最新人教版八年级初二数学下册16.1二次根式(1)

合集下载

16.1.1 二次根式的概念-初中数学人教版八年级下册教与练课件

16.1.1 二次根式的概念-初中数学人教版八年级下册教与练课件
x 3≥0,
解:由题意得
3 x≥0,
∴x=3,y=8,
∴3x+2y=25.
∵25的算术平方根为5,
∴3x+2y的算术平方根为5.
【点睛】若 y a a b ,则根据被开方数大于等于0,可得a=0.
已知a,b为等腰三角形的两条边长,且a,b满足 b 3 a 2a 6 4,求
∴x>1.
(2)∵被开方数需大于或等于零,
∴3+x≥0,
∴x≥-3.
【点睛】要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不
∵分母不能等于零,∴x-1≠0,∴x≠1.
等式求解即可.若二次根式为分母或二次根式为分式的分母时,应同时考虑
分母不为零.
∴x≥-3 且x≠1.
1.单个二次根式如 A 有意义的条件: A≥0
此三角形的周长.
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
1.下列式子:①
1
;②
3
3
1 − 2;③ 2 + 1;④ 27;⑤
−4 2 ,是二次根
式的有( A )
A.①③⑤
,其中实数x、y满足 =
2
6 − 2 + 1.
1
2
−2
解:(
− 2 )÷
+
+
2
1
2
2
=


+ +
−2
−2
2

16.1二次根式(1) (3)

16.1二次根式(1) (3)

x 2
2
数.
1、 当 x 1 y 3 0时 ,
-1 ) , x ( y ( 3 )
2、 已 知x 5 6 3 y z 2 0
2
求xyz的 值 。
(-5)×2×(-2)=20
3.要使下列式子有意义,x需要满足什么 条件?
学习目标:
• (1)二次根式的概念 • (2)根号内字母的取值范围
一、回顾与思考
0 2 ;0的平方根是______. 1.4的平方根是_____ 5 2.5的平方根是_______ 5 ;5的算术平方根是____. 3. 什么叫平方根? 什么叫算术平方根?
复习
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根。
复习 1、如果 x 4,那么 x ±2 ;
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a ( a 0) ,
2
那么 x a 。
思考
用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为3的正方形的边长为( 形的边长为( )
),面积为S的正方
(2)一个长方形的围栏,长是宽的2倍,面积为130平方米,则 它的宽为( )米。
(1) 3 x
1 (3) 2x 5
( 2) x 3 8 x ( 4) x 2 2 x
( 5) x 2 2 x 1
1 1、已知 有意义,那A(a, a
a )在 二 象限.
∵由题意知a<0 ∴点A(-,+)
2 3 2、2+ 3 - x的最小值为__,此时 x的值为__。
a的平方根是 a

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。

本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。

但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。

三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。

2.培养学生从实际问题中抽象出二次根式的能力。

3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算方法。

3.引导学生从实际问题中抽象出二次根式。

五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。

2.讲授法:讲解二次根式的定义、性质和运算方法。

3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。

4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。

2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。

例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。

2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。

《16.1二次根式》作业设计方案-初中数学人教版12八年级下册

《16.1二次根式》作业设计方案-初中数学人教版12八年级下册

《二次根式》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对二次根式概念的理解,掌握二次根式的性质和基本运算,通过练习题和实际问题解决,提高学生运用二次根式解决实际问题的能力,同时培养其数学思维和解题策略。

