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-9.(多选题)(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()0f x f x +'>,则下列式子成立的是( ) A .()()20212022f ef < B .()()20212022f ef > C .()f x 是R 上的增函数D .0t ∀>,则()()t f x e f x t <+10.(2022·山东泰安·模拟预测)已知函数32()f x x ax =-+,写出一个同时满足下列两个条件的()f x :___________.①在[1,)+∞上单调递减;②曲线()(1)y f x x =≥存在斜率为1-的切线.11.(2022·青海·海东市第一中学模拟预测(理))已知函数()()()1e x f x a x a =--∈R ,()ln e k x x =-,e 为自然对数的底数.(1)讨论()f x 的单调性;(2)当1x >时,不等式()()f x k x ≤恒成立,求a 的取值范围.12.(2022·上海·位育中学模拟预测)已知函数 ()221f x ax x a =-+- ( a 为实常数).(1)设 ()f x 在区间 []1,2 上的最小值为 ()g a , 求 ()g a 的表达式; (2)设 ()()f x h x x=, 若函数 ()h x 在区间[]1,2上是增函数, 求实数a 的取值范围.13.(2022·全国·模拟预测)已知函数()2ln f x x x =-.(1)求曲线()y f x =在e x =处的切线方程; (2)若()()()e xg x f x ax -=+⋅在区间()01,内是单调函数,求实数a 的取值范围.14.(2022·全国·模拟预测)已知函数()()ln 13f x a x x =+-. (1)讨论函数()f x 的单调性;(2)证明:当1a =时,方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.15.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)当0a <时,求函数()f x 在区间[1,e] 上的最小值.16.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()()21R 2f x x a a =-∈. (1)设()()e xg x f x =,讨论函数()()e x g x f x =的单调性; (2)当0x ≤时,()()211g x x a x ≤--+,求实数a 的取值范围.17.(2022·北京八十中模拟预测)已知函数e ()axf x x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间; (3)若对任意[)1,x ∈+∞,都有1()ef x >成立,求实数a 的取值范围.18.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈(1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.1.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<2.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >>B .b a c >>C .a b c >>D .a c b >>3.(2022·北京·高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.4.(2022·全国·高考真题)已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N 2221ln(1)1122n n n+++>++++.5.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.6.(2021·全国·高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.7.(2021·北京·高考真题)已知函数()232xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间,以及其最大值与最小值.8.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>; ②10,22a b a <<≤.9.(2020·全国·高考真题(文))已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.10.(2020·全国·高考真题(文))已知函数f (x )=2ln x +1. (1)若f (x )≤2x +c ,求c 的取值范围; (2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性.11.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.。

利用导函数图象研究函数的单调性问题(含参讨论问题)(原卷版)-2024年高考数学复习解答题解题思路

利用导函数图象研究函数的单调性问题(含参讨论问题)(原卷版)-2024年高考数学复习解答题解题思路

专题03利用导函数图象研究函数的单调性问题(含参讨论问题)(典型题型归类训练)目录一、必备秘籍..........................................................................................................1二、典型题型..........................................................................................................2题型一:导函数有效部分是一次型(或可化为一次型)................................2题型二:导函数有效部分是二次型(或可化为二次型)且可因式分解型.....3题型三:导函数有效部分是二次型且不可因式分解型....................................4三、专项训练. (4)借助导函数有效部分()g x 的图象辅助解题:①令()0g x =,确定其零点0x ,并在x 轴上标出②观察()y g x =的单调性,③根据①②画出草图2、导函数有效部分是二次型(或可化为二次型)且可因式分解型借助导函数有效部分()g x 的图象辅助解题:①对()g x 因式分解,令()0g x =,确定其零点1x ,2x 并在x 轴上标出这两个零点②观察()y g x =的开口方向,③根据①②画出草图3、导函数有效部分是二次型(或可化为二次型)且不可因式分解型①对()y g x =,求24b ac ∆=-②分类讨论0∆≤③对于0∆>,利用求根公式求()0g x =的两根1x ,2x ④判断两根1x ,2x 是否在定义域内:对称轴+端点正负⑤画出()y g x =草图二、含参问题讨论单调性的原则1、最高项系数含参,从0开始讨论2、两根大小不确定,从两根相等开始讨论3、考虑根是否在定义域内二、典型题型题型一:导函数有效部分是一次型(或可化为一次型)1.(2024·全国·高三专题练习)已知函数()()ln f x x a x =-,讨论()f x '的单调性.2.(2023·全国·高三专题练习)已知函数()()()ln R f x a x a x a =+-∈,讨论()f x 的单调性.3.(2023上·四川成都·高三成都外国语学校校考开学考试)已知函数()()e xf x a a x =+-,()R a ∈(1)当1a =时,求()f x 的最值;(2)求()f x 的单调区间.。

高考数学复习知识点讲解教案第17讲 导数与函数的极值、最值

高考数学复习知识点讲解教案第17讲 导数与函数的极值、最值
探究点三 利用导数解决实际问题
例5(1) 某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植量是8万斤,每种植一斤藕,成本增加0.5元. 已知销售额函数是( 是莲藕种植量,单位:万斤;销售额的单位:万元; 是常数),若种植2万斤莲藕,利润是2.5万元,则要使利润最大,每年需种植莲藕( )
BCD
A. B. C. D.
[解析] 函数的定义域为, ,由函数既有极大值也有极小值,得方程在 上有两个不等实根.令,则在 上有两个不等实根,故所以,,,故选 .
3.【微点2、微点3】若是函数的极值点,则 的极小值为_____.
[解析] 由,得 ,因为是函数 的极值点,所以,即 ,解得.可得,令 ,得或,当时,,函数单调递增,当 时,,函数单调递减,当时,,函数 单调递增,所以当时,函数取得极小值 .
[解析] ,令,得或 .当时,;当时,;当 时,.故在处取得极小值 .
2.[教材改编] 函数在区间 上的最大值是_______.
[解析] ,令,得.当时, ;当时,.故函数在上单调递减,在 上单调递增,所以在区间上的最大值是, .
3.[教材改编] 将一段长为 的铁丝截成两段,一段弯成正方形,另一段弯成圆.为了使正方形与圆的面积之和最小,则弯成圆的铁丝的长是_ _____ .
[解析] 设弯成圆的铁丝的长为,则弯成正方形的铁丝的长为 ,记正方形与圆的面积之和为,则 ,.令,得 ,当时,, 单调递减,当时,,单调递增,故当时 取得最小值,即当弯成圆的铁丝的长为 时,正方形与圆的面积之和最小.
题组二 常错题
◆ 索引:混淆极值与极值点的概念;忽视连续函数在区间 上不一定存在最值;混淆恒成立与能成立问题.4.函数的极值点为 ________;函数 的极值点__________(填“存在”或“不存在”).

