广东省梅州市2017-2018学年七年级数学上第二次质检试题含答案

合集下载

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·武汉期中) -2的相反数是()A . -2B . 2C .D . -2. (2分) -4的绝对值是()A .B .C . 4D . -43. (2分)(2019·信阳模拟) 2018年4月10日,历时四个月的“2018中国茶叶区域公用品牌价值评估”结果出炉,信阳毛尖较去年增加3.61亿元,以63.52亿元蝉联品牌价值排行榜第二名,并被评选为“最具品牌带动力”的三大品牌之一.数据63.52亿元用科学记数法表示为()A .B .C .D .4. (2分)(2019·平邑模拟) 下列运算正确的是()A .B .C .D .5. (2分) (2020七上·鱼台期末) 在解方程时,去分母后正确的是()A .B .C .D .6. (2分) (2018七下·太原期中) 如图,点O在直线AB上,OC⊥AB,∠DOE=90°,则∠AOD的余角是()A . ∠CODB . ∠COEC . ∠COE和∠CODD . ∠COD和∠BOE7. (2分)已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A . a+b>0B . |a|>|b|C . a﹣b<0D . a+b<08. (2分) (2019七上·河东期中) 比2a2﹣3a﹣7少3﹣2a2的多项式是()A . ﹣3a﹣4B . ﹣4a2﹣3a+10C . 4a2﹣3a﹣10D . ﹣3a﹣109. (2分) (2020七上·孝义期末) 两年前,李叔叔在银行存了一笔两年的定期存款,年利率是 .到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为元,则下列方程正确的是()A .B .C .D .10. (2分) 10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A . 30B . 34C . 36D . 48二、填空题 (共6题;共6分)11. (1分) (2019七上·南丹期中) 5.14567精确到0.001位得到的近似数是________.12. (1分) (2019七上·黄埔期末) 计算:(﹣3)×2=________.13. (1分) (2019七下·万州期中) 若x=﹣1是关于x的方程2x﹣a=0的解,则a的值是________.14. (1分) (2019七上·杨浦月考) 将按由小到大顺序排列是________15. (1分) (2020九下·深圳月考) 如图,(点,分别与点,对应),,.固定不动,运动,并满足点在边从向移动(点不与,重合),始终经过点,与边交于点,当是等腰三角形时,________.16. (1分) (2020七上·德江期末) “数的倍与的和”用代数式表示为________;三、解答题 (共10题;共105分)17. (10分)(2017·临高模拟) ( +1 ﹣2.75)×(﹣24)+(﹣1)2017 .18. (5分) (2020七上·叶县期末) 计算及解方程(1)(2)解方程:19. (5分) (2016七上·海珠期末) 点A、B、C在同一条直线上,AB=6cm,BC=2cm,点M是线段AC的中点,求AM的长.20. (15分) (2016七上·揭阳期末) 尺规作图(要求保留作图痕迹):已知:线段a,b.求作:线段c,使得c=2b-a.21. (10分) (2018七上·龙港期中) 实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(如: 90米表示观测点比观测点高出90米):(1)根据,数据,比较观测点比相对观测点高还是低?差多少?(2)求观测点相对观测点的高度是多少?(3)求最高观测点比最低观测点高出多少?22. (10分) (2016九上·金东期末) 已知在平面直角坐标系xOy中,抛物线y1=ax2+bx(a≠0),与x轴正半轴交于点A1(2,0),顶点为P1 ,△OP1A1为正三角形,现将抛物线y1=ax2+bx(a≠0)沿射线OP1平移,把过点A1时的抛物线记为抛物线y2 ,记抛物线y2与x轴的另一交点为A2;把抛物线y2继续沿射线OP1平移,把过点A2时的抛物线记为抛物线y3 ,记抛物线y3与x轴的另一交点为A3;….;把抛物线y2015继续沿射线OP1平移,把过点A2015时的抛物线记为抛物线y2016 ,记抛物线y2016与x轴的另一交点为A2016 ,顶点为P2016 .若这2016条抛物线的顶点都在射线OP1上.(1)①求△OP1A1的面积;②求a,b的值;(2)求抛物线y2的解析式;(3)请直接写出点A2016以及点P2016坐标.23. (10分) (2019七上·淮安期末) 为了方便市民出行,减轻城市中心交通压力,南通市正在修建贯穿城市的地铁1,2号线,已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多亿元.(1)求1号线、2号线每千米的平均造价.(2)除1,2号线外,南通市政府规划还要再建90千米的地铁网线根据预算,这90千米的地铁网线每千米的平均造价是1号线每千米的平均造价的倍,则还需投资多少亿元?24. (10分) (2019八上·右玉期中) 如图:∠ACD是△ABC的一个外角,CA=CB.(1)画出∠ACD的角平分线CE.(2)求证:CE∥AB.25. (15分) (2018七上·金华期中) 已知数轴上有A、B、C三个点,分别表示有理数-12、-5、5,动点P从A 出发,以每秒1个单位的速度向终点C移动,设移动时间为秒。

广东省梅州市2017_2018学年七年级数学上学期第一次质检试题新人教版 Word版 含答案

广东省梅州市2017_2018学年七年级数学上学期第一次质检试题新人教版 Word版 含答案

广东省梅州市2017-2018学年七年级数学上学期第一次质检试题说明:1.全卷共4页,考试用时100分钟,满分为120分一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把正确答案填写在答题卡相应的位置上.1.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是(▲)A.B.C.D.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为(▲)A.零上3℃B.零下3℃C.零上7℃D.零下7℃3.在式子,2x+5y,0.9,﹣2a,﹣3x2y,中,单项式的个数是(▲)A.5个B.4个C.3个D.2个4.下列几何体中,主视图、俯视图、左视图都相同的是(▲)A.B.C.D.5.将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是(▲)A.﹣3+6﹣5﹣2 B.﹣3﹣6+5﹣2 C.﹣3﹣6﹣5﹣2 D.﹣3﹣6+5+26.若a+b<0,ab>0,那么这两个数(▲)A.都是正数B.都是负数C.一正一负D.符号不能确定7.计算(﹣1)2017的结果是(▲)A.﹣1 B.1 C.﹣2017 D.20178.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为(▲)A.13×107kg B.0.13×108kg C.1.3×107k g D.1.3×108kg 9.用式子表示“比a的平方的2倍小1的数”为(▲)A.2a2﹣1 B.(2a)2﹣1 C.2(a﹣1)2D.(2a﹣1)210.一个运算程序输入x后,得到的结果是2x2﹣1,则这个运算程序是(▲)A .先乘2,然后平方,再减去1B .先平方,然后减去1,再乘2C .先平方,然后乘2,再减去1D .先减去1,然后平方,再乘2二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11.单项式237a b π的次数是 ▲ .12.已知A ,B ,C 是数轴上的三个点,且C 在B 的右侧.点A ,B 表示的数分别是1,3,如图所示.若BC=2AB ,则点C 表示的数是 ▲ .13.已知21(25)0m n -+-=,则m= ▲ ,n= ▲ .14.我们把分子为1的分数叫做单位分数,如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…,请你根据对上述式子的观察,把表示为两个单位分数之和应为 ▲ .15.用“☆”、“★”定义新运算:对于任意有理数a 、b ,都有a☆b=a b 和a★b=b a ,那么(﹣3☆2)★1= ▲ .16.把如图所示的图形折成一个正方体的盒子,折好后与“顺”相对的字是 ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分).17.分别画出右图中几何体的主视图、左视图、俯视图.18.计算:(﹣0.5)+|0﹣6|﹣(﹣7)﹣(﹣4.75).19.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].四、解答题(二)(本大题3小题,每小题7分,共21分)20.已知:a 是﹣2的相反数,b 是﹣2的倒数,则(1)a= ,b= ;(2)求代数式a 2b+ab 的值.21.如果|a+1|+(b﹣2)2=0(1)求a,b的值;(2)求(a+b)2017+a2018的值.22.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.五、解答题(三)(本大题3小题,每小题9分,共27分)23.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,画一条数轴并在数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?24.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个);、;(2)如图2,如果、表示正,.表示负,J表示11点,Q表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个):.2017--2018学年度第一学期第一次质检七年级数学参考答案一、选择题(本大题10小题,每小题3分,共30分)1.C.2.B.3.C.4.B.5.B.6.B.7.A.8.D.9.A.10.C.二、填空题(本大题6小题,每小题4分,共24分)11.5.12.7.13.1,25.14.=+15.1. 16.考.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解:如右图(画正确一种得2分)18.解:原式=﹣0.5+6+7+4.75=7+11=18.19.解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:(1)∵a是﹣2的相反数,b是﹣2的倒数,∴a=2,b=﹣;(2)当a=2,b=﹣时,a2b+ab=ab(a+1))=2×(﹣)×(2+1)=﹣3.21.解:(1)由题意得,a+1=0,b﹣2=0,解得,a=﹣1,b=2;(2)(a+b)2017+a2018=1+1=2.22.解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900.五、解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36分钟长时间.24.解:(1)5﹣2﹣4+200×3=599(辆);(2)16﹣(﹣10)=26(辆);(3)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×15=84675(元).25.解:(1)根据题意得:3×4+2×6、2×4×(6﹣3);(2)根据题意得:(﹣5)2﹣12﹣(﹣11).(说明:答案不惟一)。

