流式细胞分析Comparative-Flow-Cytometric-Analysis-of
流式细胞术分析的工作原理及应用
流式细胞术分析的工作原理及应用1. 工作原理流式细胞术(Flow Cytometry)是一种广泛应用于生物医学研究、临床诊断和药物开发等领域的细胞分析技术。
它基于细胞在流式细胞仪中通过单个细胞传感器单元的原理,可以实时、快速地检测和分析细胞的各种特性。
1.1 流式细胞仪原理流式细胞仪是流式细胞术分析的核心工具。
它将细胞悬浮液注入到一个窄小的液流中,并通过雷射束(Laser Beam)对细胞进行激发。
当细胞经过激发光束时,会发射出特定波长的荧光信号。
流式细胞仪通过光学设备收集并分析这些信号,从而获得关于细胞的信息。
1.2 细胞荧光标记在流式细胞术分析中,细胞通常会被标记上特定的荧光染料,以便测量其特定特征。
这些标记可以是单一的,也可以是多重的,用于同时分析多个参数。
1.3 数据分析流式细胞仪在测量细胞荧光信号的同时,还会记录细胞的大小、形状和荧光强度等参数。
这些数据可以通过特定的软件进行分析和解释,以获得关于细胞数量、细胞类型和细胞功能等方面的信息。
2. 应用领域流式细胞术分析具有广泛的应用领域,在生物医学研究和临床诊断中发挥着重要作用。
2.1 免疫学研究流式细胞术在免疫学研究中广泛应用,可以用于分析免疫系统中不同类型的细胞数量和功能。
通过对白细胞表面标记物的检测,可以检测特定细胞亚群的存在,并研究其在疾病和免疫反应中的作用。
2.2 肿瘤学研究流式细胞术在肿瘤学研究中也扮演重要角色。
它可以用来研究肿瘤细胞的增殖、存活和死亡等关键特性,进而评估药物治疗对肿瘤细胞的影响。
此外,流式细胞术还可以检测循环肿瘤细胞,从而提供肿瘤早期诊断和治疗监测的手段。
2.3 微生物学研究流式细胞术被广泛应用于微生物学研究中,可以用于分析微生物的数量和生物学特性。
通过对细菌、真菌和病毒等微生物的荧光标记,可以确定它们的种类、数量和活性,从而研究其生长规律和致病机制。
2.4 干细胞研究流式细胞术在干细胞研究中也扮演重要角色。
流式细胞分析仪
流式细胞分析仪流式细胞分析仪是一种高效、精确的生物学实验工具,广泛应用于细胞生物学、免疫学、遗传学等领域。
它的出现极大地促进了细胞研究的进展,为科学家们提供了更多的可能性。
本文将介绍流式细胞分析仪的原理、应用及其在生物科学研究中的重要性。
流式细胞分析仪(flow cytometer)是一种可以对细胞进行流式检测的仪器。
它通过检测光的散射和荧光来分析细胞的形态、大小、浓度和免疫表型等信息。
其原理主要是利用流式细胞术,将细胞通过细长的管道分流,并用激光或光源照射细胞,激发荧光信号并收集散射光信号,从而获得细胞的信息。
这种检测方法既高效又准确,可以同时分析数千个细胞。
而且,流式细胞分析仪具有高通量、高分辨率、快速、灵敏度高等优势,使其成为当前生物学研究中不可或缺的工具之一。
流式细胞分析仪广泛应用于细胞生物学研究。
例如,在肿瘤学研究中,通过流式细胞分析仪可以对肿瘤细胞进行快速、准确的鉴定和分类。
它可以检测肿瘤细胞的大小、形态、染色质含量以及免疫表型等特征,为研究人员提供了丰富的信息,有助于了解肿瘤细胞的发生和发展机制。
此外,流式细胞分析仪还可以用于研究细胞周期、细胞分化和凋亡等过程,为揭示细胞生物学的分子机制提供了有力的工具。
除了肿瘤学研究外,流式细胞分析仪在免疫学中也有重要的应用。
免疫表型是指细胞表面的免疫分子的表达情况。
通过流式细胞分析仪可以获得细胞的免疫表型信息,这有助于识别不同类型的免疫细胞并研究它们在免疫反应中的作用。
例如,在研究自身免疫性疾病时,可以利用流式细胞分析仪对免疫细胞进行免疫表型分析,了解其在疾病发生和发展过程中的变化,从而寻找潜在的治疗靶点。
此外,流式细胞分析仪还可用于细胞遗传学研究。
通过观察细胞的核酸含量和染色体结构等信息,可以识别不同类型的细胞,并对细胞的遗传变异进行分析。
例如,在遗传疾病研究中,可以利用流式细胞分析仪对细胞进行染色体异常的检测,对疾病相关的基因突变进行鉴定。
流式细胞分析方案
微转移肿瘤细胞
灵敏度:10-7
48
DNA含量及细胞周期分析
细胞周期分析:在细胞周期(G0,G1,S, G2 ,M)的各个时期,DNA的含量随各时相 呈现出周期性的变化。通过核酸染料标记 DNA,并由流式细胞仪进行分析,可以得到 细胞各个时期的分布状态,计算出G0/G1%, S%及G2/M%。了解细胞的周期分布及细胞 的增殖活性。也可利用细胞周期蛋白 (CYCLIN)、Ki67、核增殖抗原(PCNA) 等,对细胞周期进行精确的分期:G0、G1、 S、G2、M.
3
●流式细胞仪实物
BD-Calibur
BD FACSVantage
4
• 其特点是: • ①测量速度快,最快可在1秒种内计测数万个细胞; • ②可进行多参数测量,可以对同一个细胞做有关物理、
化学特性的多参数测量,并具有明显的统计学意义;
• ③是一门综合性的高科技方法,它综合了激光技术、
计算机技术、流体力学、细胞化学、图像技术等从多 领域的知识和成果;
53
谢谢
54
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
Ethidium PE
FITC
cis-Parinaric acid
28
29
• 对单克隆抗体进行荧光染色,通过分析细胞表
面抗原标记
• 确认细胞类型。在细胞的混合群体中,我们使
最新流式细胞仪分析技术
三、荧光测量
• 荧光信号由被检细胞上标记的特异性荧光染料受激 发后产生,发射的荧光波长与激发光波长不同。
• 每种荧光染料会产生特定波长的荧光和颜色,通过 波长选择通透性滤片,可将不同波长的散射光和荧 光信号区分开,送入不同的光电倍增管。
• 选择不同的单抗及染料就可同时测定一个细胞上的 多个不同特征。
FL1, FL2, FL3, FL4(荧光)
光学系统示意图
Flow Tip
SS and FL Detector
FS Detector
Laser
(3)数据处理系统
主要由计算机及其软件组成
二、散射光的测定
细胞在液柱中与激光束相交时 向周围360°立体角方向散射的光线 信号,它的强弱与细胞的大小、形 状、胞内颗粒折射等有关,主要分
信道 (channel )
单参数直方图
(二)双参数直方图
• 双参数直方图:纵轴和横轴分别代表被测 量细胞的两个测量参数,根据这两个参数 就可以确定细胞在图上的表达位置。
• 双参数信号通常采用对数信号,最常用的 是点密图,在图中,每个点代表一个细胞, 点图利用颗粒密度反映同样散射光或荧光 强度的颗粒数量的多少。
二维等高图
3. 假三维等高图
(三)三参数直方图
(四)流式细胞仪的多参数分析
多参数分析:当细胞标记了多色荧光,被激 发光激发后,得到的荧光信号和散射光信 号可根据需要进行组合分析。
• 线性放大器和对数放大器
荧光染料的特性
•激发波长(EXCITING) •发射波长(EMISSION)
荧光补偿
四、细胞分选原理
通过流式细胞仪进行细胞分选 主要是在对具有某种特征的细胞需 进一步培养和研究时进行的。
流式细胞术简介 一、流式细胞术发展简史 流式细胞术(Flow Cytometry
流式细胞术简介一、流式细胞术发展简史流式细胞术(Flow Cytometry, FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术。
其特点是:①测量速度快,最快可在1秒种内计测数万个细胞;②可进行多参数测量,可以对同一个细胞做有关物理、化学特性的多参数测量,并具有明显的统计学意义;③是一门综合性的高科技方法,它综合了激光技术、计算机技术、流体力学、细胞化学、图像技术等从多领域的知识和成果;④既是细胞分析技术,又是精确的分选技术。
概要说来,流式细胞术主要包括了样品的液流技术、细胞的分选和计数技术,以及数据的采集和分析技术等。
FCM目前发展的水平凝聚了半个世纪以来人们在这方面的心血和成果。
1934年,Moldavan1首次提出了使悬浮的单个血红细胞等流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置计测的设想,在此之前,人们还习惯于测量静止的细胞,因为要使单个细胞顺次流过狭窄管道容易造成较大的细胞和细胞团块的淤阻。
1953年Crosland –Taylor根据雷诺对牛顿流体在圆形管中流动规律的研究认识到:管中轴线流过的鞘液流速越快,载物通过的能力越强,并具有较强的流体动力聚集作用。