新高考数学一轮复习考点知识专题讲解与练习 17 导数的应用(一)

新高考数学一轮复习考点知识专题讲解与练习 17 导数的应用(一)

新高考数学一轮复习考点知识专题讲解与练习考点知识总结17导数的应用(一)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3.会用导数解决实际问题一、基础小题1.函数f(x)=1+x-sin x在(0,2π)上是() A.增函数B.减函数C.在(0,π)上单调递增,在(π,2π)上单调递减D.在(0,π)上单调递减,在(π,2π)上单调递增答案 A解析 f ′(x )=1-cos x >0,∴f (x )在(0,2π)上单调递增. 2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4 答案 C解析 f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或x =2(舍去).当-1≤x <0时,f ′(x )>0;当0<x ≤1时,f ′(x )<0.所以f (x )在[-1,0)上是增函数,在(0,1]上是减函数,所以f (x )max =f (0)=2.故选C.3.已知函数f (x )=2e f ′(e)ln x -xe (e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .-1e C .1 D .2ln 2 答案 D解析 由题意知f ′(x )=2e f ′(e )x -1e ,∴f ′(e)=2e f ′(e )e -1e ,f ′(e)=1e ,∴f (x )=2ln x -x e ,f ′(x )=2x -1e ,令f ′(x )=0,得x =2e ,当0<x <2e 时,f ′(x )>0,当x >2e 时,f ′(x )<0,∴f (x )在(0,2e)上单调递增,在(2e ,+∞)上单调递减,∴f (x )的极大值为f (2e)=2ln (2e)-2=2ln 2.故选D.4.直线y =a 分别与曲线y =e x ,y =ln x +1交于M ,N 两点,则|MN |的最小值为( ) A .1 B .1-ln 2 C .ln 2 D .1+ln 2 答案 A解析 分别令e x =a ,ln x +1=a ,其中a >0,则x 1=ln a ,x 2=e a -1,从而|MN |=|x 1-x 2|=|ln a -e a -1|,构造函数h (a )=ln a -e a -1,求导得h ′(a )=1a -e a -1,当a ∈(0,1)时,h ′(a )>0,h (a )单调递增;当a ∈(1,+∞)时,h ′(a )<0,h (a )单调递减.所以h (a )有极大值h (1)=-1.因此|MN |的最小值为|h (1)|=1.故选A.5.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( )A .120000 cm 3B .128000 cm 3C .150000 cm 3D .158000 cm 3 答案 B解析 设水箱底长为x cm ,则高为120-x 2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0得0<x <120.设容器的容积为y cm 3,则有y =120-x 2·x 2=-12x 3+60x 2,则有y ′=-32x 2+120x .令y ′=0,解得x=80(x =0舍去).当x ∈(0,80)时,y ′>0,y 单调递增;当x ∈(80,120)时,y ′<0,y 单调递减.因此80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =-12×803+60×802=128000.故选B.6.(多选)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (a )<f (b )<f (c )B .函数f (x )在x =c 处取得极小值,在x =e 处取得极大值C .函数f (x )在x =c 处取得极大值,在x =e 处取得极小值D .函数f (x )的最小值为f (d ) 答案 AC解析 由导函数图象可知在(-∞,c ),(e ,+∞)上,f ′(x )>0,在(c ,e )上,f ′(x )<0,所以函数f (x )在(-∞,c ),(e ,+∞)上单调递增,在(c ,e )上单调递减,所以f (a )<f (b )<f (c );函数f (x )在x =c 处取得极大值,在x =e 处取得极小值;f (d )>f (e ),所以f (d )不是函数f (x )的最小值.故选AC.7.(多选)已知定义在⎣⎢⎡⎭⎪⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )·sin x <0,则下列判断中正确的是( )A .f ⎝ ⎛⎭⎪⎫π6<62f ⎝ ⎛⎭⎪⎫π4B .f ⎝ ⎛⎭⎪⎫ln π3>0C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3D .f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3答案 CD解析 令g (x )=f (x )cos x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x ,因为f ′(x )cos x+f (x )sin x <0,所以g ′(x )=f ′(x )cos x +f (x )sin x cos 2x <0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因此函数g (x )=f (x )cos x 在⎣⎢⎡⎭⎪⎫0,π2上单调递减,因此g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cos π4,即f ⎝ ⎛⎭⎪⎫π6>62f ⎝ ⎛⎭⎪⎫π4,故A 错误;又f (0)=0,所以g (0)=f (0)cos 0=0,所以g (x )=f (x )cos x ≤0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因为ln π3∈⎣⎢⎡⎭⎪⎫0,π2,所以f ⎝ ⎛⎭⎪⎫ln π3<0,故B 错误;又g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故C 正确;又g ⎝ ⎛⎭⎪⎫π4>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π4cos π4>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3,故D 正确.故选CD.8.若函数f (x )=x ln x -a2x 2-x +1有两个极值点,则a 的取值范围为________. 答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令g (x )=ln x -ax ,则g ′(x )=1x -a ,当a ≤0时,g ′(x )>0恒成立,则f ′(x )在(0,+∞)上单调递增,当x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→+∞,所以f (x )只有一个极值点,不符合题意.当a >0时,可得f ′(x )有极大值点1a ,由于x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→-∞,因此原函数要有两个极值点,只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e .二、高考小题9.(2022·全国乙卷)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( ) A .a <b B .a >b C .ab <a 2 D .ab >a 2 答案 D解析 解法一:因为函数f (x )=a (x -a )2(x -b ),所以f ′(x )=2a (x -a )(x -b )+a (x -a )2=a (x -a )(3x -a -2b ).令f ′(x )=0,结合a ≠0可得x =a 或x =a +2b3. (1)当a >0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递增,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递减,所以x =a 为函数f (x )的极大值点,满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递增,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递减,在(a ,+∞)上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意.(2)当a <0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递减,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递减,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递增,在(a ,+∞)上单调递减,所以x =a 为函数f (x )的极大值点,满足题意.综上,a >0且b >a 满足题意,a <0且b <a 也满足题意.据此,可知必有ab >a 2成立.故选D.