广东省梅州市2018-2019学年七年级数学上第二次质检试题含答案

广东省梅州市2018-2019学年七年级数学上第二次质检试题含答案

广东省梅州市2019-2019学年七年级数学上学期第二次质检试题说明:1.全卷共4页,考试用时100分钟,满分为120分一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把正确答案填写在答题卡相应的位置上. 1.在3-,1-,1,3四个数中,比2-小的数是(▲) A .3-B .1-C .1D .32.如图所示的几何体是由5个大小相同的小立方块搭成,从上面看到图形是(▲)A .B .C .D .3.2019年“五一”假期期间,某市接待旅游总人数达到了9180000人次,将9180000用科学记数法表示应为(▲) A .918×104B .9.18×105C .9.18×106D .9.18×1074.下列说法中,正确的是(▲)A .在数轴上表示a -的点一定在原点的左边B .有理数a 的倒数是a1C .一个数的相反数一定小于或等于这个数D .如果a a -=,那么a 是负数或零5.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向, 则钝角∠AOB 的大小为(▲) A .69°B .111°C .141°D .159°6.若正整数按如图所示的规律排列,则第8行第5列的数字是(▲)A .64B .56C .58D .607.在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是(▲) A .1B .3C .7D .98.已知3=x 是关于x 的方程:ax a x +=-34的解,那么a 的值是(▲)A. 2B.49 C.3 D.29 9.已知049212=+-y x y mx n ,(其中0,0≠≠y x )则=+n m (▲)A .-6B .6C .5D .1410.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中(▲) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11.多项式3223142y x y x -+的次数是 ▲ . 12.如图,∠1还可以用 ▲ 表示,若///0369621=∠,那么///036962= ▲ 度. 题12图 题13图 题14图13.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是 ▲ .14.如图,点C 把AB 分为2:3两段,点D 分AB 为1:4两段,若DC=5cm ,则AD= ▲ cm ,AB= ▲ cm.15.a 为非负整数,当=a ▲ 时,方程03=-ax 的解为整数.16.当2=x 时,代数式33-+bx ax 的值为9,那么,当2-=x 时代数式53++bx ax 的值为 ▲ 三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:5.242121633+-⨯---÷)()()(.18.计算:)24()814121(42)1(22017-⨯+--+-+-.19.解方程:11217)132x x +=-(.1 DACEBO DABC| |A D CB| |四、解答题(二)(本大题3小题,每小题7分,共21分)20.化简:222342(32)3(2)2xy x xy y x xy--++-,当2(3)10x y-++=时,求上式的值.21.(1)已知点D是线段AB上的一点,延长线段AB至C,使得AB=BC,且DC=5AD,若BD=4cm,求线段AC的长.(2)如图,已知点O是直线AD上一点,且CODAOCBOC∠=∠=∠3231.求∠BOC的度数.22.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图是2019年3月月历.(1)如图,用一正方形框在表中任意框4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是▲ ,▲ ,▲ .(2)当(1)中被正方形框的4个数之和等于76时,x的值为多少?(3)在(1)中能否正方形框这样的4个数,使它们的和等于92?若能,则求出x的值;若不能,则说明理由?●●O ●A B-4624.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是 ▲ ; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.25.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为 元,每件乙种商品利润率为 .(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件? (3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动: 打折前一次性购物总金额优惠措施 少于等于450元 不优惠 超过450元,但不超过600元按售价打九折超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?.实验中学2019--2019学年度第一学期第二次质检七年级数学参考答案一、选择题(本大题10小题,每小题3分,共30分)1.A . 2.D . 3.C . 4.D . 5.C . 6.D . 7.B . 8.B . 9.B . 10.A . 二、填空题(本大题6小题,每小题4分,共24分) 11.5.12.∠BCE 、62.16. 13.活. 14.5、2515.1或3.16.-7.三、解答题(一)(本大题3小题,每小题6分,共18分)17.18.19.四、解答题(二)(本大题3小题,每小题7分,共21分)20.05.22125.2)4()81()8(16=+--=+-⨯---÷=解:原式 8)9(1)3612(1)24(81)24(41)24(21-01=---=-+---=⎥⎦⎤⎢⎣⎡-⨯+-⨯--⨯+-=解:原式 xx 36)172(2-=+xx 36344-=+34634-=+x x 287-=x 4-=x 解: 222244634634y xy xy x y xy x xy -=-+-+-=解:原式2(3)0,103,1x y x y -=+= ==-因为所以3,1x y ==- 当时243-1-4-1-12-4-16原式()()=⨯⨯⨯ = =cm12555,66511623144123AC x AB BC AB BC x DC AD AC AD DC DC AC x BD DC BC x x x BD cm x x A =====+== =-=-= === 21.(1)解:设的长为因为,所以因为,所以所以因为,所以,所以所以12C cm = (2)解:设∠BOC 的度数为x1233,3323180318040240BOC AOC COD AOC x COD xAOC COD x x x BOC ∠=∠=∠∠=∠=∠+∠=︒+=︒=︒∠=︒因为,所以因为,所以,解得:所以22. (1)解:设当购买x 盒乒乓球时,两种优惠办法付款一样.)255100(9.0)5(255100x x +⨯=-+⨯ 解这个方程,得:30=x答:当购买30盒乒乓球时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,甲商场付款:875)520(251005=-+⨯(元) 乙商场付款:9009.0)20251005(=⨯⨯+⨯ (元) 所以当购买20盒乒乓球时到甲商场购买。

2017-2018学年广东省梅州市五华县七年级上期末考试数学试卷(含答案)

2017-2018学年广东省梅州市五华县七年级上期末考试数学试卷(含答案)

