古典概型练习题(有详细答案).

合集下载

高中数学必修二 10 1 3 古典概型 练习(含答案)

高中数学必修二  10 1 3 古典概型 练习(含答案)

10.1.3 古典概型一、选择题1.下列有关古典概型的四种说法:①试验中所有可能出现的样本点只有有限个;②每个事件出现的可能性相等;③每个样本点出现的可能性相等;④已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率()kP An=.其中所正确说法的序号是()A.①②④B.①③C.③④D.①③④【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.故选:D.2.某袋中有9个除颜色外其他都相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为( )A.15B.14C.49D.59【答案】C【解析】从9个球中任意取出1个,样本点总数为9,取出的球恰好是白球含4个样本点,故所求概率为49,故选:C.3.甲乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A .13 B .14 C .15 D .16【答案】A【解析】依题意,基本事件的总数有339⨯=种,两个人参加同一个小组,方法数有3种,故概率为3193=. 4.齐王有上等、中等、下等马各一匹,田忌也有上等、中等、下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现在从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜得概率为( )A .49B .59C .23D .79【答案】C【解析】设齐王上等、中等、下等马分別为,,A B C ,田忌上等、中等、下等马分别为,,a b c , 现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:()()()()()()()()(),,,,,,,,,,,,,,,,,A a A b A c B a B b B c C a C b C c ,共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:()()()()()(),,,,,,,,,,,A a A b A c B b B c C c ,共 6种,∴齐王的马获胜的概率为6293P ==,故选C. 5.(多选题)下列概率模型是古典概型的为( )A .从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小B .同时据两枚质地均匀的骰子,点数和为6的概率C .近三天中有一天降雨的概率D .10人站成一排,其中甲,乙相邻的概率 【答案】ABD【解析】古典概型的特点:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.显然A、B、D符合古典概型的特征,所以A、B、D是古典概型;C选项,每天是否降雨受多方面因素影响,不具有等可能性,不是古典概型.故选:ABD.6.(多选题)张明与李华两人做游戏,则下列游戏规则中公平的是()A.抛掷一枚质地均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则李华获胜B.同时抛掷两枚质地均匀的硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则李华获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则李华获胜D.张明、李华两人各写一个数字6或8,两人写的数字相同则张明获胜,否则李华获胜【答案】ACD【解析】选项A中,向上的点数为奇数与向上的点数为偶数的概率相等,A符合题意;选项B中,张明获胜的概率是12,而李华获胜的概率是14,故游戏规则不公平,B不符合题意;选项C中,扑克牌是红色与扑克牌是黑色的概率相等,C符合题意;选项D中,两人写的数字相同与两人写的数字不同的概率相等,D符合题意.故选:ACD二、填空题7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和大于9的概率是_______.【答案】1 6【解析】抛掷一个骰子两次,基本事件有36种,其中符合题意的有:()()()()()()4,6,5,5,,5,6,6,4,6,5,6,6共六种,故概率为61 366=.8.有红心1,2,3,4和黑桃5这五张扑克牌,现从中随机抽取两张,则抽到的牌均为红心的概率是_______.【答案】3 5【解析】五张扑克牌中随机抽取两张,有:12、13、14、15、23、24、25、34、35、45共10种,抽到2张均为红心的有:12、13、14、23、24、34共6种,所以,所求的概率为:63105=故答案为:35. 9.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则为整数的概率= .【答案】16【解析】:从2,3,8,9中任取两个数记为,a b ,作为作为对数的底数与真数,共有2412A =个不同的基本事件,其中为整数的只有23log 8,log 9两个基本事件,所以其概率21126P ==. 10.一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 【答案】0.2【解析】∵A =“摸出红球或白球”与B =“摸出黑球”是对立事件,且P(A)=0.58,∴P(B)=1-P(A)=0.42,又C =“摸出红球或黑球”与D =“摸出白球”是对立事件,且P(C)=0.62,∴P(D)=0.38. 设事件E =“摸出红球”,则P(E)=1-P(B ∪D)=1-P(B)-P(D)=1-0.42-0.38=0.2. 三、解答题11.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个;②若8xy≥,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅰ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】(Ⅰ)516.(Ⅰ)小亮获得水杯的概率大于获得饮料的概率.【解析】(Ⅰ)两次记录的所有结果为(1,1),(1,,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.满足xy≤3的有(1,1),(1,,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为5 16.(Ⅰ)满足xy≥8的有(2,4),(3,,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为6 16;小亮获得饮料的概率为5651161616 --=,所以小亮获得水杯的概率大于获得饮料的概率.12.某单位N名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.下表是年龄的频率分布表.(1)求正整数a ,b ,N 的值;(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少? (3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 【答案】(1)25,100,250; (2)1人,1人,4人; (3)815. 【解析】 (1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以25a =. 且0.08251000.02b =⨯= 总人数252500.025N ==⨯ (2)因为第1,2,3组共有2525100150++=人,利用分层抽样在150名员工中抽取6人,每组抽取的人数分别为:第1组的人数为2561150⨯=, 第2组的人数为2561150⨯=,第3组的人数为10064150⨯=, 所以第1,2,3组分别抽取1人,1人,4人.(3)由(2)可设第1组的1人为A ,第2组的1人为B ,第3组的4人分别为1C ,2C ,3C ,4C 则从6人中抽取2人的所有可能结果为:()A B ,,()1A C ,,()2A C ,,()3A C ,,()4A C ,,()1B C ,,()2B C ,,()3B C ,,()4B C ,,()12C C ,,()13 C C ,,()14C C ,,()()2324 C C C C ,,,,()34C C ,共有15种.其中恰有1人年龄在第3组的所有结果为:()1AC ,,()2A C ,,()3A C ,,()4A C ,,()1B C ,,()2B C ,,()3B C ,,()4B C ,,共有8种.8 15.所以恰有1人年龄在第3组的概率为。

古典概型练习题(有详细问题详解)

古典概型练习题(有详细问题详解)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品 ( )C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( )A. 0B. 1C.2D.33.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为A. 15B.25C.35D.45( )4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B.710C.110D.310( )5.从标有1,2,3,4,5,6,7,8,9的9纸片中任取2,那么这2 纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11.下列说法中正确的是 ( )A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上1,2,3,现任取3面,它们的颜色与均不相同的概率是 ( )A.13B.19C.114D.12713.若事件A 、B 是对立事件,则P(A)+P(B)=________________.14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件.其中正确命题的个数是( )A. 0B. 1C.2D.34.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为()A. 37B.710C.110D.3105.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.若事件A 、B 是对立事件,则P(A)+P(B)=________________.11.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