解法二:由题意可知a≠b,当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.当a<0时,根据题意画出函数f(x)的大致图象,如图2所示,观察可知a>b.综上,可知必有ab>a2成立.故选D.10.(2022·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为()A.-1 B.-2e-3C.5e-3D.1答案 A解析由题意可得f′(x)=e x-1[x2+(a+2)x+a-1].∵x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,∴f′(-2)=0,∴a=-1,∴f(x)=(x2-x-1)e x-1,f′(x)=e x-1(x2+x -2)=e x-1(x-1)(x+2),∴当x∈(-∞,-2)时,f′(x)>0,f(x)单调递增;当x∈(-2,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.∴f(x)极小值=f(1)=-1.故选A.11.(2022·北京高考)设函数f(x)=e x+a e-x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是________.答案-1(-∞,0]解析 ∵f (x )=e x +a e -x (a 为常数)的定义域为R ,且f (x )为奇函数,∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x -ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立,即e x ≥ae x 在R 上恒成立,∴a ≤e 2x 在R 上恒成立.又e 2x >0,∴a ≤0,即a 的取值范围是(-∞,0].12.(2022·全国Ⅰ卷)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 答案 -332解析 f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4(cos x +1)⎝ ⎛⎭⎪⎫cos x -12,所以当cos x ≤12时函数单调递减,当cos x ≥12时函数单调递增,从而得到函数的单调递减区间为⎣⎢⎡⎦⎥⎤2k π-5π3,2k π-π3(k ∈Z ),函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ),所以当x =2k π-π3,k ∈Z 时,函数f (x )取得最小值,此时sin x =-32,sin 2x =-32,所以f (x )min =2×⎝ ⎛⎭⎪⎫-32-32=-332.13.(2022·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.答案 -3解析 ∵f (x )=2x 3-ax 2+1,∴f ′(x )=6x 2-2ax =2x (3x -a ).若a ≤0,则x >0时,f ′(x )>0,∴f (x )在(0,+∞)上为增函数,又f (0)=1,∴f (x )在(0,+∞)上没有零点,不符合题意,∴a >0.当0<x <a 3时,f ′(x )<0,f (x )为减函数;当x >a3时,f ′(x )>0,f (x )为增函数,∴x >0时,f (x )有极小值,为f ⎝ ⎛⎭⎪⎫a 3=-a 327+1.∵f (x )在(0,+∞)内有且只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=0,∴a =3.∴f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),列表如下:x -1 (-1,0) 0 (0,1) 1 f ′(x ) 12 + 0 - 0 f (x )-41∴f (x )在[-1,1]上的最大值为1,最小值为-4.∴最大值与最小值的和为-3. 三、模拟小题14.(2022·四川省达州中学模拟)函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝ ⎛⎭⎪⎫1e ,e B .⎝ ⎛⎭⎪⎫0,1e C.⎝ ⎛⎭⎪⎫-∞,1e D .⎝ ⎛⎭⎪⎫1e ,+∞ 答案 B解析 因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,得0<x <1e ,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .15.(2022·湖南湘潭模拟)已知定义域为R 的函数f (x )的导函数为f ′(x ),且f ′(x )>f (x ),若实数a >0,则下列不等式恒成立的是( )A.af (ln a )≥e a -1f (a -1)B.af (ln a )≤e a -1f (a -1)C.e a -1f (ln a )≥af (a -1)D.e a-1f(ln a)≤af(a-1) 答案 D解析令g(x)=f(x)e x ,则g′(x)=f′(x)-f(x)e x>0,所以g(x)为增函数.令h(a)=ln a-a+1,则h′(a)=1a-1.当a∈(0,1)时,h′(a)>0,h(a)单调递增,当a∈(1,+∞)时,h′(a)<0,h(a)单调递减,所以h(a)≤h(1)=0,所以ln a≤a-1,所以g(ln a)≤g(a-1),即f(ln a)a≤f(a-1)e a-1,所以e a-1f(ln a)≤af(a-1).故选D.16.(2022·新高考八省联考)已知a<5且a e5=5e a,b<4且b e4=4e b,c<3且c e3=3e c,则()A.c<b<a B.b<c<aC.a<c<b D.a<b<c答案 D解析因为a e5=5e a,a<5,故a>0,同理b>0,c>0,令f(x)=e xx,x>0,则f′(x)=e x(x-1)x2,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)在(0,1)上为减函数,在(1,+∞)上为增函数,因为a e5=5e a,a<5,故e55=e aa,即f(5)=f(a),而0<a<5,故0<a<1,同理0<b<1,0<c<1,f(4)=f(b),f(3)=f(c),因为f(5)>f(4)>f(3),故f(a)>f(b)>f(c),所以0<a<b<c<1.故选D.17.(多选)(2022·福建省福州市高三调研考试)设函数f(x)=e xln x,则下列说法正确的是( )A.f (x )的定义域是(0,+∞)B.x ∈(0,1)时,f (x )图象位于x 轴下方C.f (x )存在单调递增区间D.f (x )有且仅有一个极值点 答案 BCD解析 由题意,函数f (x )=e x ln x 满足⎩⎨⎧x >0,ln x ≠0,解得x >0且x ≠1,所以函数f (x )=e xln x的定义域为(0,1)∪(1,+∞),所以A 不正确;由f (x )=e xln x ,当x ∈(0,1)时,ln x <0,所以f (x )<0,所以f (x )在(0,1)上的图象都在x 轴的下方,所以B 正确;因为f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -1x (ln x )2,所以f ′(x )>0在定义域上有解,所以函数f (x )存在单调递增区间,所以C 正确;令g (x )=ln x -1x ,则g ′(x )=1x +1x 2(x >0),所以g ′(x )>0,函数g (x )单调递增,又g (1)=-1<0,g (2)=ln 2-12>0,所以∃x 0∈(1,2)使得f ′(x 0)=0,且当x ∈(0,1),(1,x 0)时,f (x )单调递减,当x ∈(x 0,+∞)时,f (x )单调递增,所以函数f (x )只有一个极值点,所以D 正确.故选BCD.18.(多选)(2022·河北秦皇岛第二次模拟)已知函数f (x )=ln x -ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是( )A.a ∈⎝ ⎛⎭⎪⎫0,1eB.y =f (x )在(0,e)上单调递增C.x 1+x 2>6D.若a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,则x 2-x 1<2-a a答案 ABD解析 由f (x )=ln x -ax ,可得f ′(x )=1x -a (x >0),当a ≤0时,f ′(x )>0,∴f (x )在x ∈(0,+∞)上单调递增,与题意不符;当a >0时,由f ′(x )=1x -a =0,解得x =1a ,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,f (x )单调递减,∴当x =1a 时,f (x )取得极大值,又由函数f (x )=ln x -ax 有两个零点x 1,x 2(x 1<x 2),可得f ⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,可得a <1e .综上可得0<a <1e ,故A 正确;当a →1e 时,x 1+x 2→2e<6,故C 错误,∵当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f (x )单调递增,又a ∈⎝ ⎛⎭⎪⎫0,1e ,∴(0,e)⊆⎝ ⎛⎭⎪⎫0,1a ,故B 正确;∵f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,且a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,∴1,x 1∈⎝ ⎛⎭⎪⎫0,1a ;2a ,x 2∈⎝ ⎛⎭⎪⎫1a ,+∞,∵f (1)=-a <0=f (x 1),∴x 1>1,∵f ⎝ ⎛⎭⎪⎫2a =ln 2a -2<ln e 2-2=0=f (x 2),∴x 2<2a ,∴x 2-x 1<2a-1=2-aa ,故D 正确.