广东省梅州市五华县2017-2018学年上学期期末考试七年级数学试卷一、选择题(本大题包括10小题,每小题3分,共30分.在每小题列出的四个选项中只有一个是正确的,请将答案填入下表)1.(3分)下列方程为一元一次方程的是()A.y=3 B.x+2y=3 C.x2=2x D.+y=2【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【解答】解:A、y=3符合一元一次方程的定义;B、x+2y=3含有2个未知数,不是一元一次方程;C、x2=2x中未知数的最高次数是2,不是一元一次方程;故选:A.【点评】本题主要考查了一元一次方程的定义,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)计算﹣32的结果是()A.9 B.﹣9 C.6 D.﹣6【分析】根据有理数的乘方的定义解答.【解答】解:-32=-9.故选:B.【点评】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.3.(3分)关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4 B.C.3 D.【专题】整式.【分析】直接利用合并同类项法则得出关于k的等式进而得出答案.【解答】解:∵关于x,y的代数式(-3kxy+3y)+(9xy-8x+1)中不含二次项,∴-3k+9=0,解得:k=3.故选:C.【点评】此题主要考查了合并同类项,正确得出-3k+9=0是解题关键.4.(3分)某课外兴趣小组为了解所在地区老年人的健康情况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.调查了10名老年邻居的健康状况B.在医院调查了1000名老年人的健康状况C.在公园调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况【专题】统计的应用.【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、调查不具广泛性,故A不符合题意;B、调查不具代表性,故B不符合题意;C、调查不具代表性,故C不符合题意;D、样本具有广泛性与代表性,故D符合题意;故选:D.【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.5.(3分)方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2 B.3 C.4 D.6【专题】一次方程(组)及应用.【分析】设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.【解答】解:设•处的数字是a,则-3(a-9)=5x-1,将x=2代入,得:-3(a-9)=9,解得a=6,故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.6.(3分)如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5cm B.1cm C.5或1cm D.无法确定【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.【点评】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.7.(3分)如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选:A.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形.8.(3分)如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.0°<α<90°B.α=90°C.90°<α<180°D.α随折痕GF位置的变化而变化【专题】线段、角、相交线与平行线.【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE即可求解.【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH故选:B.【点评】本题主要考查了角平分线的定义,折叠的性质,注意在折叠的过程中存在的相等关系.9.(3分)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队,如果设应从乙队调x人到甲队,列出的方程正确的是()A.96+x=(72﹣x)B.(96﹣x)=72﹣xC.(96+x)=72﹣x D.×96+x=72﹣x【点评】本题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.10.(3分)四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为a,正方形CEFG的边长为b,连接BD,BF和DF后得到三角形BDF,请用含字母a和b的代数式表示三角形BDF的面积可表示为()A.ab B.ab C.b2D.a2【分析】可利用S△BD F=S△BCD+S梯形EFDC-S△BFE,把a、b代入,化简即可求出△BDF的面积.【点评】本题主要考查了正方形的性质及列代数式的知识,关键是根据题意将所求图形的面积分割,从而利用面积和进行解答.二、填空题(每小题4分,共24分,请将答案填入下列横线上)11.(4分)已知x﹣3y=3,则6﹣x+3y的值是.【专题】计算题;实数.【分析】原式后两项变形后,将已知等式代入计算即可求出值.【解答】解:∵x-3y=3,∴原式=6-(x-3y)=6-3=3,故答案为:3【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.(4分)上午8点30分,时钟的时针和分针所构成的锐角度数为.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.13.(4分)若|x﹣|+(y+2)2=0,则(xy)2017的值为.【专题】常规题型.【分析】直接利用偶次方的性质以及绝对值的性质化简得出答案.【点评】此题主要考查了偶次方的性质以及绝对值的性质,正确把握定义是解题关键.14.(4分)从一个多边形的某个顶点出发,连接这个顶点与其余的顶点,将这个多边形分成了10个三角形,则这个多边形的边数为.【专题】几何图形.【分析】n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n-2)个三角形,依此作答.【解答】解:设这个多边形的边数为n,由题意得,n-2=10,解得:n=12.故答案为:12【点评】本题主要考查多边形的性质,注意掌握从n边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为n-2.15.(4分)方程1﹣=去分母后为.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果即可.【解答】解:方程去分母得:6-2(3-5x)=3(2x-5),故答案为:6-2(3-5x)=3(2x-5)【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.(4分)观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(一)(每小题6分,共18分)17.(6分)计算:2×[5+(﹣2)2]﹣(﹣6)÷3【专题】计算题;实数.【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=2×(5+4)+2=2×9+2=18+2=20.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.(6分)解方程:=+1【专题】方程与不等式.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得:3(x-1)=2×4x+6去括号,得:3x-3=8x+6移项,得:-5x=9系数化为1,得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.19.(6分)已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线AD、直线BC相交于点O;(2)画射线AB.【分析】(1)直线没有端点,需透过所给的四个端点;(2)A为射线端点即可.【解答】解:如图所示:【点评】本题考查射线,线段,直线的画法,抓住各个图形的端点特点是关键.四、解答题(二)(每小题7分,共21分)20.(7分)已知:A=x2﹣2xy+y2,B=x2+2xy+y2(1)求A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?【专题】计算题;整式.【分析】(1)根据题意列出算式,再去括号、合并同类项可得;(2)由2A-3B+C=0可得C=3B-2A=3(x2+2xy+y2)-2(x2-2xy+y2),再去括号、合并同类项可得.【解答】解:(1)A+B=(x2-2xy+y2)+(x2+2xy+y2)=x2-2xy+y2+x2+2xy+y2=2x2+2y2;(2)因为2A-3B+C=0,所以C=3B-2A=3(x2+2xy+y2)-2(x2-2xy+y2)=3x2+6xy+3y2-2x2+4xy-2y2=x2+10xy+y2【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.21.(7分)如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.(1)若∠COM=∠AOC,求∠AOD的度数;(2)若∠COM=∠BOC,求∠AOC和∠MOD.【专题】计算题;线段、角、相交线与平行线.【分析】(1)根据∠COM=∠AOC可得∠AOC=∠AOM,再求出∠AOM的度数,然后可得答案;(2)设∠COM=x°,则∠BOC=4x°,进而可得∠BOM=3x°,从而可得3x=90,然后可得x的值,进而可得∠AOC和∠MOD的度数.【解答】解:(1)∵∠COM=∠AOC,∴∠AOC=∠AOM,∵∠BOM=90°,∴∠AOM=90°,∴∠AOC=45°,∴∠AOD=180°﹣45°=135°;(2)设∠COM=x°,则∠BOC=4x°,∴∠BOM=3x°,∵∠BOM=90°,∴3x=90,即x=30,∴∠AOC=60°,∠MOD=90°+60°=150°.【点评】此题主要考查了邻补角,关键是掌握邻补角互补.掌握方程思想的应用.22.(7分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50-10-23-12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1-46%-20%-24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.五、解答题(三)(每小题9分,共27分)23.(9分)实数a,b,c在数轴上的位置如图(1)求++的值(2)化简|b+c|﹣|b+a|+|a+c|【专题】实数.【分析】(1)根据数轴判断出a、b、c的正负情况,再根据绝对值的性质去掉绝对值号,然后化简计算即可得解;(2)根据数轴判断出a、b、c的绝对值的大小,再根据绝对值的性质去掉绝对值号,然后化简计算即可得解.【解答】解:(1)由图可知a>0,b<0,c<0,所以ab<0,所以++=++,=1+(﹣1)+(﹣1),=﹣1;(2)由图可知a>0,b<0,c<0且|c|<a<|b|,所以|b+c|﹣|b+a|+|a+c|,=﹣(b+c)﹣(﹣b﹣a)+(a+c),=﹣b﹣c+b+a+a+c,=2a.【点评】此题主要考查了数与数轴之间的对应关系,绝对值的性质,准确识图判断出a、b、c的正负情况以及绝对值的大小是解题的关键24.(9分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(9分)已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【分析】利用三角板角的特征和角平分线的定义解答,(1)根据余角的定义即可得到结论;【解答】解:(1)∠BOD=90°﹣60°=30°;(2)∠BOC=∠COD=×60°=30°,∴∠AOC=∠AOB﹣∠BOC=90°﹣30°=60°;(3)∠BOD+∠AOC=90°﹣∠COD=90°﹣60°=30°,(∠BOD+∠AOC)=×30°=15°,∠MON=(∠BOD+∠AOC)+∠COD=15°+60°=75°即∠MON的度数不会发生变化,总是75°.【点评】本题考查了角的计算:会进行角的倍、分、差计算.也考查了角平分线的定义,会识别图形是解题的关键.。