二、作业内容1. 基础知识巩固:(1)二次根式的定义及性质。

(2)二次根式的加减法运算。

(3)二次根式与实数的关系。

2. 技能提升训练:(1)进行简单的二次根式化简与运算。

(2)结合数轴、数线,判断并解释不等式的解集与实数间的关系。

(3)练习处理实际问题中的二次根式问题,如几何面积计算等。

3. 拓展应用:(1)设计一个简单的数学模型,用二次根式解决实际问题。

(2)小组合作,探讨二次根式在日常生活中的应用实例。

三、作业要求1. 独立完成:作业要求个人独立完成,不允许抄袭他人或借助工具完成作业。

2. 清晰步骤:解答过程应遵循数学的严谨性和逻辑性,保证解题步骤的完整和准确。

3. 深度思考:通过习题的训练,要理解知识的深层含义和应用,注重理解问题而非死记硬套。

4. 时间管理:学生需合理分配时间,确保在规定时间内完成作业并留出足够时间自查。

四、作业评价1. 准确性:检查答案的准确性,看是否符合题目要求及数学原理。

2. 逻辑性:评估学生解题思路的逻辑性及完整性。

3. 创新性:鼓励学生在解决问题时提出新的想法或方法,体现创新思维。

4. 态度与努力:评价学生完成作业的态度和努力程度,包括是否独立完成、是否认真对待等。

五、作业反馈1. 及时反馈:教师应在规定时间内批改作业,并给出及时反馈。

2. 个性化指导:针对学生的不同问题,提供个性化的指导和建议。

3. 总结分析:定期总结学生作业中出现的共性问题,进行针对性的教学调整和补充。

4. 激励措施:对于表现优秀的学生给予表扬和鼓励,激发学生的学习积极性。

通过以上作业设计方案,旨在通过系统的练习和训练,帮助学生更好地掌握二次根式的基础知识和基本技能,并培养学生的数学思维和解决问题的能力。

16.1《二次根式》(第1-3课时)教案 新人教版

16.1《二次根式》(第1-3课时)教案 新人教版

16.1 二次根式教案第一课时二次根式的概念教学目标知识与技能 1 理解二次根式的概念2a≥0)的意义求被开方数中字母的取值范围.过程与方法从具体实例中建立二次根式模型,探索二次根式被开方数中字母的取植范围情感态度与价值观经历观察比较总结和应用等数学活动,体验发现的快乐教学重难点关键1a≥0)的式子叫做二次根式的概念;2.a≥0)的意义求被开方数中字母的取值范围教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以,.问题2:由勾股定理得问题3:由方差的概念得.二、探索新知,都是一些正数的算术平方根.像这样一些正数的算术平a≥0)•的式子叫做二次根式,”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0老师点评:有意义的条件例1.下列式子,哪些是二次根式,、1xx>0)、、、1x y+x≥0,y•≥0).分析”;第二,被开方数是正数或0.x>0)、x≥0,y≥0);不是二、1x、1x y+.例2.当x是多少时,2-x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以x-2≥0,2-x•才能有意义.解:由x-2≥0,得:x≥2当x≥2时,2-x在实数范围内有意义.三、巩固练习教材练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?分析11x+在实数范围内有意义,必须同时满足0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-111x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)+=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.七板书设计一、选择题1.下列式子中,是二次根式的是()A. B C.x 2.下列式子中,不是二次根式的是()A B.1 x3.已知一个正方形的面积是5,那么它的边长是() A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.16..1 二次根式教案教学内容 1.a ≥0)是一个非负数;2.2=a (a ≥0). 教学目标知识与技能a ≥02=a (a ≥0),并利用它们进行计算和化简.过程与方法 经历探索二次根式的性质的过程,培养学生从简单到复杂从一般到特殊的思 维过程情感 态度与价值观 通过学生自主探索合作交流体会学习数学的乐趣 教学重难点关键1a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方2=a (a ≥0). 教学过程一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;2=_______;2=______;2=_______;)2=______;)2=_______;)2=_______.是4的算术平方根,是一个平方等于4)2=4.同理可得:)2=2,2=9,)2=3,)2=13,)2=72,)2=0,所以例1计算1.(5.1)2 2.(2 3.24.(2)2分析:我们可以直接利用(2=a (a ≥0)的结论解题.解:(5.1)2 =1.5,(2 =22·2=22×5=20,2=56,(2)2=22724=.三、巩固练习计算下列各式的值:2)2 (4)2)2()2 22-四、应用拓展例2 计算1.2(x ≥0) 2.2 3.24. 2 分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4题都可以2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2) P97.七板书设计第二课时作业设计一、选择题1个数是().A.4 B.3 C.2 D.12.数a没有算术平方根,则a的取值范围是(). A.a>0 B.a≥0 C.a<0 D.a=0二、填空题1.(2=________.2_______数.三、综合提高题1.计算(1)2(2)-)2(3)(12)2(4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x(x≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x2-2 (2)x4-9 3x2-516.1 二次根式教案第三课时教学内容a(a≥0)教学目标知识与技能(a≥0),(a≥0)并利用它进行计算和化简.过程与方法经历探索二次根式的性质的过程,培养学生分类的数学思想情感态度与价值观通过学生自主探索合作交流体会学习数学的乐趣及发散思维能力教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:;=________=_______.(老师点评):根据算术平方根的意义,我们可以得到:110=23=37.例1化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?(学生讨论)分析:(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0时,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2分析:(略) 五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业板书设计第三课时作业设计一、选择题1的值是().A.0 B.23C.423D.以上都不对2.a≥0,比较它们的结果,下面四个选项中正确的是().AC.-二、填空题1.=________.2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│+。