故选ABD.19.(2022·江苏常州高三质量检测)已知f (x )=e x ,g (x )=2x .若f (x 1)=g (x 2),d =|x 2-x 1|,则d 的最小值为________.答案1-ln 22解析 令f (x 1)=g (x 2)=k >0,则x 1=ln k ,x 2=k 24,所以x 2-x 1=k 24-ln k ,令g (k )=k 24-ln k (k >0),则g ′(k )=k 2-1k =k 2-22k ,当0<k <2时,g ′(k )<0;当k >2时,g ′(k )>0;所以g (k )在(0,2)上单调递减,在(2,+∞)上单调递增,则g (k )min =g (2)=1-ln 22>0,所以d =|x 2-x 1|=|g (k )|≥1-ln 22,则d 的最小值为1-ln 22.20.(2022·吉林第四次调研测试)若函数f (x )=mx 2-e x +1(e 为自然对数的底数)在x =x 1和x =x 2两处取得极值,且x 2≥2x 1,则实数m 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫1ln 2,+∞解析 因为f (x )=mx 2-e x +1,所以f ′(x )=2mx -e x ,又函数f (x )在x =x 1和x =x 2两处取得极值,所以x 1,x 2是方程2mx -e x=0的两个不等实根,且x 2≥2x 1,即m =e x2x (x ≠0)有两个不等实根x 1,x 2,且x 2≥2x 1.令h (x )=e x 2x (x ≠0),则直线y =m 与曲线h (x )=e x2x 有两个交点,且交点横坐标满足x 2≥2x 1,又h ′(x )=e x (2x -2)4x 2=e x (x -1)2x 2,由h ′(x )=0,得x =1,所以当x >1时,h ′(x )>0,即函数h (x )=e x2x 在(1,+∞)上单调递增;当x <0,0<x <1时,h ′(x )<0,即函数h (x )=e x2x 在(-∞,0),(0,1)上单调递减.作出函数h (x )的图象如图所示.当x2=2x1时,由e x12x1=e x22x2,得x1=ln 2,此时m=e x12x1=1ln 2,因此,由x2≥2x1,得m≥1ln 2.一、高考大题1.(2022·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln 2)2x(x>0).令f′(x)>0,则0<x<2ln 2,此时函数f(x)单调递增.令f′(x)<0,则x>2ln 2,此时函数f(x)单调递减.故函数f(x)的单调递增区间为⎝⎛⎭⎪⎫0,2ln 2,单调递减区间为⎝⎛⎭⎪⎫2ln 2,+∞.(2)要使曲线y=f(x)与直线y=1有且仅有两个交点,即方程x a a x =1(x >0)有两个不同的解,故方程ln x x =ln aa 有两个不同的解. 设g (x )=ln xx (x >0),则g ′(x )=1-ln x x 2(x >0). 令g ′(x )=1-ln xx 2=0,解得x =e.令g ′(x )>0,则0<x <e ,此时函数g (x )单调递增. 令g ′(x )<0,则x >e ,此时函数g (x )单调递减. 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝ ⎛⎭⎪⎫0,1e .又g (1)=0,故要使方程ln x x =ln a a 有两个不同的解,则0<ln a a <1e . ①当0<a <1时,不符合条件; ②当a >1时,因为g (x )max =g (e)=1e , 故a ∈(1,e)∪(e ,+∞).综上,a 的取值范围为(1,e)∪(e ,+∞).2.(2022·新高考Ⅱ卷)已知函数f (x )=(x -1)e x -ax 2+b . (1)讨论f (x )的单调性;(2)从下面两个条件中选一个,证明:f (x )有一个零点. ①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .解 (1)由函数的解析式可得,f ′(x )=x (e x -2a ), 当a ≤0时,若x ∈(-∞,0),则f ′(x )<0,f (x )单调递减, 若x ∈(0,+∞),则f ′(x )>0,f (x )单调递增;当a>0时,令f′(x)=0,得x1=0,x2=ln (2a),当0<a<12时,若x∈(-∞,ln (2a)),则f′(x)>0,f(x)单调递增,若x∈(ln (2a),0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当a=12时,f′(x)≥0,f(x)在R上单调递增;当a>12时,若x∈(-∞,0),则f′(x)>0,f(x)单调递增,若x∈(0,ln (2a)),则f′(x)<0,f(x)单调递减,若x∈(ln (2a),+∞),则f′(x)>0,f(x)单调递增.(2)证明:若选择条件①:由于12<a≤e22,故1<2a≤e2,则b>2a>1,f(0)=b-1>0,f(-2b)=(-1-2b)e-2b-4ab2+b<0,而由(1)知函数f(x)在区间(-∞,0)上单调递增,故函数f(x)在区间(-∞,0)上有一个零点.f(ln (2a))=2a[ln (2a)-1]-a[ln(2a)]2+b>2a[ln (2a)-1]-a[ln (2a)]2+2a=2a ln (2a)-a[ln (2a)]2=a ln (2a)[2-ln (2a)],由于12<a≤e22,1<2a≤e2,所以0<ln (2a)≤2,故a ln (2a)[2-ln (2a)]≥0,所以f(ln (2a))>0,结合函数的单调性可知,函数f (x )在区间(0,+∞)上没有零点. 综上可得,题中的结论成立. 若选择条件②:由于0<a <12,故0<2a <1,则f (0)=b -1≤2a -1<0, 当b ≥0时,e 2>4,4a <2,f (2)=e 2-4a +b >0,而函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点. 当b <0时,构造函数H (x )=e x -x -1,则H ′(x )=e x -1, 当x ∈(-∞,0)时,H ′(x )<0,H (x )单调递减, 当x ∈(0,+∞)时,H ′(x )>0,H (x )单调递增, 注意到H (0)=0,故H (x )≥0恒成立, 从而有e x ≥x +1,当x >1时,x -1>0,则f (x )=(x -1)e x -ax 2+b ≥(x -1)(x +1)-ax 2+b =(1-a )x 2+(b -1),当x >1-b1-a时,(1-a )x 2+(b -1)>0, 取x 0=1-b1-a+1,则f (x 0)>0, 由于f (0)<0,f ⎝⎛⎭⎪⎫1-b 1-a +1>0,函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点.f (ln (2a ))=2a [ln (2a )-1]-a [ln (2a )]2+b≤2a [ln (2a )-1]-a [ln (2a )]2+2a =2a ln (2a )-a [ln (2a )]2 =a ln (2a )[2-ln (2a )], 由于0<2a <1,所以ln (2a )<0, 故a ln (2a )[2-ln (2a )]<0,结合函数的单调性可知,函数f (x )在区间(-∞,0)上没有零点. 综上可得,题中的结论成立.3.(2022·天津高考)已知函数f (x )=x 3+k ln x (k ∈R ),f ′(x )为f (x )的导函数. (1)当k =6时,①求曲线y =f (x )在点(1,f (1))处的切线方程; ②求函数g (x )=f (x )-f ′(x )+9x 的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.解 (1)①当k =6时,f (x )=x 3+6ln x ,f ′(x )=3x 2+6x . 可得f (1)=1,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y =9x -8. ②依题意,g (x )=x 3-3x 2+6ln x +3x ,x ∈(0,+∞).g ′(x )=3x 2-6x +6x -3x 2=3(x -1)3(x +1)x 2,令g ′(x )=0,解得x =1.当x 变化时,g ′(x ),g (x )的变化情况如下表:所以函数g (x )∞),g (x )的极小值为g (1)=1,无极大值.(2)证明:由f (x )=x 3+k ln x ,得f ′(x )=3x 2+kx .对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2=t (t >1),则(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)⎝ ⎛⎭⎪⎫3x 21+k x 1+3x 22+k x 2-2⎝ ⎛⎭⎪⎫x 31-x 32+k ln x 1x 2=x 31-x 32-3x 21x 2+3x 1x 22+k ⎝ ⎛⎭⎪⎫x 1x 2-x 2x 1-2k ln x 1x 2=x 32(t 3-3t 2+3t -1)+k ⎝ ⎛⎭⎪⎫t -1t -2ln t .(*) 令h (x )=x -1x -2ln x ,x ∈[1,+∞). 当x >1时,h ′(x )=1+1x 2-2x =⎝ ⎛⎭⎪⎫1-1x 2>0,所以h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1)=0,即t -1t -2ln t >0.