于是设计了一个流动室,使待分析的细胞悬浮液都集聚在圆管轴线附近流过,外层包围着鞘液;细胞悬浮液和鞘液都在作层液。
这就奠定了现代流式细胞术中的液流技术基础。
1956年,Coulter在多年研究的基础上利用Coulter效应生产了Coulter 计数器。
其基本原理是:使细胞通过一个小孔,只在细胞与悬浮的介质之间存在着导电性上的差异,便会影响小孔道的电阻特性,从而形成电脉冲信号,测量电脉冲的强度和个数则可获得有关细胞大小和数目方面的信息。
1967年Holm等设计了通过汞弧光灯激发荧光染色的细胞,再由光电检测设备计数的装置。
1973年Steinkamp设计了一种利用激光激发双色荧光色素标记的细胞,既能分析计数,又能进行细胞分选的装置。
流式细胞仪(FlowCytometer)基本原理
流式细胞术的特点
检测对象:单细胞悬液或生物颗粒; 检测参数:多参数; 检测特点:单细胞水平分析; 检测速度:高速,最高达上万个细胞/秒; 检测结果:精度高、准确性好; 可对目标细胞进行分选;
2、流式细胞术光信号检测
光信号的类型 散射光信号:与标记荧光素无关,
是细胞的固有参数。 前向散射光(forward scatter, FSC); 侧向散射光(side scatter, SSC)。
FL1
FL2
散点图和伪彩图
等高图和密度图
等高图:类似于地图中的等高线,同一条线上的细胞数目相等,越在里 面的曲线代表细胞数目越多。
散点图(Dot Plot) 伪彩图(Pseudo-color Plot) 等高线图(Contour Plot) 密度图(Density Plot) 假三维图(Pseudo 3D Plot)
• 三维图(3D Plot)
直方图 Histogram
细胞的某一单参数数据的统计分布图,横坐标表示荧光信号 或散射光信号相对强度的值,单位是道数,纵坐标一般是细 胞数。
Hoechst(343, 450)常见为Hoechst33342和Hoechst33258,非嵌入的方 式与DNA链上的A-T碱基对结合。能对活细胞染色,用于活细胞DNA定量分 析,如精子分选;还用于侧群细胞的分选。
PY(派若宁 560, 573) RNA染料,能进入活细胞。
AO(吖啶橙 509, 525) DNA、RNA染料,染色后DNA呈黄绿色荧光,RNA呈 橙黄色荧光,可进行DNA/RNA双参数分析。
……
每个细胞检测5个参数,那么获取10000个细胞,容量为 5×10000(字或双字)。
流式数据的显示方式
• 常用分析软件
流式细胞分析技术
ü 光电倍增管(PMT):
检测散射光和荧光;同时将光学信号转换成 电脉 冲信号。
14
滤光片
分色反光镜
15
PMT 滤光片
荧光和散射光检 测系统
分色反光镜
激发光
激光聚光系统
16
数据处理系统
• 计算机及其软件组成 • 进行实验数据的分析、存储、显示
Photons/Detector (V)
光信号转化为电脉冲信号
特点:单细胞、快速、高通量、多参数、准确、灵敏
经典流式细胞仪(分析型和分选型) 量化成像分析流式细胞仪 质谱流式细胞仪
单激发光;4个 荧光检测通道
经典流式细胞仪
双激发光;6个 荧光检测通道
Coulter EPICS XL
6
量化成像分析流式细胞仪
美国merck millipore公司
质谱流式细胞仪
11
经典流式细胞仪
液流系统-液流聚焦原理
喷 嘴
鞘液(Sheath)
喷嘴
荧光信号或 侧向散射光
样本流
前向散射光 单个细胞流
12
液流系统形成单 个细胞流示意图
13
光路系统
ü 激发光:
常用的是空冷式的氩离子激光光源(488nm);氦氖 激光光源(633nm);紫外光源
ü 各种光学镜片:
分色反光镜 光束成形器;透镜 滤光片:长通滤片;短通滤片;带通滤片
(一)标本采集、运输、保存和操作 l标本来源
l几乎所有组织细胞均可用于FCM检测 l免疫标本主要来源于外周血、骨髓、 淋巴器官或组织等
l抗凝剂选择
l肝素钠(首选) lEDTA-Na2
l标本保存
标本制备
ü 外周血或骨髓样本
流式细胞术简介演示文稿
Detector Parameter
GFP
FL1
PI
FL2
PerCP-CY5.5 FL3
FL4
Filter
530/30 585/42 670LP 661/16
步骤二: 染色
• 体积 • 温度 • 孵育时间 • 对照
步骤三: 数据收集和分析
• 画图 • 寻找目标细胞 • 调整仪器设置到合适的状态 • 我们可以得到怎样的结果?它们意味
流式细胞仪可检测到的细胞参数 • 荧光信号
R1
File: 4
Acquisiti on Date: 06-Mar-03
Quad UL UR LL LR
Events % Gated
254
2.40
1067 10.08
5291 49.98
3975 37.55
X Mean 37.47
816.86 19.57
着什么?
散点图
密度图
二维等高图
直方图
图 报告中常见的几种流式细胞图
仪器设置调节
1. 用未染色细胞 2. 调整仪器PMT电压
开机需准备试剂
• 建议首次试机避免进行大量试验,仅需准 备下列样品
(1)Negative Control(不加任何抗体)。 (2)CD3-FITC(FL1 单染) (3)CD19-PE(FL2 单染) (4)CD3-FITC /CD19-PE(FL1/FL2 双染
Ab B
样本处理
细胞悬液的制备
• 细胞悬液:
– 分离PBMC、PRP等:操作复杂,分离、离心步骤 导致细胞特定群体丢失,并可能引入某些误差
– 直接使用外周血、骨髓:最接近生理状况,操作简 便,样本用血量小
流式细胞仪(flowcytometer)基本原理
流式细胞仪(flowcytometer)基本原理,详细流式细胞仪(Flow Cytometer)是一种用于细胞计数、细胞分类和细胞特性分析的重要实验室装置。
它能够快速地对成千上万的细胞进行分析,并且可以同时对多种细胞特性进行检测。
流式细胞仪的基本原理涉及到光学和流体力学的结合,这里是一个详细的解释:流体系统(Fluidics)流式细胞仪的流体系统负责将样本中的细胞悬液通过一个狭窄的管道(通常称为流室或喷嘴)输送,使细胞单个通过。
为了实现单个细胞的流动,采用了水力聚焦技术(hydrodynamic focusing),即使用一个不含细胞的剪切流(通常为盐溶液)将细胞流包围起来,迫使它们以单列的形式通过检测区。
光学系统(Optics)当细胞单个通过检测区时,流式细胞仪的光学系统开始发挥作用。
它通常包含一个或多个激光,激光束照射穿过流室的细胞。
细胞对光的散射和吸收会产生前向散射光(Forward Scatter, FSC)和侧向散射光(Side Scatter, SSC),分别与细胞的大小和内部复杂性(如颗粒性或结构)相关。
荧光检测(Fluorescence Detection)除了散射光,如果细胞被荧光标记,那么激光也会激发荧光染料,细胞将发出荧光信号。
不同的染料可以被激发并发出不同波长的荧光,这些荧光通过光学滤镜和分光器被检测,使得可以同时检测多个不同的荧光标记。
数据采集与分析(Data Acquisition and Analysis)每个通过检测区的细胞都会产生散射光和荧光信号,这些信号被光电管或光电倍增管(PMTs)检测,并转换为电信号。
这些电信号随后被数字化,并由计算机软件分析。
软件可以根据用户的需要进行细胞的分类、计数以及各种参数的量化,如细胞大小、颗粒性、荧光强度等。
通过流式细胞仪,研究人员可以进行多种分析,包括但不限于细胞周期分析、活细胞和死细胞的鉴别、细胞亚群的鉴定以及细胞内信号传导的研究。
流式细胞分析术
• Computer System: Data Display
• Computer System: Gate & Analysis
Surface Marker:
细胞分选原理图:
流腔
通入鞘液
Flow Cell 通入细胞流
Fluid System: Hydrodynimic Focusing(流体动力学聚焦)
细 胞 悬 液 鞘 液
Fluid System: Hydrodynimic Focusing
Sheath
细胞流的速率主要由鞘液的速率,压t Scatter,FS 用于检测细胞的 表面属性
FS和SS的强度与细胞或其他颗粒的大小, 形状,及optical homogenity有关.