新人教版八年级初二数学下册16课件.1二次根式(1)

新人教版八年级初二数学下册16课件.1二次根式(1)

2
2
1.从读法来看:
2
2:从运算顺序来看:
2
a 根号a的平方 a 先开方,后平方
a 根号下a平方
2
a 先平方,后开方
2
4.从运算结果来看:
3.从取值范围来看:
a
2
2
a≥0
a =a
2
a a取任何实数
a =∣a ∣
2
a (a 0) 0 (a 0) a ( a 0)
复习 1、如果 x 4,那么 x ±2 ;
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a(a 0) ,
2
那么 x a 。
x
导入
1.如图所示的值表示正方形的 面积,则正方形的边长是 b 3
b-3
2.要修建一个面积为6.28m2的圆形喷水池, 取3.14); 它的半径为 2 m(
1 x 5

x-5 > 0
∴ 当x>5时,
在实数范围内有意义。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0 1 2 (3) 4 x x为全体实数 (4) x0 x
(5) x
3
x 0 (6) 12
x 1 0 ( x 2) (7) x3
a9
a 2a 2
2
2
⑷ ⑹
⑸ m 3
a 1 (a 3)
例题吧
例1 x为何值时,下列各式在实数范围内有意义。
1 x 5 x 5
(1)
(2) 1 x
2
(3) 1 x 3 x
解: (1) 由x-5 ≥ 0,得x ≥ 5 ∴当 x ≥ 5时, x 5有意义.

人教版初中八年级数学下册16.1二次根式(1) (2)ppt课件

人教版初中八年级数学下册16.1二次根式(1) (2)ppt课件

一般的,如果一个数x的平方等于a,即x2=a,那么这 个数x叫做a的平方根(也叫做二次方根).
思考:9的算术平方根是多少?9的平 方根与算术平方根有什么区别与联系?
归纳:一个正数有两个平方根,它们互为相反数,其
中正的平方根就是这个数的算术平方根. 0只有一个平方根,它是0本身. 负数没有平方根.
想一想
➢在上面的问题中,结果分别是 特点?
65, S它, 们2有, 什h么
5
➢如果把上面所填式子叫二次根式,你能用数学符号表示二次根式 吗?
一般地,我们把形如
a(a的式子0叫)做二次根
式,“ ”称为二次根号.
: , 特别 二 提 次 醒 a 中 根 根 式 2 省 指 略 数 即 没 2a 写
例:你能根据定义判断下列式子,哪些是二次根式,哪些不是二次根 式?为什么?
a3 2
当x是怎样的实x数 2在 时 实 , 数范围内有 x3意 ? 义
解:x为任意实数时, 在实数x 2 范围内有意义;
x为大于等于零的实数时, 在实数x范3 围内有意义。
思考解决下列问题
当a是怎样的实数时,下列各式在实数范围内有意义?
3a
a
2a3 5a
a2 1 a2
1 2a 5
2a3 1 a1
2、二次根式的非负性
a的(a式子叫0做)二次根
a0(a0)
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””