1.古典概型

1.古典概型

1. (2010 安徽理) 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以12A A ,和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①()25P B =; ②()15|11P B A =;③事件B 与事件1A 相互独立; ④123A A A ,,是两两互斥的事件;⑤()P B 的值不能确定,因为它与123A A A ,,中究竟哪一个发生有关答案:②④2. (2010 安徽文) 甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 (A )183 (B )184 (C )185 (D )186答案:C3. (2010 北京文) 从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b a >的概率是(A )45 (B )35 (C )25(D )15答案:D4. (2010 福建理) 某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续..正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 .答案:0.1285. (2010 湖北理) 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是A .125 B .21 C .127 D .43答案:C6. (2010 湖北文) 一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为 (用数字作答).答案:0.94777. (2010 湖北文) (本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示). (Ⅰ)在答题卡上的表格中填写相应的频率;(Ⅱ)估计数据落在[1.15,1.30 )中的概率为多少;(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中的鱼的总条数.频率/组距 kg )答案:本小题主要考查频率分布直方图、频数、概率等基本概念和总体分布的估计等统计方法.解:(Ⅰ)根据频率分布直方图可知,频率=组距×(频率/组距),故可得下表(Ⅱ)0.300.150.020.47++=,所以数据落在[1.15,1.30)中的概率约为0.47. (Ⅲ)12010020006⨯=,所以水库中鱼的总数约为2000条.8. (2010 湖南文) (本小题满分12分)为了对某课题进行研究,用分层抽样方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)(1)求, ;(2)若从高校B 、C 抽取的人中选2人作专题发言,求这2人都来自高校C 的概率.答案:解:(I )由题意可得,5436218yx ==,所以1 3.x y ==, (II )记从高校B 抽取的2人为12b b ,,从高校C 抽取的3人为123c c c ,,,则从高校B ,C 抽取的5人中选2人作专题发言的基本事件有12111213212223121323()()()()()()()()()()b b bc b c b c b c b c b c c c c c c c ,,,,,,,,,,,,,,,,,,,共10种.设选中的2人都来自高校C 的事件为X ,则X 包含的基本事件有12()c c ,,13()c c ,,23()c c ,共3种,因此.103)(=X P 故选中的2人都来自高校C 的概率为.1039. (2010 江苏) 盒子里共有大小相同的3只白球,1只黑球,若从中随机摸出两只球,则它们颜色不同的概率是 .答案:1210. (2010 江西理) 一位国王的铸币大臣在每箱100枚的硬币中各参入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为1p 和2p .则 A .12p p = B .12p p <C .12p p >D .以上三种情况都有可能答案:B11. (2010 江西文) (本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过...的通道,直至走出迷宫为止.(1)求走出迷宫时恰好用了1小时的概率;(2)求走出迷宫的时间超过3小时的概率.答案:解:(1)设A 表示走出迷宫时恰好用了1小时这一事件,则1().3P A = (2)设B 表示走出迷宫的时间超过3小时这一事件,则1111().6662P B =++=12. (2010 辽宁理) 两个实习生每人加工一个零件,加工为一等品的概率分别为32和43,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A )21 (B )125 (C )41 (D )61答案:B13. (2010 辽宁理) (本小题满分12分)为了比较注射A , B 两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A ,另一组注射药物B . (Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;(Ⅱ)下表1和表2分别是注射药物A 和B 后的试验结果.(疱疹面积单位:mm 2)表1:注射药物A 后皮肤疱疹面积的频数分布表表2:注射药物B 后皮肤疱疹面积的频数分布表(i )完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;(ii )完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.频率频率图I 注射药物A 后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B 后皮肤疱疹面积的频率分布直方图表3附:K 2=2()()()()()n ad bc a b c d a c b d -++++答案:解:(Ⅰ)甲、乙两只家兔分在不同组的概率为991981002002C 100C 199P == . 4分(Ⅱ)(i )可以看出注射药物A 后的疱疹面积的中位数在65至70之间,而注射药物B 后的疱疹面积的中位数在70至75之间,(ii )表322200(70653530)24.510010010595K ⨯⨯-⨯=⨯⨯⨯≈频率图I 注射药物A 后皮肤疱疹面积的频率分布直方图图Ⅱ注射药物B 后皮肤疱疹面积的频率分布直方图 频率由于828.102>K,所以有99.9%的把握认为“注射药物A 后的疱疹面积与14. (2010 辽宁文) 三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 . 答案:1315. (2010 全国I 文) (本小题满分12分)(注意:在试题卷上作答无效.........).投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.答案:解:(Ⅰ)记 A 表示事件:稿件能通过两位初审专家的评审; B 表示事件:稿件恰能通过一位初审专家的评审; C 表示事件:稿件能通过复审专家的评审; D 表示事件:稿件被录用.则 D A B C =+ ,()0.50.50.25()20.50.50.5()0.3P A P B P C =⨯==⨯⨯==,,, ()()P D P A B C =+ =()()P A P B C + =()()()P A P B P C + 0.250.50.3=+⨯ 0.40=.(Ⅱ)记0A 表示事件:4篇稿件中没有1篇被录用; 1A 表示事件:4篇稿件中恰有1篇被录用; 2A 表示事件:4篇稿件中恰有2篇被录用;201A A A =+40()(10.4)0.1296P A =-=,1314()C 0.4(10.4)0.3456P A =⨯⨯-=, 20101()()()()P A P A A P A P A =+=+ 0.12960.3456=+ 0.4752=,22()1()10.47520.5248P A P A =-=-=.16. (2010 全国II 文) (本小题满分12分)如图,由M 到N 的电路中有4个元件,分别标为1234T T T T ,,,,电流能通过123T T T ,,的概率都是p ,电流能通过4T 的概率是0.9, 电流能否通过各元件相互独立,已知123T T T ,,中至少有一个能通过电流的概率为0.999. (I )求p ;(II )求电流能在M 与N 之间通过的概率.答案:解:记i A 表示事件:电流能通过i T ,i =1,2,3,4,A 表示事件:123T T T ,,中至少有一个能通过电流,B 表示事件:电流能在M 与N 之间通过.MN(I )123A A A A =⋅⋅,123A A A ,, 相互独立, 3123231()()()()()(1)P A P A A A P A P A P A p =⋅⋅==-,又()1()10.9990.001P A P A =-=-=, 故3(1)0.0010.9p p -==,.6分(II )44134123B A A A A A A A A =+⋅⋅+⋅⋅⋅,44134123()()P B p A A A A A A A A =+⋅⋅+⋅⋅⋅=44134123()()()P A P A A A P A A A A +⋅⋅+⋅⋅⋅=44134123()()()()()()()()P A P A P A P A P A P A P A P A ++ =0.90.10.90.90.10.10.90.9+⨯⨯+⨯⨯⨯ 0.9891= 12分17. (2010 山东文) (本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4. (Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.答案:本小题主要考察古典概念、对立事件的概率计算,考查学生分析问题、解决问题的能力.满分12分. 解:(I )从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的球的编号之和不大于4的事件共有1和2,1和3两个.因此所求事件的概率为2163P ==. (II )先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1), (3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件2n m +≥的事件为(1,3),(1,4),(2,4),共3个.所以满足条件2n m +≥的事件的概率为1316P =.故满足条件2n m <+的事件的概率为1313111616P -=-=.18. (2010 上海理) 从一副混合后的扑克牌(52张)中,随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得黑桃”,则概率=)(B A P (结果用最简分数表示).答案:72619. (2010 上海文) 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示).答案:11720. (2010 四川文) (本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料.(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.答案:本小题主要考查相互独立事件、互斥事件等概率计算,考查运用所学知识与方法解决实际问题的能力.解:(Ⅰ)设甲、乙、丙中奖的事件分别为A 、B 、C ,那么31()()()65125()()()().6216P A P B P C P A B C P A P B P C ===⎛⎫⋅⋅=== ⎪⎝⎭,答:三位同学都没有中奖的概率是125216. (Ⅱ)1()P A B C A B C A B C A B C -⋅⋅+⋅⋅+⋅⋅+⋅⋅23151251366627⎛⎫⎛⎫=-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭.25()27P A B C A B C A B C A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅=或.答:三位同学中至少有两位没有中奖的概率为21. (2010 天津文) (本小题满分12分)有编号为12A A ,,…,10A 的10个零件,测量其直径(单位:cm ),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率: (Ⅱ)从一等品零件中,随机抽取2个.(i )用零件的编号列出所有可能的抽取结果; (ii )求这2个零件直径相等的概率.答案:本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.满分12分(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )=610=35. (Ⅱ)(i )解:一等品零件的编号为123456A A A A A A ,,,,,.从这6个一等品零件中随机抽取2个,所有可能的结果有:{}{}{}121314A A A A A A ,,,,,,{}{}1516A A A A ,,,,{}23A A ,,{}{}2425A A A A ,,,,{}{}{}263435A A A A A A ,,,,,,{}{}{}364546A A A A A A ,,,,,,{}56A A ,共有15种.(ii )解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B )的所有可能结果有:{}{}{}141646A A A A A A ,,,,,,{}{}{}232535A A A A A A ,,,,,,共有6种.所以P (B )=62155=.22. (2010 重庆理) 某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为____________. 答案:3523. (2010 重庆文) (本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求: (Ⅰ) 甲、乙两单位的演出序号均为偶数的概率; (Ⅱ) 甲、乙两单位的演出序号不相邻的概率.答案:(本题13分)解:考虑甲、乙两个单位的排列.甲、乙两单位可能排列在6个位置中的任两个,有26A 30=种等可能的结果. (Ⅰ)设A 表示“甲、乙的演出序号均为偶数”, 则A 包含的结果有23A 6=种, 故所求概率为61()305P A ==. (Ⅱ)设B 表示“甲、乙两单位的演出序号不相邻”,则B 表示甲、乙两单位序号相邻,B 包含的结果有52!10⨯=种.从而102()1()1303P B P B =-=-=.24. (2010 重庆文) 加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ . 答案:370。

高中数学 专题1.11 古典概型练习(含解析)新人教A版必

高中数学 专题1.11 古典概型练习(含解析)新人教A版必

古典概型1.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm ±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶【答案】 C【解析】 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.2.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.143.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A .14B .13C .12D .25【答案】 A【解析】 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P =14. 4.集合A ={2,3},B ={1,2,3},从A 、B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13 D.165.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.6、现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9.若从中一次抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为________.答案1 5解析基本事件共有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)10种情况.相差0.3 m的共有(2.5,2.8),(2.6,2.9)两种情况,所以P=210=1 5.7.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为________.8.在不大于100的自然数中任取一个数.(1)求所取的数为偶数的概率;(2)求所取的数是3的倍数的概率;(3)求所取的数是被3除余1的数的概率.。

古典概型练习题(有详细答案)解析

古典概型练习题(有详细答案)解析

古典概型练习题1.从12个同类产品(其中10个正品,2个次品中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品 (C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 (A. 0B. 1C.2D.33.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为5B.25C.35D.45(4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B.710110D.310(5.从标有1,2,3,4,5,6,7,8,9的9纸片中任取2,那么这2 纸片数字之积为偶数的概率为(A. 12B.718C.1318D.186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为(A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 (①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则(kP An④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是(⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 (A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则(A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11.下列说法中正确的是 (A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上1,2,3,现任取3面,它们的颜色与均不相同的概率是 ( A.13 B.19 C.114 D.12713.若事件A 、B 是对立事件,则P(A+P(B=________________.14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析1.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.B.C.D.【答案】B【解析】所有不同方法数有种,所求事件包含的不同方法数有种,因此概率,答案选B.【考点】古典概型的概率计算2.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.4.设函数是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数, (1) 求的最小值;(2)求恒成立的概率.【答案】(1)则当时,;当时,;当时,; (2).【解析】(1)对于的最小值问题,对于不同的其结果不一样,故应分别讨论,且采用分离常数法;(2)由(1)小题,要使其恒成立必有,并由列举法计算出其中符合条件的.试题解析:由,因为,故有.则当时,;当时,;当时,;由(1)可知,要使恒成立,当时,;当时,;当时,;故满足条件的有对.共有,则概率.【考点】(1)函数最值问题(分离常数法);(2)古典概型.5.已知方程是关于的一元二次方程.(1)若是从集合四个数中任取的一个数,是从集合三个数中任取的一个数,求上述方程有实数根的概率;(2)若,,求上述方程有实数根的概率.【答案】(1)(2)【解析】(1)先将从集合四个数中任取的一个数作为,从集合三个数中任取的一个数作为的所有情况列出来,再将使上述方程由实数根的情况列出来,根据古典概型公式算出所求事件的概率;(2)先作出满足,表示的平面区域并计算出区域的面积S,再根据要使方程有实数根,则△≥0,求出a,b满足的不等式,作出该不等式与,表示区域并计算面积,根据几何概型公式,该面积与S的比值就是上述方程有实数根的概率.试题解析:设事件为“方程有实数根”.当,时,方程有实数根的充要条件为.(1)基本事件共12个:,,,.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件.事件发生的概率为.(2)试验的全部结果所构成的区域为.构成事件的区域为.所以所求的概率.考点:古典概型;几何概型6.在两个袋内,分别写着装有、、、、、六个数字的张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为()A.B.C.D.【答案】C【解析】任取一张卡片共种情况,两数之和为9包括共4种,所以两数之和为9的概率为,故选C.【考点】古典概型的概率问题7.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是_________.【答案】【解析】每箱中3听合格的饮料分别记为,不合格的2听分别记为。