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案

2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。

2017-2018学年广东省梅州市大埔县七年级上学期数学期末试卷带答案

2017-2018学年广东省梅州市大埔县七年级上学期数学期末试卷带答案

2017-2018学年广东省梅州市大埔县七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)的相反数是()A.B.﹣ C.2 D.﹣22.(3分)下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查3.(3分)圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.4.(3分)下列式子,正确的是()A.﹣2+3=﹣5 B.﹣(x﹣3y)=﹣x﹣3y C.3x2﹣2x2=x2D.3x2﹣2x2=1 5.(3分)若﹣4x m+2y4与x3y n+1是同类项,则m﹣n的值为()A.3 B.﹣3 C.2 D.﹣26.(3分)若方程2x=8和方程ax+2x=4的解相同,则a的值为()A.1 B.﹣1 C.±3 D.07.(3分)在我国南海某海域探明可燃冰储量约有194亿立方米,数字19 400 000 000用科学记数法表示正确的是()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1098.(3分)如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.(3分)某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.(3分)下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作.12.(4分)方程2x=﹣6的解是.13.(4分)将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,这三个圆心角中最小的圆心角度数为.14.(4分)用平面截一个几何体,若截面是圆,则几何体是(写出两种)15.(4分)若(1﹣m)2+|n+2|=0,则m+n的值为.16.(4分)现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.三、解答题(共66分)17.(12分)计算:(1)﹣8×2﹣(﹣10)(2)﹣(x2y+3xy﹣4)+3(x2y﹣xy+2).18.(6分)化简,求值:2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5.19.(14分)解方程:(1)3x+1=x﹣5(2)=1﹣.20.(7分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.21.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.22.(9分)在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?23.(9分)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2017-2018学年广东省梅州市大埔县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)的相反数是()A.B.﹣ C.2 D.﹣2【解答】解:的相反数是﹣,添加一个负号即可.故选:B.2.(3分)下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.3.(3分)圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到,故选:A.4.(3分)下列式子,正确的是()A.﹣2+3=﹣5 B.﹣(x﹣3y)=﹣x﹣3y C.3x2﹣2x2=x2D.3x2﹣2x2=1【解答】解:∵﹣2+3=1,故选项A错误,∵﹣(x﹣3y)=﹣x+3y,故选项B错误,∵3x2﹣2x2=x2,故选项C正确,选项D错误,故选:C.5.(3分)若﹣4x m+2y4与x3y n+1是同类项,则m﹣n的值为()A.3 B.﹣3 C.2 D.﹣2【解答】解:∵﹣4x m+2y4与x3y n+1是同类项,∴m+2=3,n+1=4,解得:m=1,n=3,则m﹣n的值为:1﹣3=﹣2.故选:D.6.(3分)若方程2x=8和方程ax+2x=4的解相同,则a的值为()A.1 B.﹣1 C.±3 D.0【解答】解:解方程2x=8得x=4,把x=4代入ax+2x=4得4a+8=4,解得a=﹣1.故选:B.7.(3分)在我国南海某海域探明可燃冰储量约有194亿立方米,数字19 400 000 000用科学记数法表示正确的是()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【解答】解:将19 400 000 000用科学记数法表示为:1.94×1010.故选:A.8.(3分)如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.9.(3分)某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选:C.10.(3分)下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.【解答】解:水位升高7m时水位变化记作+7m,那么水位下降4m记作﹣4m.故答案是:﹣4m.12.(4分)方程2x=﹣6的解是x=﹣3.【解答】解:方程2x=﹣6的两边同时除以2,可得x=﹣3.故答案为:x=﹣3.13.(4分)将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,这三个圆心角中最小的圆心角度数为60°.【解答】解:由题意可得,三个圆心角的和为360°,又因为三个圆心角的度数比为1:2:3,所以最小的圆心角度数为:360°×=60°.故答案为:60°.14.(4分)用平面截一个几何体,若截面是圆,则几何体是球或圆柱(答案不唯一)(写出两种)【解答】解:用平面去截一个几何体,若截面是圆,则几何体是球或圆柱.故答案为:球或圆柱(答案不唯一).15.(4分)若(1﹣m)2+|n+2|=0,则m+n的值为﹣1.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故答案为:﹣1.16.(4分)现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.三、解答题(共66分)17.(12分)计算:(1)﹣8×2﹣(﹣10)(2)﹣(x2y+3xy﹣4)+3(x2y﹣xy+2).【解答】解:(1)原式=﹣16+10=﹣6;(2)原式=﹣x2y﹣3xy+4+3x2y﹣3xy+6=2x2y﹣6xy+10.18.(6分)化简,求值:2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5.【解答】解:当x=2,y=﹣0.5时,原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1=2+4﹣1=519.(14分)解方程:(1)3x+1=x﹣5(2)=1﹣.【解答】解:(1)3x﹣x=﹣5﹣1,2x=﹣6,x=﹣3;(2)3(x﹣6)=6﹣2(2x+5),3x﹣18=6﹣4x﹣10,3x+4x=6﹣10+18,7x=14,x=2.20.(7分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.21.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB,∴∠BOE=∠AOB=45°,∵∠EOF=60°,∴∠BOF=∠EOF﹣∠BOE=15°,∵OF平分∠BOC,∴∠BOC=2∠BOF=30°,∴∠AOC=∠AOB+∠BOC=120°.22.(9分)在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?【解答】解:设一共去了x个家长,则去了(15﹣x)个学生,根据题意得:50x+50×0.6(15﹣x)=650,解得:x=10,∴15﹣x=5.答:一共去了10个家长、5个学生.23.(9分)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【解答】解:(1)∵OA=8,AB=14,∴OB=6,∴点B表示的数为﹣6,∵PA=5t,∴P点表示的数为8﹣5t,故答案为﹣6,8﹣5t;(2)根据题意得5t=14+3t,解得t=7.答:点P运动7秒时追上点H.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七上·点军期中) 如果把上升3m记作+3m,那么下降5m记作()A . -3mB . -5C . -5mD . +5m2. (2分) (2018七上·铁岭月考) 下列各数表示正确的是()A .B . 用四舍五入法精确到C . 用四舍五入法精确到十分位D . 近似数和精确度相同3. (2分) (2018七上·银川期末) 如图是正方体的展开图,则正方体相对两个面上的数字之和的最小值是().A . 4B . 6C . 7D . 84. (2分) (2020七上·合肥月考) 如果a、b互为相反数,c、d互为倒数,m的绝对值是2,那么-cd的值()A . 2B . 3C . 4D . 不确定5. (2分)(2017·海曙模拟) 下列计算正确的是()A . 2a﹣a=2B . a2+a=a3C . (x﹣1)2=x2﹣1D . (a2)3=a66. (2分)下列各组方程中,解相同的是()A . x=3与4x+12=0B . x+1=2与2(x+1)=2xC . 7x-6=25与D . x=9与x+9=07. (2分) (2016七上·东阳期末) 若方程的解为x=5,则a等于()A . 80B . 4C . 16D . 28. (2分)若a=-2,则a2+的值为()A . 0B . 2C . 4.25D . 69. (2分)下列说法正确的是()A . 两点之间直线最短B . 连接两点间的线段叫做两点间的距离C . 如果两个角互补,那么这两个角中,一个是锐角,一个是钝角D . 同角的补角相等10. (2分) (2016七下·宝坻开学考) 文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A . 不赚不赔B . 亏8元C . 盈利3元D . 亏损3元11. (2分) (2019七下·马山月考) 如下图,已知a⊥b.垂足为O.直线c经过点O,则∠1与∠2的关系一定成立的是()A . 相等B . 互余C . 互补D . 对顶角12. (2分)如图4,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形A1B1C1D1 ,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2 ,……,如此下去,得到四边形A2011B2011C2011D2011的面积用含a、b的代数式表示为()A .B .C .D .二、填空题 (共10题;共10分)13. (1分)(2020·无锡模拟) 某公益机构设立了网站接受爱心捐助,旨在推动社会和谐,发展公益慈善事业,据网站统计,目前已有大约2451000人献爱心,将“2451000”用科学记数法表示是________.14. (1分)(2020·嘉兴模拟) 已知∠α和∠β互为补角,且∠β比∠α小30°,则∠β等于________°15. (1分) (2019七上·大东期末) 去括号合并:=________.16. (1分) (2018七上·西华期末) 已知,则的值为________.17. (1分) (2018七上·宿州期末) 已知线段AB=15cm,反向延长线段AB到C,使AC=7cm,若M、N两点分别是线段AB、AC的中点,则MN=________cm.18. (1分) (2017七上·东莞期中) 若x2+3x=2,那么多项式2x2+6x﹣8=________.19. (1分)一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头到甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,设船在静水中的平均速度为x千米/时,则可列方程为________.20. (1分) (2018七上·揭西月考) 如图,B处在A处南偏西50°方向,C处在A处的南偏东20°方向,C 处在B处的北偏东80°方向,则∠ACB=________.21. (1分) (2019八下·端州月考) 对于任意不相等的两个数a、b,定义运算“※”如下:a※b= ,如3※2= = ,那么8※6=________ .22. (1分)某班有a名男生和b名女生,为帮助患病儿童献爱心,全班同学积极捐款.其中男生每人捐10元,女生每人捐8元,则该班学生共捐款________ 元.(用含有a、b的代数式表示)三、解答题 (共8题;共75分)23. (15分) (2019七上·榆次期中) 计算:(1) 12-(-18)+(-12)-15(2)-24×(-+)(3)-12-〔4-(-)2〕÷(-)24. (5分) (2016七上·龙湖期末) 解方程: =2﹣.25. (5分) (2017七上·绍兴月考) 先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b =.26. (10分) (2019七上·花都期中) 为了加强校园周边治安综合治理,警察巡逻车在学校旁边的一条东西方向的公路上执行治安巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程(单位:千米)为: +2,-3,+2,+1,-2,-1,-2(1)此时,这辆巡逻车司机如何向警务处描述他现在的位置?(2)已知巡逻车每千米耗油0.25升,这次巡逻一共耗油多少升?27. (5分) (2019七上·盐津月考) 一项工程,甲队单独做需18天,乙队单独做需24天,如果两队合作8天后,余下的工程由甲队单独完成.甲队还需要多少天才能完工?28. (10分) (2019七上·咸阳月考) 计算:(1)48°39′+67°41′(2)90°-78°19′40″29. (15分)如图,A、B、C是一条公路上的三个村庄.A、B间的路程为100千米,A、C间的路程为40千米.在A、B之间设一个车站P,设P、C间的路程为x米.(1)用含x的代数式表示车站到三个村庄的路程之和;(2)若车站到三个村庄的路程的和为102千米,车站设在何处?(3)要使车站到三个村庄的路程总和最小,车站应设在何处?30. (10分)(2016·深圳) 荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共10题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、三、解答题 (共8题;共75分) 23-1、23-2、23-3、24-1、25-1、26-1、26-2、27-1、28-1、28-2、29-1、29-2、29-3、30-1、30-2、。

2017-2018学年初一上期末质量数学试题附含答案

2017-2018学年初一上期末质量数学试题附含答案

2017—2018学年度第一学期期末教学质量检测七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2-1-c-n-j-y3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。