人教版八年级数学下册16.1二次根式(1) (1)ppt课件

人教版八年级数学下册16.1二次根式(1) (1)ppt课件
a 表示什么?a 需要满足什么条件?
代数式 叫做二次根式,读作“根号 a”,其中 a (a 0) a是被开方数。
下列哪些代数式是二次根式?
2, 3,
2 , 3
a 1,
2
b 4ac (b 4ac 0) ,
2 2
1 ( x 2) x2
b (b 0)
二次根式的被开方数为非负数 二次根式被开方数可为整式或分式
解:由 x-2≥0,且 x-3≠0,
得 x ≥2 且 x ≠3 。
x-2 想一想: 假如把题目改为: 要使 有意义, x-1 字母 x 的取值必须满足什么条件?
问题 二次根式有哪些性质呢?
性质1 性质2
a a
2
a 0 a 0

a

2
a
问题 如果在性质1 中
a a a 0 的
2
a 0 这个条件没有的话,等式还成立吗?
探究:当a为实数时,
a 与 a 有什么联系?
2
a
a
2
3
1
3
3
1
2 3 2 3
2 3
0 0 0
2 3 2 3 2 3
1Hale Waihona Puke 13 3 3a
1
1
a 与 a 的关系 (a o), a 2 (a o), a a o a (a o).
例题1 设x是实数,当x满足什么条件时,下列各式有意义?
(1) 2 x 1
(3) 1 x
2
2 x
2
(4) 1 x
做一做: 要使下列各式有意义,字母的取值必 须满足什么条件? 1、 x+3 3、 1 x 2、 2-5x 4、 a2+1 x-1 6、 x-2

新人教版八年级数学下册16.1.1 二次根式的概念ppt课件

新人教版八年级数学下册16.1.1 二次根式的概念ppt课件


10、低头要有勇气,抬头要有低气。2 021/6/2 82021/6/28202 1/6/286 /28/202 1 12:47:10 PM

11、人总是珍惜为得到。2021/6/28202 1/6/282 021/6/2 8Jun-2 128-Jun -21

12、人乱于心,不宽余请。2021/6/282 021/6/2 82021/6/28Mo nday , June 28, 2021
么条件?
x-2 想 一 想 :假 如 把 题 目 改 为 :要 使 x - 1 有 意 义 ,
字母 x的取值必须满足什么条件?
想 一 想 : 一 个 正 数 的 算 术 平 方 根 是 正数。
零 的 算 术 平 方 根 是 0。 负 数 有 没 有 算 术 平 方 根 ? 没有
非负数的算术平方根仍然是非负数。 性质 1: a ≥0 (a≥0) (双重非负性)
正数有两个平方根且互为相
想一想:反数; 0有一个平方根就是它0;
1、平方根的性质: 负数没有平方根。
2、 a 表示什么? 表示非负数a的算术平方根
1.二次根式的概念
定义:
学科网
式子 a a0叫做二次根式,其中
a叫做被开方式。
注意 在实数范围内,a< 0时, a 没有
意义,只有当 a0 时, a 有意义。
例 1: 要 使 x-1 有 意 义 , 字 母 x 的 取 值 必 须 满 足 什么条件?
想一想: 已 知 : y= x-2 + 2-x +3, 求 xy的 值 。
例 2 x是怎样的实数时,式子 x 3 在实
数范围内有意义?
完成教材P3第2题