• Electronic System:用 PMT(光电倍增管放大信号)
• Electronic System: Discrimination or Threshold(Discard the Debris)
当鞘液压力小时,压差 较小,中心截面半径很 细,流速小, 测量速度 慢,分辨率高
当鞘液压力大时,压 差较大中心截面半径 较大,流速也快, 测量 速度快,但分辨率低.
Fluid &Optical System: 激光在Core处聚焦激发荧光
椭圆形光斑有利 于对测试生物样品 的均匀激发
• Optical System: Laser & Flow Cell
Laser Bean
Flow Cell
• Optical System: Laser & Filter Set
HeNe Laser Argon Laser
• Optical System:检测前向散射光与侧向散射光信号
流式核型分析报告
流式核型分析报告简介流式核型分析(Flow Cytometry)是一种通过使用流式细胞仪来研究细胞的遗传特征的技术。
该技术在细胞学、遗传学、生物医学等领域有着广泛的应用。
本文档将介绍流式核型分析的原理、方法、实验流程和结果解读。
原理流式核型分析是利用流式细胞仪对细胞的染色体进行分析。
染色体是生物体遗传信息的核心部分,通过观察和分析细胞染色体的数量、形状和结构,可以了解细胞的遗传特征和异常情况。
在流式核型分析中,首先需要制备单细胞悬浮液。
将待检测样本中的细胞进行离心分离,并加入特定的细胞培养基进行悬浮处理,获得单细胞悬浮液。
接下来,将细胞悬浮液中的细胞进行染色体处理,一般会使用染色体标记剂(如荧光标记剂)来对细胞染色,使染色体能够被流式细胞仪检测到。
流式细胞仪通过将染色细胞逐个从流体中通过,在检测点上快速扫描细胞,并获取染色体的信息。
流式细胞仪会记录下染色体的荧光强度和其他相关参数。
通过对多个细胞的染色体数据进行统计和分析,可以得到细胞的核型分布情况。
方法以下是流式核型分析的基本方法步骤:1.样本制备:将待检测细胞分离出来,并通过离心等操作获得单细胞悬浮液。
2.细胞染色:将细胞悬浮液中的细胞进行染色处理,一般使用染色体标记剂进行染色。
3.流式细胞仪设置:根据实验要求,设置流式细胞仪的参数,如激光器波长、测量通道等。
4.数据采集:将染色的细胞样品注入流式细胞仪中进行数据采集,获取染色体的信息。
5.数据分析:利用流式细胞仪软件对获取的数据进行分析和解读,得出核型分布情况。
实验流程以下是流式核型分析的一般实验流程:1.样本制备–收集待检测的细胞样本。
–通过离心等操作获得单细胞悬浮液。
2.细胞染色–准备染色体标记剂。
–将细胞悬浮液与染色体标记剂进行染色反应,使细胞的染色体能够被流式细胞仪检测到。
3.流式细胞仪设置–根据实验要求,设置流式细胞仪的参数,如激光器波长、测量通道等。
4.数据采集–将染色的细胞样品注入流式细胞仪中进行数据采集。
流式细胞术(FlowCytometry,FCM)描述
AL免疫表型特点: 紊乱表型
1. 系列交叉(cross-lineage):
AML表达CD2,CD19 2. 表达不同步(asynchronous): 早期与晚期抗原同时表达 3. 表达量异常(over- or under-expression): 4. 与细胞大小不匹配(abnormal light scatter profile):如大CD2+细胞或小CD13+细胞
抗体标记的方法
抗体的选择
首选直接标记抗体 荧光分子 PE最强,适用于弱表达抗原
FITC最便宜,适用于强表达抗原
间接标记:适用范围广, biotin-avidin不适
合弱抗原的检测
实验对照的设计 空白对照:ALL 阴性对照:常用同型抗体对照
单色分析:设同型抗体对照 多色分析:同型对照,单阳性对照(用于仪器校正)
2)DNA链损伤“TUNEL”法 3)Annexin-V-FITC/PI双染法 4)线粒体细胞膜电位的检测 5)凋亡相关基因的检测——免疫标记法 检测基因
第五节 免疫功能的检测
(1)利用多参数流式细胞术,对PB中淋巴细胞比例, 及淋巴细胞中T、B、NK细胞的比例,及T细胞亚群进 行检测。如CD3+(总T细胞);CD19+(总B细胞), CD3-/(CD16+5(NK细胞)。3+/CD4+(Th/Ti): 辅助/诱导;CD3+/CD4+/CD5RA+:naï ve辅助/诱导T 细胞;CD3+/CD4+/CD45R0+:记忆性辅助/诱导T细 胞;D3+/CD8+(Ts/Tc):抑制/杀伤; CD3+/CD8/45RA+:naï ve抑制/杀伤T细胞; CD3+/CD8+/CD45R0+:记忆性抑制/杀伤T细胞。胞 内细胞因子的检测:CD4+/IL-4+,Th1细胞, CD4+/IFN-γ+。 (2)临床应用:原发性或继发性免疫缺陷病、自身免 疫性疾病、淋巴细胞增殖病、肿瘤疗效观察与预后判 断、移植免疫检测等。
流式细胞术简介
FCM是集现代电子物理技术、激光技术、电 子计算机技术和流体力学等于一身的高科技仪器, 开创了荧光技术的又一个崭新的领域。 近年来,此项技术发展十分迅速。具有更高灵 敏度、更高分辨率、双激光、多荧光参数分析的仪 器不断问世,并在朝着经济实用、操作简便、小巧 精制、自动化程度高的方向发展。 确信,流式细胞分析技术进一步与其它技术的 结合,将极大的推动生物医学的发展。
FACS Vantage DiVa
FACSAria
The BD FACSAriaTM cell sorter sets a new standard for high performance flow cytometry. Based on a revolutionary new design in instrumentation, this easy-to-use benchtop system delivers high-speed sorting and multicolor analysis.