1.A 2.A 3.C 4.B 5.D6.B 7.C 8.C 9.A 10.D二、填空题:本大题共6小题,每小题4分,共24分。

11.1.18×105 12.11 13.X= -714.39 15.75 16.18cm三、解答题(一):本大题共3小题,每小题6分,共18分。

17.解:原式=3-2×25 ………………(3分)=3-50 ……………(5分)=-47 …………(6分)18.解:原式=10-1+a-1+a+a2+1+a-a2-a3…………………(2分)=9+3a-a3…………………(4分)3……………(6分)819.解:∵m2-mn=7,mn-n2=-2 ……………………(2分)∴m2-n2= m2-mn+mn-n2 =5 …………………(4分)m2-2mn+n2= m2-mn-(mn –n2)=7+2=9 ……………(6分)四、解答题(二):本大题共3小题,每小题7分,共21分。

20.解: 2x+2-4=8+2-x ……(3分)∴2x+x=8+2+4-2 …………(4分)∴3x=12 …………(6分)∴x =4 ………………(7分)21.解:设这种服装每件成本是x 元,依题意得……………(1分)∴(1+40%)×0.8x - x=12 ……………………(3分) ∴1.12x - x=120.12x =12 ………………(5分)X=100………………(6分)答:设这种服装每件成本是100元 …………………(7分)22.解:设∠AOB 的度数是x 0 ……………(1分)x+36………………(3分)x+36 ……(4分) 32x=144+3632x=180 ……(5分)X=120 ……(6分)答:∠AOB 的度数是1200 ……………… (7分)五、解答题(三):本大题共3小题,每小题9分,共27分。

梅州市五华县七年级上期末考试数学试卷(有答案)-优选

梅州市五华县七年级上期末考试数学试卷(有答案)-优选

广东省梅州市五华县2017-2018学年上学期期末考试七年级数学试卷一、选择题(本大题包括10小题,每小题3分,共30分.在每小题列出的四个选项中只有一个是正确的,请将答案填入下表)1.(3分)下列方程为一元一次方程的是()A.y=3 B.x+2y=3 C.x2=2x D.+y=2【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【解答】解:A、y=3符合一元一次方程的定义;B、x+2y=3含有2个未知数,不是一元一次方程;C、x2=2x中未知数的最高次数是2,不是一元一次方程;故选:A.【点评】本题主要考查了一元一次方程的定义,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)计算﹣32的结果是()A.9 B.﹣9 C.6 D.﹣6【分析】根据有理数的乘方的定义解答.【解答】解:-32=-9.故选:B.【点评】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.3.(3分)关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4 B.C.3 D.【专题】整式.【分析】直接利用合并同类项法则得出关于k的等式进而得出答案.【解答】解:∵关于x,y的代数式(-3kxy+3y)+(9xy-8x+1)中不含二次项,∴-3k+9=0,解得:k=3.故选:C.【点评】此题主要考查了合并同类项,正确得出-3k+9=0是解题关键.4.(3分)某课外兴趣小组为了解所在地区老年人的健康情况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.调查了10名老年邻居的健康状况B.在医院调查了1000名老年人的健康状况C.在公园调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况【专题】统计的应用.【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、调查不具广泛性,故A不符合题意;B、调查不具代表性,故B不符合题意;C、调查不具代表性,故C不符合题意;D、样本具有广泛性与代表性,故D符合题意;故选:D.【点评】本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.5.(3分)方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2 B.3 C.4 D.6【专题】一次方程(组)及应用.【分析】设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.【解答】解:设•处的数字是a,则-3(a-9)=5x-1,将x=2代入,得:-3(a-9)=9,解得a=6,故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.6.(3分)如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5cm B.1cm C.5或1cm D.无法确定【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.【点评】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.7.(3分)如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选:A.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形.8.(3分)如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C 落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.0°<α<90°B.α=90°C.90°<α<180°D.α随折痕GF位置的变化而变化【专题】线段、角、相交线与平行线.【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE 即可求解.【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH故选:B.【点评】本题主要考查了角平分线的定义,折叠的性质,注意在折叠的过程中存在的相等关系.9.(3分)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队,如果设应从乙队调x人到甲队,列出的方程正确的是()A.96+x=(72﹣x)B.(96﹣x)=72﹣xC.(96+x)=72﹣x D.×96+x=72﹣x【点评】本题主要考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.10.(3分)四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为a,正方形CEFG的边长为b,连接BD,BF和DF后得到三角形BDF,请用含字母a和b的代数式表示三角形BDF的面积可表示为()A.ab B.ab C.b2D.a2【分析】可利用S△B D F=S△B C D+S梯形E F D C-S△B F E,把a、b代入,化简即可求出△BDF的面积.【点评】本题主要考查了正方形的性质及列代数式的知识,关键是根据题意将所求图形的面积分割,从而利用面积和进行解答.二、填空题(每小题4分,共24分,请将答案填入下列横线上)11.(4分)已知x﹣3y=3,则6﹣x+3y的值是.【专题】计算题;实数.【分析】原式后两项变形后,将已知等式代入计算即可求出值.【解答】解:∵x-3y=3,∴原式=6-(x-3y)=6-3=3,故答案为:3【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.(4分)上午8点30分,时钟的时针和分针所构成的锐角度数为.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【点评】本题考查了钟面角,确定时针与分针相距的份数是解题关键.13.(4分)若|x﹣|+(y+2)2=0,则(xy)2017的值为.【专题】常规题型.【分析】直接利用偶次方的性质以及绝对值的性质化简得出答案.【点评】此题主要考查了偶次方的性质以及绝对值的性质,正确把握定义是解题关键.14.(4分)从一个多边形的某个顶点出发,连接这个顶点与其余的顶点,将这个多边形分成了10个三角形,则这个多边形的边数为.【专题】几何图形.【分析】n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n-2)个三角形,依此作答.【解答】解:设这个多边形的边数为n,由题意得,n-2=10,解得:n=12.故答案为:12【点评】本题主要考查多边形的性质,注意掌握从n边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为n-2.15.(4分)方程1﹣=去分母后为.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果即可.【解答】解:方程去分母得:6-2(3-5x)=3(2x-5),故答案为:6-2(3-5x)=3(2x-5)【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.(4分)观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(一)(每小题6分,共18分)17.(6分)计算:2×[5+(﹣2)2]﹣(﹣6)÷3【专题】计算题;实数.【分析】根据有理数混合运算顺序和运算法则计算可得.【解答】解:原式=2×(5+4)+2=2×9+2=18+2=20.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.(6分)解方程:=+1【专题】方程与不等式.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母,得:3(x-1)=2×4x+6去括号,得:3x-3=8x+6移项,得:-5x=9系数化为1,得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.19.(6分)已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.(1)画直线AD、直线BC相交于点O;(2)画射线AB.【分析】(1)直线没有端点,需透过所给的四个端点;(2)A为射线端点即可.【解答】解:如图所示:【点评】本题考查射线,线段,直线的画法,抓住各个图形的端点特点是关键.四、解答题(二)(每小题7分,共21分)20.(7分)已知:A=x2﹣2xy+y2,B=x2+2xy+y2(1)求A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?【专题】计算题;整式.【分析】(1)根据题意列出算式,再去括号、合并同类项可得;(2)由2A-3B+C=0可得C=3B-2A=3(x2+2xy+y2)-2(x2-2xy+y2),再去括号、合并同类项可得.【解答】解:(1)A+B=(x2-2xy+y2)+(x2+2xy+y2)=x2-2xy+y2+x2+2xy+y2=2x2+2y2;(2)因为2A-3B+C=0,所以C=3B-2A=3(x2+2xy+y2)-2(x2-2xy+y2)=3x2+6xy+3y2-2x2+4xy-2y2=x2+10xy+y2【点评】本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.21.(7分)如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.(1)若∠COM=∠AOC,求∠AOD的度数;(2)若∠COM=∠BOC,求∠AOC和∠MOD.【专题】计算题;线段、角、相交线与平行线.【分析】(1)根据∠COM=∠AOC可得∠AOC=∠AOM,再求出∠AOM的度数,然后可得答案;(2)设∠COM=x°,则∠BOC=4x°,进而可得∠BOM=3x°,从而可得3x=90,然后可得x 的值,进而可得∠AOC和∠MOD的度数.【解答】解:(1)∵∠COM=∠AOC,∴∠AOC=∠AOM,∵∠BOM=90°,∴∠AOM=90°,∴∠AOC=45°,∴∠AOD=180°﹣45°=135°;(2)设∠COM=x°,则∠BOC=4x°,∴∠BOM=3x°,∵∠BOM=90°,∴3x=90,即x=30,∴∠AOC=60°,∠MOD=90°+60°=150°.【点评】此题主要考查了邻补角,关键是掌握邻补角互补.掌握方程思想的应用.22.(7分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?【分析】(1)根据A等人数为10人,占扇形图的20%,求出总人数,可以得出D的人数,即可画出条形统计图;(2)根据D的人数即可得出所占百分比,进而得出所在的扇形的圆心角度数;(3)利用总体人数与A组所占比例即可得出A级学生人数.【解答】解:(1)总人数是:10÷20%=50,则D级的人数是:50-10-23-12=5.条形统计图补充如下:;(2)D级的学生人数占全班学生人数的百分比是:1-46%-20%-24%=10%;D级所在的扇形的圆心角度数是360×10%=36°;(3)∵A级所占的百分比为20%,∴A级的人数为:600×20%=120(人).【点评】此题主要考查了条形图的应用以及用样本估计总体和扇形图统计图的应用,利用图形获取正确信息以及扇形图与条形图相结合是解决问题的关键.五、解答题(三)(每小题9分,共27分)23.(9分)实数a,b,c在数轴上的位置如图(1)求++的值(2)化简|b+c|﹣|b+a|+|a+c|【专题】实数.【分析】(1)根据数轴判断出a、b、c的正负情况,再根据绝对值的性质去掉绝对值号,然后化简计算即可得解;(2)根据数轴判断出a、b、c的绝对值的大小,再根据绝对值的性质去掉绝对值号,然后化简计算即可得解.【解答】解:(1)由图可知a>0,b<0,c<0,所以ab<0,所以++=++,=1+(﹣1)+(﹣1),=﹣1;(2)由图可知a>0,b<0,c<0且|c|<a<|b|,所以|b+c|﹣|b+a|+|a+c|,=﹣(b+c)﹣(﹣b﹣a)+(a+c),=﹣b﹣c+b+a+a+c,=2a.【点评】此题主要考查了数与数轴之间的对应关系,绝对值的性质,准确识图判断出a、b、c 的正负情况以及绝对值的大小是解题的关键24.(9分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(9分)已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【分析】利用三角板角的特征和角平分线的定义解答,(1)根据余角的定义即可得到结论;【解答】解:(1)∠BOD=90°﹣60°=30°;(2)∠BOC=∠COD=×60°=30°,∴∠AOC=∠AOB﹣∠BOC=90°﹣30°=60°;(3)∠BOD+∠AOC=90°﹣∠COD=90°﹣60°=30°,(∠BOD+∠AOC)=×30°=15°,∠MON=(∠BOD+∠AOC)+∠COD=15°+60°=75°即∠MON的度数不会发生变化,总是75°.【点评】本题考查了角的计算:会进行角的倍、分、差计算.也考查了角平分线的定义,会识别图形是解题的关键.。