3:要使

最新人教版八年级下册数学16章16.1二次根式第一课时

最新人教版八年级下册数学16章16.1二次根式第一课时

创设情境
提出问题
电视塔越高,从塔顶发射的电磁波传得越远,从 而能收看到电视节目的区域越广,电视塔高h(单位: km)与电视节目信号的传播半径 r(单位:km)之间 存在近似关系 r = 2 Rh,其中地球半径R≈6 400 km. 如果两个电视塔的高分别是h1 km、h2 km,那么它们 的传播半径之比是 式子
创设情境
提出问题
问题: (2)一个长方形围栏,长是宽的2 倍,面积为130 65 m. m2,则它的宽为______
(2)中得到的式子有什么意义?
创设情境
提出问题
问题: (3)一个物体从高处自由落下,落到地面所用的 时间 t(单位:s)与开始落下的高度h(单位:m)满 足关系 h =5t2,如果用含有h 的式子表示 t ,则 h t= 5 . _____ (3)中当h 的值分别为0,10,15,20,25时,得 h 到的结果分别是什么? 表示的数怎样变化? 5
合作探究 形成知识
h 上面问题中,得到的结果分别是: 3 , S , 65 , . 5
(1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?
h 分别表示3,S,65, 的算术平方根. 5 这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负 数)的算术平方根.
合作探究 形成知识
八年级
下册
16.1 二次根式(1)
课件说明
• 本课通过现实问题提出二次根式要研究的问题,通 过用字母表示算术平方根中的被开方数,把算术平 方根一般化,得到二次根式的概念、二次根式有意 义的条件、二次根式的非负性.
课件说明
• 学习目标: 1.根据算术平方根的意义了解二次根式的概念;知 道被开方数必须是非负数的理由; 2.能用二次根式表示实际问题中的数量和数量关系. • 学习重点: 从算术平方根的意义出发理解二次根式的概念.

16.1 二次根式 课件 2023-2024学年人教版数学八年级下册

16.1   二次根式   课件 2023-2024学年人教版数学八年级下册

(2)- 272× -722×(- π)-2.
解:原式=-27×72×π1=-π1.
6.已知一个圆柱体的体积为V,高为h,求它的底面半 径r(用含有V和h的代数式表示);求当V=80π,h=5时, 底面半径r的值. 解:圆柱体的体积V=πr2h,
∴r= πVh.
把V=80π,h=5代入上式,得r=4.
注意 利用数轴和二次根式的性质进行化简,关键是要要根据a,b的大小 讨论绝对值内式子的符号.
例题与练习
1.计算
( 3)2 = 3 (3 2 )2 = 32 ( 2 )2=18
( 25 )2 = ( 2 )2 =
2
2.说出下列各式的值
0.32 0.3
( 1)2 1 77
()2
102 =
( 1 )2 1
解:由题意,得
x+5≥0, x≠0,
解得x≥-5且
x
≠0.
∴当x≥-5且 x ≠0时,
x+5 x
有意义.
归纳
二次根式的实质是表示一个非负数(或式)的算术平方根. 对于任意一个二次根式 a ,我们知道:
(1)a为被开方数,为保证其有意义,可知a≥0; (2) 表示一个数或式的算术平方根,可知 a ≥0.
3.△ABC的三边长为a,b,c,其中a和b满足 b2-4b+4+ a-5 =0,求c的取值范围. 解:依题意,得(b-2)2+ a-5 =0,
∴b=2,a=5. 又∵a,b,c为三角形的三边长, ∴3条件下求 字母的取值范围
抓住被开方数必须为非负数, 从而建立不等式求出其解集.
a3 2
a≤5
例2 下列各式中,哪些是二次根式?哪些不是二次根式?
(1) 11;
(2) -5;

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)

