互逆命题与互逆定理

合集下载

第13章 13.5 13.5. 1 互逆命题与互逆定理

第13章  13.5  13.5. 1 互逆命题与互逆定理

证明:过点E作EM⊥BC于点M,过点D作DN⊥BC于
点N,∵BD、CE分别是△ ABC的中线,∴S△ BEC=S△ BDC,

1 2
BC·EM=
1 2
BC·DN,∴EM=DN,在Rt△ EMC和
Rt△ DNB中,CE=BD,EM=DN,
∴Rt△ EMC≌Rt△ DNB,∴∠ECM=∠DBC,在△ EBC
6.在△ ABC 中,∠A 的相邻外角是 110°,要使△ ABC 是等腰三角形,则∠B= 55°或 70°或 40° .
7. 命题“等腰三角形两腰上的中线相等”的逆命题 是 两边上的中线相等的三角形是等腰三角形 ,这个命 题是 真 命题.(填“真”或“假”)
【解析】逆命题:两边上的中线相等的三角形是等 腰三角形.已知:如图,在△ ABC中,BD、CE分别是 边AC和AB上的中线,且CE=BD,求证:△ ABC是等腰 三角形.
知识点 互逆定理 4. 下列定理是否都有逆定理?若有,请写出来. (1)如果两个角都是直角,那么这两个角相等; (2)内错角相等,两直线平行; (3)等边三角形的三个内角都等于60°.
解:(1)逆命题是:如果两个角相等,那么这两个角 是直角,它是一个假命题,故(1)没有逆定理.
(2)逆命题是:两直线平行,内错角相等,它是一个 真命题,故(2)的逆命题就是它的逆定理.

如图,△ ABC 是等边三角形. (1)若 AD=BE=CF,求证:△ DEF 是等边三角形; (2)请问(1)的逆命题成立吗?若成立,请证明;若不 成立,请用反例说明.
解:(1)∵△ABC 是等边三角形, ∴∠A=∠B=∠C, AB=AC=BC, 又∵AD=BE=CF, ∴AB-AD=BC-BE=AC-CF, 即 BD=CE=AF. ∴△ADF≌△BED≌△CFE.

《互逆命题与互逆定理》word“同课异构”获奖教案优质教学设计

 《互逆命题与互逆定理》word“同课异构”获奖教案优质教学设计

数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。

数学学科核心素养的培养,要通过学科教学和综合实践活动课程来具体实施。

第一,数学学科教学活动是数学学科素养培养的主要途径。

数学核心素养的六个方面在小学、初中、高中、本专科、研究生教育等五个阶段的内涵、学科价值和教育价值、表现等方面的要求各不相同,要仔细推敲,准确把握,切实贯穿到学科教学活动中去。

第二,研究性学习综合实践活动课程是数学学科素养培养的重要途径。

本课正在基于此,在教学设计与环节的应用上,设计都非常适合学生初学。

这一点在分层教学中也有体现。

13.5.1.互逆命题与互逆定理课时:第一课时课型:新授课编写:毕春友审核:徐轻梅学习目标1.理解互逆命题与互逆定理2.正确应用互逆命题与互逆定理自学指导说出下列命题的题设和结论:1、两直线平行,内错角相等;2、内错角相等,两直线平行;3、全等三角形的对应角相等;4、对应角相等的三角形全等;5、平行四边形的对边互相平行;6、对边互相平行的四边形是平行四边形;观察上面三组命题,你发现了什么?概括:一般来说,在两个命题中,如果第一个命题的是第二个命题的,而第一个命题的是第二个命题的,那么这两个命题叫做。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的。

展示交流在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明。

(1)、(2)、(3)、归纳:如果一个定理的逆命题也是,那么这两个定理叫做。

其中的一个定理叫做另一个定理的。

疑点点拨注意1:逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题注意2:所有的命题都有逆命题,但不是所有的定理都有逆定理达标测试1、指出下列命题的题设和结论,写出它们的逆命题,并判断真假。

(1)、如果一个三角形是直角三角形,那么它的两个锐角互余.((2)、等边三角形的每个角都等于60°(3)、同旁内角互补,两直线平行.2、写出下列命题的逆命题.并判断原命题逆命题的真假。

华师版数学八年级上册教案-第13章 全等三角形-13.5 逆命题与逆定理(3课时)

华师版数学八年级上册教案-第13章 全等三角形-13.5 逆命题与逆定理(3课时)