高三数学古典概型试题答案及解析

高三数学古典概型试题答案及解析

高三数学古典概型试题答案及解析1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【答案】A【解析】由题意知本题是一个古典概型,试验发生包含的事件数是种结果,满足条件得事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到,故选A.【考点】古典概型及其概率计算公式.2.甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率;(2)这种游戏规则公平吗?试说明理由.【答案】(1);(2)这种游戏规则是公平的.【解析】(1)设“两个编号和为8”为事件A,计算甲、乙两人取出的数字等可能的结果数,事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,按古典概型概率的计算公式计算;(2)首先按古典概型计算两人分别获胜的概率,通过比较大小,作出结论.所以这种游戏规则是公平的.试题解析:(1)设“两个编号和为8”为事件A,则事件A包含的基本事件为(2,6),(3,5),(4,4),(5,3),(6,2)共5个,又甲、乙两人取出的数字共有6×6=36(个)等可能的结果,故 6分(2)这种游戏规则是公平的. 7分设甲胜为事件B,乙胜为事件C,则甲胜即两编号和为偶数所包含的基本事件数有18个:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)所以甲胜的概率,乙胜的概率= 11分所以这种游戏规则是公平的. 12分【考点】古典概型概率的计算.3.(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。

古典概型练习题(有详细答案)

古典概型练习题(有详细答案)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品 ( )C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( )A. 0B. 1C.2D.33.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为A. 15B.25C.35D.45( )4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B.710C.110D.310( )5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70% 10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11.下列说法中正确的是 ( )A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2,3,现任取3面,它们的颜色与号码均不相同的概率是 ( ) A.13 B.19 C.114 D.12713.若事件A 、B 是对立事件,则P(A)+P(B)=________________.14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

《3.2 古典概型》测试题及解析

《3.2 古典概型》测试题及解析

关于《3.2 古典概型》测试题及解析《3.2 古典概型》测试题一、选择题1.将骰子向桌面上先后抛掷2次,其中向上的点数之积为12的结果有( ).A.2种B.4种C.6种D.8种考察目的:考查古典概型的意义,了解古典概型同每个基本事件出现的可能性相等.答案:B.解析:将骰子向桌面上先后抛掷2次,其中向上的点数之积为12的结果有(3,4),(4,3),(2,6),(6,2).2.(2012?安徽文)袋一有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( ).A. B. C. D.考查目的:考查用列举法计算随机事件的基本事件数及事件发生的概率.答案:B.解析:1个红球,2个白球和3个黑球分别记为,,,,,,从袋中任取两球共有15种,列举如下:,,,,,,,,,,,,,,,满足两球颜色为一白一黑有6种,概率等于.3.(2011?安徽文) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ).A. B. C. D.考查目的:考查用列举法求随机事件所含基本事件数及计算古典概型的概率.答案:D.解析:正六边形的6个顶点分别用字母A,B,C,D,E,F表示,如图.从6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,列举如下:ABCD,ABCE,ABCF,ABDE,ABDF,ABEF,ACDE,ACDF,ACEF,ADEF,BCDE,BCDF,BCEF,BDEF,CDEF,其中能构成矩形的是ABDE,BCEF,ACDF三种,故概率等于.(本题也可以画树状图)二、填空题4.(2011?江苏)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是 .考查目的:考查古典概型的概率计算公式.答案:.解析:从1,2,3,4这四个数中一次随机取两个数,所有可能的取法有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足“其中一个数是另一个的两倍”的所有可能的结果有(1,2),(2,4)共2种取法,所以其中一个数是另一个的两倍的概率是.5.(2012?上海春)某校要从2名男生和4名女生中选出4人担任某游泳赛事的志愿者工作,则在选出的志愿者中,男、女都有的概率为_ (结果用数值表示).考查目的:考查古典概型的概率计算公式和对立事件的概率公式应用等.答案:.解析:要从2名男生和4名女生中选出4人担任某游泳赛事的志愿者工作,共15种结果.只有2名女生,选出的4人中不可能都是女生,所以有2种结果:选出的志愿者中,男、女都有或只有男生,故选出的4人中有可能都是男生且发生的概率为,而选出的志愿者中,男、女都有的概率为.6.(2012?江苏)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .考查目的:考查古典概型的概率公式与等比数列知识的综合运用.答案:.解析:因为以1为首项,为公比的等比数列的10个数分别为1,-3,9,-27,…,其中有5个负数-3,-27,…,1个正数1,共有6个数小于8,所以从这10个数中随机抽取一个数,它小于8的概率是.三、解答题7.(2012?北京理)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):⑴试估计厨余垃圾投放正确的概率;⑵试估计生活垃圾投放错误的概率;⑶假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:方差,其中为的平均数)考查目的:考查利用古典概型概率计算公式解决实际问题的能力.答案:⑴;⑵;⑶,,,.⑴由题意可知,;⑵由题意可知,;⑶由题意可知,,因此当,,时,有.8.(2011?山东文)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.⑴若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;⑵若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.考查目的:理解古典概型概念并熟练运用古典概型概率公式解决概率问题.答案:⑴;⑵.解析:⑴甲校两男教师分别用A、B表示,女教师用C表示;乙校男教师用D 表示,两女教师分别用E、F表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D)(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种.从中选出两名教师性别相同的结果有(A,D),(B,D),(C,E),(C,F)共4种,则选出的两名教师性别相同的概率为.⑵从甲校和乙校报名的教师中任选2名的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,从中选出两名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种,则选出的两名教师来自同一学校的概率为.《3.2 古典概型》测试题一、选择题1.将骰子向桌面上先后抛掷2次,其中向上的点数之积为12的结果有( ).A.2种B.4种C.6种D.8种考察目的:考查古典概型的意义,了解古典概型同每个基本事件出现的可能性相等.答案:B.解析:将骰子向桌面上先后抛掷2次,其中向上的点数之积为12的结果有(3,4),(4,3),(2,6),(6,2).2.(2012?安徽文)袋一有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( ).A. B. C. D.考查目的:考查用列举法计算随机事件的基本事件数及事件发生的概率.答案:B.解析:1个红球,2个白球和3个黑球分别记为,,,,,,从袋中任取两球共有15种,列举如下:,,,,,,,,,,,,,,,满足两球颜色为一白一黑有6种,概率等于.3.(2011?安徽文) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ).A. B. C. D.考查目的:考查用列举法求随机事件所含基本事件数及计算古典概型的概率.答案:D.解析:正六边形的6个顶点分别用字母A,B,C,D,E,F表示,如图.从6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,列举如下:ABCD,ABCE,ABCF,ABDE,ABDF,ABEF,ACDE,ACDF,ACEF,ADEF,BCDE,BCDF,BCEF,BDEF,CDEF,其中能构成矩形的是ABDE,BCEF,ACDF三种,故概率等于.(本题也可以画树状图)二、填空题4.(2011?江苏)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是 .考查目的:考查古典概型的概率计算公式.答案:.解析:从1,2,3,4这四个数中一次随机取两个数,所有可能的取法有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足“其中一个数是另一个的两倍”的所有可能的结果有(1,2),(2,4)共2种取法,所以其中一个数是另一个的两倍的'概率是.5.(2012?上海春)某校要从2名男生和4名女生中选出4人担任某游泳赛事的志愿者工作,则在选出的志愿者中,男、女都有的概率为_ (结果用数值表示).考查目的:考查古典概型的概率计算公式和对立事件的概率公式应用等.答案:.解析:要从2名男生和4名女生中选出4人担任某游泳赛事的志愿者工作,共15种结果.只有2名女生,选出的4人中不可能都是女生,所以有2种结果:选出的志愿者中,男、女都有或只有男生,故选出的4人中有可能都是男生且发生的概率为,而选出的志愿者中,男、女都有的概率为.6.(2012?江苏)现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .考查目的:考查古典概型的概率公式与等比数列知识的综合运用.答案:.解析:因为以1为首项,为公比的等比数列的10个数分别为1,-3,9,-27,…,其中有5个负数-3,-27,…,1个正数1,共有6个数小于8,所以从这10个数中随机抽取一个数,它小于8的概率是.三、解答题7.(2012?北京理)近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):⑴试估计厨余垃圾投放正确的概率;⑵试估计生活垃圾投放错误的概率;⑶假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:方差,其中为的平均数)考查目的:考查利用古典概型概率计算公式解决实际问题的能力.答案:⑴;⑵;⑶,,,.解析:此题的难度集中在第三问,其他两问难度不大,第三问是对能力的考查,不要求证明,即不要求说明理由,但是要求学生对方差意义的理解非常深刻.⑴由题意可知,;⑵由题意可知,;⑶由题意可知,,因此当,,时,有.8.(2011?山东文)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.⑴若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;⑵若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.。