章节测试题1.【答题】若与互为相反数,则x+y的值=______。

【答案】27【分析】互为相反数的两个数之和等于0.【解答】根据题意得+=0,∵≥0 且≥0∴=0 且=0∴且解得∴x+y=15+12=272.【答题】实数a在数轴上的位置如图,化简+a=______.【答案】1【分析】根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.【解答】解:+a=1﹣a+a=1,3.【答题】函数中自变量的取值范围______.【答案】x≥2【分析】根据被开方数非负来解.【解答】根据被开方数非负,得到关于x的不等式,x-2≥0求解即可.4.【答题】若在实数范围内有意义,则x的取值范围是______.【答案】x≥3【分析】被开方数或被开方式是非负数【解答】由于被开方数或被开方式是非负数得x﹣3≥0,即x≥35.【答题】要使有意义,则x的取值范围是______.【答案】x≥4【分析】根据算术平方根的意义,可知其被开方数为非负数.【解答】根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为:x≥4.方法总结:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.6.【题文】想一想:将等式=3和=7反过来的等式3=和7=还成立吗?式子:9==和4==成立吗?仿照上面的方法,化简下列各式:(1)2(2)11(3)6【答案】成立,、、【分析】当a≥0时,a=,所以对于有理数与二次根式相乘的形式的化简,可以将根号外的非负数通过这样的变形后,再用二次根式的乘法法则化简.【解答】解:等式3=和7=成立,9==和4==成立.(1);(2);(3).方法总结:本题主要考查了二次根式的非负性,二次根式有双重非负性,即二次根式的被开方数是非负数,二次根式的值是非负数,所以每一个非负数都可以根据二次根式的双重非负性写成二次根式的形式.7.【题文】若y=++3,求xy的值。

人教版-数学-八年级下册-16.1二次根式(1)

人教版-数学-八年级下册-16.1二次根式(1)

学习目标:1.正确理解并掌握二次根式的概念、二次根式中被开方数的取值范围.2.会求二次根式中被开方数的取值范围及理解二次根式中被开方数的取值范围的重要性.学习重点:二次根式的概念.学习难点:二次根式中字母的取值范围.学习过程一.自主学习:1.4的平方根是 ; 0的平方根是 ; -16的平方根是 ; 2.5的平方根是 ; 5的算术平方根是 ;3.正方形的面积为3,则它的边长为 ;正方形的面积为S ,则它的边长为 .4.预习课本P2 二.探索新知 1.上面3题的结果是3、S ,它们表示一些正数的 平方根.2.一般地,我们把形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.三.应用新知四.发现总结1.形如a (a≥0)的式子叫做二次根式,其中a 可以为一个 、一个 ,也可以是一个 ,“”称为 .2.要使二次根式在实数范围内有意义,必须满足被开方数是 .五.巩固提高1.下列各式是否为二次根式?(1)2 (2)12+m ; (3)2a (4)2n -(5)2-a (6)y x +(x≥0,y≥0)2.当a是怎样的实数时,下列各式在实数范围内有意义? (1)1-a ; (2)32+a ; (3)a 5-; (4)x 432-.六.课堂检测1.下列各式中:2、a 、21、x -(x <0),其中是二次根式的有() A.1个 B.2个 C.3个 D.4个2.下列式子不是二次根式的是( )A.3B.a (a ≥0)C.12+aD.2-6.若式子12-+x x 有意义,那么x 的取值范围是什么?7.要使x -3+121-x 有意义,x 应该满足什么条件?七、本节课你有什么收获?还有那些疑问呢?八、。

人教版八年级数学下册16.1.1二次根式的概念教案

人教版八年级数学下册16.1.1二次根式的概念教案
人教版八年级数学下册16.1.1二次根式的概念教案
一、教学内容
人教版八年级数学下册16.1.1节,本节课主要围绕二次根式的概念进行教学。内容包括:
1.二次根式的定义:形如√a(a≥0)的式子,称为二次根式。
2.二次根式的性质:
(1)当a≥0时,√a为非负实数;
(2)√a(a≥0)的平方等于a,即(√a)^2=a;
五、教学反思
今天在教授二次根式的概念这一章节时,我发现学生们对新的数学概念表现出了一定的兴趣,但也遇到了一些挑战。在课堂上,我尝试通过生活中的实例导入新课,希望能让学生感受到数学与生活的紧密联系。从学生的反应来看,这个方法还是有效的,他们能够更直观地理解二次根式的意义。
在理论讲解环节,我注意到了一些学生在理解二次根式定义时出现了困惑,尤其是在处理绝对值符号的情况。这让我意识到,对于这类抽象概念的教学,需要更多的具体例子和直观演示。在接下来的教学中,我打算增加一些互动环节,比如让学生自己举例,并上台来展示他们的思考过程,这样既能帮助他们加深理解,也能提高课堂的参与度。
在学生小组讨论的环节,我尽量让自己成为一个观察者和引导者,而不是直接给出答案。这种方法让学生们有更多的机会去自主探索和发现,但我也意识到,对于一些基础较弱的学生来说,可能需要更多的个别辅导和支持。因此,我计划在课后安排一些辅导时间,帮助学生巩固课堂上未完全掌握的知识。
最后,今天的总结回顾环节,我鼓励学生提出自己的疑问,这有助于我发现他们在学习过程中的盲点。我感到欣慰的是,学生们敢于提问,这表明他们有意愿去理解新知识。但在回答问题时,我发现自己有时候解释得不够简洁明了,以后我需要在这方面多加改进,尽量用更易懂的语言来解释复杂的数学概念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是形如√a(a≥0)的数学表达式,它是表示非实数平方根的一种方式。它在数学运算和解题中具有重要地位。