13.5逆命题与逆定理1互逆命题与互逆定理(第1课时)一、基本目标1.理解逆命题与逆定理的意义,会写出一个命题的逆命题.2.会判断定理的逆命题的真假.二、重难点目标【教学重点】会写出一个命题的逆命题,会判断定理的逆命题的真假.【教学难点】写出一个命题的逆命题.环节1自学提纲,生成问题【5 min阅读】阅读教材P92~P93的内容,完成下面练习.【3 min反馈】一、互逆命题1.命题“两直线平行,内错角相等”的条件是两直线平行,结论是内错角相等.2.命题“内错角相等,两直线平行”的条件是内错角相等,结论是两直线平行.3.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题就叫做它的逆命题.二、互逆定理1.“两直线平行,内错角相等”的逆命题是内错角相等,两直线平行.2.“对顶角相等”的逆命题是相等的角是对顶角.3.如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.环节2合作探究,解决问题活动1小组讨论(师生互学)【例题】写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题,若是假命题,请举出一个反例说明.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.【互动探索】(引发学生思考)什么是逆命题?怎样举反例?【解答】(1)逆命题:同旁内角互补,两直线平行.是真命题.(2)逆命题:在同一平面内,如果两条直线平行,那么这两条直线垂直于同一条直线.是真命题.(3)逆命题:内错角相等.是假命题.反例:如图,∠1与∠2是内错角,但不相等.(4)逆命题:等边三角形有一个角是60°.是真命题.【互动总结】(学生总结,老师点评)说明命题为假命题的反例即为符合该命题条件而不符合该命题结论的例子,如(3)小题中的例子.活动2巩固练习(学生独学)1.下列命题的逆命题是真命题的是(C)A.全等三角形的周长相等B.对顶角相等C.等边三角形的三个角都是60°D.全等三角形的对应角相等2.写出“全等三角形的面积相等”的逆命题:面积相等的三角形全等.3.写出命题“有两角互余的三角形是直角三角形”的逆命题并证明.解:逆命题:直角三角形的两锐角互余.已知:在△ABC中,∠C=90°.求证:∠A+∠B=90°.证明:∵∠A+∠B+∠C=180°,∠C=90°,∴∠A+∠B=90°,即∠A与∠B互余.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!2线段垂直平分线(第2课时)一、基本目标1.掌握线段垂直平分线的性质定理和判定定理.2.能灵活运用线段垂直平分线的性质定理和判定定理解题.二、重难点目标【教学重点】线段垂直平分线的性质定理和判定定理.【教学难点】灵活运用线段垂直平分线的性质定理和判定定理解题.环节1自学提纲,生成问题【5 min阅读】阅读教材P94~P95的内容,完成下面练习.【3 min反馈】1.如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,猜想一下线段AA′、BB′、CC′与直线MN有什么关系?解:AA′、BB′、CC′与直线MN垂直平分.2.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.3.线段垂直平分线的判定定理:到线段两端距离相等的点在线段的垂直平分线上.4.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分∠AMB5.三角形的三条垂直平分线交于一点.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为点E,交AC 于点D.若△DBC的周长为35 cm,求BC的长.【互动探索】(引发学生思考)已知AB、AC的长和△DBC的周长,要求BC的长,先求什么?再求什么?【解答】∵DE垂直平分AB,∴AD=BD.∵△DBC的周长=BC+BD+CD=35 cm,∴BC+AD+CD=35 cm.∵AC=AD+DC=20 cm,∴BC=35-20=15 (cm).【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质定理,可以实现线段之间的相互转化,从而求出未知线段的长.【例2】如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.【互动探索】(引发学生思考)先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,从而找出AD 与EF 的关系.【解答】AD 垂直平分EF .证明如下: ∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE =DF ,∠AED =∠AFD =90°.在Rt △ADE 和Rt △ADF 中,∵⎩⎪⎨⎪⎧AD =AD ,DE =DF ,∴Rt △ADE ≌Rt △ADF , ∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .【互动总结】(学生总结,老师点评)证明线段的垂直平分线可以用定义法,也可用线段垂直平分线的判定定理.活动2 巩固练习(学生独学)1.三角形中,到三个顶点距离相等的点是( D ) A .三条高线的交点 B .三条中线的交点 C .三条角平分线的交点 D .三边垂直平分线的交点2.如图,△ABC 的两边AC 和BC 的垂直平分线分别交AB 于D 、E 两点,若AB 边的长为10 cm ,则△CDE 的周长为( A )A .10 cmB .20 cmC .5 cmD .不能确定3.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段P A =5,则线段PB的长度为(B)A.6 B.5C.4 D.34.小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是到线段两端距离相等的点在线段的垂直平分线上.活动3拓展延伸(学生对学)【例3】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【互动探索】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证得△ADE≌△FCE,从而证得结论;(2)根据线段垂直平分线的性质判断出AB=BF即可.【证明】(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.【互动总结】(学生总结,老师点评)本题是线段垂直平分线与全等三角形的综合应用,证得△ADE≌△FCE是解题的关键.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!3角平分线(第3课时)一、基本目标1.掌握角平分线的性质定理和判定定理.2.能灵活运用角平分线的性质定理和判定定理解题.二、重难点目标【教学重点】角平分线的性质定理和判定定理.【教学难点】灵活运用角平分线的性质定理和判定定理解题.环节1自学提纲,生成问题【5 min阅读】阅读教材P96~P98的内容,完成下面练习.【3 min反馈】1.角平分线上的点到角两边的距离相等.2.角的内部到角两边距离相等的点在角的平分线上.3.三角形的三条角平分线交于一点,这个交点一定在三角形内部,它到三角形三边距离相等.4.如图,AD⊥DC,AB⊥BC,若AB=AD,∠DAB=120°,则∠ACB的度数为30°.环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC =3 cm,那么AE、AC、DE这三条线段之间有怎样的数量关系?请说明理由.【互动探索】(引发学生思考)根据“角平分线上的点到角两边距离相等”可得DE=CE,从而可知AE 、AC 、DE 之间的数量关系.【解答】AE +DE =AC =3 cm.理由如下: ∵∠ACB =90°,BE 平分∠ABC ,DE ⊥AB , ∴DE =CE ,由图可知,AC =AE +CE , 所以AC =AE +DE =3 cm.【互动总结】(学生总结,老师点评)本题考查了“角平分线上的点到角两边距离相等”的性质,熟记性质是解题的关键.【例2】如图,P 是OC 上一点,PD ⊥OA 于点D ,PE ⊥OB 于点E ,F 、G 分别是OA 、OB 上的点,且PF =PG ,DF =EG .求证:OC 是∠AOB 的平分线.【互动探索】(引发学生思考)要证OC 是∠AOB 的平分线,需证PD =PE ,而通过证Rt △PFD ≌Rt △PGE 即可得PD =PE .【证明】∵PD ⊥OA ,PE ⊥OB , ∴∠PDF =∠PEG =90°.在Rt △PFD 和Rt △PGE 中,∵⎩⎪⎨⎪⎧PE =PG ,DF =EC ,∴Rt △PFD ≌Rt △PGE (H.L.), ∴PD =PE .∵P 是OC 上一点,PD ⊥OA ,PE ⊥OB , ∴OC 是∠AOB 的平分线.【互动总结】(学生总结,老师点评)根据三角形全等得到PD =PE ,这样就把已知条件和角平分线的判定定理联系起来了.活动2巩固练习(学生独学)1.如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=9,则点D到AB的距离是(D)A.10 B.9C.8 D.72.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(D)A.一处B.二处C.三处D.四处3.如图,∠B=∠C=90°,M是BC的中点,且DM平分∠ADC.(1)求证:AM平分∠DAB;(2)试说明线段DM与AM有怎样的位置关系?并证明你的结论.(1)证明:过点M 作ME ⊥AD 于点E . ∵DM 平分∠ADC ,∠C =90°,ME ⊥AD , ∴MC =ME . ∵M 是BC 的中点, ∴BM =MC =ME .又∵∠B =90°,ME ⊥AD , ∴AM 平分∠DAB .(2)解:AM ⊥DM .证明如下: ∵∠B =∠C =90°, ∴AB ∥DC ,∴∠BAD +∠ADC =180°.∵AM 平分∠DAB ,DM 平分∠ADC , ∴∠MAD =12∠BAD ,∠MDA =12∠ADC ,∴∠MAD +∠MDA =90°, ∴∠AMD =90°, ∴AM ⊥DM .环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。