BD公司自从1974年第一台商用流式细胞仪问世一直致力 于流式细胞仪的创新。 BD FACSCanto™ benchtop flow cytometer继承了这个传统。它的主要特这是: 1. 真6色容纳能力——从少量的样品量中获取每个细胞更 多的信息。 2. 敏感性(<50 MESF PE, <100 MESF FITC*) ——解决最 微弱的events。 3. 快速(10,000 events/sec) — 加速稀少事件的获取。 4. Low carryover (<0.1%) — 使样品污染最小化。 5. 更换透镜键盘化 —不用工具更换滤光片。 6. Fixed optical alignment — 免除用户调节。 7. 日常管理自动化 — 为科研节约更多时间。
流式细胞仪FlowCytometry原理简介
核酸:DNA含量,DNA成分,DNA合成,RNA,染色质结构等
总蛋白质 蛋白质分子间相互作用 抗原
细胞骨架成分
受体
功能属性: 酶活性 细胞凋亡 细胞坏死 细胞活性 氢硫基 凝血素结合位点
药物动力学 ……………………..
●FCM的定义
流式细胞仪是指,使细胞(或其 他粒子)以单个方式依次高速通过激 发光束,采集细胞被光照时产生的各 种信号,对信号进行处理,并对各参 数进行关联分析的一种仪器。
对比
流式细胞仪是一种特殊的显微镜
流式细胞仪
流动的细胞
显微镜
静止的细胞样本
数量大
数量少
高速分选
样本难以再利用
细胞群体特征量分布 可以揭示细胞内部结构信息
64839306 或 : 64862503 电子邮件 lcc@
Y 18
14
15
21 20
16 17
19 Ph 22
9-12
白血病患者
Chromomycin A3 (GC)
生物物理所现有流式细胞仪
型号:BD FACSVantage SE
参数:分析10,000个/ 秒,分选7,000个/秒; 激光:488nm,UV;四 色荧光通道。
地点:1406 联系方式:电话
流式细胞仪(Flow Cytometer) 基础简介
中科院生物物理研究所 中国科学院蛋白质科学研究平台
2005年3月 刘春春
主要内容
流式细胞仪概要 流式细胞仪的工作原理 流式细胞仪测量的对象
什么是流式细胞仪
●流式细胞仪实物
流式细胞数分析的工作原理及应用
流式细胞数分析的工作原理及应用1. 引言流式细胞数分析(Flow Cytometry)是一种广泛应用于细胞生物学和免疫学研究的技术。
它可以快速、准确地分析细胞的物理和化学特性,如大小、形态、颜色、表面标记物、细胞内蛋白等。
本文将介绍流式细胞数分析的工作原理,并探讨其在不同领域中的应用。
2. 工作原理流式细胞数分析主要基于细胞在流动系统中的物理性质和光学特性。
它包括以下几个基本步骤:2.1 细胞样品的制备在流式细胞数分析中,首先需要制备待测细胞的样品。
通常,细胞样品可以来自于血液、组织等来源。
样品应通过适当的方法进行预处理,如溶解红细胞、固定细胞、标记细胞等。
2.2 细胞的注射和流动制备好的细胞样品被注入到流式细胞仪中,其中带有一个细长通道。
样品中的细胞会以一定的速度通过通道,在流动过程中,细胞单个地经过激光束。
2.3 激光的照射和散射光信号的收集经过激光束照射后,细胞会散射出不同的光信号。
根据光的散射角度和强度,可以获得细胞的物理和形态参数。
激光束还可以与样品中的荧光物质发生作用,从而获得细胞内部的荧光信号。
2.4 光信号的检测和分析散射光信号和荧光信号会被流式细胞仪的光学系统捕获,并将其转换为电信号。
转换后的信号被放大、测量和分析。
这些信号可以提供有关细胞的信息,如细胞的数量、细胞周期、表面标记物的表达等。
3. 应用领域流式细胞数分析在生物医学研究中广泛应用,以下是几个常见的应用领域:3.1 免疫学研究在免疫学研究中,流式细胞数分析是一种常用的技术,可以帮助科研人员研究免疫细胞的数量、亚群分布和功能。
通过检测细胞表面标记物和细胞内蛋白的表达水平,可以了解免疫细胞的状态和功能。
3.2 肿瘤学研究流式细胞数分析在肿瘤学研究中扮演重要角色。
它可以帮助科研人员检测肿瘤细胞的表面标记物和细胞内信号分子,进一步了解肿瘤的发展和进展。
此外,流式细胞数分析还可以用于检测肿瘤组织中的免疫细胞浸润情况,评估肿瘤免疫环境的状态。
医学免疫学实验:流式细胞术(Flow Cytometry)的原理及应用
光谱重叠(Spectral overlap)
补偿模型图
FL2
补偿调节前后对比
FL1
数据收集和分析
1 画图(直方图,散点图) 2 寻找目标细胞 3 调整仪器设置到合适的状态 4 我们可以得到怎样的结果?
它们意味着什么?
数据分析
• 设门 • 设定阴性与阳性群体的界限 • 确定阳性与阴性细胞群体 • 统计阳性或阴性细胞群体的百分率,
流式细胞仪的临床应用
HIV免疫分型,CD4绝对计数 白血病和淋巴瘤的免疫分型 肿瘤的细胞周期和倍体分析 网织红细胞计数 细胞移植的交叉配型和免疫状态监测 干细胞计数 残量白血病细胞检查 HLA-B27检查 血小板功能及相关疾病
Part IV
流式细胞术实验操作 流程及数据分析
流式细胞术操作流程
流式细胞术
✓ 调整仪器设置 ✓ 收集数据 ✓ 分析结果
课堂目标
• 了解流式细胞仪的构造、原理及应用,掌 握“门”,“补偿”两个基本概念。
• 学会简单分析流式数据:小鼠脾脏分离的 单个核细胞中CD3+、CD4+ 、CD8+细胞 的比例。
Content
✓流式细胞仪的简介 ✓流式细胞仪的组成及原理 ✓流式细胞术的应用 ✓流式细胞术实验操作流程
不同于其他细胞分析仪器的主要特点,可以每秒钟上万个细胞的速率进行测量。
可检测的样本种类多样各种细胞(如外周血,骨髓,实体组织,悬浮或
贴壁培养的细胞),微生物,人工合成微球。
样本类型
可检测颗粒大小
0.2μm
50μm
流式细胞仪能检测哪些信息?