古典概型试题(含答案)1

古典概型试题(含答案)1

一、选择题1、下列事件中,随机事件是( )A、连续两年的国庆节都是星期日B、国庆节恰为星期日C、相邻两年的国庆节,星期几不相同D、国庆节一定不在星期日2、抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率等于( )A、B、C、D、3、100件产品中,95件正品,5件次品,从中抽到6件:至少有1件正品;至少有3件是次品;6件都是次品;有2件次品、4件正品、以上四个事件中,随机事件的个数是( )A、3B、4C、2D、14、下列正确的结论是( )A、事件A的概率P(A)的值满足0<P(A)<1B、如P(A)=0、999、则A为必然事件C、灯泡的合格率是99%,从一批灯泡中任取一个,这是合格品的可能性为99%、D、如P(A)=0、001、则A为不可能事件5、下列试验能构成事件的是( )A、掷一次硬币B、射击一次C、标准大气压下,水烧至100℃D、摸彩票中头奖6、已知某人在某种条件下射击命中的概率是,他连续射击两次,其中恰有一次射中的概率是( )A、B、C、D、7、掷一枚骰子三次,所得点数之和为10的概率是( )A、B、C、D、二、填空题8、甲、乙、丙、丁四人中选3人当代表,写出所有基本事件,并求甲被选上的概率9、一箱内有十张标有0到9的卡片,从中任取一张,则取到卡片上的数字不小于6的概率是多少?10、9支球队中,有5支亚洲队,4支非洲队,从中任意抽2队进行比赛,则两洲各有一队的概率是.11、从1,2,3,……,9九个数字中任取两个数字.两个数字都是奇数的概率是;两个数字之和为偶数的概率是;两个数字之积为偶数的概率是.12、从0,1,2,3,4,5中任取3个组成没有重复数字的三位数,这个三位数是5的倍数的概率等于 .三、解答题13、在100000张奖券中设有10个一等奖,100个二等奖,300个三等奖、从中买一张奖券,那么此人中奖的概率是多少?14、某城市的电话号码由五个数字组成,每个数字可以是从0到9这十个数字中的任一个,计算电放号码由五个不同数字组成的概率、15、甲、乙二人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题、①甲抽到选择题,乙抽到判断题的概率是多少?②甲、乙二人中至少有一个抽到选择题的概率是多少?参考答案一、选择题1、B2、C3、C4、C5、D6、C7、 B二、填空题8、9、10、11、,,12、0.3三、解答题13、答:P==14、解:根据题意,由五个数字组成的电话号码中的每个数字可以是由0到9这十个数字中的任一个,因此所有不同的电话号码的种数为105、另外,其中由五个不同数字组成的电话号码的个数,就是从这10个数字中任取5个出来进行排列的种数A105,因此所求的概率P==15、解:①甲从选择题中抽到一题的可能结果有C61个,乙从判断题中抽到一题的可能结果有C41个,又甲、乙依次抽一题的结果共有C101·C91个,所以甲抽到选择题,乙抽到判断题的概率是:=②甲、乙二人依次都抽到判断题的概率为,故甲、乙二人中至少有一人抽到选择题的概率为1-=、所求概率为或:++=++=,所求概率为。

古典概型(含答案)

古典概型(含答案)

古典概型(写过程)1.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为( ) A .15 B .25 C .35 D .452.(原创)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为( ) A .15 B.25 C. 13 D. 163.某车间共有6名工人,他们某日加工零件个数的茎叶图如上图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则恰有1名优秀工人的概率为( ) A.158 B.94 C.31 D.914.若集合{}2,3A =,{}1,2,3B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是 A .23 B .12 C .13 D . 165.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A ,“第2次拿出的是白球”为事件B ,则事件A 与B 同时发生的概率是( ) A .85 B .165 C .74 D .145 6.一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为( )A .35 B .310 C .12 D .6257.若(010,)4k k k Z πθ=≤≤∈,则sin cos 1θθ+≥的概率为( ) A .15 B .25 C .211 D .6118.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.19 B.29 C.13D.49 9.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是( ) A .122B .111C .322D .21110.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为 .11.两枚质地均匀的骰子同时掷一次,则向上的点数之和不小于7的概率为 . 12.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,如果甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得乒乓球单打冠军的概率为 .13.有标号分别为1、2、3的蓝色卡片和标号分别为1、2的绿色卡片,从这五张卡片中任取两张,这两张卡片颜色不同且标号之和小于4的概率是 .14.在一个袋子中装有分别标注1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出两个小球,则取出的小球上标注的数字之和为6的概率等于15.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为________.16.从字母a 、b 、c 、d 、e 中任取两个不同的字母,则取到字母a 的概率为 .17.袋中又大小相同的红球和白球各1个,每次任取1个,有放回地摸三次. (Ⅰ)写出所有基本事件‘(Ⅱ)求三次摸到的球恰有两次颜色相同的概率; (Ⅲ)求三次摸到的球至少有1个白球的概率.18.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取1个.(1)求连续取两次都是白球的概率;(2)若取1个红球记2分,取1个白球记1分,取1个黑球记0分,求连续取两次的分数之和为2的概率.参考答案1.B 【解析】试题分析:所有不同方法数有25C 种,所求事件包含的不同方法数有2223C C 种,因此概率52252223=+=C C C P ,答案选B. 考点:古典概型的概率计算2.C 【解析】试题分析:从5个球中随机抽取两个球,共有246C =种取法. 满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法. 所以取出的两个球的编号之和大于5的概率为2263=. 考点:1、古典概型及其概率计算公式;2、组合及组合数公式. 3.A 【解析】试题分析:解:()11321719202125302266x =+++++== 因为六名工人的日加工零件个数互不相同,可用该数据代表相应的工人,则从他们中任取两人,共有()17,1()17,2()17,2()17,()17,()19,()19()19()19()20,2()20,2()20,3()21,()21,()25,15个基本结果,由于是任取的,所以每个结果出现的可能性是相等的,其中恰有一名优秀工人的有()17,25,()17,30,()19,25,()19,30,()20,25,()20,30,()21,25,()21,30,共8个,所以恰有一名优秀工人的概率为815,故选A. 考点:古典概型;2、茎叶图;3、均值的概念. 4.C 【解析】,2,12,221==..63A B C 从集合中各任取一数所有结果为(),(),(2,3),(3,1),(3,2),(3,3)共6种,其中两数和为4的有2种,因此所求概率为P 选考点:本题主要考查古典概型的概率的概念和运算,考查分析问题、解答问题的能力和运算能力. 5.D 【解析】 试题分析:从装有大小相同的5个白球和3个红球共8个球的袋中先后不放回的各取出一个球的方法共有2856A =种,事件A 与B 同时发生的即两次中第1次取出的是白球,第2次取出的还是白球,这样的取法有255420A =⨯=种,由古典概型的概率计算公式得事件A 与B 同时发生的概率是2055614=,故选择D.考点:古典概型的概率计算. 6.B【解析】设3个白球分别为a 1,a 2,a 3,2个黑球分别为b 1,b 2,则先后从中取出2个球的所有可能结果为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),(a 2,a 1),(a 3,a 1),(b 1,a 1),(b 2,a 1),(a 3,a 2),(b 1,a 2),(b 2,a 2),(b 1,a 3),(b 2,a 3),(b 2,b 1),共20种.其中满足第一次为白球、第二次为黑球的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6种,故所求概率为620=310. 7.D 【解析】 试题分析:(010,)4k k k Z πθ=≤≤∈,∴θ有11个sin cos )14πθθθ+=+≥∴sin()42πθ+≥∴322,444n n n Z ππππθπ+≤+≤+∈∴22,2n n n Z ππθπ≤≤+∈发现当k=0,1,2,8,9,10时,成立,所以P=611考点:1.三角恒等变换;2.古典概型. 8.A 【解析】试题分析:先求个位数与十位数之和为奇数的两位数中,其个位数与十位数有一个为奇数,一个为偶数,共有4514151515=+C C C C 个,然后再求个位数与十位数之和为奇数的两位数中,其个位数为0包括的结果有:10,30,50,70,90共5个,由古典概率的求解公式可求解. 考点:古典概型及其概率计算公式. 9.D【解析】略 10.31. 【解析】试题分析:事件“甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种”包含的基本事件有(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝)共9个;记“他们选择相同颜色运动服”为事件A,则事件A 包含的基本事件有(红,红),(白,白),(蓝,蓝)共3个;所以3193)(==A P . 考点:古典概型. 11.712【解析】试题分析:记两枚质地均匀的骰子同时掷一次的结果为数对(,)x y ,这样的数对有6636⨯=对,而向上的点数之和不小于7,即7x y +≥,则1,6x y ==;2,5,6x y ==;3,4,5,6x y ==;4,3,4,5,6x y ==;5,2,3,4,5,6x y ==;6,1,2,3,4,5,6x y ==,因此满足条件的数对共有12345621+++++=,从而向上的点数之和不小于7的概率为2173612=. 考点:古典概型的概率计算. 12.1928【解析】由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928. 13.310【解析】试题分析:由题意,从中任取两张卡片的总方法数为2510C =,颜色不同,标号和小于4的有:蓝1、红1,蓝1、红2,蓝2、红1共3种,因此其概率为310. 考点:古典概型. 14.15【解析】试题分析:从5个球任取2个球共有2510C =种取法,而数字和为6的只有(1,5),(2,4)两种取法,所以所概率为21105=. 考点:古典概型. 15.5081【解析】能获奖有以下两种情况:①5袋食品中三种卡片数分别为1,1,3,此时共有115422C C A ×A 33=60(种)不同的方法,其概率为P 1=5603=2081;②5袋食品中三种卡片数分别为2,2,1,共有225322C C A ×A 33=90(种)不同的装法,其概率为P 2=5903=3081,所以所求概率P =P 1+P 2=5081.16.25. 【解析】试题分析:所有的基本事件有(),a b 、(),a c 、(),a d 、(),a e 、(),b c 、(),b d 、(),b e 、(),c d 、(),c e 、(),d e ,共10个,其中事件“取到字母a ”所包含的基本事件有(),a b 、(),a c 、(),a d 、(),a e ,共4个,故所求事件的概率为42105=.考点:本题考查利用列举法计算古典概型的概率计算问题,属于中等题.17.(I )(红,红,红),(红,红,白),(红,白,白),(白,红,红【解析】18.(1)4 (2)8【解析】(1)记袋中的2个白球分别为白1,白2,则连续取两次的基本事件有(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16种.记事件A 为“连续取两次都是白球”,事件A 包含的事件有(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4种, 所以P(A)=416=14.(2)记事件B为“连续取两次的分数之和为2”.因为取1个红球记2分,取1个白球记1分,取1个黑球记0分,所以连续取两次的分数之和为2的基本事件有(红,黑),(黑,红),(白1,白1),(白1,白2),(白2,白1),(白2,白2),共6种,所以P(B)=616=38.。

