截面的静矩和形心位置及惯性矩的计算参考文档
材料力学第六章 截面的几何性质惯性矩
IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交
惯性矩、静矩,形心坐标公式
§I−1 截面得静矩与形心位置如图I −1所示平面图形代表一任意截面,以下两积分(I −1)分别定义为该截面对于z 轴与y 轴得静矩。
静矩可用来确定截面得形心位置。
由静力学中确定物体重心得公式可得利用公式(I −1),上式可写成 (I −2) 或 (I −3) (I −4)如果一个平面图形就是由若干个简单图形组成得组合图形,则由静矩得定义可知,整个图形对某一坐标轴得静矩应该等于各简单图形对同一坐标轴得静矩得代数与。
即:(I −5)式中A i 、y ci 与z ci 分别表示某一组成部分得面积与其形心坐标,n 为简单图形得个数。
将式(I −5)代入式(I −4),得到组合图形形心坐标得计算公式为 (I −6)例题I −1 图a 所示为对称T 型截面,求该截面得形心位置。
解:建立直角坐标系zOy ,其中y 为截面得对称轴。
因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。
将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m,y Ⅱ=0.2m§I −2 惯性矩、惯性积例题I −1图图I −1与极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。
现在图形内取微面积d A ,d A 得形心在坐标系zOy 中得坐标为y 与z ,到坐标原点得距离为ρ。
现定义y 2d A 与z 2d A 为微面积d A 对z 轴与y 轴得惯性矩,ρ2d A 为微面积d A 对坐标原点得极惯性矩,而以下三个积分(I −7)分别定义为该截面对于z 轴与y 轴得惯性矩以及对坐标原点得极惯性矩。
由图(I −2)可见,,所以有(I −8) 即任意截面对一点得极惯性矩,等于截面对以该点为原点得两任意正交坐标轴得惯性矩之与。
另外,微面积d A 与它到两轴距离得乘积zy d A 称为微面积d A 对y 、z 轴得惯性积,而积分(I −9)定义为该截面对于y 、z 轴得惯性积。
惯性矩地计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA,定义它对任意轴的一次矩为它对该轴的静矩,即dS y xdAdSx ydA整个图形对y、z轴的静矩分别为S y xdAyASx 人 ydA2.形心与静矩关系(1-1 )设平面图形形心C的坐标为y c,z c-S x 一S y /、y , x (I-2 )A A推论1如果y轴通过形心(即x0),则静矩S y 0 ;同理,如果X轴通过形心(即y o),则静矩sx o;反之也成立。
推论2如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,贝昭形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为 A,A2,A3 A n的简单图形组成,且一直各族图形的形心坐标分别为丘,只;乂2*2;x3,y3 ,贝U图形对y轴和x轴的静矩分别为截面图形的形心坐标为nA i Xi 1 nA ii 14•静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为m 3。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(1-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(1-2 )求图形的形心坐标。
组 合图形的形心位置,通常是先由式(I-3 )求出图形对某一坐标系的静 矩,然后由式(1-4 )求出其形心坐标。
(二)•惯性矩 惯性积 惯性半径1.惯性矩定义 设任意形状的截面图形的面积为 A (图I-3 ),则图形对0点的极 惯性矩定义为 I p2dA (1-5)KAn nS yS yiARi 1 i 1nnS xSxiA i Vi 1 i 1(1-3 )A i y i(1-4 )图形对y轴和x轴的光性矩分别定义为I y A x2dA , I x A y2dA (1-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。
材料力学 截面的几何性质
1、矩形截面 h
Iz
y2dA
A
2 h
y 2bdy
h
2
dy y
b y 3 2 1 bh3 3 h 12