因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以x 32(t 3-3t 2+3t -1)+k ⎝⎛⎭⎪⎫t -1t -2ln t ≥(t 3-3t 2+3t -1)-3⎝⎛⎭⎪⎫t -1t -2ln t =t 3-3t 2+6ln t +3t -1. (**)由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +3t >1,故t 3-3t 2+6ln t +3t -1>0. (***)由(*)(**)(***)可得(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]>0,所以当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.二、模拟大题4.(2022·广东珠海高三摸底测试)已知函数f (x )=e x -a ln xx -a (e 为自然对数的底数)有两个零点.(1)若a =1,求曲线y =f (x )在x =1处的切线方程;(2)若f (x )的两个零点分别为x 1,x 2,证明:x 1x 2>e 2e x 1+x 2.解 (1)当a =1时,f (x )=e x-ln x x -1,f ′(x )=e x-1-ln x x 2.又f (1)=e -1,所以切点坐标为(1,e -1),切线的斜率为k =f ′(1)=e -1, 所以切线的方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:由已知得f (x )=x e x -a (ln x +x )x =0有两个不等的正实根,所以方程x e x -a (ln x +x )=0有两个不等的正实根,即x e x -a ln (x e x )=0有两个不等的正实根,a ln (x e x )=x e x ①要证x 1x 2>e 2e ex 1+x 2, 只需证(x 1e x 1)·(x 2e x 2)>e 2,即证ln (x 1e x 1)+ln (x 2e x 2)>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2.由①得a ln t 1=t 1,a ln t 2=t 2,所以a (ln t 2-ln t 1)=t 2-t 1,a (ln t 2+ln t 1)=t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1(ln t 2-ln t 1) =⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1, 只需证⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1>2. 设0<t 1<t 2,令t =t 2t 1,则t >1, 所以只需证ln t >2(t -1)t +1. 令h (t )=ln t -2(t -1)t +1,t >1,则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 所以h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即当t >1时,ln t -2(t -1)t +1>0成立.所以ln t 1+ln t 2>2,即(x 1e x 1)·(x 2e x 2)>e 2,即x 1x 2>e 2e e x 1+x 2. 5.(2022·江苏泰州中学高三期初检测)已知函数f (x )=1+ln (x +1)x +1. (1)求函数y =f (x )的最大值;(2)令g (x )=(x +1)f (x )-(a -2)x +x 2,若g (x )既有极大值,又有极小值,求实数a 的取值范围;(3)求证:当n ∈N *时,ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+…+ln ⎝ ⎛⎭⎪⎫1+1n <2n . 解 (1)f ′(x )=-ln (x +1)(x +1)2,x ∈(-1,+∞), 在(-1,0)上,f ′(x )>0,函数f (x )单调递增,在(0,+∞)上,f ′(x )<0,函数f (x )单调递减,所以f (x )max =f (0)=1.(2)g (x )=(x +1)f (x )-(a -2)x +x 2=1+ln (x +1)-(a -2)x +x 2g ′(x )=1x +1-(a -2)+2x=2x 2+(4-a )x +3-a x +1, g (x )既有极大值,又有极小值,等价于2x 2+(4-a )x +3-a =0在区间(-1,+∞)上有两个不相等的实数根.即⎩⎨⎧2+(a -4)+3-a >0,a -44>-1,Δ=(a -4)2-8(3-a )>0,解得a >22,所以实数a 的取值范围为(22,+∞).(3)证明:由(1)得,当x >0时,f (x )<1,即ln (1+x )<x ,可得ln ⎝⎛⎭⎪⎫1+1n <1n (n ∈N *), 于是ln ⎝ ⎛⎭⎪⎫1+11<11,ln ⎝⎛⎭⎪⎫1+12<12,…, ln ⎝⎛⎭⎪⎫1+1n <1n , 于是ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+...+ln ⎝ ⎛⎭⎪⎫1+1n <1+12+13+ (1)=1+222+223+…+22n <1+21+2+22+3+…+2n -1+n=1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n .6.(2022·新高考八省联考)已知函数f (x )=e x -sin x -cos x ,g (x )=e x +sin x +cos x .(1)证明:当x >-5π4时,f (x )≥0;(2)若g (x )≥2+ax ,求a .解 (1)证明:分类讨论:①当x ∈⎝ ⎛⎦⎥⎤-5π4,-π4时,f (x )=e x -2sin ⎝ ⎛⎭⎪⎫x +π4>0; ②当x ∈⎝ ⎛⎭⎪⎫-π4,0时,f ′(x )=e x -cos x +sin x ,f ′(0)=0, 令m (x )=e x -cos x +sin x ,则m ′(x )=e x +sin x +cos x =e x +2sin ⎝ ⎛⎭⎪⎫x +π4>0, 则函数f ′(x )在⎝ ⎛⎭⎪⎫-π4,0上单调递增, 则f ′(x )<f ′(0)=0,则函数f (x )在⎝ ⎛⎭⎪⎫-π4,0上单调递减, 则f (x )>f (0)=0;③当x =0时,由函数的解析式可知f (0)=1-0-1=0,当x ∈[0,+∞)时,令H (x )=-sin x +x (x ≥0),则H ′(x )=-cos x +1≥0,故函数H (x )在区间[0,+∞)上单调递增,从而H (x )≥H (0)=0,即-sin x +x ≥0,-sin x ≥-x ,从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1,令y =e x -x -1,则y ′=e x -1,当x ≥0时,y ′≥0,故y =e x -x -1在[0,+∞)上单调递增,故函数y =e x -x -1在[0,+∞)上的最小值为e 0-0-1=0,从而在区间[0,+∞)上,e x -x -1≥0.从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1≥0.综上可得,题中的结论成立.(2)令F (x )=e x +sin x +cos x -ax -2,F (x )≥0,则F (x )min ≥0.又F (0)=0,所以F (x )在R 上的最小值为F (0). F ′(x )=e x +cos x -sin x -a ,令G (x )=e x +cos x -sin x -a ,则G ′(x )=e x -sin x -cos x =f (x ),由(1)知,当x >-5π4时,G ′(x )≥0,所以G (x )在⎝ ⎛⎭⎪⎫-5π4,+∞上单调递增,G (0)=2-a . ①当a >2时,G (0)<0,G (a +ln a )=a (e a -1)+2cos ⎝ ⎛⎭⎪⎫a +ln a +π4>2(e 2-1)-2>0. 故G (x )在(0,a +ln a )内存在零点,设为x 1, 当x ∈(0,x 1)时,G (x )<0,即F ′(x )<0, 则F (x )在(0,x 1)上单调递减,所以F (x 1)<F (0)=0,与题意不符,舍去; ②当≤a <2时,G (0)>0,G ⎝ ⎛⎭⎪⎫-5π4=故G (x )在⎝ ⎛⎭⎪⎫-5π4,0上存在零点,设为x 2, 当x ∈(x 2,0)时,G (x )>0,即F ′(x )>0, 则F (x )在(x 2,0)上单调递增,所以F (x 2)<F (0)=0,与题意不符,舍去; ③当a =2时,G (0)=0,则当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,G (x )<0, 当x ∈(0,+∞)时,G (x )>0,即当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,F ′(x )<0, 当x ∈(0,+∞)时,F ′(x )>0,所以F (x )在⎝ ⎛⎭⎪⎫-5π4,0上单调递减,在(0,+∞)上单调递增, 所以当x ∈⎝ ⎛⎭⎪⎫-5π4,+∞时,F (x )≥F (0)=0. 又当x ∈⎝ ⎛⎦⎥⎤-∞,-5π4时,F (x )=e x +2sin ⎝ ⎛⎭⎪⎫x +π4-2x -2>-2+5π2-2>0. 因此,当a =2时,F (x )≥0.综上,a =2.。