古典概型练习题

古典概型练习题
33.从 , , , 这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是.
参考答案
1.C
【解析】
试题分析:在第一次取到白球的条件下,盒子中还有 个红球和 个白球,故第二次取到红球的概率为 ,故选C.
考点:条件概率.
2.A
【解析】
试题分析:由题意知本题是一个古典概型,
试验发生包含的事件数是3×3=9种结果,
满足条件的事件是这两位同学参加同一个兴趣小组,
由于共有三个小组,则有3种结果,
根据古典概型概率公式得到
考点:古典概型及其概率计算公式
3.A
【解析】
试题分析:两位“序数”共有 个,其中比 大的“序数”有 个,所以在两位的“序数”中任取一个数比56大的概率是 ,故选A.
考点:古典概型.
4.B
【解析】
试题分析:三块区域涂色的所有可能有(红、黄、蓝)、(红、黄、黑)、(红、蓝、黄)、(红、蓝、黑)、(红、黑、黄)、(红、黑、蓝)、(黄、红、蓝)、、(黄、红、黑)、(黄、蓝、红)、(黄、蓝、黑)、(黄、黑、红)、(黄、黑、蓝)、(蓝、红、黄)、(蓝、红、黑)、(蓝、黄、红)、(蓝、黄、黑)、(蓝、黑、红)、(蓝、黑、黄)、(黑、红、黄)、(黑、红、蓝)、(黑、蓝、红)、(黑、蓝、黄)、(黑、黄、红)、(黑、黄、蓝),共24种,其中 区域是红色的有6种,故所求概率 ,故选B.
21.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为.
22.投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1、2、3、4、5、6)一次,则两颗骰子向上点数之积等于12的概率为_____.
23.一个袋中有12个除颜色外完全相同的球, 2个红球,5个绿球,5个黄球,从中任取一球,不放回后再取一球,则第一次取出红球时第二次取出黄球的概率为.

高三数学古典概型试题答案及解析

高三数学古典概型试题答案及解析

高三数学古典概型试题答案及解析1.小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.【答案】(1),;(2).【解析】(1),由频率分布直方图可知即,列方程=0.5即得;(2)设报纸送达时间为,小明父亲上班前能取到报纸等价于,由几何概型概率计算公式即得.试题解析:(1) 2分由频率分布直方图可知即, 3分∴ =0.5解得分即 6分(2)设报纸送达时间为 7分则小明父亲上班前能取到报纸等价于, 10分如图可知,所求概率为12分【考点】1.频率分布直观图;2.几何概型.2.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字的四位数,这个数不能被3整除的概率为()A.B.C.D.【答案】A【解析】从0,1,2,3,4,5这6个数字中任意取4个数字组成没有重复数字的四位数,共有=300个.∵0+1+2+3+4+5=15,∴这个四位数能被3整除只能由数字:1,2,4,5;0,3,4,5;0,2,3,4;0,1,3,5;0,1,2,3组成,所以能被3整除的数有+4×=96个,∴这个数能被3整除的概率为P==,∴这个数不能被3整除的概率为1-=,选A.3.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A.B.C.D.【答案】B【解析】如图,从正方形四个顶点及其中心这5个点中,任取2个点,共有条线段,点与,,,四点中任意1点的连线段都小于该正方形边长,共有,所以这2个点的距离小于该正方形边长的概率,故选B.【考点】古典概型及其概率计算公式.4.掷两颗均匀的骰子,则点数之和为5的概率等于()【答案】B【解析】掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.【考点】古典概型概率5.(本小题满分14分)将连续正整数从小到大排列构成一个数,为这个数的位数(如时,此数为,共有15个数字,),现从这个数中随机取一个数字,为恰好取到0的概率.(1)求;(2)当时,求的表达式;(3)令为这个数中数字0的个数,为这个数中数字9的个数,,,求当时的最大值.【答案】(1)(2)(3)【解析】(1)解概率应用题,关键要正确理解事件. 当时,这个数中有9个一位数,90个二位数,一个三位数,总共有192个数字,其中数字0的个数为9+2=11,所以恰好取到0的概率为(2)按(1)的思路,可分类写出的表达式:,(3)同(1)的思路,分一位数,二位数,三位数进行讨论即可,当当当即同理有由可知,当时,当时,,当时,由关于k单调递增,故当,最大值为又,所以当时,最大值为试题解析:(1)解:当时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为(2)(3)当当当即同理有由可知所以当时,,当时,当时,,当时,由关于k单调递增,故当,最大值为又,所以当时,最大值为【考点】古典概型概率6.从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .【答案】【解析】从这4个数中任取2个数共有种取法,其中乘积为6的有和两种取法,因此所求概率为.【考点】古典概型.7. 10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.【答案】【解析】从10件产品中任取4件,共有种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有,因此所求概率为【考点】古典概型概率8.一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设X为取得红球的个数.(1)求X的分布列;(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.【答案】(1)分布列详见解析;(2).【解析】本题主要考查离散型随机变量的分布列和数学期望、古典概型等基础知识,考查学生的分析问题解决问题的能力和计算能力.第一问,分析题意,先写出取得红球的个数X的所有可能取值,利用古典概型,利用排列组合列出每一种情况的概率表达式,最后列出分布列;第二问,利用第一问的分布列,结合第二问提到的分数列出数学期望的表达式.(1)X,1,2,3,4其概率分布分别为:,,,,.其分布列为X01234(2).(12分)【考点】离散型随机变量的分布列和数学期望、古典概型.9. [2013·课标全国卷Ⅰ]从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.【答案】B【解析】从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为,故选B.10.(2014·温州模拟)记a,b分别是投掷两次骰子所得的数字,则方程x2-ax+2b=0有两个不同实根的概率为()A.B.C.D.【答案】B【解析】所有的(a,b)共有6×6=36(个),方程x2-ax+2b=0有两个不同实根,等价于Δ=a2-8b>0,故满足条件的(a,b)有(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共9个,故方程x2-ax+2b=0有两个不同实根的概率为=.11.连掷两次骰子分别得到点数m,n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是__________.【答案】【解析】即(m,n)·(-1,1)=-m+n<0.所以m>n,基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).所以P==.12.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.【答案】【解析】某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.3个景区都有部门选择可能出现的结果数为·3!(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有=6种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A1,那么事件A1的概率为P(A1)==.13.有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.(1)求恰好在第3次试验成功的概率(要求将结果化为最简分数).(2)若试验成功的期望值是2,需要进行多少次相互独立重复试验?【答案】(1)试验一次就成功的概率为; (2)4.【解析】(1) 从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,由古典概型概率的求法可得试验一次就成功的概率为.恰好在第3次试验成功相当于前两次试验都没成功,第3次才成功.由于成功的概率为,所以一次试验没有成功的概率为,三次相乘即得所求概率.(2)该例是一个二项分布,二项分布的期望是,解此方程即可得次数.试题解析:(1)从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,从而试验一次就成功的概率为.恰好在第3次试验成功相相当于前两次试验都没成功,第3次才成功,故概率为.(2)假设连续试验次,则试验成功次数,从而其期望为,再由可解出.【考点】1、古典概型;2、二项分布及其期望.14.一个口袋中装有形状和大小完全相同的3个红球和2个白球,甲从这个口袋中任意摸取2个球,则甲摸得的2个球恰好都是红球的概率是()A.B.C.D.【解析】设3个红球为A,B,C,2个白球为X,Y,则取出2个的情况共有10种,其中符合要求的有3种,所求的概率为,故选A【考点】古典概型概率。