2
同理
Iy
z2dA 1
A
12
hb3
b h z
y
26
2、实心圆截面
y
已知
IP
A2dA
D 4 32
D
z
则 I P A2 d A A y 2 d A A z 2 d I A z I y
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z
y
o
A dA
z
y
惯性积
定义
Iyz
yzdA
A
z y
A dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
4.3 形心主惯性轴和形心主惯性矩
若主惯性轴通过形心,则该轴称为形心主惯性轴(principal centroidal axis)。
图形对形心主惯性轴的惯性矩称为形心主惯性矩。 由于图形对于对称轴的惯性积等于零,而对称轴又过形心,所以,图形 的对称轴就是形心主惯性轴。
形心主惯性轴的特点可归纳为以下几点: ⑴形心主惯性轴是通过形心,由角定向的一对互 相垂直的坐标轴。
32
32
圆环形对y(或z)轴的惯性矩为
IyIz1 2Ip6 D4414
由于y轴为对称轴,故
Iyz 0
z
y
d D
截面的静矩和形心位及惯性矩的计算
y
dA
x
x 0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
截面对 x , y 轴的惯性半俓为
iy
Z1 80 Z2 0
所以截面的形心坐标为
ZC
A1 Z1 A1
A2 Z2 A2
46.7mm
20 140
zc
20
1
yc
ZC
2
y
100
I1yC
1 12
20 1403
20 140
(8046.7)2
I
2 yC
1 12
100
203
100
20
(46.7)2
zc
120 103 152 120 10
1 12
703
10
(25)2
70
10
100.4 104 mm 4
Iy 278.4 104 mm4
70 20 10
120
y
80
c
x
10
y
I xy 0 15 20 120 10 0 (25) (35) 70 10
x2
10
70 2
45mm
y2 5mm
y 10
1 x1
y1
惯性矩的计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdA dS y ==整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1)2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0AS y x=, A S x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
截面的静矩和形心位置及惯性矩的计算
x 0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
截面对 x , y 轴的惯性半俓为
iy
Iy , A
二 、 截面的主惯性轴和主惯性矩
I x1y1
Ix
2
Iy
sin 2α
I xy cos 2α
主惯性轴 —— 总可以找到一个特定的角 0 , 使截面对新坐标 轴 x0 , y0 的惯性积等于 0 , 则称 x0 , y0 为主惯轴。
主惯性矩——截面对主惯性轴的惯性矩。
形心主惯性轴 ——当一对主惯性轴的交点与截面的形心 重合时,则称为形心主惯性轴。
x
80
§ І -2 极惯性矩 惯性矩 惯性积
定义:
z dA
z
截面对 o 点的极惯性矩为
y
Ip Aρ2dA
y 0
截面对 y ,z 轴的惯性矩分别为
Iy A z2dA Iz A y2dA
因为 ρ2 y2 z2
I p Aρ2 dA
所以 Ip = Ix + Iy
y
y
dA
ix
Ix A
例 2 _ 1 求矩形截面对其对称轴 x , y 轴的惯性矩。
解:
dA = b dy
Ix
A y2dA
h
2h
by2dy
2
bh3 12
Ix A y2dA
截面的几何性质
附录Ⅰ 截面的几何性质§I −1 截面的静矩和形心位置如图I −1所示平面图形代表一任意截面,以下两积分⎪⎭⎪⎬⎫==⎰⎰A z S A y S A y Az d d (I −1) 分别定义为该截面对于z 轴和y 轴的静矩。
静矩可用来确定截面的形心位置。
由静力学中确定物体重心的公式可得⎪⎪⎭⎪⎪⎬⎫==⎰⎰A A z z A A y y AC ACd d利用公式(I −1),上式可写成⎪⎪⎭⎪⎪⎬⎫====⎰⎰A S A A z z A S A Ay y y AC z AC d d (I −2) 或⎭⎬⎫==C y C z Az S Ay S (I −3)⎪⎪⎭⎪⎪⎬⎫==A S z A S y y C z C (I −4)如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对同一坐标轴的静矩的代数和。