➢ 相对大小: Forward Scatter (FSC)
• 2.染色:小心用枪去除上清,再加入50ul预混抗体的PBS(由助 教准备),将细胞吹打混匀,避光, 4℃或冰上,染色1520min
流式细胞术一览
简介
流式细胞仪(Flow Cytometer):是集激光技术、 电子物理技术、光电测量技术、计算机技术、细胞 荧光化学技术以及单克隆抗体技术为一体的高科技 细胞分析仪。
流式细胞术(Flow Cytometry,FCM):利用流式 细胞仪对处于快速直线流动状态中的细胞或亚细胞 结构进行多参数、快速的定量分析和分选的技术。
在血液病诊断和治疗中的 应用
(1)白血病的诊断和治疗:FCM采用各种抗血细胞表面分化 抗原 (CD)的单克隆抗体,借助于各种荧光染料(异硫氰基 荧光素FITC,藻红蛋白PE等)测定一个细胞的多种参数, 以正确地判断出该细胞的属性。 (2)其它种类血液病的诊断和治疗监测:阵发性睡眠性血红 蛋白尿症是一种造血干细胞克隆病,细胞CD55、CD59抗 原表达减低是该病的一个特点。 (3)网织红细胞的测定及临床应用:网织红细胞计数是反映 骨髓造血功能的重要指标,FCM通过某些荧光染料(吖啶 橙、噻唑橙等)与红细胞中RNA结合,定量测定网织红细 胞中RNA,得到网织红细胞占成熟红细胞的百分比。
(2)在肿瘤的诊断、预后判断和治疗中的作用: FCM在肿瘤诊断中的重要作用已经被认可,DNA 非整倍体细胞峰的存在可为肿瘤诊断提供有力的 依据,FCM分析病理细胞具有速度快、信息量大, 敏感度高等优点,已被用在常规工作中。肿瘤细 胞DNA倍体分析对病人预后的判断有重要作用, 异倍体肿瘤恶性病变的复发率高、转移率高、死
在肿瘤学中的应用
(1)发现癌前病变,协助肿瘤早期诊断:人体正常组织发 生癌变要经过一个由量变到质变的漫长过程,而癌前细胞 即处于量变过程中向癌细胞转化阶段。人体正常的体细胞 均具有比较稳定的DNA二倍体含量。当人体发生癌变或 具有恶性潜能的癌前病变时,在其发生、发展过程中可伴 随细胞DNA含量的异常改变,FCM可精确定量DNA含量 的改变,作为诊断癌前病变发展至癌变中的一个有价值的 标志,能对癌前病变的性质及发展趋势作出估价,有助于 癌变的早期诊断。有资料证实,癌前病变的癌变发生率与 细胞不典型增生程度有密切关系,增生程度越重,癌变发 生率越高。随着细胞不典型增生程度的加重,DNA非整 倍体出现率增高,这是癌变的一个重要标志。
第13章流式细胞分析技术
三、基于免疫微球技术的应用
CBA 技术
荧光微球 捕获抗体 捕获荧光微球
+
不同荧光
+
强度微球
抗原(细胞因子) 荧光标记抗体
CBA流式检测结果和标准曲线
第四节 流式细胞分析的临床应用
流式细胞术目前已广泛地被应用于基础研究、临床诊断和研 究应用各方面,特别是在免疫细胞的表型、功能分析和免疫 相关性疾病的诊断、治疗和预后判断中具有重要的意义。
散射光
单细胞液滴
选定细胞群体
荧光信号
加载电荷
偏转高压静电场
液滴偏转
进入分选收集管,完成细胞分选
数据储存,分析。
细胞悬液形成液流柱 压电晶体 产生机械振动
流动室振动
液流断裂成液滴
空白液滴 不充电
弃去
含细胞的液滴 充电
偏转落入收集器
分选的技术要求:
- 分选速度:单位时间内分选的细胞数量。与悬液中细胞的含量成正比。 - 分选纯度:分选出的目的细胞占所有收获细胞的百分率。 - 分选收获率:实际收获的分选细胞与设定通过测量点的分选细胞之间的
(二)双参数图 二维散点图、密度图和等高图
(三)多维参数的显示 假三维图和三参数点图
三参数以上的显示 主要要依据设门技术进行分析
(四)设门分析技术
Gate设置:指在某一张选定参数的直方图上,根据该图的细胞群 分布选定其中想要分析的特定细胞群,并要求该样本所有其他参 数组合的直方图只体现这群细胞的分布情况。
流式细胞仪特点:
①速度快,每秒可测量数万个微粒;②精度高;③准确性好; ④多参数测量,可以同时对同一个微粒作物理、化学和生物特 性的多参数测量。
二、经典流式细胞仪
(一)基本结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Flow cytometry Comparative Flow Cytometric Analysis of Immunofunctionalized Nanowire and Nanoparticle SignaturesAdriele Prina-Mello,*Aine M.Whelan,*Ann Atzberger,Joseph E.McCarthy, Fiona Byrne,Gemma-Louise Davies,J.M.D.Coey,Yuri Volkov,andYurii K.Gun’ko*F low cytometry is one of the gold-standard techniques used in clinicalmedicine for quantitative immunoassaying.The continuous development ofits probes,commonlyfluorescent nanoparticles,is tely,theintroduction of quantitative multiplexed immunoassay has challenged theuse of nanoparticles as probes.Functionalizedfluorescent silica-basedmagnetic nanowires are investigated underflow cytometry as a novel probecategory.The preparation and full characterization of these multimodalnanowires is reported and compared to those of silica-based magneticnanoparticles byflow cytometry.Full characterization includes trans-mission electron microscopy andfluorescence microscopy imaging,flowcytometric assaying,superconducting quantum interference device(SQUID)magnetization,and Mo¨ssbauer spectroscopy measurements.Thiswork shows that loaded silica nanowires have intrinsic geometricaladvantages when compared to similar spherical particles due to their unique‘‘flow cytometryfingerprint’’when utilized as magnetic carriers forimmunodetection applications.These advantages account for a17%yield indetecting the functional binding between THP-1and ICAM-1,by utilizing amuch lower concentration than that required for the nanoparticles.1.IntroductionIn recent years,there has been an intense effort to develop nanoparticles forfluorescentflow cytometry.[1,2]The ability to perform a specific and quantitative multiplexed immunoassay to discriminate between targeted species has only recently been demonstrated.[3]The ability offlow cytometry to discriminate between individual micro-and nanoparticles based on size,[Ã]Prof.Y.K.Gun’ko,Dr.A.M.Whelan,J.E.McCarthy,G.-L.Davies Centre for Research on Adaptive Nanostructures and Nanodevices andSchool of ChemistryTrinity College Dublin,Dublin2(Ireland)E-mail:igounko@tcd.ie;ainewhelanster@Dr.A.Prina-Mello,F.Byrne,Prof.J.M.D.CoeyCentre for Research on Adaptive Nanostructures and Nanodevices and School of PhysicsTrinity College Dublin,Dublin2(Ireland)E-mail:prinamea@tcd.ieDOI:10.1002/smll.200901014Prof.Y.VolkovCentre for Research on Adaptive Nanostructures and Nanodevices and Department of Clinical MedicineTrinity College Dublin,Dublin8(Ireland)A.AtzbergerFlow Cytometry Laboratory,Institute of Molecular MedicineTrinity College Dublin,Dublin2(Ireland):Supporting Information is available on the WWW under http:// or from the author.Keywords:antibodiesflow cytometryfluorescent probesnanoparticlesnanowiresfluorescence intensity,and/or fluorescence wavelength allows for fast time-resolved detection and low sample and reagent volume,which make this a cost-effective analytical technique.Previous work described how nanomaterials of different sizes for multiplex assays have been used for different biological samples.[4]Recently,the discrimination between multiple micro-and nanoparticles by fluorescent dyes has been proven.[5]However,the technique is prone to the ‘‘encroachment’’problem,or aggre-gation of the mixed microparticle popula-tions.[6]Several solutions have been pro-posed,based on the structural,electronic,magnetic,optical,and catalytic properties of nanomaterials that are not seen in the bulk matter.[4,7,8]This allows for secondary measurements or further assay of the sample,such as high-resolution imaging and detection.[9]To expand the multiplexed capabilities of flow cytometry there is a need to develop novel nanostructures.Nanometer-size wires made of well-characterized composite materials and uniformly coated with biofunctionalities could then offer new opportunities in this area.The aim of our work is to develop the concept of multiplexed flow cytometry by using an improved preparation of super-paramagnetically loaded silica nanoparti-cles and nanowires.The incorporation ofpolydispersed iron oxide nanoparticles into the silica matrix of both structures allows for secondary biomedical assaying,such as cell separation,[10]biosensing,[11]cell ima-ging,[12]and drug delivery.[13]In this workwe use human acute monocytic leukemia cell line (THP-1)to determine their immune expression to CD54antibody.The surface chemistry of the nanomaterials allows antibody incubation and functional coating.Furthermore,the shape difference between the two nanostructured materials is clearly detected by the flow cytometry technique.Silica nanowires and nanotubes are a novel class of inorganic structures for biomedical applications [14,15]and gene delivery.[16]Nanowires were first proposed as an effective platform for immunoassays by Nicewarner-Pena et al.,[17]and the proposal was expanded by Tok and co-workers,who used antibody-coated segmented Au–Ag nanowires for the detec-tion of bacterial spores,bacteriophages,and specific pro-teins.[18]It has been shown that linear magnetic nanostructures have the potential to outperform nanoparticles based on their intrinsic properties.[18,19]Recently,carbon nanotube (CNT)–cell complexes were also measured by side-scattering flow cytometry.[8]The reason for using nanowires is their long aspect ratio.Their surface offers a unique substrate for the selective binding of species such as antibodies with the advantage of maximizing the functional binding of the nanomaterials along their principal axis.This is summarized in Figure 1,in which the nanoparticle forms a single bond to a cell/cell receptor whereas the wire binds at several points.2.Results and Discussion Three aspects of the nanoparticles or nanowires arediscussed here:1)the silica shell which represents the substrate for binding the functional material,2)the magnetic load dispersion of the silica nanoparticle and nanowire in solution,and 3)the uniformity of the loaded fluorescent antibody marker.The coating of magnetic nanocomposites with silica has been the subject of many investigations due to the useful properties of silica.[20]Methods for preparing magnetite-loaded silica include dialysis [21]and sol–gel syntheses.