高中数学《利用导数解决函数的单调性问题》公开课优秀课件

高中数学《利用导数解决函数的单调性问题》公开课优秀课件
f(x)在(a,b)内是减函数.√( )
2
函数的单调性与导数的关系
条件
结论
f′(x)>0
f(x)在(a,b) 内_单__调__递__增__
函数y=f(x)在区间 (a,b)上可导
f′(x)<0
f(x)在(a,b) 内__单__调__递__减_
f′(x)=0
f(x)在(a,b) 内是_常__数__函__数
(0,2),
a3
课堂小结
一、本节课所学知识 1、导数与函数单调性的关系; 2、求函数的单调区间; 3、求参数的取值范围.
课后作业
1、限时训练P258页A组。 2、课后探究:
已知函数f ( x) x3 3ax2 2a2 x 1在[0,2]上是单调递增函数, 求参数a的取值范围.
2、利用导数解决 函数的单调性问题
一、思考辨析(正确的打“√”,错误的打“×”) (1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)
>0×.( )
(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在
此区间内没有单调性.( √ )
(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则
增区间为,0,2,+,减区间为0, 2
考点2 含参数函数的单调性
例2:已知函数f (x) 1 x3 ax2 8a2x,讨论f (x)的单调区间. 3
解:f '(x) x2 2ax 8a2 0
(x 2a)(x 4a) 0 x 2a或x 4a 当a 0时,增区间(, 2a), (4a, ),减区间(2a, 4a); 当a 0时,增区间(, ),无减区间; 当a 0时,增区间(, 4a), (2a, ),减区间(4a, 2a).

2011届新课标人教版高中第1轮总复习理科数学课件第17讲导数在函数中的应用

2011届新课标人教版高中第1轮总复习理科数学课件第17讲导数在函数中的应用
11
3.函数的最值与其导数的关系 函数的最值与其导数的关系 (1)函数的最值 : 如果在函数y=f(x)的定义 函数的最值: 如果在函数 的定义 函数的最值 域 I 内 存 在 x0 , 使 得 对 任 意 的 x∈I , 都 有 ∈ 则称f(x 为函数的最大值 为函数的最大值,记作 ⑤ f(x)≤f(x0) ,则称 0)为函数的最大值 记作 则称 ymax=f(x0);反之 若有⑥ f(x)≥f(x0) ,则称 0)为 反之,若有 则称f(x 为 反之 若有⑥ 则称 函数的最小值, 记作y 函数的最小值 , 记作 min=f(x0).最大值和最小 最大值和最小 值统称为最值; 值统称为最值; (2)如果函数 如果函数y=f(x)在闭区间[a,b]上的图 在闭区间[ ] 如果函数 在闭区间 象是⑦ 的曲线,则该函数在闭 象是⑦ 一条连续不间断 的曲线 则该函数在闭 区间[ ]上一定能够取得最大值与最小值. 区间[a,b]上一定能够取得最大值与最小值
18
求函数f(x)=(x-1)(x-2)(x-3)的单调 的单调 变式 求函数 增区间. 增区间 因为 f′(x)=(x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2) =3x2-12x+11.
3 由f′(x)≥0,得x≤2- 或x≥2+ . 3 , 3 3 点评 本题易错误地作答为递增区间是 故函数f(x)的单调递增区间是 故函数 的单调递增区间是 3 3 (-∞,2]∪ [2+ 3 ,+∞).误将正值区间 误将正值区间(1,2) ∪ 误将正值区间 3 与[2+ 3,+∞). (-∞,2- 3 ]与 作为增区间. 或(3,+∞)作为增区间 作为增区间 3 3
4
1.已知函数 已知函数f(x)在点 0处连续,下列命题中 在点x 已知函数 在点 处连续,下列命题中, 正确的是( 正确的是 C ) A.导数为零的点一定是极值点 导数为零的点一定是极值点 B. 如 果在点 x0 附近的左侧 f ′(x)>0,右侧 f 右侧 ′(x)<0,那么 0)是极小值 那么f(x 是极小值 那么 C.如果在点 0 附近的左侧 ′(x)>0,右侧 如果在点x 右侧f 如果在点 附近的左侧f 右侧 ′(x)<0,那么 0)是极大值 ,那么f(x 是极大值 由极值的定义知C正确 右侧f 正确. 由极值的定义知 正确 右侧 D.如果在点 附近的左侧 ′(x)<0, 如果在点x0附近的左侧 如果在点 附近的左侧f , ′(x)>0,那么 0)是极大值 那么f(x 是极大值 那么