即:⎪⎪⎭⎪⎪⎬⎫==∑∑==ni ci i y ni ci i z z A S y A S 11(I −5)式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。
将式(I −5)代入式(I −4),得到组合图形形心坐标的计算公式为图I −1⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫==∑∑∑∑====n i i ni ci i c ni i ni ci i c A z A z A y A y 1111(I −6) 例题I −1 图a 所示为对称T 型截面,求该截面的形心位置。
解:建立直角坐标系zOy ,其中y 为截面的对称轴。
因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。
将截面分成Ⅰ、Ⅱ两个矩形,则A Ⅰ=0.072m 2,A Ⅱ=0.08m 2 y Ⅰ=0.46m ,y Ⅱ=0.2m m323.008.0072.02.008.046.0072.0III IIII I I 11=+⨯+⨯=++==∑∑==A A y A y A AyA y ni ini cii c§I −2 惯性矩、惯性积和极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。
截面形心和惯性矩的计算
工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-31所示为一任意截面的几何图形(以下简称图形)。
定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。
面积矩的量纲是长度的三次方,其常用单位为m3或mm3。
2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。
图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。
图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。
3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。
如式(2—2.4)(2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。
组合平面图形的形心位置由式(2—2.5)确定。
(2—2.5)2.2极惯性矩、惯性矩和惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。
定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)(2—2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。
极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。
(1)圆截面对其圆心的极惯性矩,如式(2—7)(2—2.7)(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)(2—2.8)式中,d/D为空心圆截面内、外径的比值。
2.惯性矩在如图6-1所示中,定义积分,如式(2—2.9)(2—2.9)称为图形对z轴和y轴的惯性矩。
惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。
惯性矩恒为正值,其量纲和单位与极惯性矩相同。
惯性矩的计算方法及常用截面惯性矩计算公式讲解
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdAdS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0A S y x=, AS x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