[22]To directly compare the nanoparticles with nanowires,a modified sol–gel synthesis was used,which yielded uniform,mono-disperse nanoparticles with narrow size distribution.[20]Transmission electron microscopy (TEM)images of the magnetically loaded nanoparticles and high-resolutionopticalFigure 1.Schematic comparison of magnetic particle and nanowire binding to a cell/cell receptor.ICAM-1¼intracellular adhesion molecule 1,PE ¼phycoerythrin,FITC ¼fluorescein ß2009Wiley-VCH Verlag GmbH &Co.KGaA,Weinheim small 2009,x,No.x,1–9microscopy images of the nanowires are shown in Figure2a and c,respectively.The magnetite-loaded silica nanoparticles were monodisperse and spherical in shape with an average diameter of144Æ15nm.The magnetically loaded silica nanowires are cylindrical in shape,with lengths of8Æ2m m and diameters of 176Æ50nm.In addition,quantitative measurements of each batch of nanoparticles and nanowires were carried out by confocal microscopy(Figure2b and d)to confirm and extend to a larger sample population the TEM analysis.Figure2e and f showsfluorescent antibody load mapping of the nanomaterials.Laser scanning confocal microscopy provided the dimen-sions of both nanowires and nanoparticles.Hence,the surface area,the surface-to-volume ratio of the functionalized carriers, and the surface loading of the antibody were quantified to be uniform;the results are summarized in Table1.Table1also includes relevant bulk,surface,and magnetic properties and the concentrations used in this study for both nanowires and nanoparticles.The magnetic loading of the nanoparticles and nanowires serves to improve the efficacy of immunoassays by facilitating the separation,preconcentration,and washing steps.[23]In our work we used magnetic immobilization during the functiona-lization of the surfaces of both nanostructures with amino groups and amide coupling(see Supporting Information, Figure S1).A uniform coating of the antibodies on the particle and wire surfaces was achieved.The magnetically loaded silica nanoparticles and nanowires were found to behave super-paramagnetically and therefore have little tendency to aggregate,as observed from the TEM images.The magnetiza-tion of the particles and wires is diluted by the SiO2matrix,asFigure2.a)TEMimageofmagneticallyloadedsilicananoparticles(144Æ15nm);b)high-resolutionconfocalmicroscopyimageofR-PE-IgGantibody-functionalized silica nanoparticles(red arrow represents direction for rendered image(e)).c)TEM images of magnetically loaded silica nanowire (diameter176Æ50nm;length8Æ2m m);d)high-resolution confocal microscopy image of R-PE-IgG antibody-functionalized silica nanowires(red arrow represents direction for rendered image(f)).e,f)3Dfluorescent antibody load mapping of R-PE-IgG antibody-functionalized on silica nanoparticles and nanowires,respectively.Intensity measurements expressed in arbitrary units and normalized to background(magnificationÂ63oil immersion lens).parative analysis of nanowires and nanoparticles.Sample TEM:dimensionalmeasurements(avgÆstd.dev.)Confocalmicroscopymeasurements(average of100)VSM[a]measurement:saturation magnetization(M s)[A m2kgÀ1],volume fraction ofmagnetite[%]Density[kg mÀ3],mass[pg],area[m m2],surface/volumeratioInjectedconcentration[NP mLÀ1],mass[m g]Antibodysurface loading(R-PE intensitymeasurement)[a.u.]NotesNanowire With silica shell With shellþfluo-Ab[b]coated M s¼0.43r¼2.34[NW]¼1.00Â10748.0Æ13.0Wires uniformlydispersed withuniform antibodycoating alongfull lengthf¼176Æ50nm f¼200Æ50nm fraction¼0.02%m¼0.59NW mLÀ1m NW¼5.87m g L¼8.0Æ2.0m m L¼11.0Æ2.1m m A¼5.09s/v¼20.25Nanoparticle With shell With shellþcoated M s¼1.2r¼2.35[NP]¼6.50Â108NP mLÀ174.0Æ35.0The antibodycoating onparticles has verysharp decay fromthe particle centerf¼144Æ15nm f¼200Æ75nm fraction¼0.69%m¼0.01m NPffi6.00m gA¼0.13s/v¼31.50[a]VSM¼vibrating sample magnetometer.[b]Fluo-Ab¼fluorescent antibody marker.shown in Figure3a and b in the magnetization curves of the nanocomposites.The saturation magnetization of the nano-particles is measured as1.25A m2kgÀ1and for nanowires is measured as0.04A m2kgÀ1.The low magnetization reflects the low volume fraction of g-Fe2O3in the silica nanoparticles and nanowires.Mo¨ssbauer analysis showed no ferrous or mixed-valence components in the iron hyperfine spectrum(Figure3c). During processing the magnetite is oxidized to g-Fe2O3,which has a magnetization of61A m2kgÀ1.Hence,the loading is2.0% for the particles and0.07%for the wires.The error arising from the uncertainty in the assumed value of magnetization isÆ20%.The superparamagnetism of both silica-coated nanoparti-cles and nanowires facilitated preconcentration during the functionalization of the surfaces with amino groups and amide coupling.These groups allowed for the surface binding of primary immunoglobulin G(IgG)antibody R-phycoerythrin (R-PE)conjugate to secondary human CD54(intracellular adhesion molecule1or ICAM-1)fluorescein isothiocyanate (FITC)conjugate.To guarantee uniform surface loading by the antibody,each surface chemistry step for both nanowires and nanoparticles was benchmarked against thefinal totalfluor-escence intensity.In particular,since aminopropyltriethoxysilane(APTES)is often used to immobilize biomolecules on surfaces,[24]it was of interest to determine how the concentration of APTES affected the covalent binding of thefinal antibody.Hence,increasing volumes of APTES were incubated in the presence of a saturated volume of FITC-conjugate-labeled CD54mouse antibody.Interestingly,for the nanowires but not the nanoparticles,the amount of APTES used in coating the nanowires was related to the signal obtained from the fluorescently labeled antibody inflow cytometry(see Figure4). In addition,to further maximize the functional adhesion between the antibodies and the amino-functionalized nano-wires and nanoparticles,an intermediate preparation step was undertaken following the established1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide hydrochloride(EDC)-facilitated coupling method.A full investigation was then carried out by confocal fluorescence microscopy to confirm that the silica nanoparticles and nanowires were successfully functionalized with both primary and secondary antibodies(see Table1and Figure2). Figure2e and f show three-dimensional(3D)rendered images and intensity profiles of nanoparticles and nanowires functio-nalized with R-PE-labeled IgG mouse antibodies.The images of100particles and wires show that the functional-group coating on both particles and wires is uniform.Figure2b and d are images of representative samples,in which it is seen that the nanowires remain discrete and unbundled when in solution, whereas the nanoparticles show some tendency to aggregate into small clusters.Inflow cytometry,this is the cause oftheFigure3.a,b)Magnetization curve measured at room temperature for a)magnetite-loaded silica nanoparticles and b)magnetite-loaded silica nanowires obtained using a superconducting quantum interference device(SQUID)magnetometer.c)Mo¨ssbauer spectra of magnetic-particle-loaded silica particles.B HF¼hyperfine magneticfield.Figure4.APTES optimization for antibody loading(ICAM-1).Overlay of fluorescence intensity response of ICAM-1antibody functionalized on silica nanowires using different concentrations of APTES coupling agent.ß2009Wiley-VCH Verlag GmbH&Co.KGaA,Weinheim small2009,x,No.x,1–9‘‘encroachment’’effect.[6]Since it can seriously compromise the immunoassay[2]by the nonspecific binding,coating variation,decreased surface-to-volume ratio,and lack of stability of the biomarkers,there is benefit in using nanowires. In addition,the nanowires show a good antibody uniformity distribution,and therefore less measurement error inflow cytometry(see Figure5c and c1)in the antibody signal detection along their axis,as shown in Table1.To maximize the ICAM-1secondary antibody functional response,when bound to R-PE primary,a concentration optimization was necessary to prevent any nonspecific binding,bundling,and false-positive results.ICAM-1is a member of the immunoglobulin superfamily of receptors and is the ligand for the leukocyte integrins Mac-1and lymphocyte function-associated antigen1(LFA-1;CD11a/ CD18).