利用导数解决函数单调性问题

利用导数解决函数单调性问题

函数极大值、极小值1、极大值:如果c x =是函数f(x)在某个开区间),(v u 上的最大值点,即不等式)()(x f c f ≥ 对一切),(v u x ∈成立,就说函数f(x)在c x =处取到极大值)(c f ,并称c 为函数f(x)的一个极大值点,)(c f 为f(x)的一个极大值。

2、极小值:如果c x =是函数f(x)在某个开区间),(v u 上的最小值点,即不等式)()(x f c f ≤ 对一切),(v u x ∈成立,就说函数f(x)在c x =处取到极小值)(c f ,并称c 为函数f(x)的一个极小值点,)(c f 为f(x)的一个极小值。

3、极大值与极小值统称为极值 ,极大值点与极小值点统称为极值点;若0)(='c f ,则c x =叫做函数f(x)的驻点;可导函数的极值点必为驻点,但驻点不一定是极值点。

4、判别f (c )是极大、极小值的方法:若0x 满足0)(='c f ,且在c 的两侧)(x f 的导数异号,则c 是)(x f 的极值点,)(c f 是极值,并且如果)(x f '在c 两侧满足“左正右负”,则c 是)(x f 的极大值点,)(c f 是极大值;如果)(x f '在c 两侧满足“左负右正”,则c 是)(x f 的极小值点,)(0x f 是极小值5、求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x )(2)求f(x)的驻点,即求方程f ′(x )=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x )在这个根处无极值典例剖析例1 已知32()f x x ax bx c =+++在1x =与23x =-时,都取得极值. (1) 求,a b 的值;(2)若3(1)2f -=,求()f x 的单调区间和极值; 分析:可导函数在0x 点取到极值时,0)(0=x f ;求函数极值时,先求单调区间,再求极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习专题讲解17 利用导数解决函数的单调性问题[考点要求] 1.了解函数的单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不会超过三次)函数的单调性与导数的关系条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f(x)在(a,b)内是常数函数1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.一、思考辨析(正确的打“√”,错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.()[答案](1)×(2)√(3)√二、教材改编1.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是()A.在区间(-3,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f(x)是增函数C[由图象可知,当x∈(4,5)时,f′(x)>0,故f(x)在(4,5)上是增函数.] 2.函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数D[因为f′(x)=-sin x-1<0在(0,π)上恒成立,所以f(x)在(0,π)上是减函数,故选D.]3.函数f(x)=x-ln x的单调递减区间为________.(0,1][函数f(x)的定义域为{x|x>0},由f′(x)=1-1x≤0,得0<x≤1,所以函数f(x)的单调递减区间为(0,1].]4.已知f(x)=x3-ax在[1,+∞)上是增函数,则实数a的最大值是________.3[f′(x)=3x2-a≥0,即a≤3x2,又因为x∈[1,+∞ ),所以a≤3,即a的最大值是3.]考点1不含参数函数的单调性求函数单调区间的步骤(1)确定函数f(x)的定义域.(2)求f′(x).(3)在定义域内解不等式f′(x)>0,得单调递增区间.(4)在定义域内解不等式f′(x)<0,得单调递减区间.1.函数f(x)=1+x-sin x在(0,2π)上是()A.单调递增B.单调递减C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增A[f′(x)=1-cos x>0在(0,2π)上恒成立,所以在(0,2π)上单调递增.]2.函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞)B [∵y =12x 2-ln x ,∴x ∈(0,+∞),y ′=x -1x =(x -1)(x +1)x .由y ′≤0可解得0<x ≤1,∴y =12x 2-ln x 的单调递减区间为(0,1],故选B.]3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________. (-π,-π2)和(0,π2) [f ′(x )=sin x +x cos x -sin x =x cos x , 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为(-π,-π2)和(0,π2), 即f (x )的单调递增区间为(-π,-π2)和(0,π2).]求函数的单调区间时,一定要树立函数的定义域优先的原则,否则极易出错.如T 2. 考点2 含参数函数的单调性研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面①二次项系数讨论,②根的有无讨论,③根的大小讨论, ④根在不在定义域内讨论.(2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完必须写综述.已知函数f (x )=12x 2-2a ln x +(a -2)x ,当a <0时,讨论函数f (x )的单调性. [解] 函数的定义域为(0,+∞),f ′(x )=x -2ax +a -2=(x -2)(x +a )x .①当-a =2,即a =-2时,f ′(x )=(x -2)2x≥0,f (x )在(0,+∞)上单调递增.②当0<-a<2,即-2<a<0时,∵0<x<-a或x>2时,f′(x)>0;-a<x<2时,f′(x)<0,∴f(x)在(0,-a),(2,+∞)上单调递增,在(-a,2)上单调递减.③当-a>2,即a<-2时,∵0<x<2或x>-a时,f′(x)>0;2<x<-a时,f′(x)<0,∴f(x)在(0,2),(-a,+∞)上单调递增,在(2,-a)上单调递减.综上所述,当-2<a<0时,f(x)在(0,-a),(2,+∞)上单调递增,在(-a,2)上单调递减;当a=-2时,f(x)在(0,+∞)上单调递增;当a<-2时,f(x)在(0,2),(-a,+∞)上单调递增,在(2,-a)上单调递减.