惯性矩的计算方法与常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdA dS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0AS y x= , A S x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii ni yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
材料力学第六章截面的几何性质惯性矩
A
m3 ; mm3 ; 静矩为代数值。静矩单位: 不同截面对同一坐标轴的静矩不同;同 一截面对不同坐标轴的静矩也不同。 若截面形心坐标为zc、yc,将面积视为平行力(即看作等 厚、均质薄板的重力),由合力矩定理可得:
S z y dA A yc ;
A
S y z dA A zc ;
2 I z1 z a 2 A; y1 y b A;
I z1 y1 I zy abA ;
注意:y、z轴必须是形心轴。 二、转轴公式:
2
I z1 y1 dA ( y cos z sin ) 2 dA;
I z1
I y1
Iz Iy
A
当Sz=0或Sy=0时,必有yc=0或zc=0,可知截面对某轴的 静矩为零时,该轴必通过截面形心;反之,若某轴通过形心, 则截面对该轴的静矩为零。 返回 下一张 上一张 小结
二、形心公式:
Sy Sz yc ; z c . A A
n
三、组合截面的静矩:n个简单图形组成的截面,其静矩为:
S z Ai yci ;
64 12 几何关系: I P 2 dA ( y 2 z 2 )dA I Z I y .
A A
圆形截面:I y I z
D 4
;
四、惯性积: I z y dA; zy A
五、平行移轴公式:
2 I z1 z a 2 A; y1 y b A;
yc
y 'c
若分解为1、2、3三个矩形,则
0.6 2.52 (1.26 1.2) 0.16 m; 0.6 2.52 2 0.2 2.4
截面惯性矩(材料力学)(仅供借鉴)
6
例1:求图示T形截面的形心及对z轴的静矩 y
1.求形心
100
知A=A1+A2 yC1=60 yC2=0
20
n Ai yCi
选坐标轴z1作为参考轴
yC i1 Ai
yC
20100 60 100 20 2
30mm
100
2、求静矩
•
•Ⅰ
•
ⅡyC1
zC
z1
B•
方法1) Sz yC
y
I yz yzdA
A
3.说明: h
1)同一图形对不同轴的惯性积不同; A1 A2
z
2)惯性积可正,可负,可为零。
b
b
3)惯性积的单位:m4
4.结论:
当坐标系的两轴中的任一轴为图形的对称轴时,图形 对此轴的惯性积为零,反之,若图形对坐标系的惯性 积为零时,此坐标轴中必一有类参一考 轴为图形的对称轴。 11
一类参考
43
拉(压)杆横截面上的应力
σ= FN MPa
A
F
mn
F
FN 表示横截面轴力(N)
mn
A 表示横截面面积(mm2)
F
FN
一类参考ቤተ መጻሕፍቲ ባይዱ
44
——横截面上的应力
一类参考
45
截面上的应力
例题3-2
A 1
45°
C
2
FN1
y
FN 2 45° B
F
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
900多年来历经数次地震不倒,现存唯一木塔
一类参考
20
古代建筑结构
2200年以前建造的都江堰安澜索桥
(完整版)惯性矩的计算方法及常用截面惯性矩计算公式
(完整版)惯性矩的计算⽅法及常⽤截⾯惯性矩计算公式惯性矩的计算⽅法及常⽤截⾯惯性矩计算公式截⾯图形的⼏何性质⼀.重点及难点:(⼀).截⾯静矩和形⼼1.静矩的定义式如图1所⽰任意有限平⾯图形,取其单元如⾯积dA ,定义它对任意轴的⼀次矩为它对该轴的静矩,即ydA dSx xdAdS y == 整个图形对y 、z 轴的静矩分别为 ??==A Ay ydA Sx xdA S (I-1) 2.形⼼与静矩关系图I-1 设平⾯图形形⼼C 的坐标为C C z y , 则 0 AS y x = , A S x y = (I-2)推论1 如果y 轴通过形⼼(即0=x ),则静矩0=y S ;同理,如果x 轴通过形⼼(即0=y ),则静矩0=Sx ;反之也成⽴。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形⼼;如果y 轴为图形对称轴,则图形形⼼必在此轴上。