互逆命题与互逆定理

互逆命题与互逆定理

互逆命题与互逆定理
在逻辑推理和数学证明中,互逆命题和互逆定理是两个重要的
概念。

它们在推理过程中起着至关重要的作用,帮助我们理清思绪,找到正确的答案。

首先,让我们来了解一下什么是互逆命题。

互逆命题是指两个
命题,它们的否定分别是对方。

换句话说,如果一个命题为真,则
另一个命题必为假,反之亦然。

例如,命题A,“今天是晴天”,
其互逆命题为命题B,“今天不是晴天”。

这两个命题互为对立命题,其真假情况完全相反。

接下来,我们来看一下互逆定理。

互逆定理是指在数学或逻辑
推理中,如果一个定理成立,那么它的互逆定理也必然成立。

互逆
定理通常用于证明或推导过程中,帮助我们简化问题,找到解决方案。

例如,在数学中,如果一个定理表明“如果A成立,则B成立”,那么它的互逆定理表明“如果B不成立,则A不成立”。

互逆命题和互逆定理在逻辑推理和数学证明中都具有重要的意义。

它们帮助我们理清思路,找到正确的答案,同时也提醒我们在
推理过程中要注意对立命题和定理的关系。

通过理解和运用互逆命
题和互逆定理,我们可以更好地进行逻辑推理和数学证明,提高解决问题的能力和效率。

总之,互逆命题和互逆定理是逻辑推理和数学证明中不可或缺的概念,它们帮助我们理清思路,简化问题,找到正确的答案。

通过深入理解和灵活运用这两个概念,我们可以更好地进行推理和证明,提高解决问题的能力,为学习和研究打下坚实的基础。

八年级数学《互逆命题和互逆定理》课件

八年级数学《互逆命题和互逆定理》课件
(1)每个定理都有逆定理。 × (2)每个命题都有逆命题。√ (3)假命题没有逆命题。 × (4)真命题的逆命题是真命题。×
回顾:勾股定理的内容?
直角三角形两条直角边的平方和等于斜边的 平方.
请说出它的逆命题,并判断真假。 如果三角形两边的平方和等于第三边的平方, 那么这个三角形是直角三角形。
勾股定理的逆定理:如果三角形两边的平方和等于 第三边的平方,那么这个三角形是直角三角形。
c
b
b
c
证明:如图作Rt△A`B`C`
C
a
BC
a
B
使∠C`=Rt ∠,B`C`=a,A`C`=b,记A`B`为c`,则a2+b2=c`2.
∵a2+b2=c2
又∵ BC=a= B`C`, AC=b= A`C`,
∴ c`2=c2
∵c`>0,c>0,
∴ c`= c,
∴△ ABC≌ △A`B`C, ∴∠C=∠C`=Rt∠, ∴△ABC是直角三角形
条件
两直线平行 同位角相等
结论
同位角相等 两直线平行
真假
真 真
⑶如果a=b,那么a2=b2。 ⑷如果a2=b2,那么a=b。
a=b a2=b2
a2=b2

a=b

说出下列命题的逆命题,并判定逆命题的真假:
⑴既是中心对称,又是轴对称的图形是圆。 圆既是中心对称,又是轴对称的图形。是真命题
⑵有一组对边平行且相等的四边形是平行四边形。 平行四边形有一组对边平行且相等。是真命题
⑵有一组对边平行且相等的四边形是平行四边形。 平行四边形有一组对边平行且相等。是真命题
⑶磁悬浮列车是一种高速行驶时不接触地面的交通工具。 高速行驶时不接触地面的交通工具是磁悬浮列车。是假命题 问:如何说出原命题的逆命题?

互逆命题与互逆定理

互逆命题与互逆定理

⑵同位角相等,两直线平行 ⑶如果a=b,那么a2=b2。
⑷如果a2=b2,那么a=b。
同位角相等 a=b
a2=b2ຫໍສະໝຸດ 两直线平行 a2=b2a=b
真 真

思考:命题(1)和命题(2);命题(3)和命题 (4)的条件和结论分别有什么关系?
知识学习
在两个命题中,如果第一个命题的条件是第二个命 题的结论,而第一个命题的结论是第二个命题的条件, 那么这两个命题叫做互逆命题。 我们把其中的一个叫做原命题,另一个叫做它的逆命题。
6.命题与定理的关系? 定理一定是命题,且是真命题。但命题不 一定是定理。
学习目标
1、理解原命题、逆命题、互逆命题的概念。 2、会写出一个命题的逆命题,并且能判断真 假。 3、理解逆定理、互逆定理的概念。
仔细阅读表中的四个命题,并填表;
命题 ⑴两直线平行,同位角相等 条件 结论 真假 真 两直线平行 同位角相等
如何写出原命题的逆命题?
原命题 原命题的条件 原命题的结论
逆命题
逆命题的条件
逆命题的结论
写出下列各命题的逆命题,并判断原命题和逆命题的 真假? (1)如果|a|=|b|,那么a=b (2)同位角相等 假命题 逆命题:相等的角是同位角 假命题 假命题 真命题 逆命题:如果a=b,那么|a|=|b|
初二数学组:张慧芳
知识回顾
1.什么叫命题? 表示判断的语句叫做命题。
2.命题由几部分组成,它的一般形式?
由条件和结论两部分组成。 可以写成“如果……那么……”的形式 3.命题的分类? 命题有真命题和假命题之分,正确的命题是 真命题,错误的命题是假命题。
知识回顾
5.什么叫定理? 有些命题可以从基本事实或其他真命题出 发,用逻辑推理的方法判断他们是正确的, 并且可以作为进一步判断其他命题真假的 依据,这样的真命题叫做定理。

解读“互逆命题与互逆定理”

解读“互逆命题与互逆定理”

《教材解读》配赠资源版权所有,侵权必究解读“互逆命题与互逆定理”一、弄清互逆命题的概念观察下面两个命题:(1)同位角相等,两直线平行;(2)两直线平行,同位角相等.不难看出,第一个命题的题设是第二个命题的结论,而第二个命题的结论又是第一个命题的题设,我们把这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个叫做它的逆命题.由互逆命题的定义可知,凡是命题,都可以写出它的逆命题,也就是说每个命题都有逆命题.同时我们也发现一个真命题的逆命题不一定是真命题.如原命题“对顶角相等”是真命题,它的逆命题“相等的角是对顶角”却是假命题.同样,原命题是假命题,它的逆命题不一定是假命题.如“对应角相等的三角形是全等三角形”是假命题,它的逆命题“全等三角形的对应角相等”却是真命题.互逆命题是说明两个命题之间的关系,两个命题的题设和结论可以互换,它们之中可以确定其中任何一个为原命题,但是一旦确定,另一个就是它的逆命题了.二、弄搞清互逆定理的概念如果一个定理的逆命题经过证明是真命题,那么它也一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.如“内错角相等,两直线平行”和“两直线平行,内错角相等”等,都是互逆定理.所有定理不一定都有逆定理,因为一个真命题的逆命题不一定也是真命题,如“对顶角相等”这个定理就没有逆定理.三、准确叙述一个命题的逆命题(1)对于一些简单的命题可直接交换它们的题设和结论,如“两直线平行,同位角相等”,直接交换它们的题设和结论就得到这个命题的逆命题.(2)为了准确叙述,可把命题改写成“如果……,那么……”的形式,然后再把原命题的题设和结论互换,如“面积相等的两个三角形全等”,把它改写成“如果两个三角形的面积相等,那么这两个三角形全等”,然后再写出它的逆命题:“如果两个三角形全等,那么这两个三角形的面积相等”.特别注意,在交换一个命题的题设和结论时,语言表述要准确,防止用词不当而造成错误.例如:“直角三角形的两个锐角互余”的逆命题写成“互余的两个锐角是直角三角形的两个锐角”就不恰当,而应写成“两个锐角互余的三角形是直角三角形”.又如:“如果两个有理数相等,那么它们的绝对值相等”的逆命题写成“如果它们的绝对值相等,那么这两个有理数相等”也不准确,应把“它们”改成“两个有理数”.总之,在写一个命题的逆命题时,一定要理解其含义,防止出现类似上面的错误.。

互逆命题与互逆定理八年级数学逆命题和逆定理教学反思

互逆命题与互逆定理八年级数学逆命题和逆定理教学反思

互逆命题与互逆定理八年级数学逆命题和逆定理教学反思八年级数学逆命题和逆定理教学反思(一)将课堂时间还给了学生,教师的指挥者角色得以充分体现,在学生自学时,及时的给予指导和纠正,以及在和学生知识交流和研讨中,不仅使学生能更自由地学习,教师也在无形中获得了在传统教学讲授模式下无法得到的知识升华,一些教师自己原本并不是很了解、很熟悉的知识,在和学生探讨时,对于教师来说,也就得以强化并不断更新。