1-4古典概型

1-4古典概型
4 p4 4 3 2 1 p 4 p10 10 9 8 7
1 . 210
课堂练习 1o 分房问题 将张三、李四、王五3人等可能 地分配到3 间房中去,试求每个房间恰有1人的概 率. 3
(答案 : 3! 3 )
2o 生日问题 某班有20个学生都 是同一年出生的,求有10个学生生 日是1月1日,另外10个学生生日是 12月31日的概率.
4.古典概型的基本模型:球放入杯子模型
(1)杯子容量无限 问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球.
3 3 3 3
4个球放到3个杯子的所有放法 3 3 3 3 34 种,

4 种 2
因此所求概率为
3!12! 15! 25 p1 . 4! 4! 4! 5! 5! 5! 91
(2)将3名优秀生分配在同一个班级的分法共有3种,
12! 对于每一种分法,其余12名新生的分法有 2! 5! 5! 种.
因此3名优秀生分配在同一个班级的分法共有
( 3 12! ) ( 2! 5! 5! ) 种, 因此所求概率为
10 10 10 103 ,
A 所包含样本点的个数为
6 6 4 0.144. 故 P( A ) 3 10 课堂练习
6 6 4,
1o 电话号码问题 在7位数的电话号码中,求各 位数字互不相同的概率.
(答案 : p P
(答案 : p 3 6 )
7 10
10 )
7
2o 骰子问题 掷3颗均匀骰子,求点数之和为4的 概率. 3
设A={所取球恰好含m个白球,n个黑球}
样本点总数为

高中数学必修二 10 1 3 古典概型(含答案)

高中数学必修二  10 1 3 古典概型(含答案)

第十章概率10.1.3 古典概型一、基础巩固1.下列试验是古典概型的是()A.种下一粒大豆观察它是否发芽B.从规格直径为(250 0.6)mm的一批产品中任意抽一根,测量其直径C.抛一枚硬币,观察其正面或反面出现的情况D.某人射击中靶或不中靶【答案】C【解析】【分析】根据古典概型的定义判断.【详解】只有C具有古典概型两特点.【点睛】本题考查古典概型的定义,在这个型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的.2.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为()A.{正好2个红球} B.{正好2个黑球}C.{正好2个白球} D.{至少1个红球}【答案】D【解析】袋中有2个红球,2个白球,2个黑球,从中任意摸2个,其基本事件可能是2个红球,2个白球,2个黑球,1红1白,1红1黑,1白1黑而至少1个红球中包含1红1白,1红1黑,2个红球三个基本事件,故不是基本事件,故选D3.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A.13B.12C.23D.34【答案】B【分析】基本事件总数为6个,都恰有两个阳爻包含的基本事件个数为3个,由此求出概率.【详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共6个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共3个,所以,所求的概率3162 P==.故选:B.【点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.4.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A.恰有1件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【答案】C【分析】将3件一等品编号为1,2,3,2件二等品的编号为4,5,列举出从中任取2件的所有基本事件的总数,分别计算选项的概率,即可得到答案.【详解】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中明确古典概型的基本概念,以及古典的概型及概率的计算公式,合理作出计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.袋中有2个红球5个白球,取出一个白球放回,再取出红球的概率是()A.12B.27C.16D.17【答案】B【分析】取出一个白球再放回,相当于情况不变.用红球个数除以球的总数即为摸到红球的概率.【详解】解:所有机会均等的可能有7种,摸到红球的可能有2种,因此取出红球的概率为27,故选B.【点睛】本题考察古典概型,概率等于所求情况数与总情况数之比.6.在一个不透明的袋子中,装有若干个大小相同颜色不同的小球,若袋中有2个红球,且从袋中任取一球,取到红球的概率为15,则袋中球的总个数为()A.5B.8C.10D.12【答案】C【分析】设袋中球的总个数为n,根据已知条件可得出关于n的等式,由此可求得n的值. 【详解】设袋中球的总个数为n,由题意可得215n=,解得10n=.故选:C.7.如图所示,有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,则向上一面的数字是2的倍数或3的倍数的概率为()A.23B.13C.12D.16【答案】A【分析】求得向上一面的数字是2的倍数或3的倍数的数字,即可根据古典概型概率求解.【详解】正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,则向上一面的数字是2的倍数或3的倍数的数字为2,3,4,6,8,9,10,12.所以由古典概型概率可知向上一面的数字是2的倍数或3的倍数的概率为82 123=故选:A.【点睛】本题考查了古典概型概率的求法,利用列举法求古典概型概率,属于基础题. 8.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则()kP An=.A.②④B.③④C.①④D.①③④【答案】D【分析】利用随机试验的概念及古典概型及其概率计算公式直接求解.【详解】在①中,由随机试验的定义知:试验中所有可能出现的基本事件只有有限个,故①正确;在②中,由随机试验的定义知:每个基本事件出现的可能性相等,故②错误;在③中,由随机试验的定义知:每个基本事件出现的可能性相等,故③正确;在④中,基本事件总数为n ,随机事件A 若包含k 个基本事件,则由古典概型及其概率计算公式知P (A )kn=,故④正确. 故选D . 【点睛】本题考查命题真假的判断,是基础题,解题时要认真审题,注意随机试验的概念及古典概型及其概率计算公式的合理运用.9.对数的发明是数学史上的重大事件,它可以改进数字的计算方法、提高计算速度和准确度.已知{1,3}M =,{1,3,5,7,9}N =,若从集合M ,N 中各任取一个数x ,y ,则3log ()xy 为整数的概率为( )A .15B .25C .35D .45【答案】C 【分析】 基本事件总数2510n,利用列举法求出3log ()xy 为整数包含的基本事件有6个,再利用古典概型的概率计算公式即可求解.【详解】{1,3}M =,{1,3,5,7,9}N =,若从集合M ,N 中各任取一个数x ,y , 基本事件总数2510n,3log ()xy 为整数包含的基本事件有()1,1,()1,3,()1,9,()3,1,()3,3,()3,9,共有6个,∴3log ()xy 为整数的概率为63105p ==. 故选:C 【点睛】本题考查了古典概型的概率计算公式、分步计数原理、列举法求基本事件个数、对数的运算,属于基础题. 10.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6 B .0.5C .0.4D .0.3【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能 则选中的2人都是女同学的概率为30.310P ==, 故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率. 11.袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( ) A .3/5 B .3/4C .1/2D .3/10【答案】C 【分析】先记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”,则事件AB 为“两次都取到白球”,根据题意得到()P A 与()P AB ,再由条件概率,即可求出结果. 【详解】记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”, 则事件AB 为“两次都取到白球”, 依题意知3()5P A =,3263()542010P AB =⨯==, 所以,在第一次取到白球的条件下,第二次取到白球的概率是3110()325P B A ==. 故选:C. 【点睛】本题主要考查条件概率与独立事件,熟记条件概率的计算公式即可,属于常考题型. 12.下列说法错误的是( ) A .方差可以衡量一组数据的波动大小B .抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C .一组数据的众数有且只有一个D .抛掷一枚图钉针尖朝上的概率,不能用列举法求得 【答案】C 【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题. 【详解】对于A ,方差可以衡量一组数据的波动大小,故选项A 正确;对于B ,抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B 正确; 对于C ,一组数据的众数有一个或者几个,故选项C 错误;对于D ,抛掷一枚图钉,针尖朝上和针尖朝下的可能性不相等,所以针尖朝上不是一个基本事件,所以不能用列举法求得,故选项D 正确; 故选:C . 【点睛】本题考查了一组数据的方差、众数,考查了抽样方式,属于基础题.二、拓展提升13.设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[]0,3任取的一个数,b 是从区间[]0,2任取的一个数,求上述方程有实根的概率. 【答案】(Ⅰ)34(Ⅱ)23【分析】(1)本题是一个古典概型,可知基本事件共12个,方程2220x ax b ++=当0,0a b ≥≥时有实根的充要条件为a b ≥,满足条件的事件中包含9个基本事件,由古典概型公式得到事件A 发生的概率.(2)本题是一个几何概型,试验的全部约束所构成的区域为{(,)|03a b a ,02}b .构成事件A 的区域为{(,)|03a b a ,02b ,}a b .根据几何概型公式得到结果. 【详解】解:设事件A 为“方程2220x ax b ++=有实数根”.当0,0a b ≥≥时,方程有实数根的充要条件为a b ≥. (Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为93()124P A ==. (Ⅱ)实验的全部结果所构成的区域为{(,)|03,02}a b a b ≤≤≤≤.构成事件A 的区域为{(,)|03,02,}a b a b a b ≤≤≤≤≥,所求的概率为132422()323P A ⨯-⨯==⨯ 【点睛】本题考查几何概型和古典概型,放在一起的目的是把两种概型加以比较,属于基础题.14.交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为T ,其范围为[]0,10,分别有五个级别:2)[0,T ∈,畅通;[)2,4T ∈,基本畅通;[)4,6T ∈,轻度拥堵;[)6,8T ∈,中度拥堵;[]8,10T ∈,严重拥堵.在晚高峰时段(2T ≥),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.【答案】(1)轻度拥堵、中度拥堵、严重拥堵的路段的个数分别为6,9,3;(2)从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1;(3)35【分析】(1)根据在频率分布直方图中,小长方形的面积表示各组的频率,可以求出频率,再根据频数等于频率乘以样本容量,求出频数;(2)根据(1)求出拥堵路段的个数,求出每层之间的占有比例,然后求出每层的个数;(3)先求出从(2)中抽取的6个路段中任取2个,有多少种可能情况,然后求出至少有1个路段为轻度拥堵有多少种可能情况,根据古典概型概率公式求出. 【详解】(1)由频率分布直方图得,这20个交通路段中, 轻度拥堵的路段有(0.1+0.2)×1×20=6(个), 中度拥堵的路段有(0.25+0.2)×1×20=9(个), 严重拥堵的路段有(0.1+0.05)×1×20=3(个). (2)由(1)知,拥堵路段共有6+9+3=18(个),按分层抽样,从18个路段抽取6个,则抽取的三个级别路段的个数分别为66218⨯=,69318⨯=,63118⨯=,即从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1.(3)记抽取的2个轻度拥堵路段为1A ,2A ,抽取的3个中度拥堵路段为1B ,2B ,3B ,抽取的1个严重拥堵路段为1C ,则从这6个路段中抽取2个路段的所有可能情况为:()()()()12111213,,,,,,,,A A A B A B A B()()()()()()()()()()()1121222321121311232131,,,,,,,,,,,,,,,,,,,,,A C A B A B A B A C B B B B B C B B B C B C ,共15种,其中至少有1个路段为轻度拥堵的情况为:()()()()()()121112131121,,,,,,,,,,,,A A A B A B A B A C A B()()()222321,,,,,A B A B A C ,共9种.所以所抽取的2个路段中至少有1个路段为轻度拥堵的概率为93155=. 【点睛】本题考查了频率直方图的应用、分层抽样、古典概型概率的求法.解决本题的关键是对频率直方图所表示的意义要了解,分层抽样的原则要知道,要能识别古典概型.15.编号为1,2的两个纸箱中各有6个相同的小球(分别标有数字1,2,3,4,5,6),从1,2两个纸箱中各摸出一个小球,分别为,x y ,求满足条件2y x = 的概率.【答案】112. 【分析】利用古典概型公式求解. 【详解】从1,2两个纸箱中各摸出一个小球的事件总数有36种. 又2y x =,其中{},1,2,3,4,5,6x y , 满足条件的有()()()1,2,2,4,3,6, 故所求概率313612P.。