【中小学资料】广东省梅州市2017-2018学年七年级数学上学期第一次质检试题 新人教版

【中小学资料】广东省梅州市2017-2018学年七年级数学上学期第一次质检试题 新人教版

广东省梅州市2017-2018学年七年级数学上学期第一次质检试题说明:1.全卷共4页,考试用时100分钟,满分为120分一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把正确答案填写在答题卡相应的位置上.1.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是(▲)A.B.C.D.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为(▲)A.零上3℃B.零下3℃C.零上7℃D.零下7℃3.在式子,2x+5y,0.9,﹣2a,﹣3x2y,中,单项式的个数是(▲)A.5个B.4个C.3个D.2个4.下列几何体中,主视图、俯视图、左视图都相同的是(▲)A.B.C.D.5.将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是(▲)A.﹣3+6﹣5﹣2 B.﹣3﹣6+5﹣2 C.﹣3﹣6﹣5﹣2 D.﹣3﹣6+5+26.若a+b<0,ab>0,那么这两个数(▲)A.都是正数B.都是负数C.一正一负D.符号不能确定7.计算(﹣1)2017的结果是(▲)A.﹣1 B.1 C.﹣2017 D.20178.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为(▲)A.13×107kg B.0.13×108kg C.1.3×107k g D.1.3×108kg 9.用式子表示“比a的平方的2倍小1的数”为(▲)A.2a2﹣1 B.(2a)2﹣1 C.2(a﹣1)2D.(2a﹣1)210.一个运算程序输入x后,得到的结果是2x2﹣1,则这个运算程序是(▲)A .先乘2,然后平方,再减去1B .先平方,然后减去1,再乘2C .先平方,然后乘2,再减去1D .先减去1,然后平方,再乘2二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11.单项式237a b π的次数是 ▲ .12.已知A ,B ,C 是数轴上的三个点,且C 在B 的右侧.点A ,B 表示的数分别是1,3,如图所示.若BC=2AB ,则点C 表示的数是 ▲ .13.已知21(25)0m n -+-=,则m= ▲ ,n= ▲ .14.我们把分子为1的分数叫做单位分数,如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…,请你根据对上述式子的观察,把表示为两个单位分数之和应为 ▲ .15.用“☆”、“★”定义新运算:对于任意有理数a 、b ,都有a☆b=a b 和a★b=b a ,那么(﹣3☆2)★1= ▲ .16.把如图所示的图形折成一个正方体的盒子,折好后与“顺”相对的字是 ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分).17.分别画出右图中几何体的主视图、左视图、俯视图.18.计算:(﹣0.5)+|0﹣6|﹣(﹣7)﹣(﹣4.75).19.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].四、解答题(二)(本大题3小题,每小题7分,共21分)20.已知:a 是﹣2的相反数,b 是﹣2的倒数,则(1)a= ,b= ;(2)求代数式a 2b+ab 的值.21.如果|a+1|+(b﹣2)2=0(1)求a,b的值;(2)求(a+b)2017+a2018的值.22.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.五、解答题(三)(本大题3小题,每小题9分,共27分)23.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,画一条数轴并在数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?24.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个);、;(2)如图2,如果、表示正,.表示负,J表示11点,Q表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个):.2017--2018学年度第一学期第一次质检七年级数学参考答案一、选择题(本大题10小题,每小题3分,共30分)1.C.2.B.3.C.4.B.5.B.6.B.7.A.8.D.9.A.10.C.二、填空题(本大题6小题,每小题4分,共24分)11.5.12.7.13.1,25.14.=+15.1. 16.考.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解:如右图(画正确一种得2分)18.解:原式=﹣0.5+6+7+4.75=7+11=18.19.解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:(1)∵a是﹣2的相反数,b是﹣2的倒数,∴a=2,b=﹣;(2)当a=2,b=﹣时,a2b+ab=ab(a+1))=2×(﹣)×(2+1)=﹣3.21.解:(1)由题意得,a+1=0,b﹣2=0,解得,a=﹣1,b=2;(2)(a+b)2017+a2018=1+1=2.22.解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900.五、解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36分钟长时间.24.解:(1)5﹣2﹣4+200×3=599(辆);(2)16﹣(﹣10)=26(辆);(3)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×15=84675(元).25.解:(1)根据题意得:3×4+2×6、2×4×(6﹣3);(2)根据题意得:(﹣5)2﹣12﹣(﹣11).(说明:答案不惟一)。

2017-2018学年七年级数学上册第二次质检试题

2017-2018学年七年级数学上册第二次质检试题

D. 9
2
A. -6
B.6
C. 5
D. 14
10. 某商店出售两件衣服,每件卖了 200元,其中一件赚了 25%,而另
一件赔了 20%.那么商店在这次交易中 ( ▲)
A.亏了 10 元钱 B.赚了 10 钱
C.赚了 20 元钱 D.亏
了 20 元钱
二、填空题(本大题 6 小题,每小题 4 分,共 24 分)请把下列各题的正确答案填写在答题
A. 3
B. 1
C. 1
D. 3
2.如图所示的几何体是由 5 个大小相同的小立方块搭成,从上面看到图形是(▲)
A.
B.
C.
D.
3.2017 年“五一”假期期间,某市接待旅游总人数达到了
9180000 人次,将 9180000 用科
学记数法 表示应为 ( ▲)
A. 9 18×104
B. 9.18 ×105
卡相应的位置上 .
11.多项式 2
2
4x y
1
2
x
3
y
的次数是
▲.
3
12.如图, 1 还可以用 ▲ 表示,若 1 6209/36// ,那么 6209/36// =
▲ 度.
B D A C 1E
题 12 图
题 13 图
题 14 图 13. 如图所示的是一个正方体的表面展开图,则与“奋”字所代表的 面相对的面上的汉字是
广东省梅州市 2017-2018 学年七年级数学上学期第二次质检试题
说明: 1.全卷共 4 页,考试用时 100 分钟,满分为 120 分
一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷

广东省梅州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)若x=(﹣1.125)× ÷(﹣)× ,则x的倒数是()A . 1B . ﹣1C . ±1D . 22. (2分)一副三角板按如图方式摆放,已知∠1=5∠2,则∠1的度数是()A . 15°B . 18°C . 72°D . 75°3. (2分)下列说法正确的是A . 一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B . 为了了解全国中学生的心理健康状况,应采用普查的方式C . 一组数据0,1,2,1,1的众数和中位数都是1D . 若甲组数据的方差甲=0.2 ,乙组数据的方差乙=0.5,则乙组数据比甲组数据稳定4. (2分) (2018七上·大石桥期末) 解方程,下列解法中,较为简便的是()A . 两边都乘以,得B . 两边都乘以4,得C . 用分配律去括号,得D . 小括号内先通分,得5. (2分)直线L⊥线段AB于点O,且OA=OB,点C为直线L上一点,且有CA=8cm,则CB的长度为()A . 4cmB . 8cmC . 16cmD . 无法求出6. (2分)已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A . 0.4和0.3B . 0.4和9C . 12和0.3D . 12和97. (2分)已知一项工程,甲单独完成需5天,乙单独完成需要8天,现甲乙合作完成需要多少天?设甲乙合作需要x天完成,则列方程为()A . (+)x=1B . (-)x=1C . =D . 5+8=x8. (2分) (2016七上·灵石期中) 下列图形属于棱柱的有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共8题;共14分)9. (3分) (2018七上·吉首期中) =________,3的相反数是________,________的倒数是-2。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

广东省梅州市七年级数学上学期第一次质检试题 新人教

广东省梅州市七年级数学上学期第一次质检试题 新人教

广东省梅州市2017-2018学年七年级数学上学期第一次质检试题说明:1.全卷共4页,考试用时100分钟,满分为120分一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把正确答案填写在答题卡相应的位置上.1.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是(▲)A.B.C.D.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为(▲)A.零上3℃B.零下3℃C.零上7℃D.零下7℃3.在式子,2x+5y,0.9,﹣2a,﹣3x2y,中,单项式的个数是(▲)A.5个B.4个C.3个D.2个4.下列几何体中,主视图、俯视图、左视图都相同的是(▲)A.B.C.D.5.将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是(▲)A.﹣3+6﹣5﹣2 B.﹣3﹣6+5﹣2 C.﹣3﹣6﹣5﹣2 D.﹣3﹣6+5+26.若a+b<0,ab>0,那么这两个数(▲)A.都是正数B.都是负数C.一正一负D.符号不能确定7.计算(﹣1)2017的结果是(▲)A.﹣1 B.1 C.﹣2017 D.20178.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为(▲)A.13×107kg B.0.13×108kg C.1.3×107k g D.1.3×108kg 9.用式子表示“比a的平方的2倍小1的数”为(▲)A.2a2﹣1 B.(2a)2﹣1 C.2(a﹣1)2D.(2a﹣1)210.一个运算程序输入x后,得到的结果是2x2﹣1,则这个运算程序是(▲)A .先乘2,然后平方,再减去1B .先平方,然后减去1,再乘2C .先平方,然后乘2,再减去1D .先减去1,然后平方,再乘2二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11.单项式237a b π的次数是 ▲ .12.已知A ,B ,C 是数轴上的三个点,且C 在B 的右侧.点A ,B 表示的数分别是1,3,如图所示.若BC=2AB ,则点C 表示的数是 ▲ .13.已知21(25)0m n -+-=,则m= ▲ ,n= ▲ .14.我们把分子为1的分数叫做单位分数,如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…,请你根据对上述式子的观察,把表示为两个单位分数之和应为 ▲ .15.用“☆”、“★”定义新运算:对于任意有理数a 、b ,都有a☆b=a b 和a★b=b a ,那么(﹣3☆2)★1= ▲ .16.把如图所示的图形折成一个正方体的盒子,折好后与“顺”相对的字是 ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分).17.分别画出右图中几何体的主视图、左视图、俯视图.18.计算:(﹣0.5)+|0﹣6|﹣(﹣7)﹣(﹣4.75).19.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].四、解答题(二)(本大题3小题,每小题7分,共21分)20.已知:a 是﹣2的相反数,b 是﹣2的倒数,则(1)a= ,b= ;(2)求代数式a 2b+ab 的值.21.如果|a+1|+(b﹣2)2=0(1)求a,b的值;(2)求(a+b)2017+a2018的值.22.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.五、解答题(三)(本大题3小题,每小题9分,共27分)23.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,画一条数轴并在数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?24.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.算24点游戏是一种使用扑克牌来进行的益智类游戏,游戏内容是:从一副扑克牌中抽去大小王剩下52张,任意抽取4张牌,把牌面上的数运用你所学过的加、减、乘、除、乘方运算得出24.每张牌都必须使用一次,但不能重复使用.(1)如图1,在玩“24点”游戏时,小明抽到以下4张牌:请你帮他写出运算结果为24的算式:(写出2个);、;(2)如图2,如果、表示正,.表示负,J表示11点,Q表示12点.请你用下列4张牌表示的数写出运算结果为24的算式(写出1个):.2017--2018学年度第一学期第一次质检七年级数学参考答案一、选择题(本大题10小题,每小题3分,共30分)1.C.2.B.3.C.4.B.5.B.6.B.7.A.8.D.9.A.10.C.二、填空题(本大题6小题,每小题4分,共24分)11.5.12.7.13.1,25.14.=+15.1. 16.考.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解:如右图(画正确一种得2分)18.解:原式=﹣0.5+6+7+4.75=7+11=18.19.解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:(1)∵a是﹣2的相反数,b是﹣2的倒数,∴a=2,b=﹣;(2)当a=2,b=﹣时,a2b+ab=ab(a+1))=2×(﹣)×(2+1)=﹣3.21.解:(1)由题意得,a+1=0,b﹣2=0,解得,a=﹣1,b=2;(2)(a+b)2017+a2018=1+1=2.22.解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)+15=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×(118﹣﹣18)=999×100=99900.五、解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36分钟长时间.24.解:(1)5﹣2﹣4+200×3=599(辆);(2)16﹣(﹣10)=26(辆);(3)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×15=84675(元).25.解:(1)根据题意得:3×4+2×6、2×4×(6﹣3);(2)根据题意得:(﹣5)2﹣12﹣(﹣11).(说明:答案不惟一)。

广东省梅州市2019-2020学年七年级数学上第二次质检试题含答案

广东省梅州市2019-2020学年七年级数学上第二次质检试题含答案

广东省梅州市2019-2020学年七年级数学上第二次质检试题含答案说明:1.全卷共4页,考试用时100分钟,满分为120分一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把正确答案填写在答题卡相应的位置上. 1.在3-,1-,1,3四个数中,比2-小的数是(▲) A .3-B .1-C .1D .32.如图所示的几何体是由5个大小相同的小立方块搭成,从上面看到图形是(▲)A .B .C .D .3.2017年“五一”假期期间,某市接待旅游总人数达到了9180000人次,将9180000用科学记数法表示应为(▲) A .918×104B .9.18×105C .9.18×106D .9.18×1074.下列说法中,正确的是(▲)A .在数轴上表示a -的点一定在原点的左边B .有理数a 的倒数是a1C .一个数的相反数一定小于或等于这个数D .如果a a -=,那么a 是负数或零5.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则钝角∠AOB 的大小为(▲) A .69°B .111°C .141°D .159°6.若正整数按如图所示的规律排列,则第8行第5列的数字是(▲)A .64B .56C .58D .607.在一列数:a 1,a 2,a 3,…,a n 中,a 1=3,a 2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第个数是(▲) A .1B .3C .7D .98.已知3=x 是关于x 的方程:ax a x +=-34的解,那么a 的值是(▲) A. 2B.49 C.3D.29 9.已知049212=+-y x y mx n ,(其中0,0≠≠y x )则=+n m (▲)A .-6B .6C .5D .1410.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中(▲) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上. 11.多项式3223142y x y x -+的次数是 ▲ . 12.如图,∠1还可以用 ▲ 表示,若///0369621=∠,那么///036962= ▲ 度. 题12图 题13图 题14图13.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是 ▲ .14.如图,点C 把AB 分为2:3两段,点D 分AB 为1:4两段,若DC=5cm ,则AD= ▲ cm ,AB= ▲ cm.15.a 为非负整数,当=a ▲ 时,方程03=-ax 的解为整数.1 DACEBODABC| | ADCB| | 16.当2=x 时,代数式33-+bx ax 的值为9,那么,当2-=x 时代数式53++bx ax 的值为 ▲三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:5.242121633+-⨯---÷)()()(.18.计算:)24()814121(42)1(22017-⨯+--+-+-.19.解方程:11217)132x x +=-(.四、解答题(二)(本大题3小题,每小题7分,共21分)20.化简:222342(32)3(2)2xy x xy y x xy --++-,当2(3)10x y -++=时,求上式的值.21.(1)已知点D 是线段AB 上的一点,延长线段AB 至C ,使得AB=BC ,且DC=5AD ,若BD=4cm ,求线段AC 的长.(2)如图,已知点O 是直线AD 上一点,且COD AOC BOC ∠=∠=∠3231. 求∠BOC 的度数.22.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样? (2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?●●O ●A B -46五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图是年3月月历.(1)如图,用一正方形框在表中任意框4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是 ▲ , ▲ , ▲ . (2)当(1)中被正方形框的4个数之和等于76时,x 的值为多少?(3)在(1)中能否正方形框这样的4个数,使它们的和等于92?若能,则求出x 的值;若不能,则说明理由?24.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是 ▲ ; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.25.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为 元,每件乙种商品利润率为 .(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:商品多少件?.实验中学--学年度第一学期第二次质检七年级数学参考答案一、选择题(本大题10小题,每小题3分,共30分)1.A . 2.D . 3.C . 4.D . 5.C . 6.D . 7.B . 8.B . 9.B . 10.A . 二、填空题(本大题6小题,每小题4分,共24分) 11.5.12.∠BCE 、62.16.13.活.14.5、2515.1或3.16.-7.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.18.19.四、解答题(二)(本大题3小题,每小题7分,共21分) 20.5.22125.2)4()81()8(16=+--=+-⨯---÷=解:原8)9(1)3612(1)24(81)24(41)24(21-01=---=-+---=⎥⎦⎤⎢⎣⎡-⨯+-⨯--⨯+-=解:原式 x x 36)172(2-=+xx 36344-=+34634-=+x x 287-=x 4-=x 解: 222244634634y xy xy x y xy x xy -=-+-+-=解:原 2(3)0,103,1x y x y -=+= ==-因为所以3,1x y ==- 当时2cm12555,66511623144123AC x AB BC AB BC x DC AD AC AD DC DC AC x BD DC BC x x x BD cm x x A =====+== =-=-= === 21.(1)解:设的长为因为,所以因为,所以所以因为,所以,所以所以12C cm = (2)解:设∠BOC 的度数为x1233,3323180318040240BOC AOC COD AOC x COD xAOC COD x x x BOC ∠=∠=∠∠=∠=∠+∠=︒+=︒=︒∠=︒因为,所以因为,所以,解得:所以22. (1)解:设当购买x 盒乒乓球时,两种优惠办法付款一样.)255100(9.0)5(255100x x +⨯=-+⨯ 解这个方程,得:30=x答:当购买30盒乒乓球时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,甲商场付款:875)520(251005=-+⨯(元) 乙商场付款:9009.0)20251005(=⨯⨯+⨯ (元) 所以当购买20盒乒乓球时到甲商场购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生变化,请你说明理由;若不变,请你画出
图形,并求出线段 MN的长度 .
B
O
A