3.组合图形的静矩和形⼼设截⾯图形由⼏个⾯积分别为n A A A A ??321,,的简单图形组成,且⼀直各族图形的形⼼坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========n i n i ii xi x n i ii n i yi y y A S S x A S 1111S (I-3)截⾯图形的形⼼坐标为∑∑===n i i n i i iAx A x 11, ∑∑===n i in i i i A y A y 11 (I-4) 4.静矩的特征(1) 界⾯图形的静矩是对某⼀坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形⼼轴的静矩必定为零,反之,若图形对某⼀轴的静矩为零,则该轴必通过图形的形⼼。
(4) 若已知图形的形⼼坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形⼼坐标。
截面的静矩和形心位置及惯性矩的计算课件
数值模拟与优化
利用数值模拟技术,如有限元方法、边界元方法等,可以更精确地计算 截面的静矩和形心位置及惯性矩,并在此基础上进行结构优化设计。
03
多学科交叉
未来研究可以结合多个学科领域,如物理学、化学、生物学等,以更全
面地理解截面的静矩和形心位置及惯性矩的本质和规律,推动相关领域
的发展。
感谢您的观看
THANKS
详细描述
对于任意形状截面,其静矩可以通过对截面进行微分, 然后计算每个微元面积与微元重心到截面边缘的距离乘 积,最后对所有微元的静矩进行积分得到。形心位置可 以通过对截面进行微分,然后计算每个微元的面积与微 元重心坐标的平均值得到。惯性矩可以通过对截面进行 微分,然后计算每个微元的面积、微元重心到截面边缘 的距离以及微元的转动惯量,最后对所有微元的转动惯 量进行积分得到。
矩值。
通过公式计算其半径和 圆周率,得出惯性矩值。
通过公式计算其长轴、 短轴和圆周率,得出惯
性矩值。
不规则截面
需采用数值分析方法进 行近似计算或通过实验
测量得出。
03
截面几何特性的应用
结构强度分析
静矩
静矩是截面内力的一个重要参数,用于计算截面在受力时的稳定性。静矩的计算公式为 ∫(y*dA),其中y为截面各点到截面中心的距离,dA为面积微元。
形心位置
形心是截面的几何中心,其位置决定了截面的质量分布和转动惯量。形心位置可以通过积分 计算得到,公式为∫dA/A∫dxdy,其中A为截面面积。
惯性矩
惯性矩是衡量截面抗弯能力的重要参数,其计算公式为∫y^2dA,其中y为截面各点到形心距 离,dA为面积微元。
结构稳定性分析
结构失稳
当结构受到的外部载荷超 过其承载能力时,结构会 发生失稳,导致结构变形 甚至破坏。
截面的静矩和形心位置及惯性矩的计算
02 截面的静矩
静矩的定义
静矩
截面内力与作用点到截面某一固定点的距离的乘积的 积分。
面积矩
截面内力与作用点到截面某一固定点的距离的平方的 积分。
极惯性矩
截面内力与作用点到截面某一固定点的距离的四次方 的积分。
静矩的计算
1 2
静矩的计算公式
静矩 = Σ (y_i * dA_i),其中y_i为截面内力作用 点到某一固定点的距离,dA_i为该点处的面积微 元。
截面的静矩和形心位置及惯性矩的 计算
contents
目录
• 截面的几何特性 • 截面的静矩 • 截面的形心位置 • 截面的惯性矩 • 截面特性在工程中的应用
01 截面的几何特性
截面的定义
01
截面是一个二维平面图形,可以 通过在三维空间中切割一个物体 来获得。
02
截面可以是封闭的或开放的,可 以有不同的形状和大小,取决于 切割的方式和角度。
05 截面特性在工程中的应用
在结构设计中的应用
结构设计是工程中非常重要的环节,截面的静 矩和形心位置及惯性矩的计算可以为结构设计 提供重要的参考依据。
在结构设计时,需要考虑到截面的承载能力、 稳定性以及变形等因素,而这些因素都与截面 的特性密切相关。
通过计算截面的静矩和形心位置及惯性矩,可 以更好地了解截面的受力特性,从而优化结构 设计,提高结构的承载能力和稳定性。
转动惯量
是指刚体绕某点转动时,其转动惯量 等于刚体的所有质量微元与各微元距 离平方的乘积之和。
惯性矩的计算
矩形截面惯性矩
对于矩形截面,其惯性矩可以通过计算其面 积与面积上分布的物质质量的乘积,再乘以 一个常数得到。
圆形截面惯性矩
不规则平面形之静矩,重心,惯性矩及惯性积之新计算法
不规则平面形之静矩,重心,惯性矩及惯性积之新计算法
静矩,截面上所有点坐标值的代数和;静矩大小可能为正,也可能为负,其大小与坐标系位置有关。
静矩的量纲是长度的三次方。
可用于计算截面形心。
截面对某轴的静矩为零,则该轴必过形心,截面对一个坐标系的两个轴的静矩都为零,则该坐标系原点为形心。
过某点取坐标系,当截面对该坐标系的惯性积等于零时,这一对坐标系称为主惯性轴,简称主轴。
通过截面形心的主惯性轴称为形心主惯性轴,截面对该轴的惯性矩称为形心主惯性矩。