古典概型试题(含答案)2

古典概型试题(含答案)2

一、选择题1、从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( )A、B、C、D、2、将8个参赛队伍通过抽签分成A、B两组,每组4队,其中甲、乙两队恰好不在同组的概率为( )A、B、C、D、3、袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( )A、B、C、D、4、将4名队员随机分入3个队中,对于每个队来说,所分进的队员数k满足0≤k≤4,假设各种方法是等可能的,则第一个队恰有3个队员分入的概率是( )A、B、C、D、5、下列说法不正确的是( )A、不可能事件的概率是0,必然事件的概率是1B、某人射击10次,击中靶心8次,则他击中靶心的概率是0,8C、“直线y=k(x+1)过点(-1,0)”是必然事件D、先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是6、将骰子抛2次,其中向上的数之和是5的概率是( )A、B、C、D、9二、填空题7、接连三次掷一硬币,正反面轮流出现的概率等于8、在100个产品中,有10个是次品,若从这100个产品中任取5个,其中恰有2个次品的概率等于9、4位男运动员和3位女运动员排成一列入场;女运动员排在一起的概率是;男、女各排在一起的概率是;男女间隔排列的概率是10、甲队a1,a2,a3,a4四人与乙队b1,b2,b3,b4抽签进行4场乒乓球单打对抗赛,抽到a i对b i(i=1,2,3,,4)对打的概率为三、解答题11、在第1,3,5,8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有1位乘客等候第1路或第3路汽车、假定当时各路汽车首先到站的可能性相等,求首先到站正好是这位乘客所要乘的汽车的概率、12、任意投掷两枚骰子,计算:(1)出现点数相同的概率;(2)出现点数和为奇数的概率、13、在某地区有2000个家庭,每个家庭有4个孩子,假定男孩出生率是、(1)求在一个家庭中至少有一个男孩的概率;(2)求在一个家庭中至少有一个男孩且至少有一个女孩的概率;14、有10件产品,其中有2件次品,从中随机抽取3件,求:(1)其中恰有1件次品的概率;(2)至少有一件次品的概率、15、分别以集合A={2,4,6,8,11,12,13}中任意两个元素为分子,分母构成分数,求这种分数是可约分数的概率、参考答案一、选择题1、B2、A3、D4、C5、D6、A二、填空题7、8、9、,,10、三、解答题11、解:记“首先到站的汽车正好是这位乘客所要乘的汽车”为事件A,则事件A的概率P(A)=答:首先到站正好是这位乘客所要乘的汽车的概率为12、(1)(2)13、解(1)P(至少一个男孩)=1-P(没有男孩)=1-()4=;(2)P(至少1个男孩且至少1个女孩)=1-P(没有男孩)-P(没有女孩)=1--=;14、解:(1)(2)15、解:。

《古典概型》练习题(有祥细解答)

《古典概型》练习题(有祥细解答)