在多媒体网络模式下,学生获得的信息量与传统模式相比,发生了数倍、数拾倍地增长,可以满足各个层次学生的需求。

八年级数学逆命题和逆定理教学反思(二)在这堂课的教学中,我紧紧围绕“优化教师教学行为,改善学生学习方式”这一主题,在精心备课,领会教材内涵的基础上,开拓创新,通过让学生动手、大胆猜想、实验测量、观看多媒体演示等,充分激发学生学习的兴趣,全方位调动学生学习的积极性,使学生在整个课堂学习过程中,既动手又动脑,既参与小组讨论又锻炼自己独立的几何言语表达,既提高解决几何问题的能力又培养规范的几何证明书写习惯。

对于本堂课的教学还有一些不足的地方需要改进。

比如教师的课堂教学言语还应当更精练些,这样才能留给学生更多的思考空间;在课堂教学一些细节问题的处理上还要进一步提高自己的能力。

路漫漫其修远兮,吾将上下而求索。

今后的我会倍加努力,将自己的教学水平提高到一个新的台阶!八年级数学逆命题和逆定理教学反思(三)在讲授角平分线逆定理时,教师根据学生们已有的知识,直接建构,让学生讲述角平分线定理的逆命题,证明逆命题为真命题,逆定理,一气呵成,较为简洁、自然。

一堂课的教学效果当然要看学生对所学知识应用的能力,而教师也发现同学们嘴上虽说明白了,但一遇到几何问题又糊涂了,所以教师从《新课程标准》中课程要“面向学生的生活世界和社会实践”这一思想出发,设计了关于为“世博会”动迁居民生活服务的一套完整的实际生活应用问题,“浦江镇居民小区建造超市”这个主题活动,这样让数学贴近生活,大大提高了学生们学习数学的兴趣,又让他们感受到数学不是一门枯燥的学科,而是一门能学以致用的学科。

19.3 命题和逆定理(解析版)

19.3 命题和逆定理(解析版)

19.3 命题和逆定理1.知道原命题、逆命题、互逆命题、逆定理、互逆定理的含义2.会写一个命题的逆命题,并会证明它的真假3.知道每一个命题都有逆命题,但一个定理不一定有逆定理知识点一 互逆命题、原命题、逆命题1.概念在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题(1)原命题与逆命题是相对的,每个命题都有逆命题.(2)原命题是真命题,逆命题不一定是真命题;原命题是假命题,逆命题不一定是假命题拓展:符号语言表示原命题:如果p,那么q;逆命题:如果q,那么p.2.方法写原命题的逆命题时,首先要分清这个命题的题设和结论,最好先将原命题改写成“如果…,那么…”的形式,“如果”引出的部分是题设,“那么”引出的部分是结论,再根据改写后的命题写出原命题的逆命题.即学即练1(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)下列命题的逆命题是假命题的是( )A .直角三角形的两个锐角互余B .两直线平行,内错角相等C .三条边对应相等的两个三角形是全等三角形D .若x y =,则22x y =【答案】D【分析】写出原命题的逆命题后判断正误即可.【详解】解:A 、逆命题为两角互余的三角形是直角三角形,正确,是真命题,不符合题意;B 、逆命题为内错角相等,两直线平行,正确,是真命题,不符合题意;如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.即学即练2(2022秋·上海青浦·八年级校考期末)下列定理中,没有逆定理的是()A.两直线平行,同旁内角互补;B.两个全等三角形的对应角相等C.直角三角形的两个锐角互余;D.两内角相等的三角形是等腰三角形【答案】B【分析】先写出各选项的逆命题,判断出其真假即可解答.【详解】A.其逆命题是“同旁内角互补,两直线平行”,正确,所以有逆定理;B.其逆命题是“对应角相等的三角形是全等三角形”,错误,所以没有逆定理;C.其逆命题是“两个锐角互余的三角形是直角三角形”,正确,所以有逆定理;D.其逆命题是“等腰三角形的两个内角相等”,正确,所以有逆定理.故选B.【点睛】本题考查了命题与定理的区别,正确的命题叫定理.例2(2023秋·上海静安·八年级上海市风华初级中学校考期末)下列定理中,如果其逆命题是真命题,那么这个定理是()A.对顶角相等B.直角三角形的两个锐角互余C.全等三角形的对应角相等D.邻补角互补【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案.【详解】解:∵“如果22a b=.”=,那么a=b”的逆命题是“如果a=b,那么22a b∴“如果22=,那么a=b”的逆命题是真命题,a b故答案为:真.【点睛】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.一、单选题1.(2023春·上海嘉定·八年级校考开学考试)下列命题的逆命题是假命题的是()A.同位角相等,两直线平行B.在一个三角形中,等边对等角C.全等三角形三条对应边相等D.全等三角形三个对应角相等【答案】D【分析】先写出原命题的逆命题,然后判断真假即可解答.【详解】解:A、逆命题为两直线平行,同位角相等,正确,为真命题;B、逆命题为:在一个三角形中等角对等边,正确,是真命题;C、逆命题为:三条边对应相等的三角形全等,正确,是真命题;D、逆命题为:三个角对应相等的三角形全等,错误,为假命题,故选:D.【点睛】本题主要考查了命题与定理的知识,能够正确的写出原命题的逆命题是解题的关键.2.(2022秋·上海黄浦·八年级校联考阶段练习)下列命题中,逆命题是假命题的是( )A.等边三角形的三个内角都等于60°B.如果两个三角形全等,那么这两个三角形的对应角相等C.如果两个三角形全等,那么这两个三角形的对应边相等D.相等的两个角是对顶角【答案】B【分析】先分别确定各命题的逆命题,再判断真假即可.【详解】A选项的逆命题是“三个内角都等于60°的是等边三角形”,是真命题,所以不符合题意;题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.5.(2022秋·上海·八年级专题练习)下列命题中,其逆命题是真命题的命题个数( )(1)全等三角形的对应角相等; (2) 对顶角相等; (3) 等角对等边;(4)两直线平行,同位角相等; (5)全等三角形的面积相等;A .1个B .2个C .3个D .4个【答案】B【分析】首先写出各个命题的逆命题,再进一步判断真假.【详解】(1)逆命题是:三个角对应相等的两个三角形全等,错误;(2)逆命题是:相等的角是对顶角,错误;(3)逆命题是等边对等角,正确;(4)逆命题是同位角相等,两条直线平行,正确;(5)逆命题是面积相等,两三角形全等,错误.故选:B .【点睛】本题主要考查了逆命题的定义及真假性,学生易出现只判断原命题的真假,也就是审题不认真,难度适中.【答案】见解析【分析】由角的和差关系可得∠CPB=∠DPA,由中点的定义可得BP=AP,利用SAS可证明△APD≌△BPC,根据全等三角形的性质即可得结论.【详解】∵∠1=∠2,∴∠1+∠CPD=∠2+∠CPD,即∠CPB=∠DPA∵P是线段AB的中点,∴BP=AP,在△APD和△BPC中,BP APCPB DPA PC PD=ìïÐ=Ðíï=î,∴△APD≌△BPC,∴∠C=∠D.【点睛】本题考查中点的定义及全等三角形的判定与性质,判定三角形全等的常用方法有:SSS、SAS、AAS、ASA、HL等,注意:SSA、AAA不能判定两个三角形全等,利用SAS时,角必须是两边的夹角;熟练掌握并灵活运用全等三角形的判定定理是解题关键.14.(2022春·上海·八年级专题练习)如图,在Y ABCD中,E为对角线AC延长线上的一点.(1)若四边形ABCD是菱形,求证:BE=DE.(2)写出(1)的逆命题,并判断其是真命题还是假命题,若是真命题,给出证明;若是假命题,举出反例.【答案】见解析【详解】试题分析:(1)根据“菱形ABCD的对角线互相垂直平分”的性质推知OE是△BDE 的边BD上的中垂线,结合角平分线的性质可知△DEB为等腰三角形;(2)(1)的逆命题是“若BE=DE,则四边形ABCD是菱形”.根据平行四边形ABCD的对角线相互平分知OD=OB,结合角平分线的性质推知OE是BD的中垂线,即平行四边形ABCD 的对角线互相垂直.试题解析:(1)连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,且BO=OD.又∵E是AC延长线上的一点,∴EO是△BDE的边BD的中垂线,∠DEB的角平分线,∴△DEB是等腰三角形,∴BE=DE;(2)(1)的逆命题是“若BE=DE,则四边形ABCD是菱形”,它是真命题,理由如下:∵平行四边形ABCD,对角线AC、BD交于点O,∴BO=OD.又∵BE=DE∴EO⊥BD,即AC⊥BD,∴四边形ABCD是菱形.。