学教评一致性八年级数学教学设计16.1二次根式(1)

学教评一致性八年级数学教学设计16.1二次根式(1)
情景一是第一个“思考”,通过三个小问题,感知二次根式的引入的必要性,掌握二次根式的定义.
情景二是第二个“思考”,掌握二次根式在实数范围内有意义的条件.




为把握学生学习新知的起点,执教这节课之前,对本班学生进行了相关知识点的复习.复习内容:平方根、算术平方根
学生已经会求平方根、算术平方根,但对于相关概念的理解并不透彻,因此在授课前需要进行相关的复习,八年级的学生已经具备了一定的合作交流与探究能力,所以新知识的接受相对容易,教学中注意把学生的已有经验作为认知基础,在学习过程中,把“理解被开方数是非负数的要求”作为重点,采用让学生观察、思考、探究的方法实现学习目标.
学生怎样学
借助教材中的“思考”,掌握二次根式的定义




“二次根式的定义与性质”是人教版八年级数学下册第十六章“二次根式”的内容,二次根式是初中数学知识体系与结构中不可或缺的部分.
学生理解、掌握数学概念,一般需要经历“感知、抽象、符号表征、应用”等一系列认知过程,为了达成课标要求,遵循学生学习的认知规律,教材设置了两个问题情境.
学习
目标
借助教材中的情景,能理解二次根式的概念,并利用 (a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题
评估
任务
能判断一个式子是否为二次根式,掌握二次根式的定义
课题
16.1二次根式
日期
3.1
节次
第节
来源
人教版八年级数学下册第十六章二次根式16.1二次根式(1)
课型
新授课
授课对象
八年班学生
教师
单位




  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的性质及它们的应用:
(1)
a a,(a 0)
2
(2)
a a
2
a ( a >0 ) 0 ( a =0 ) -a ( a <0 )
(1)( 2 ) 2 2 ( 2)( 2 ) 2
2
(3) ( 2 ) -2
2
(4) (2) |-2|=2
2
(5) 2 |2|=2
2
(6) (2) -|-2|=-2
2
例2 求下列二次根式的值:

2

(1) (3 ) ;
2
(2) x 2 x 1 , 其中x 3.
解:(1) (3 )22 | 3 | 2 (2) x 2 x 1 ( x 1) | x 1 | 解:
1 x 5

x-5 > 0
∴ 当x>5时,
在实数范围内有意义。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0 1 2 (3) 4 x x为全体实数 (4) x0 x
(5) x
3
x 0 (6) 12
x 1 0 ( x 2) (7) x3
22 是二次根式吗?
注意
a 1 这类代数式只能称为含有二次 如: 根式的代数式,不能称之为二次根式;

2 x2 2 x 3
2, 3 这些二次根式看 这类代数式,应把 做系数或常数项,整个代数式仍看做整式。
说一说:
下列代数式中哪些是二次根式?