由平行移轴公式可知,截面对过形心主惯性轴的惯性矩是截面对所有坐标系惯性矩中最大和最小的两个惯性矩。
惯性矩:截面上所有点至坐标轴距离平方的和,可反映截面上的点相对于轴的分布情况。
惯性矩可用于计算纯弯曲变形杆截面上的正应力。
极惯性矩始终大于0,其大小与坐标系位置有关。
极惯性矩的量纲是长度的四次方。
截面上离轴心较远的点越多,截面对轴心的极惯性矩越大,截面抵抗扭转变形的能力越强。
惯性积,截面上所有点横纵坐标之积的和。
惯性积大小可能为正,也可能为负,其大小与坐标系有关。
惯性积的量纲是长度的四次方。
惯性矩、极惯性矩、惯性积的计算公式
中的被积函数都是二次项,因此统称为二阶矩;静矩计算公式中的被积分项是一次项,因此称为一阶矩。
惯性矩、静矩、抵抗矩形心、重心、质心
力学计算中截面参数计算,关键点地描述原先对于惯性矩、静矩、极惯性矩、抵抗矩地概念及计算方法总是模糊不清,这次认真地整理了下,估计大家对这些基本概念认知也比较凌乱,在此斗胆与大家分享下,其中地不足之处希望大家谅解,也恳请大家批评指正.计算平面地惯性矩方法:在中将平面图画好——生成面域——工具(查询——面域质量特性)——得到质心和惯性矩(此惯性矩地计算轴为坐标原点处、轴)——将坐标轴原点移动刚算出地质心坐标上——工具(查询——面域质量特性)得此平面图地惯性矩和面积:静矩:平面图形地面积与其形心到某一坐标轴地距离地乘积称为平面图形对该轴地静矩.一般用来表示.=* 其中=∑*∑:惯性矩:轴惯性矩反映截面抗弯特性地一个量,简称惯性矩.截面对某个轴地轴惯性矩等于截面上各微面积乘微面积到轴地距离地平方在整个截面上地积分.公式如:=∫*:极惯性矩:极惯性矩是平面图形对坐标轴原点(即点)地矩,计算公式为:(各惯性矩之和):抵抗矩:截面抵抗矩()就是截面对其形心轴惯性矩与截面上最远点至形心轴距离地比值.公式为:面积矩:面积矩是一个概念,凡是与面积有关地都称为面积矩,如静矩,抵抗矩等都为面积矩.质心:为质量集中在此点地假想点;重心:为重力作用点(与组成该物体地物质有关);(如没有引力,则就没有重心一说了)形心:物体地几何中心只与物体地几何形状和尺寸有关,与组成该物体地物质无关).三者地关系::一般情况下重心和形心是不重合地,只有物体是由同一种均质材料构成时,重心和形心才重合.:质心就是物体质量集中地假想点(对于规则形状物体就是它地几何中心),重心就是重力地作用点,通常情况下,由于普通物体地体积比之于地球十分微小,所以物体所处地重力场可看作是均匀地,此时质心与重心重合;如果该物体地体积比之于地球不可忽略(例如一个放在地面上半径为地球体),则该球体所处地重力场就不均匀了,具体说是由下自上重力场逐渐减小,此时重力地作用点靠下,也就是重心低于质心.如果物体所处地位置不存在重力场(如外太空),则物体就无所谓重心了,但由于质量仍然存在,所以质心仍然存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则平行移轴公式为
y
yc
I x I xc a2 A
Iy Iyc b2 A
I xy I xcyc abA
a
C(a,b)
xc
ob
x
16
二、组合截面的惯性矩 惯性积
Ixi , Iyi , Ixyi —— 第 i个简单截面对 x ,y 轴的惯性矩、
§І-1 截面的静矩和形心位置
一、 定义
z
截面对 z , y 轴的静矩为:
dA
S z A ydA
z
S y AzdA
oy
y
静矩可正,可负,也可能等于零。
1
截面的形心 C 的坐标
公式为:
y A ydA S z
A
A
z
z
z
dA
c
z AzdA S y
o
y
y
A
A
y
Sz Ay
S y Az
若截面对某一轴的静矩等于零,则该轴必过形心。
22
二 、 截面的主惯性轴和主惯性矩
I x1y1
Ix
2
Iy
sin 2α
I xy cos 2α
主惯性轴 —— 总可以找到一个特定的角 0 , 使截面对新坐标 轴 x0 , y0 的惯性积等于 0 , 则称 x0 , y0 为主惯轴。
主惯性矩——截面对主惯性轴的惯性矩。
23
形心主惯性轴 ——当一对主惯性轴的交点与截面的形心 重合时,则称为形心主惯性轴。
2h 2
b y2d y
bh3 12
Ix A y2dA
y
Iy
h b3 12
dy
h
y
C
x
b
13
例 2 - 2 求圆形截面对其对称轴的惯性矩 。
解:因为截面对其圆心 O 的
极惯性矩为 y
Iρ
π d4 32
Ix Iy Iρ
x
Ix Iy
所以
Ix
Iy
π d4 64
14
§ І -3 惯性矩和惯性积的平行移轴公式 组合截面的惯性矩和惯性积
y 0
9