最新数学华师版八年级上册第13章全等三角形13.5.1互逆命题与互逆定理课件

最新数学华师版八年级上册第13章全等三角形13.5.1互逆命题与互逆定理课件

角相等” 的逆命题为“相等的角是对顶角”, 此命题就
是假命题.
(此讲解来源于教材)
知1-讲
例1 判断下列命题的真假,写出逆命题,并判断逆命
题的真假: (1)如果两条直线相交,那么它们只有一个交点;
(2)如果a>b,那么a2>b2;
(3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0.
何一个为原命题,另一个为逆命题.
(此讲解来源于《点拨》)
知1-讲
求一个命题的逆命题的方法:
命题“两直线平行,内错角相等”的 条件为: ;
结论为:
因此它的逆命题为:
.
;
每一个命题都有逆命题,只要将原命题的条件改成
结论,并将结论改成条件,便可得到原命题的逆命 题. 但 是原 命题正确,它的逆命题未必正确.例如真命 题“对顶
1.必做:完成教材P93,T2-3
2.补充:完成《典中点》剩余的题.
的条件和结论, 你发现了什么?
行”都 是命题.
(来源于教材)
知1-讲
在两个命题中,如果第一个命题的条件是第二个 命题的结论,而第一个命题的结论是第二个命题的条 件,那么这两个命题叫做互逆命题,如果把其中一个
命题叫做原命题,那么另一个命题就叫做它的逆命题 .
要点精析:“互逆命题”是说明两个命题之间的关 系,两个命题的地位可以互换;两者可以确定其中任
(来自《典中点》)
1.每一个命题都有逆命题,只要将原命题的条件 改成结论,并将结论改成条件,就可以得到原命题的
逆命ห้องสมุดไป่ตู้.但原命题的真假与逆命题是否为真命题没有
丝毫关系. 2.每个定理都有逆命题,但每个定理不一定都有 逆定理,只有当定理的逆命题经过证明是正确的,才 能称其为这个定理的逆定理.

华师大版八年级数学上第13章全等三角形13

华师大版八年级数学上第13章全等三角形13

自主学习
基础夯实
整合运用
思维拓展
八年级 数学 上册 华师版
【名师支招】判断逆命题的真假性,易出现只判断原命题的真假,也就 是审题不认真.
自主学习
基础夯实
整合运用
思维拓展
八年级 数学 上册 华师版
知识点 1:互逆命题
1.判断下列命题:①等腰三角形是轴对称图形;②若 a>1 且 b>1,则 a
+b>2;③全等三角形的对应角相等;④直角三角形的两锐角互余.其中
自主学习
基础夯实
整合运用
思维拓展
八年级 数学 上册 华师版
12.写出下列命题的逆命题,并判断原命题与逆命题的真假: (1)如果 a+b>0,那么 a>0习
基础夯实
整合运用
思维拓展
八年级 数学 上册 华师版
解:(1)逆命题:如果 a> 0,b> 0, 那么 a+b> 0, 原命题为假命题,逆命题为真命题.
自主学习
基础夯实
整合运用
思维拓展
八年级 数学 上册 华师版
【自主解答】 A.其逆命题是:两个相等的角是对顶角,故是假命题;B.其逆命题是: 同位角相等,两直线平行,故是真命题;C.其逆命题是:对应角相等的 两个三角形是全等三角形.大小不同的两个等边三角形虽然对应角相等 但不全等,故是假命题;D.其逆命题是:四个角都相等的四边形是正方 形,故是假命题; 故选:B.
自主学习
基础夯实
整合运用
思维拓展
八年级 数学 上册 华师版
14.如图,四边形 ABCD 中,点 E 在 CD 上,连接 AE,BE,给出下列五个关 系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB. 将其中的三个关系式作为条件,另两个作为结论,构成一个命题.

专题15-逆命题及逆定理(知识点串讲)(解析版)

专题15-逆命题及逆定理(知识点串讲)(解析版)