[25]This molecule is thought to play a critical role in the attachment and migration of immune and inflammatory cells, such as agranular leukocytes(e.g.,monocytes),into and through tissues.[26]Therefore,the measurement of the expres-sion intensity is a reliable indicator of the ongoing immunor-esponse.Determination of the ICAM-1binding saturation was investigated byflow cytometry after incubation of the nanowires and nanoparticles in the presence of THP-1cells for1h.The binding of secondary antibody reached saturation at 1:10dilution of the secondary when compared to its positive control(Figure6).THP-1surface expression of ICAM-1was subsequently evaluated by comparingfully functionalized nanoparticles and nano-wires to their respective controls.Theresults presented give a quantitative indica-tion of the marker response efficiency.Thedesign of negative(Figure5)and positivecontrols is crucial inflow cytometry,toquantify the THP-1cell immunoresponse.Negative controls were unlabeled silicananoparticles and nanowires,which wereinitially tested against THP-1cells(fluor-escently labeled with DNA nuclear staining(40,6-diamidino-2-phenylindole,DAPI)tohighlight cell viability),as shown inFigure5a1.Figure5a shows where the cellsare positioned in the forward scatter(FS)versus side scatter(SS)log–log plots andFITC versus PE log–log plots(R1gate inboth Figure5a and a1).Almost100%of allcells are detected by their DAPI cell nucleusagainst R-PEfluorescent staining(Figure5a1).Comparative gate analysiswith Figure5a and a1was also used todiscriminate between particles(gates R2and R3against R1in Figure5b,with no cellfluorescence signal in Figure5b1)and wires(gates R2and R3against R1in Figure5c,with no cellfluorescence signal inFigure5c1).Figure5b1and c1also highlightthe lack of autofluorescence of the nano-particle and nanowire when unbound in thenegative control.Results are shown in FSversus SS log–log plots to show the relativedifference in size of the objects underdetection(i.e.,only cells,particles,wires,cell with particles,and cell with wires)versus relative granularity.Log scales areused in order to best visualize the separationin size between the free cells and thosebound to nanowires or particles.The positive controls are given bymeasurements of the expression of thecell-surface binding between THP-1(DAPI labeled)and R-PE and ICAM-1when dispersed in solution only(Figure7aFigure5.Negative controls.a)Side scatter versus forward scatter(SS-FS)scatter plot of THP-1 cell.a1)PE-FITC cytogram of THP-1stained with R-PE to highlight cell counts and gate analysis (gate R1).b)SS-FS plot of uncoated particles only(gate R2)and b1)gated analysis versus THP-1(gate R1)on PE-FITC scatter plot.c)SS-FS plot of uncoated nanowires only(gate R3) and c1)PE-FITC scatter plot gated analysis versus THP-1(R1gate).NP¼nanoparticle,NW¼nanowire.and b).It is possible from these results to gate and measure the response for both R-PE (Figure 7a 2and a 3)and FITC fluorescence emission (Figure 7b 2and b 3).It can be seen that the vast majority of the cells used in the experiments are live (DAPI negative,gate R1,for Figure 7a 1and b 1;gate R12for Figure 7a 2and b 2).Quantitative flow cytometric analysis was then carried out to measure the THP-1cell anti-ICAM-1binding specificity to the functionally prepared nanoparticles and nanowires.The results are presented in Figure 7c and d.Confirmation of the selective THP-1functional binding is provided by the upwards shift,by almost an order of magnitude,of the cell population count (R1)for both particles (Figure 7c 1)and wires (Figure 7d 1).This is also proven by the increased fluorescence intensity counts (R12),which represent the specific binding between nanomaterials and cells,as shown in Figure 7c 2and d 2,respectively.Finally,in the last two cytograms (Figure 7c 3and d 3)the different scattering patterns of the fluorescent particles and wires functionally bound to THP-1cells (measured by the FITC-conjugated fluorescence)can be seen.These plots show that,of the total viable cells,62%bind to nanoparticles and 17%bind to nanowires.Although the use of particles gives a larger yield,the use of nanowires gives a much better readout of the difference between unbound and functionally bound THP-1,as shown from the scatter diagram in Figure 7d 3.In addition,the nanowires are shown to bind more efficiently than the nanoparticles,since the concentration in mL À1of nanowires injected is 65times smaller than the concentration of nanoparticles (the particle and wire surface areas are similar).Furthermore,the lack of clustering and bundling observed with nanowires can be advantageous in multiplexed flow cytometry.3.ConclusionsMagnetic silica nanoparticles and nanowires were success-fully prepared and functionalized for immunological detection and antibody-specific targeting.The specific binding between THP-1monocyte cells and ICAM-1secondary antibody has been measured by flow cytometry for both particles and wires.Our results demonstrate that the loaded silica nanowires have intrinsic advantages when compared to similar particles due to their unique ‘‘flow cytometry fingerprint’’,which allows them to be clearly distinguished when utilized as carriers for immunodetection applications.Their efficiency at binding to the cells is comparable to that of the particles when the surface areas are compared.Therefore,in this study we introduced a novel method based on magnetic silica nanowires for immuno-and bioassay,with future potential to expand into multiplex flow cytometry nanowire-based assay.Therefore,the nanowire aspect ratio could be of advantage for multiplexed immunoassay detection.Future efforts will be focused on their multimodal use as an analytical tool in flow cytometry for rapid assaying of selected antibodies,cytokines,and nucleic acids.4.Experimental SectionNanoparticle and nanowire synthesis:Magnetically loaded silica nanoparticles were prepared by modification of published procedures.[20,27,28]Firstly,magnetite nanoparticles were pre-pared by co-precipitation of FeCl 2Á4H 2O and FeCl 3Á6H 2O in a molar ratio of 1:2with 0.5M NaOH.This alkaline solution was stirred at 808C for 1h yielding a black colloidal suspension of magnetite nanoparticles,which were washed several times with water.The magnetite nanoparticles (9Æ1nm)were then stabi-lized using a 0.01M solution of citric acid and pH-neutralized using tetramethylammonium hydroxide.To coat the magnetite nanoparticles with silica,the citric acid-stabilized magnetite nanoparticles were agitated by using ultrasound for 1h in an ethanol/H 2O solution containing ammonium hydroxide and tetraethylorthosilane (TEOS)and then stirred overnight.The resulting light brown solution containing silica-coated magnetite was washed with water until the pH was neutral.To prepare the magnetite-loaded silica nanowires it was necessary to initially prepare a mixture of TEOS (8.2mL),ethanol (1.76g),water (0.66g),and concentrated HCl (one drop),which was stirred for 2.5h to hydrolyze the TEOS.Then cetyltrimethyl-ammonium bromide (CTAB)-stabilized magnetite (0.6mL)was added simultaneously with a condensation mixture of water (2g),ethanol (1.76g),and four drops of HCl.This mixture was placed on a shaker for 30min,and then infiltrated through a porous alumina membrane template (pore diameter 200nm)under vacuum assistance.The gel was dried for 24hs in air.The template was placed in 0.1M NaOH with sonication to dissolve the membrane and release the nanowires.The solution was cen-trifuged at 2000rpm for 5min and then washed with Millipore water five times to remove NaOH;the pH of the nanowire dispersion after the final washing wasneutral.Figure 6.ICAM secondary loading of nanowires.Optimal secondary antibody intensity saturation of ICAM-1coated on silica-coatednanowires.Overlay of fluorescence response compared to negative (cells in suspension in RPMI 1640only)and positive (cells in suspension in RPMI1640with1:10dilutionofICAM-1antibody).Datanormalizedto105cells per sample.