3.2.1《古典概型》练习题一、选择题1.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A.12B.13C.14D.无法确定解析:我们将两个房间分为A和B,(甲住A、乙住B)、(甲住B,乙住A)、(甲、乙都住A)、(甲、乙都住B)共四种情况,其中甲、乙各住一间房的情况有两种,所以选A.答案:A2.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16解析:从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为13,故选B.答案:B3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则满足log2x y=1的概率为( )A.16B.536C.112D.12解析:由log2xy=1得2x=y.又x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6},所以满足题意的有x=1,y=2或x=2,y=4或x=3,y=6,共3种情况.所以所求的概率为336=112,故选C.答案:C4.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为( )A.18B.316C.14D.12解析:由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为14.答案:C5.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910解析:记事件A:甲或乙被录用.从五人中录用三人,基本事件有(甲,乙,丙)、(甲,乙,丁)、(甲,乙,戊)、(甲,丙,丁)、(甲,丙,戊)、(甲,丁,戊)、(乙,丙,丁)、(乙,丙,戊)、(乙,丁,戊)、(丙,丁,戊),共10种可能,而A 的对立事件A 仅有(丙,丁,戊)一种可能,∴A 的对立事件A 的概率为P (A )=110,∴P (A )=1-P (A )=910.选D.答案:D 6.有一个奇数列,1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.110 B.310 C.15 D.35解析:由已知可得前九组共有1+2+3+…+9=45个奇数,第十组共有10个奇数,分别是91,93,95,97,99,101,103,105,107,109这10个数字,其中恰为3的倍数的数有93,99,105三个,故所求概率为P =310.答案:B 二、填空题7.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________解析:列出10个数,找出小于8的数是关键.这10个数分别为1,-3,9,-27,81,…,(-3)8,(-3)9,小于8的数有6个,所以P (<8)=610=35.答案:358.沿田字型的路线从A 往N 走,且只能向右或向下走,随机地选一种走法,则经过点C 的概率是________.解析:解法一 按规定要求从A 往N 走只能向右或向下,所有可能走法有;A →D →S →J →N ,A →D →C →J →N ,A →D →C →M →N ,A →B →C →J →N ,A →B →C →M →N ,A →B →F →M →N 共6种,其中经过C 点的走法有4种,∴所求概率P =46=23.解法二 由于从A 点出发后只允许向右或向下走,记向右走为1,向下走为2,欲到达N 点必须两次向右,两次向下即有两个2两个1.∴基本事件空间Ω={(1122),(1212),(1221),(2112),(2121),(2211)}共6种不同结果,而只有先右再下或先下再右两类情形经过C 点,即前两个数字必须一个1一个2,∴事件A =“经过C 点”含有的基本事件的(1212),(1221),(2112),(2121)共4个,∴P (A )=46=23.答案:239.一个袋子中装有六个大小形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3.现从中任取一球,记下编号后放回,再任取一球,则两次取出的球的编号之和等于4的概率是_____.解析:如图,列举可知,共有36种情况,和为4的情况有10种,所以所求概率P =1036=518.答案:51810.记a ,b 分别是投掷两次骰子所得的数字,则方程x 2-ax +2b =0有两个不同实根的概率为_____.解析:由题意知投掷两次骰子所得的数字分为a ,b ,则基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,而方程x 2-ax +2b =0有两个不同实根的条件是a 2-8b >0,因此满足此条件的基本事件有(3,1),(4,1),(5,1),(6,1),(5,2),(5,3),(6,2),(6,3),(6,4),共9个,故所求的概率为936=14.答案:B 三、解答题11.设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3). (1)求使得事件“a⊥b ”发生的概率; (2)求使得事件“|a|≤|b|”发生的概率.解析:(1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6}, 故(m ,n )所有可能的取法共36种.使得a⊥b ,即m -3n =0,即m =3n ,共有2种:(3,1)、(6,2), 所以事件a⊥b 的概率为236=118. (2)|a|≤|b|,即m 2+n 2≤10,共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)6种使得|a|≤|b|,其概率为636=16. 12.(2014年深圳第一次模拟)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.(1)求连续取两次都是白球的概率;(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?解析:(1)连续取两次的基本事件有:(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16个.连续取两次都是白球的基本事件有:(白1,白1),(白1,白2),(白2,白1),(白2,白2)共4个,故所求概率为p1=416=14.(2)连续取三次的基本事件有:(红,红,红),(红,红,白1),(红,红,白2),(红,红,黑),(红,白1,红),(红,白1,白1),(红,白1,白2),(红,白1,黑),…,共64个.因为取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的基本事件如下:(红,白1,白1),(红,白1,白2),(红,白2,白1),(红,白2,白2),(白1,红,白1),(白1,红,白2),(白2,红,白1),(白2,红,白2),(白1,白1,红),(白1,白2,红),(白2,白1,红),(白2,白2,红),(红,红,黑),(红,黑,红),(黑,红,红),共15个,故所求概率为=15 64 .13.(能力提升)(2014年九江一模)一个口袋里有2个红球和4个黄球,从中随机地连取3个球,每次取一个,记事件A=“恰有一个红球”,事件B=“第3个是红球”.求(1)不放回时,事件A,B的概率;(2)每次取后放回时,A,B的概率.解析:(1)由不放回抽样可知,第一次从6个球中取一个,第二次只能从5个球中取一个,第三次从4个球中取一个,基本事件共有6×5×4=120个,又事件A中含有基本事件3×2×4×3=72个(第1个是红球,则第2、3个是黄球,取法有2×4×3种,第2个是红球和第3个是红球和第1个是红球的取法一样多),∴P(A)=72120=3 5.第3次抽取红球对前两次没有什么要求,因为红球数占总数的13,在每一次取到都是随机的等可能事件,∴P (B )=13.(2)由放回抽样知,每次都是从6个球中任取一个,有取法63=216种,事件A 包含基本事件3×2×4×4=96种.∴P (A )=96216=49.第三次取到红球包括B 1={红,黄,红},B 2={黄,黄,红},B 3={黄,红,红}三种两两互斥的情形,P (B 1)=2×4×2216=227,P (B 2)=4×4×2216=427,P (B 3)=4×2×2216=227,∴P (B )=P (B 1)+P (B 2)+P (B 3) =227+427+227=827.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古典概型练习题
1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是
A.3个都是正品
B.至少有一个是次品 ( )
C.3个都是次品
D.至少有一个是正品
2.给出下列四个命题:
①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件
②“当x为某一实数时可使20
x<”是不可能事件
③“明天要下雨”是必然事件
④“从100个灯泡中取出5个,5个都是次品”是随机事件.
其中正确命题的个数是 ( )
A. 0
B. 1
C.2
D.3
3.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为
A. 1
5
B.
2
5
C.
3
5
D.
4
5
( )
4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为
A. 3
7
B.
7
10
C.
1
10
D.
3
10
( )
5.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这 2 张纸片数字之积为偶数的概率为
( )
A. 1
2
B.
7
18
C.
13
18
D.
11
18
6.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为( )
A.
7
15
B.
8
15
C.
3
5
D. 1
7.下列对古典概型的说法中正确的个数是 ( )
①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;
③基本事件的总数为n,随机事件A包含k个基本事件,则()k
P A
n
=;
④每个基本事件出现的可能性相等;
A. 1
B. 2
C. 3
D. 4
8.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )
⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;
⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.
A.0
B.1
C.2
D.3
9.下列各组事件中,不是互斥事件的是 ( )
A.一个射手进行一次射击,命中环数大于8与命中环数小于6
B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分
C.播种菜籽100粒,发芽90粒与发芽80粒
D.检查某种产品,合格率高于70%与合格率为70%
10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()
A.A与B是互斥而非对立事件
B.A与B是对立事件
C.B与C是互斥而非对立事件
D.B与C是对立事件
11.下列说法中正确的是 ( )
A.事件A、B至少有一个发生的概率一定比A、B中恰有一个发生的概率大
B.事件A、B同时发生的概率一定比A、B中恰有一个发生的概率小
C.互斥事件一定是对立事件,对立事件也是互斥事件
D.互斥事件不一定是对立事件,而对立事件一定是互斥事件
12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上号码1,2,3,现任取3面,它们
的颜色与号码均不相同的概率是()
A.1
3
B.
1
9
C.
1
14
D.
1
27
13.若事件A、B是对立事件,则P(A)+P(B)=________________.
14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。

15.抛掷一个骰子,它落地时向上的数可能情形是1,2,3,4,5,6,骰子落地时向上的数是3的倍数的概率
是_________。

16.将一枚骰子抛掷两次,若先后出现的点数分别为b、c则方程x2+bx+c=0有实根的概率为
____________.
17.若以连续掷两颗骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率
是______.
18. 3粒种子种在甲坑内,每粒种子发芽的概率为1
2.若坑内至少有1粒种子发芽,则不需要补种,若坑
内的种子都没有发芽,则需要补种,则甲坑不需要补种的概率为________.
19.抛掷两颗骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5小于10的概率.
20.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;
(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。

21.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。

22.为积极配合深圳2011年第26届世界大运会志愿者招募工作,某大学数学学院拟成立由4名同学组成的志愿者招募宣传队,经过初步选定,2名男同学,4名女同学共6名同学成为候选人,每位候选人当选宣传队队员的机会是相同的.
(1)求当选的4名同学中恰有1名男同学的概率;
(2)求当选的4名同学中至少有3名女同学的概率.
1-5:DDBBC 6-10:BCCBD 11-12:DC13、1 14、
52 15、31 16、36
19 17、92 18、87 12.一一列举:红1 黄2 蓝3,红1 黄3 蓝2,红2 黄1 蓝3,红2 黄3 蓝1,红3 黄1 蓝2,红3 黄2
蓝1,所以有6种情况。

而总数为39c =84,所以概率为6/84=1/14
18、因为种子发芽的概率为1
2,种子发芽与不发芽的可能性是均等的.若甲坑中种子发芽记为1,不发
芽记为0,每粒种子发芽与否彼此互不影响,故其基本事件为(1,1,1),(1,1,0),(1,0,1),(1,0,0),(0,1,1),(0,1,0),(0,0,1),(0,0,0),共8种.而都不发芽的情况只有1种,即(0,0,0),所以需要补种的概率是1
8,
故甲坑不需要补种的概率是1-18=7
8
.
19、从图中容易看出基本事件与所描点一一对应,共36种.
(1)记“点数之和是4的倍数”为事件A ,从图中可以看出,事件A 包含的基本事件共
有9个:(1,3),(2,2),(2,6),(3,1),(3,5),(4,4),(5,3),(6,2),(6,6).所以P (A )= 1
4.
(2)记“点数之和大于5小于10”为事件B ,从图中可以看出,事件B 包含的基本事件 共有20个.即(1,5),(2,4),(3,3),(4,2),(5,1),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),
(2,6),(3,5),(4,4),(5,3),(6,2),(3,6),(4,5),(5,4),(6,3).所以P (B )=
59
. 20、(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)(1)
34(2)14(3)12
22、(1)将2名男同学和4名女同学分别编号为1,2,3,4,5,6(其中1,2是男同学,3,4,5,6是女同学),该学
院6名同学中有4名当选的情况有(1,2,3,4),(1,2,3,5),(1,2,3,6),(1,2,4,5),(1,2,4,6),(1,2,5,6),(1,3,4,5),(1,3,4,6),(1,3,5,6),(1,4,5,6),(2,3,4,5),(2,3,4,6),(2,3,5,6),(2,4,5,6),(3,4,5,6),共15种,当选的4名同学中恰有1名男同学的情况有(1,3,4,5),(1,3,4,6),(1,3,5,6),(1,4,5,6),(2,3,4,5),(2,3,4,6),(2,3,5,6),(2,4,5,6),共8种,
故当选的4名同学中恰有1名男同学的概率为P(A)=
815
. (2)当选的4名同学中至少有3名女同学包括3名女同学当选(恰有1名男同学当选),4名女同学当选这
两种情况,而4名女同学当选的情况只有(3,4,5,6),则其概率为P(B)=1
15

又当选的4名同学中恰有1名男同学的概率为P(A)=815
,故当选的4名同学中至少有3名女同学的概率为P =
815+115=35
. 21、把四人依次编号为甲、乙、丙、丁,把两白球编上序号1、2,把两黑球也编上序号1、2,于是四个人按顺序依次从袋内摸出一个球的所有可能结果,可用树形图直观地表示出来如下:
从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二
个人摸到白球”为事件A ,则121
()242P A ==。

黑2
白1 白2 白2 黑1 黑1 黑1 白2 黑1 白1 白1 白2 白2
白1 白1
黑1
甲 乙 丙 丁 白2 白1 黑1
黑2 黑1 黑2 黑2 黑2 黑1 黑1 白1 白1 白1
白1 黑1 黑2 甲 乙 丙 丁 黑1
白1 白2
黑2 白2 黑2 黑2 2 2 白1 白1 白2 白2
白1 白1
黑2
甲 乙 丙 丁 白1 白2 黑1 黑2 黑1 黑2 黑2 2 1 黑1 白2 白2 白2 白2 黑1 黑2 甲 乙 丙 丁。

相关文档
最新文档