专题15 逆命题及逆定理知识框架重难突破一、互逆命题与互逆定理1.互逆命题对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.备注:所有的命题都有逆命题. 原命题正确,它的逆命题不一定是正确的.2.互逆定理如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.备注:(1)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理;(2)一个假命题的逆命题可以是真命题,甚至可以是定理.二、线段垂直平分线性质定理及其逆定理线段垂直平分线(也称中垂线)的性质定理是:线段的垂直平分线上的点到这条线段的两个端点的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.备注:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理的题设是已知线段相等,结论是确定线段被垂直平分,一定要注意两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.要点二、角平分线性质定理及其逆定理角平分线性质定理是:角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边距离相等的点在角的平分线上.备注:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意两者的区别,在使用这两个定理时不要混淆了.例1.(2019·四川南充市·八年级期末)下列命题的逆命题成立的是( )A .对顶角相等B .等边三角形是锐角三角形C .正方形的对角线互相垂直D .平行四边形的对角线互相平分【答案】D【解析】解:A 、逆命题为相等的角是对顶角,不成立;B 、逆命题为:锐角三角形是等边三角形,不成立;C 、逆命题为:对角线互相垂直的四边形是正方形,不成立;D 、逆命题为:对角线互相平分的四边形是平行四边形,成立,故选:D .练习1.(2019·山东德州市·)数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a 2>4.下列命题中,具有以上特征的命题是( )A .两直线平行,同位角相等B .如果|a |=1,那么a =1C .全等三角形的对应角相等D .如果x >y ,那么mx >my 【答案】C解:A 、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .练习2.(2020·山西临汾市·八年级期末)下列命题的逆命题是真命题的是( )A .若22a b >,则a b >B .两个全等三角形的对应角相等C .若0a =,0b =,则0ab =D .全等三角形的对应边相等解:A :逆命题:若a b >,则22a b >,当a=1,b=-2时,错误;B :逆命题:对应角相等的两个三角形全等,错误;C :逆命题:若0ab =,则0a =,0b =,也可能a=0,b≠0,错误;D :逆命题:对应边相等的两个三角形全等,根据SSS 可以判定,正确,故选D.例2.(2020·四川巴中市·八年级期末)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.练习1.(2018·富顺县赵化中学校八年级期末)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ___________________ .它是 ________ 命题(填“真”或“假”).【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.例3.(2020·四川绵阳市·八年级期末)如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .∠A 、∠B 两内角的平分线的交点处B .AC 、AB 两边高线的交点处C .AC 、AB 两边中线的交点处D .AC 、AB 两边垂直平分线的交点处解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.练习1.(2019·四川成都市·八年级期末)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85. 例4.(2020·四川广元市·八年级期末)如图,在ABC 中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .(1)若70ABC ∠=︒,则NMA ∠的度数是 ;(2)若8AB cm =,MBC △的周长是14cm .①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出PBC 周长的最小值.【答案】(1)50︒;(2)①6;②14 cm .解:解:(1)如图,∵AB=AC ,∴∠C=∠ABC=70°,∴∠A=40°,∵AB 的垂直平分线交AB 于点N ,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线,∴AM=BM ,∴△MBC 的周长=BM+CM+BC=AM+CM+BC=AC+BC ,∵AB=8,∴AC=8,∵△MBC 的周长是14,∴BC=14-8=6;②∵PB+PC=PA+PC,PA+PC≥AC,∴当点P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.练习1.(2020·四川成都市·七年级期末)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【答案】(1)100°;(2)20°,推导见解析;(3)20解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠FAC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+FA=20,由(2)可知,DA=DB,FA=FC,∴BC=DB+DF+FC=DA+DF+FA=20.练习2.(2020·四川成都市·八年级期末)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、C分布对应A1、C1);(2)请在y轴上找出一点P,满足线段AP+B1P的值最小.【答案】(1)作图见解析;(2)作图见解析.(1)如图所示:(2)如图所示:点P 即为所求.例5.(2020·四川泸州市·)如图,在Rt ABC ∆中,90C ∠=︒,AD 是角平分线,若BC 10cm =,:3:2BD CD =,则点D 到AB 的距离是( )A .6cmB .5cmC .4cmD .3cm【答案】C过点D 作DE ⊥AB ,∵90C ∠=︒,∴DC ⊥AC,∵AD 平分∠BAC ,∴DE=DC,∵BC 10cm =,:3:2BD CD =,∴DE=DC=4cm ,故选:C.练习1.(2020·四川成都市·七年级期末)如图,在Rt ABC 中,90B ∠=︒,在边AB 、AC 上分别截取AD ,AE ,使AD AE =,分别以D 、E 为圆心,以大于12DE 的长为半径作弧,两弧在BAC ∠内交于点M ,作射线AM 交BC 边于点F .若2FB =,则点F 到AC 的距离为______.【答案】2根据作图过程可知:AF 平分∠BAC ,过点F 作FG ⊥AC ,∵∠B =90°,∴FB ⊥AB ,∴FG =FB =2.∴点F 到AC 的距离为2.故答案为:2.练习2.(2020·四川广元市·八年级期末)如图,OC 平分∠MON ,P 为OC 上一点,PA ⊥OM ,PB ⊥ON ,垂足分别为A 、B ,连接AB ,得到以下结论:(1)PA =PB ;(2)OA =OB ;(3)OP 与AB 互相垂直平分;(4)OP 平分∠APB ,正确的个数是( )A .1B .2C .3D .4【答案】C解:∵OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,∴P A =PB ,故(1)正确;在Rt △APO 和Rt △BPO 中,OP OP PA PB =⎧⎨=⎩,∴Rt △APO ≌Rt △BPO (HL ),∴∠APO =∠BPO ,OA =OB ,故(2)正确,∴PO 平分∠APB ,故(4)正确,OP 垂直平分AB ,但AB 不一定垂直平分OP ,故(3)错误,故选:C .例6.(2020·四川绵阳市·八年级期末)如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若1BD =,3BC =,则AC 的长为( )A .5B .4C .3D .2【答案】A解:延长BD,与AC 交于点F,∵BD CD ⊥∴∠BDC =∠FDC=90°∵CD 平分ACB ∠,∴∠BCD =∠FCD在△BDC 和△FDC 中90BDC FDC BCD FCDCD CD ∠∠=︒⎧⎪∠∠⎨⎪=⎩== ∴△BDC ≌△FDC∴BD=FD =1 BC=FC=3∵A ABD ∠=∠∴AF=BF∵1BD =,3BC =,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A例7.(2020·四川巴中市·七年级期末)如图,DE 是ABC 中AB 边的垂直平分线,分别交AB ,BC 于点D ,E ,AE 平分BAC ∠,若30B ∠=︒.求C ∠的度数.【答案】∠C 的度数为90°.∵DE 是线段AB 的垂直平分线,∠B=30°,∴AE= BE ,∴∠BAE=∠B=30°,∵AE 平分∠BAC ,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°-∠BAC-∠B=180°-60°-30°=90°.∴∠C 的度数为90°.练习1.(2018·四川南充市·)如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.【答案】32解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BDDF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=6,AC=3,∴BE=32.故答案为:32练习2.(2020·四川眉山市·八年级期末)已知120MAN ∠=︒,AC 平分MAN ∠,点,B D 分别在,AN AM 上.(1)如图1,若CD AM ⊥于点D ,CB AN ⊥于点B .①利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可得,AC AD 的数量关系为________. ②请问:AC 是否等于AB AD +呢?如果是,请予以证明.(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【答案】(1)①12AD AC =(或2AC AD =),理由见解析;②AD AB AC +=,理由见解析;(2)仍成立,理由见解析解:(1)①12AD AC =(或2AC AD =) AC 平分,120MAN MAN ∠∠=︒,60CAD ∴∠=︒,又90ADC ∠=︒,30ACD ∴∠=︒利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可知12AD AC = ②AD AB AC += 证明:由①知,12AD AC = 同理,AC 平分,120MAN MAN ∠∠=︒,60CAB ∴∠=︒,又90ABC ∠=︒,30ACB ∴∠=︒,12AB AC = AD AB AC ∴+=(2)仍成立证明:过点C 分别作,AM AN 的垂线,垂足分别为,E FAC 平分,MAN ∠CE CF ∴=,180,180ABC ADC ADC CDE ∠+∠=︒∠+∠=︒ CDE ABC ∴∠=∠又90CED CFB ∠=∠=︒()CED CFB AAS ∴∆≅∆ED FB ∴=AD AB AE ED AF FB AE AF ∴+=-++=+ 由(1)中②知AE AF AC +=AD AB AC ∴+=.。

华东师大版八年级上册数学教学设计《互逆命题与互逆定理》

华东师大版八年级上册数学教学设计《互逆命题与互逆定理》

华东师大版八年级上册数学教学设计《互逆命题与互逆定理》一. 教材分析华东师大版八年级上册数学《互逆命题与互逆定理》一课,是在学生学习了命题与定理的基础上进行的。

本节课的主要内容是让学生理解互逆命题的概念,掌握互逆定理的证明过程,并能运用互逆定理解决实际问题。

教材通过丰富的例题和练习,引导学生探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了命题与定理的基本概念,具备了一定的逻辑思维能力。

但是,对于互逆命题和互逆定理的理解和应用,还需要进一步的引导和培养。

因此,在教学过程中,教师需要关注学生的学习需求,针对学生的实际情况,采取适当的教学策略,帮助学生理解和掌握互逆命题和互逆定理。

三. 教学目标1.知识与技能目标:让学生理解互逆命题的概念,掌握互逆定理的证明过程,能运用互逆定理解决实际问题。

2.过程与方法目标:通过探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:互逆命题的概念,互逆定理的证明过程。