-4
0
6
25.平价商场经销的甲、乙两种商品,甲种商品每件售价
60 元,利润率为 50%;乙种商品每件进 价
50 元,售价 80 元
( 1)甲种商品每件进价为
元,每件乙种商品利润率为

( 2)若该商场同时购进甲、乙两种商品共 50 件,恰好总进价为 2100 元,求购进甲种商品多少件?
则钝角∠ AOB的大小为 ( ▲ )
A. 69°
B. 111°
C
. 141°
D. 159°
6.若正整数按如图所示的规律排列,则第
8 行第 5 列的数字是(▲)
A.64
B. 56
C. 58
D. 60
7.在一列数: a1,a2, a3,, , an 中, a1=3,a2=7 ,从第三个数开始,每一个数都等于它前两个数之
子表示出来,从小到大依次是
▲, ▲, ▲.
( 2)当( 1)中被正方形框的 4 个数之和等于 76 时, x 的值为多少?
(3)在(1 )中能否正方形框这样的 4 个数, 使它们的和等于 92?若能, 则 求出 x 的值; 若不能,
则说明理由 ?
3
24.已知数轴上三点 A, O,B 表示的数分别为 6, 0,-4 ,动点 P 从 A 出发,以每秒 6 个单位的速度
2
A.-6
B. 6
C. 5
D. 14
10. 某商店出售两件衣服,每件卖了 200元,其中一件赚了 25%,而另一件赔了 20%.那么商店在这次交
易中 ( ▲)
A.亏了 10 元钱
B.赚了 10 钱
C.赚了 20 元钱
D.亏了 20 元钱
二、填空题(本大题 6 小题,每小题 4 分,共 24 分)请把下列各题的正确答案填写在答题卡相应的 位置上 .
A. 3
B. 1
C. 1
D. 3
2.如图所示的几何体是由 5 个大小相同的小立方块搭成,从上面看到图形是(▲)
A.
B.
C.
D.
3.2017 年“五一”假期期间,某市接待旅游总人数达到了
9180000 人次,将 9180000 用科学记数法
表示应为 ( ▲) A.9 18×104
B. 9.18 ×105
AOC
COD.
3
3
求 BOC的度数 .
B C
|
|
|
A
D
B
|
C
A
O
D
22.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两种同样品牌的乒乓球和乒乓球
拍,乒乓球拍每副定价 100 元,乒乓球每盒定价 25 元 . 经洽谈后,甲店每买一副球拍赠一盒乒乓球,
乙店全部按定价的 9 折优惠 . 该班需球拍 5 副,乒乓球若干盒(不少于 5 盒) . 问:
广东省梅州市 2017-2018 学年七年级数学上学期第二次质检试题
说明: 1.全卷共 4 页,考试用时 100 分钟,满分为 120 分
一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正
确的,请把正确答案填写在答题卡相应的位置上
.
1.在 3 , 1 , 1 , 3 四个数中,比 2 小的数是(▲)
C.9.18 ×10 6
D. 9 .18 ×10 7
4. 下列说法中,正确的是(▲)
A.在数轴上表示 a 的点一定在原点的左边
B.有理数 a 的倒数是 1 a
C.一个数的相反数一定小于或等于这个数
D.如果 a a ,那么 a 是负数或零
5. 在灯塔 O处观测到轮船 A 位于北偏西 54°的方向,同时轮船 B 在南偏东 15°的方向,
( 1)当购买乒乓球多少盒时,两种优惠办法付款一样
?
( 2)当购买 20 盒、 40 盒乒乓球时,去哪家商店购买更合算 ?
五、解答题(三) (本大题 3 小题,每小题 9 分,共 27 分) 23.如图是 2016 年 3 月月历.
(1)如图,用一正方形框在表中任意框 4 个数,记左上角的一个数为 x,则另三个数用含 x 的式
11.多项式 2 4 x2 y 1 x2 y 3 的次数是 3
▲.
12.如图, 1 还可以用 ▲ 表示,若 1 6209 /36// ,那么 6209/ 36// = ▲ 度.
B
1
D
AC
E
题 12 图
题 正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是
20.化简: 4xy 2( 3 x2 3xy 2 y2 ) 3(x2 2xy) ,当 ( x 3)2 y 1 0 时,求上式的值. 2
21.( 1)已知点 D是线段 AB 上的一点,延长线段 AB 至 C,使得 AB=BC,且 DC=5AD,若 BD=4cm,求
线段 AC的长 .
1
2
( 2)如图,已知点 O是直线 AD上一点,且 BOC
▲.
14. 如图, 点 C把 AB分为 2:3 两段, 点 D 分 AB为 1:4 两段, 若 DC=5cm,则 AD= ▲ cm ,AB= ▲
cm.
15. a 为非负整数,当 a ▲ 时,方 程 ax 3 0 的解为整数 .
16.当 x 2 时,代 数式 ax3 bx 3 的值为 9 ,那么,当 x 2 时代数式 ax3 bx 5 的值为 ▲
沿数轴向左匀速运动 .
(1) 当点 P到点 A 的距离与 点 P 到点 B的距离相等时 , 点 P在数轴上表示的数是 ▲ ;
(2) 另一动点 R从 B出发,以每秒 4 个单位的速度沿数轴向左匀速运动,若点 P、R同时出发,问
点 P运动多少时间追上点 R?
(3) 若 M为 AP的中点, N为 PB的中点,点 P 在运动过程中,线段 MN的长度是否发生变化 ?若发
三、解答题(一) (本大题 3 小题,每小题 6 分,共 18 分) .
17.计算: 16 ( 2)3 ( 1 )3 ( 4) 2.5 . 2
18.计算:( 1)2017
22
1 4(
1
1 )(
24).
248
1
1
19.解方程: (2x 17) 1 x.
3
2
2
四、解答题(二) (本大题 3 小题,每小题 7 分,共 21 分)
积的个位数字,则这一列数中的第 2017 个数是(▲)
A.1
B. 3
C. 7
D. 9
8. 已知 x 3 是关于 x 的方程: 4x a 3 ax 的解,那么 a 的值是(▲)
1
9
A. 2
B.
C.3
4
9. 已知 mx2y n 1 4x2y9 0 ,(其中 x 0, y 0 )则 m n (▲)
9
D.
相关文档
最新文档