ß2009Wiley-VCH Verlag GmbH &Co.KGaA,Weinheim small 2009,x,No.x,1–9Figure7.Gated analysis of interaction between THP-1cells and primary and secondary antibody functionalized onto nanoparticles and nanowires.a)PositivecontrolofviableTHP-1(DAPIstained)toIgGprimaryantibody(R-PEconjugate)inRPMI1640solution;b)positivecontrolofviableTHP-1(DAPI stained)to ICAM-1secondary antibody(FITC conjugate)in RPMI1640solution;c)measurement of62%specific binding between ICAM-1-biofunctionalized nanoparticle to THP-1cell surface;and d)17%detection efficiency on ICAM-1-biofunctionalized nanowire specific binding to THP-1 cellsurface.Pleasenote,plots(d2)and(d3)alsoquantitativelyhighlightthegeometricaldifferencebetweenunboundcellsandcellsboundtonanowire (right-hand side of gated area R12in(d2)and quadrant R5in(d3)).Antibody functionalization of nanoparticles:To further con-jugate antibodies to the nanoparticles,it was necessary to functionalize the particles with amino groups.Therefore,the silica-coated magnetite nanoparticles(0.1g)were dispersed in Millipore water by sonication.Isopropanol(75mL)was added, followed by ammonia(2.4mL)and TEOS(1mL).After sonication for2h,APTES(1mL)was added and the mixture was sonicated for another hour,then the solvent was removed by evaporation.The presence of amino groups was confirmed by the Kaiser test.[29] Ninhydrin was used to detect ammonia and primary or secondary amines.The solid(50mg)was dispersed in phosphate buffer(10mL) by sonication.This solution(500m L)was mixed with a freshly prepared solution of EDC(0.5M)in phosphate buffer.IgG primary antibody(75m L)was added and the mixture was vortexed at room temperature for48h.The particles were then washed three times with an equal volume of phosphate buffer solution(PBS)to remove the unbound antibodies.Functionalization of nanowires and secondary antibodies:To functionalize nanowires with primary antibodies,dispersed nanowire solution(500m L)was added to each of six eppendorf 1.5mL tubes.The samples were centrifuged on an Eppendorf centrifuge for30min to concentrate the wires.The pellet was redispersed in a mixture of isopropanol(500m L)and Millipore water(100m L).A solution of APTES in isopropanol(0.42M)was systematically added to each 1.5mL tube(20,40,60,80, 120m L,respectively),followed by ammonia(50m L).The samples were mixed on a vortex apparatus overnight.They were then centrifuged for20min at10000rpm and the pellet was redispersed in water(500m L).Then,a solution of EDC(0.5M)in phosphate buffered saline(500m L)as added to each eppendorf tube.Antimouse IgG R-PE conjugate primary antibody(Sigma, USA)was added to each sample at a dilution of1:20,as in the supplier specification.Each sample was vortexed and then incubated at48C for2days.Three different concentrations of mouse monoclonal anti-human CD54(ICAM-1)FITC conjugate(Invitrogen,USA)secondary antibody were prepared at1:10,1:50,and1:100dilution as in the supplier specification for flow cytometric analysis.Solutions were systematically added to six1.5mL eppendorf tubes mixed for1h at48C,and then rinsed three times with Millipore water to remove the excess of noncovalently bound secondary antibody.Samples were then resuspended in Millipore water to a final volume of 200m L per sample.In total,five batches of silica-coated magnetite nanowires were synthesized,functionalized,character-ized,and tested by the flow cytometry technique against their matched negative and positive controls.Cell culture and antibodies:Human acute monocytic leukemia THP-1is a phagocytic cell line.THP-1cells(ATCC,Rockville,MD) were maintained in RPMI1640cell culture medium(Sigma,St. Louis,MO)containing10%fetal bovine serum,L-glutamine (Sigma,UK),and0.05m M2-mercaptoethanol(Chemicon,USA). To prevent the active uptake of the nanoparticles and nanowires, THP-1cells were used in suspension without any preactivation.Antimouse IgG R-PE conjugate,developed in goat,was used as primary antibody for both confocal and flow cytometry measure-ments.This antibody was conjugated to the secondary CD54at a working dilution of1:20according to the supplier’s protocols.Monoclonal antibody CD54,also known as intracellular adhesion molecule-1(ICAM-1),is a member of the immuno-globulin superfamily of receptors expressed by many cell types. The expression of CD54(ICAM-1)is linked to inflammatory mediators such as interleukin-1(IL-1),IL-6,tumor necrosis factor alpha,and interferon gamma,which are all cytokines linked to chronic disease such as cancer.Confocal microscopy:The surface coating uniformity and IgG primary antibody load were measured by confocal microscopy analysis.High-resolution images were acquired for at least100 particles and100wires by using an Axiovert system(Carl Zeiss, Germany),then surface and geometrical analysis and3D rendering were carried out by using the Axiovert and Zeiss LSM image software(Carl Zeiss,Germany).Confocalfluorescence microscopy was also used to measure the concentration of each nanomaterial in solution.Flow cytometry:THP-1expression of surface ICAM-1was determined byflow cytometry.For each experiment,after THP-1 cells were washed twice with sterile1X PBS,cells were incubated for1h at378C in5%CO2in the presence of an equal mass (approximately6m g)of biofunctionalized nanoparticles or nano-wires.At all times,THP-1cell viability was measured by fluorescently staining the nuclear DNA with DAPI(Sigma,UK). Samples were measured with a Dako CyAn ADP(advanced digital processing)system(Dako Colorado Inc.,USA).Data and gated analysis were performed with Summit software(version4.3;Dako Colorado Inc.,USA).Magnetization measurements:Magnetization measurements on nanoparticle and nanowire samples were carried out at room temperature using a Quantum Design MPMS XL superconducting quantum interference device(SQUID)magnetometer withfields up to5T.The dried nanoparticle samples were weighed and placed in a gel cap holder.The magnetic curves werefitted to Langevin functions and these are reported in Figure3a and b;no hysteresis is shown.Mo¨ssbauer spectroscopy:57Fe Mo¨ssbauer spectra were collected at room temperature(RT)using a constant-acceleration spectrometer equipped with a57Co(Rh)source kept at RT.Velocity calibration was performed using a-Fe and all the isomer shift values are given relative to a-Fe.IS,D E q,e,G/2,B HF,and A denote the isomer shift,quadrupole splitting,quadrupole shift,line width (half width of half maximum),hyperfine magneticfield,and relative absorption area,respectively,of the components used to fit the experimental spectra.The Mo¨ssbauer spectrum of the iron oxide-loaded silica particles is shown in Figure3c.This is a relaxation spectrum typical of superparamagnetic ferric oxide particles,with a relaxation time of approximately10À7s.It suggests that the magnetite has been largely oxidized to maghemite,g-Fe2O3.Transmission electron microscopy:TEM images were obtained on a Jeol JEM-2100,200kV LaB instrument,operated at120kV with a beam current of about65m A.Samples for TEM were prepared by deposition and drying of a drop of the powder dispersed in water,or the appropriate liquid sample,onto a carbon-coated300-mesh copper grid.Diameters were measured using the ImageJ version1.40software program;average values were calculated by counting a minimum of100particles.ß2009Wiley-VCH Verlag GmbH&Co.KGaA,Weinheim small2009,x,No.x,1–9。