2.难点:互逆定理在实际问题中的应用。

五. 教学方法1.情境教学法:通过设置情境,引导学生主动探索互逆命题和互逆定理的规律。

2.小组合作学习:学生进行小组讨论和合作,培养学生的团队合作精神。

3.案例教学法:通过分析实际案例,帮助学生理解互逆定理的应用。

六. 教学准备1.教学PPT:制作包含互逆命题和互逆定理的定义、证明过程和应用实例的PPT。

2.教学案例:准备一些实际问题,用于引导学生运用互逆定理解决。

3.学习材料:为学生准备相关的学习材料,以便学生在课堂上进行自主学习。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何利用已学的命题和定理来解决这些问题。

通过问题的讨论,激发学生的学习兴趣,引出本节课的主题——互逆命题与互逆定理。

初中数学知识点精讲精析 逆命题与逆定理

初中数学知识点精讲精析 逆命题与逆定理

13.5 逆命题与逆定理学习目标1. 理解逆命题的概念,能写出一个命题的逆命题,知道原命题成立,它的逆命题不一定成立;了解互逆定理。

2. 掌握线段垂直平分线的性质定理及逆定理。

3. 掌握角平分线性质定理及逆定理。

知识详解1. 互逆命题与互逆定理一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题。

每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题,但是原命题正确,它的逆命题未必正确。

如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理。

2. 线段垂直平分线线段的垂直平分线上的点到这条线段的两个端点的距离相等。

此定理的逆命题是“到一条线段的两个端点的距离相等的点在这条线段的垂直平分线上”。

到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。

三角形三边的垂直平分线交于一点。

3. 角平分线角平分线上的点到这个角的两边的距离相等。

此定理的逆命题是“到一个角的两边的距离相等的点在这个角的平分线上”。

到一个角的两边距离相等的点,在这个角的平分线上,上述两条定理互为逆定理,根据上述这两条定理,我们很容易证明:三角形三条角平分线交于一点。

【典型例题】例1:如图,到△ABC的三个顶点距离相等的点是△ABC的()A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点【答案】A【解析】△ABC的三个顶点距离相等的点是三边垂直平分线的交点.例2:如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°【答案】D【解析】∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°其它选项无法证明其是正确的.例3:如图:Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B 的度数为()A.20°B.22.5°C.25°D.30°【答案】B【解析】在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD ∵∠CAD:∠DAB=2:1 ∴4∠B=90°∴∠B=22.5°【误区警示】易错点1:线段的垂直平分线上的点到线段的两个端点的距离相等1. 如图,在Rt△ABC中,∠ACB=90°,BC的中垂线交斜边AB于D,图中相等的线段有()A.1组B.2组C.3组D.4组【答案】D【解析】∵BC的中垂线交斜边AB于D,CD=BD,CE=BE,∴∠B=∠BCD,又∠A+∠B=90°,∠BCD+∠ACD=90°∴∠A=∠ACD,∴AD=CD ∴AD=BD 共4组.易错点2:线段的垂直平分线的性质2. 线段AB外有两点C,D(在AB同侧)使CA=CB,DA=DB,∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.100°D.110°【答案】C【解析】∵CA=CB,DA=DB,∴CD垂直平分AB且垂足为M.∵∠ADB=80°,∠CAD=10°,∴∠ACM=50°,∴∠ACB=100°.【综合提升】针对训练1. 如图,点D在△ABC的边BC上,且BC=BD+AD,则点D在()的垂直平分线上.A.ABB.ACC.BCD.不能确定2. 如图,Rt△ABC中,∠ACB=90°,BD=CD,AB=7.8,AC=3.9,DE⊥BC于E,则图中有()个60°的角.A.2B.3C.4D.53. 下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有()A.1个B.2个C.3个D.4个1.【答案】B【解析】∵BC=BD+AD=BD+CD ∴AD=CD ∴点D在AC的垂直平分线上2.【答案】D【解析】在Rt△ABC中,∠ACB=90°,AB=7.8,AC=3.9 ∴∠B=30°∵BD=CD ∴∠DCB=∠B=30°又DE⊥BC于E ∴∠BDE=∠CDE=60 ∴∠ACD=90°﹣30°=60°∴△ACD为等边三角形∴∠ADC=∠DAC=∠ACD=∠CDE=∠BDE=60°3.【答案】C【解析】①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB,符合性质定理,是正确的;②若PA=PB,EA=EB,则直线PE垂直平分线段AB,符合逆定理,是正确的;③若PA=PB,则点P必是线段AB的垂直平分线上的点,符合逆定理,是正确的;④若EA=EB,则过点E的直线垂直平分线段AB,不符合逆定理,是错误的。

北师大版八年级数学上册导学案 13.5.1互逆命题与互逆定理

北师大版八年级数学上册导学案 13.5.1互逆命题与互逆定理

13.5.1.互逆命题与互逆定理学习目标:1.理解互逆命题与互逆定理2.正确应用互逆命题与互逆定理重点与难点:区分互逆命题与互逆定理一、知识回顾:1、命题的概念:2、命题都有两部分:3、命题分为和两种.4、判断下列命题真假并说出下列命题的题设和结论:(1)、平行四边形的对边互相平行(2)、如果两个角相等,那么这两个角是对顶角(3)、等腰三角形顶角的平分线垂直平分底边二、新知导入:说出下列命题的题设和结论:1、两直线平行,内错角相等;2、内错角相等,两直线平行;3、全等三角形的对应角相等;4、对应角相等的三角形全等;5、平行四边形的对边互相平行;6、对边互相平行的四边形是平行四边形;观察上面三组命题,你发现了什么?概括:一般来说,在两个命题中,如果第一个命题的是第二个命题的,而第一个命题的是第二个命题的,那么这两个命题叫做。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的。

例1:指出下列命题的题设和结论,写出它们的逆命题,并判断真假。

(1)、如果一个三角形是直角三角形,那么它的两个锐角互余.((2)、等边三角形的每个角都等于60°(3)、同旁内角互补,两直线平行.讨论交流:在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明。

(1)、(2)、(3)、归纳:如果一个定理的逆命题也是,那么这两个定理叫做。

其中的一个定理叫做另一个定理的。

注意1:逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题2:所有的命题都有逆命题,但不是所有的定理都有逆定理练习.写出下列命题的逆命题.并判断原命题逆命题的真假。

(1)如果a+b>0,那么a>0,b>0.(2)如果a>0,那么a2>0.(3)等角的补角相等.(4)、若|a|=|b|,则a=b;(5)、若a=b,则33a b=;(6)、若x=a,则2()0x a b x ab-++=;这节课我们学到了什么?①逆命题、逆定理的概念。

《13.51互逆命题与互逆定理》作业设计方案-初中数学华东师大版12八年级上册

《13.51互逆命题与互逆定理》作业设计方案-初中数学华东师大版12八年级上册

《互逆命题与互逆定理》作业设计方案(第一课时)一、作业目标本作业旨在通过实践操作和理论学习相结合的方式,使学生能够:1. 理解互逆命题与互逆定理的基本概念;2. 学会判断一个命题的逆命题及其真假性;3. 初步掌握互逆定理在解题中的应用。