截面对 y ,z 轴的惯性矩分别为
Iy A z2dA Iz A y2dA
因为 ρ2 y2 z2
I p Aρ2 dA
所以 Ip = Ix + Iy
y
y
dA
x
x 0
10
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
一、 平行移轴公式
y x , y ——任意一对坐标轴
C —— 截面形心
a
(a , b ) _____ 形心 c 在 xoy 坐标系下的
坐标。
o
xc , yc ——过截面的形心 c 且与 x , y 轴平 行的坐 标轴(形心轴)
yc
C(a,b)
xc
b
x
15
Ix , Iy , Ixy _____ 截面对 x , y 轴的惯性矩和惯性积。
20 140
zc
20
1
yc
2
y
100
18
A1 20 140 A2 100 20
Z1 80 Z2 0
所以截面的形心坐标为
ZC
A1 Z1 A1
A2 Z2 A2
46.7mm
20 140
zc
20
1
yc
ZC
2
y
100
19
I1yC
1 12
20
1403
20
140
(80
46.7)2
I
2 yC
1 12
y y1
逆時针转取为 + 号,
x1
顺時针转取为 – 号
o
x
21
I x1
Ix
Iy 2
Ix
2
Iy
cos 2α
I xy
sin 2α
I y1
Ix
Iy 2
Ix
2
Iy
cos 2α
I xy
sin 2α
I x1 y1
Ix
2
Iy
sin 2α
I xy
cos 2αy Leabharlann 1ox1x
上式称为转轴公式 显然
I x1 I y1 I x I y
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
11
截面对 x , y 轴的惯性半俓为
iy
Iy , A
ix
Ix A
12
例 2 _ 1 求矩形截面对其对称轴 x , y 轴的惯性矩。
解:
dA = b dy
Ix
A
y2d A
h
x
A1 x1 A 2 x2 A1 A2
37500 1900
20mm
y
A1 y1 A1
A2 y2 A2
75500 1900
40mm
y 10
1 x1
C(y, x)
y1
2 y2
10
o x2
x
80
8
§ І -2 极惯性矩 惯性矩 惯性积
定义:
z dA
z
截面对 o 点的极惯性矩为
y
Ip Aρ2dA
i1
y A1 y1 A2 y2 A1 A2
x1 1
y1
o x2
80
y2
2 10 x
6
矩形 1
A1 10 120 1200mm2
x1 5mm
y1 60mm
矩形 2
A2 10 70 700mm2
x2
10
70 2
45m
m
y2 5mm
y 10
1 x1
y1
o
2 y2
10
x2
x
80
7
所以
100
203
100
20
(46.7)2
zc
20
IyC
I1yC
I
2 yC
12.12 106
m4
1
yc
ZC
2
20 140
y
100
20
§ І -4 惯性矩和惯性积的转轴公式 截面的主惯性轴和主惯性矩
一、 转轴公式
xoy 为过截面上的任 – 点建立的坐标系 x1oy1 为 xoy 转过 角后形成的新坐标系
4
计算组合截面形心坐标的公式如下:
n
Ai
y i
y
i 1 n
Ai
i 1
n
Ai zi
z
i 1 n
Ai
i 1
5
例 1-1 试确定图示截面心 C 的位置。
解:将截面分为 1,2 两个矩形。
y 10
取 x 轴和 y 轴分别与截面 的底边和左边缘重合
n
x
Ai xi
i1 n
Ai
A1 x1 A1
A2 x2 A2
形心主惯性矩—— 截面对形心主惯性轴的惯性矩。
24
主惯性轴的位置:设 为主惯性轴与原坐标轴 之间的夹角,
则有 由此
I I x I y 2 sin 2 0 xy cos 2 0 0
tg 20
2Ixy
惯性积。
组合截面的惯性矩,惯性积
n
I x I xi i1
n
I y I yi i1
n
I xy I xyi i 1
17
例 3 -1 求梯形截面对其形心轴 yc 的惯性矩。
解:将截面分成两个矩形截面。
截面的形心必在对称轴 zc 上。 取过矩形 2 的形心且平行 于底边的轴作为参考轴, 记作 y 轴 。
截面对形心轴的静矩等于零。 2
二 、 组合截面 由几个简单图形组成的截面称为组合截面
截面各组成部分对于某一轴的静矩之代数和,就等于该截 面对于同一轴的静矩。
3
组合截面静矩的计算公式为
n
S
z
Ai
y i
i1
n
S y Ai zi i1
其中: Ai —— 第 i 个简单截面面积
(
y, i
z
i
)
——
第 i个简单截面的形心坐标