含参数的问题,应就参数范围讨论导数大于(或小于)零的不等式的解,在划分函数的单调区间时,要在函数定义域内确定导数为零的点和函数的间断点.已知函数f(x)=ln (e x+1)-ax(a>0),讨论函数y=f(x)的单调区间.[解]f′(x)=e xe x+1-a=1-1e x+1-a.①当a≥1时,f′(x)<0恒成立,∴当a∈[1,+∞)时,函数y=f(x)在R上单调递减.②当0<a<1时,由f′(x)>0,得(1-a)(e x+1)>1,即e x>-1+11-a ,解得x>lna1-a,由f′(x)<0,得(1-a)(e x+1)<1,即e x<-1+11-a ,解得x<lna1-a.∴当a∈(0,1)时,函数y=f(x)在(ln a1-a,+∞)上单调递增,在(-∞,ln a1-a)上单调递减.综上,当a∈[1,+∞)时,f(x)在R上单调递减;当a∈(0,1)时,f(x)在(ln a1-a,+∞)上单调递增,在(-∞,ln a1-a)上单调递减.考点3已知函数的单调性求参数根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.已知函数f(x)=ln x,g(x)=12ax2+2x(a≠0).(1)若函数h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.[解](1)h(x)=ln x-12ax2-2x,x∈(0,+∞),所以h′(x)=1x-ax-2,由于h(x)在(0,+∞)上存在单调递减区间,所以当x∈(0,+∞)时,1x-ax-2<0有解,即a>1x2-2x有解.设G(x)=1x2-2x,所以只要a>G(x)min即可.而G(x)=(1x-1)2-1,所以G(x)min=-1.所以a>-1且a≠0,即a的取值范围是(-1,0)∪(0,+∞).(2)由h(x)在[1,4]上单调递减得,当x∈[1,4]时,h′(x)=1x-ax-2≤0恒成立,即a ≥1x 2-2x 恒成立. 所以a ≥G (x )max , 而G (x )=(1x -1)2-1, 因为x ∈[1,4], 所以1x ∈[14,1],所以G (x )max =-716(此时x =4),所以a ≥-716且a ≠0,即a 的取值范围是[-716,0)∪(0,+∞).即a=1x2-2x有解,令m(x)=1x2-2x,x∈(1,4),则-1<m(x)<-716,所以实数a的取值范围为(-1,-716).(1)f(x)在D上单调递增(减),只要满足f′(x)≥0(≤0)在D上恒成立即可.如果能够分离参数,则可分离参数后转化为参数值与函数最值之间的关系.(2)二次函数在区间D上大于零恒成立,讨论的标准是二次函数的图象的对称轴与区间D的相对位置,一般分对称轴在区间左侧、内部、右侧进行讨论.已知函数f(x)=3xa-2x2+ln x在区间[1,2]上为单调函数,求a的取值范围.[解]f′(x)=3a-4x+1x,若函数f(x)在区间[1,2]上为单调函数,即在[1,2]上,f′(x)=3a-4x+1x≥0或f′(x)=3a -4x+1x≤0,即3 a -4x+1x≥0或3a-4x+1x≤0在[1,2]上恒成立,即3a≥4x-1x或3a≤4x-1x.令h(x)=4x-1x,因为函数h(x)在[1,2]上单调递增,所以3a≥h(2)或3a≤h(1),即3a≥152或3a≤3,解得a<0或0<a≤25或a≥1.考点4利用导数比较大小或解不等式用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题转化为利用导数研究函数单调性的问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f(x)>g(x)→F(x)=f(x)-g(x);(2)xf′(x)+f(x)→[xf(x)]′;(3)xf′(x)-f(x)→[f(x)x]′;(4)f′(x)+f(x)→[e x f(x)]′;(5)f′(x)-f(x)→[f(x)e x]′.(1)已知函数f(x)是定义在R上的偶函数,设函数f(x)的导函数为f′(x),若对任意x>0都有2f(x)+xf′(x)>0成立,则()A.4f(-2)<9f(3) B.4f(-2)>9f(3)C.2f(3)>3f(-2) D.3f(-3)<2f(-2)(2)设f(x)是定义在R上的奇函数,f(2)=0,当x>0时,有xf′(x)-f(x)x2<0恒成立,则不等式x2f(x)>0的解集是________.(1)A(2)(-∞,-2)∪(0,2)[(1)根据题意,令g(x)=x2f(x),其导数g′(x)=2xf(x)+x2f′(x),又对任意x>0都有2f(x)+xf′(x)>0成立,则当x>0时,有g′(x)=x(2f(x)+xf′(x))>0恒成立,即函数g(x)在(0,+∞)上为增函数,又由函数f(x)是定义在R上的偶函数,则f(-x)=f(x),则有g(-x)=(-x)2f(-x)=x2f(x)=g(x),即函数g(x)也为偶函数,则有g(-2)=g(2),且g(2)<g(3),则有g(-2)<g(3),即有4f(-2)<9f(3).故选A.(2)令φ(x)=f(x)x,∵当x>0时,[f(x)x]′<0,∴φ(x)=f(x)x在(0,+∞)上为减函数,又φ(2)=0,∴在(0,+∞)上,当且仅当0<x<2时,φ(x)>0,此时x2f(x)>0.又f(x)为奇函数,∴h(x)=x2f(x)也为奇函数.故x2f(x)>0的解集为(-∞,-2)∪(0,2).]如本例(1)已知条件“2f(x)+xf′(x)>0”,需构造函数g(x)=x2f(x),求导后得x>0时,g′(x)>0,即函数g(x)在(0,+∞)上为增函数,从而问题得以解决.而本例(2)则需构造函数φ(x)=f(x)x解决.1.定义在R上的函数f(x)满足:f′(x)>f(x)恒成立,若x1<x2,则e x1f(x2)与e x2f(x1)的大小关系为()A.e x1f(x2)>e x2f(x1)B.e x1f(x2)<e x2f(x1)C.e x1f(x2)=e x2f(x1)D.e x1f(x2)与e x2f(x1)的大小关系不确定A[设g(x)=f(x)e x,则g′(x)=f′(x)e x-f(x)e x(e x)2=f′(x)-f(x)e x,由题意得g′(x)>0,所以g(x)在R上单调递增,当x1<x2时,g(x1)<g(x2),即f(x1)e x1<f(x2)e x2,所以ex1f(x2)>e x2f(x1).]2.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<12,则不等式f(x2)<x22+12的解集为________.(-∞,-1)∪(1,+∞)[由题意构造函数F(x)=f(x)-12x,则F′(x)=f′(x)-12.因为f′(x)<12,所以F′(x)=f′(x)-12<0,即函数F(x)在R上单调递减.因为f(x2)<x22+12,f(1)=1,所以f(x2)-x22<f(1)-12,所以F(x2)<F(1),又函数F(x)在R上单调递减,所以x2>1,即x∈(-∞,-1)∪(1,+∞).]。

相关文档
最新文档