二、作业内容1. 理论知识学习:学生需仔细阅读教材中关于互逆命题与互逆定理的章节,掌握相关概念及定理,理解其内涵与外延。

2. 练习判断:设计一系列关于互逆命题的判断题,要求学生根据所学知识判断每个命题的逆命题是否成立,并说明理由。

3. 案例分析:选取几个典型的互逆定理应用题目,让学生分析解题思路,理解互逆定理在解题中的具体应用。

4. 小组合作:学生需以小组形式,探讨并解决一个与互逆命题与互逆定理相关的实际问题,如“如何通过已知条件推导出相关结论”。

5. 拓展延伸:鼓励学生查阅相关资料,了解互逆命题与互逆定理在数学及其他学科中的应用,拓宽知识面。

三、作业要求1. 理论知识学习:要求学生认真阅读教材,做好笔记,理解并掌握互逆命题与互逆定理的基本概念。

2. 练习判断:学生需独立完成判断题,并记录下自己的思考过程和答案。

3. 案例分析:学生需认真分析每个案例的解题思路,并尝试自己动手解答,记录下解题过程和答案。

4. 小组合作:小组内成员需分工合作,共同完成实际问题,并记录下讨论过程和结果。

5. 拓展延伸:学生需查阅相关资料,并做好笔记,准备在下节课进行分享。

四、作业评价1. 教师根据学生完成情况,对理论知识学习、练习判断、案例分析等部分进行评分。

2. 教师根据小组合作的实际情况,对小组合作部分进行评分。

3. 教师将学生的拓展延伸内容进行整理,挑选出优秀的内容在下节课进行分享,并给予相应加分。

五、作业反馈1. 教师将作业中普遍存在的问题进行汇总,并在下节课进行讲解。

2. 对表现优秀的学生进行表扬,鼓励其他学生向其学习。

3. 根据学生的作业情况,调整后续教学计划,确保学生能够更好地掌握互逆命题与互逆定理的相关知识。

互逆命题与互逆定理

互逆命题与互逆定理


作业:
课本P84 练习:第2题 习题18.2 :第2题
互逆命题与 互逆定理
一、命题与逆命题
命题:
判断一件事情的语句叫做命题。
命题的组成:
条件+结论
形式:“如果……那么……” “若……则……”
二、互逆命题
互逆的两个命题:
把一个命题的题设与结论对调所 得的命题叫做这个命题的逆命 题,这两个命题称为互逆命题
形式:若A则B(原命题)
若B则A(逆命题)
三、互逆定理
A.如果∠C-∠B=∠A,则△ABC是直角 三角形。
B.如果c2= b2—a2,则△ABC是直角三角 形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC 是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则 △ABC是直角三角形。
3.叙述下列命题的逆命题,并判断逆 命题是否正确。
课堂练习
• 1.判断题。
⑴勾股定理的逆定理是:如果两条直角 边的平方和等于斜边的平方,那么这 个三角形是直角三角形。
⑵命题:“角平分线上的点,到这个角 的两边的距离相等”的逆命题是真命 题。
⑶△ABC的三边之比是1:1: 2 ,则
△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是 a、b、c,下列命题中的假命题是( )
互逆的两个命题:
如果一个定理的逆命题经过证明 是正确的,它也是一个定理,
称这两个定理互为逆定理 形式:若A则B(原定理)
若B则A(逆定理)
ห้องสมุดไป่ตู้
例题分析
例1:写出命题“对顶角相 等”的逆命题,并判断其 真假。
例(补充)说出下列命题的逆命题, 这些命题的逆命题成立吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逆命题的结论
例1.写出下列各命题的逆命题
(1)如果|a|=|b|,那么a=b 假命题 真命题
逆命题:如果a=b,那么|a|=|b|
(2)同位角相等
假命题
假命题
逆命题:相等的角是同位角
(3)等边三角形的三个角都是60° 真命题 逆命题:三个角都是60°的三角形是等边三角形 真命题 判断上面各题中原命题和所得的逆命题的真假
如果一个定理的逆命题能被证明是真命题,
那么它叫做原定理的逆定理, 这两个定理叫做互逆定理.
1、在两个命题中,如果第一个命题的题设是第
二个命题的结论,而第一个命题的结论是第二个 命题的题设,那么这两个命题叫做互逆命题.如 果把其中一个命题叫做原命题,那么另一命题就 叫做它的逆命题.
2 、 如果一个定理的逆命题能被证明是真命题,
例1.写出下列各命题的逆命题
ห้องสมุดไป่ตู้
(1)如果|a|=|b|,那么a=b
逆命题:如果a=b,那么|a|=|b| (2)同位角相等 逆命题:相等的角是同位角, (3)等边三角形的三个角都是60° 逆命题:三个角都是60°的三角形是等边三角形
如何写出原命题的逆命题?
原命题 原命题的条件 原命题的结论
逆命题
逆命题的条件
那么就叫它是原定理的逆定理.这两个定理叫做 互逆定理 .
巩固练习
说出下列命题的逆命题,并判断逆命题的真假: (1)两直线平行,内错角相等. (2)全等三角形的对应角相等. (3)全等三角形的对应边相等. (4)关于某一条直线对称的两个三角形全等 (5)全等三角形的面积相等 (6)对顶角相等.
祈使句和疑问句都不是命题
仔细阅读表中的四个命题并填表:
命题
⑴两直线平行,同位角相等 ⑵同位角相等,两直线平行 ⑶如果a=b,那么a2=b2。 ⑷如果a2=b2,那么a=b。
条件
两直线平行 同位角相等
结论
同位角相等 两直线平行
真假 真 真 真 假
a= b a2=b2
a2=b2 a= b
思考:命题(1)和命题(2);命题(3)和命题 (4)的条件和结论分别有什么关系?
判断下列说法是否正确?请说明理由 (1)假命题没有逆命题; 如果a2=b2,那么a=b (2)真命题没有逆命题; 两直线平行,同位角相等
(3)每个命题都有逆命题;
(4)真命题的逆命题是真命题 如果a=b,那么a2=b2。
归纳
1.每个命题都有逆命题 2.真命题的逆命题有可能是假命题 3.假命题的逆命题可以是真命题 4.定理的逆命题不一定是真命题;
逆命题和逆定理
回顾旧知
• 什么叫命题? 判断一件事情的句子叫做命题。
•命题由几部分组成,一般可以写成什么样的 形式?
由题设和结论两部分组成。
可以写成“如果……那么……”的形式
•命题有真命题和假命题之分
练一练
下列句子是命题的是( D ) A.画∠AOB=45° C.连结CD B.小于直角的角是锐角吗? D. 三角形内角和等于900°
填表:
命题 条件 结论
两个角 相等 两个角是 同一个角 的余角
如果两个角是同一个角 两个角是 的余角,那么这两个 同一个角 的余角 角相等. 如果两个角相等,那么 这两个角是同一个角 的余角.
两个角相 等
上面两个命题的条件和结论分别有什么关系?
概念
在两个命题中,如果第一个命题的条件是第二个 命题的结论,而第一个命题的结论是第二个命题 的条件,那么这两个命题叫做互逆命题。 我们把其中的一个叫做原命题,另一个叫做它的 逆命题。
相关文档
最新文档