1 2

16
x ( x 0)
本课学习目标:
• (1)二次根式的概念( 双重非负性
)
• (2)根号内字母的取值范围 • (3)二次根式的性质(1,2)
请你凭着自己已有的知识,说 说对二次根式 a 的认识!
?
1.
a 表示什么含义?
a 表示a的正平方根; a 表示a的平方根.
答:当a>0时, 当a=0时,
2. 当a满足什么条件时,代数式
(2) 因为不论x是什么实数,都有 1 x > 0. ∴当 是任何实数时, 2 有意义.
2
1 x 1 x 0 (3)由题意可知: 3 x 0
∴当 -1≤ x ≤3时, 1 x 3 x 有意义.
1 当x取何值时, 在实数范围内有意义。 x 5
解:由题意得
x 5 0 1 0 x 5
a9
a 2a 2
2
2
⑷ ⑹
⑸ m 3
a 1 (a 3)
例题吧
例1 x为何值时,下列各式在实数范围内有意义。
1 x 5 x 5
(1)
(2) 1 x
2
(3) 1 x 3 x
解: (1) 由x-5 ≥ 0,得x ≥ 5 ∴当 x ≥ 5时, x 5有意义.
3、关系式中h 5t ,用含有h的式子 h 表示t,则t为 。
2
5
新授:
你认为所得的各代数式有哪些共同特点?
b3
2
h 5
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a
被开方数 二次根号
读作“根号
a”
归纳:
二次根式的定义
一般地,代数式形如 式子做叫二次根式。
a(a 0 ) 的
a 才有意义?
a 才有意义!
答:由于负数没有平方根,所以当a≥0时,
3. 代数式
a (a≥0)有如下特征:
a≥0, a ≥0 ( 双重非负性) a可以是数,也可以是式.
既可表示开方运算,也可表示运算的结果.
(1) 代数式 a 是二次根式吗? 答:代数式 a 只有在条件a≥0的情况下,才属于二次根式! 二次根式是属于有特殊条件的代数式. (2) 答:符合条件(1)被开方数 22 为非负数; (2) 含 有二次根号,所以 22 是二次根式. 1 ( x 0) 是二次根式 (3) 代数式 a 2(a 2), x 吗? 答:是的,二次根式的被开方数可以是整式或分式 .
a 2 ____ ; 当 a
a a
2
请比较左右两边的式子,议一议:
a
0 时,
a
2与
| a | 有什么关系?
a2 ____.
a
一般地,二次根式有下面的性质:
a ( a 0) 2 a a 0 (a 0) a (a 0)
( a ) 与 a 有区别吗?
2
2
1.从读法来看:
2
2:从运算顺序来看:
2
a 根号a的平方 a 先开方,后平方
a 根号下a平方
2
a 先平方,后开方
2
4.从运算结果来看:
3.从取值范围来看:
a
2
2
a≥0
a =a
2
a a取任何实数
a =∣a ∣
2
a (a 0) 0 (a 0) a ( a 0)
人教版数学教材八年级下
第16章 二次根式
16.1 二次根式
回忆
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根。
a的平方根是 a
⑵什么是一个数的算术平方根?如何表示? 正数的正的平方根叫做它的算术平方根。 0的算术平方根平方根是0 用
a
(a≥0)表示。
x x 1, 且x 2
2
x0
(8)
x2 x
x 0 (9) x 1 x为全体实数
?
一般地,二次根式有下面的性质:
a
快 速 判 断
2
a
2
(a 0)
2
1 15 a6 9 17 4
a
1
2 1 2 1 2 3 2 ______, 3 2 ________, 3 ______, 7 3 7 3

2
2 2 4 5 ________, 5 5 3 ________. 3

2
2
2 22 ___,
5
2
2
5 ___,
0 0 ___, 当 a 0 时,
2 | 2 | ___; 5 | 5 | ___; 0 . | 0 | ___
复习 1、如果 x 4,那么 x ±2 ;
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a(a 0) ,
2
那么 x a 。
x
导入
1.如图所示的值表示正方形的 面积,则正方形的边长是 b 3
Байду номын сангаасb-3
2.要修建一个面积为6.28m2的圆形喷水池, 取3.14); 它的半径为 2 m(
相关文档
最新文档