AGILENT示波器中文说明书——DSOX3PWR_users_guide_zh-cn
安捷伦示波器说明书中英双版.
17
步驟 5:變更分析設定 ( 如果可用 )
19
步驟 6:套用分析
19
步驟 7:檢視分析結果
19
3 執
25
DSOX3PWR 功率量測應用 使用者指南
5
浪湧電流
28
調變
30
功率品質
33
開關損耗
35
瞬變回應
40
開啟 / 關閉
43
輸出漣波
45
電源供應器抑制比 (PSRR)
47
擺動速率
手冊零件編號
版本 02.20.0000
版本
2012 年 7 月 16 日
Available in electronic format only
Agilent Technologies, Inc. 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA
DSOX3PWR 功率量測應 用
使用者指南
s1
聲明
© Agilent Technologies, Inc. 2007-2009, 2011-2012
本手冊受美國與國際著作權法之規範, 未經 Agilent Technologies, Inc. 事 先協議或書面同意,不得使用任何形式 或方法 ( 包含電子形式儲存、擷取或 轉譯為外國語言 ) 複製本手冊任何部 份。
• 透過電源供應器抑制比 (PSRR) 量測,量測電路對來自輸入電源供應器之不 同頻率漣波的斥拒情況。
功率量測與分析授權、示波器、高電壓差分測試棒、電流測試棒、測試棒取消時 滯設備以及被動測試棒,共同構成用於電源供應器設計和測試的完整功率量測系 統。
DSOX3PWR 功率量測應用 使用者指南
Agilent Infiniium 9000系列示波器 说明书
RS-232/UART 串行解码和触发(N5462B 或新购买示波器的选件 001)
使用该应用选项,您无需再去手动解码总线流量。该应用选项使用示波器或 逻辑通道捕获的数据, 可使您轻松查看RS-232或其他UART串行总线发送的信息。 实时显示按时间对齐的发送线和接收线的解码。此应用选项能够在 RS-232/ UART 条件下进行基于硬件的触发。 本应用选项可在所有型号上使用,可使用示波器通道或逻辑采集通道的任意
最大示波器 型号
DSO9064A MSO9064A DSO9104A MSO9104A DSO9254A MSO9254A DSO9404A MSO9404A
标配示波器 每通道存储器
10 Mpts/20 Mpts 10 Mpts/20 Mpts 10 Mpts/20 Mpts 10 Mpts/20 Mpts 10 Mpts/20 Mpts 10 Mpts/20 Mpts 10 Mpts/20 Mpts 10 Mpts/20 Mpts
拖放测量
测量很简单: 只要在测量条上拖拽 图标,然后在您想要测量的周期中释放 即可。 您可以在波形上执行五个测量, 或 是测量五个不同周期的波形。所有测量 结果都将以统计的形式显示在屏幕底部, 并对您正在测量的通道进行彩色编码。
4
它是一台三合一的仪器
2. 逻辑分析仪
MSO 型号添加了 16 个高速定时通道及标配的 128 Mpts 数字通道存储器, 使您能够在更长的时间周期内维持 2 GSa/s 的快速采样率。
您正在使用 Altera 或 Xilinx FPGA 进行设计吗? 请使用 FPGA 动态探头进行快速的内部 FPGA 测量。您正在使用 I2C、SPI、 RS-232、低速或全速 USB 总线吗? 请使用数 使用定时通道评测控制信号关系和高达 16 位的数据总线。使用符号更快地解释波形 字通道为这些总线进行采集和解码, 将模拟通道用于其他的 时间相关的信号的测量
安捷伦仪器使用说明书中文
Alpha安捷伦B1500A半导体器件分析仪用户!ˉ的GUID安捷伦科技公司声明?安捷伦科技公司2005年,2006年,2007年,2008本手册的任何部分不得转载任何形式或通过任何手段(包括电子电子存储和检索或翻译成外国语言)事先同意MENT和安捷伦的书面同意作为由美国科技公司在美国和国际版权法。
手册部件号B1500-90000版2005年7月第1版,第2版,2005年12月2006年4月第3版第4版,2007年1月2007年6月5日,版第6版,2007年11月2008年10月7日,版安捷伦科技公司5301史蒂文斯溪大道95051美国加利福尼亚州圣克拉拉保证本文档中所含的物质是提供MENT!°为是,±,是苏如有更改,恕不另行通知,在以后的版本。
此外,最大而且,在适用法律法律,安捷伦提供任何保证,明示或暗示,关于本手册的任何信息所载,包括但不不限于隐含保证为杆的适销性和适用性特定用途。
安捷伦不得承担错误或偶然或在相应的损害赔偿连接TION的家具,使用,或每本文件或任何性能所载资料。
应该安捷伦与用户有一个单独的与保修的书面协议在这个物质的范围,涵盖记录与这些冲突条款,在保修则以协议arate中的协议为准。
技术许可硬件和/或软件描述这份文件是依照许可可用于复制或只在雅跳舞的许可条款。
有限权利如果软件在使用的一种表现美国政府的首要合同或道,软件交付和许可!°商业计算机软件!±ADFAR252.227-7014(1995年6月)的定义,或作为一个!°商业项目!FA±定义2.101(a)或°有限计算机软!洁具!±作为定义在FAR52.227-19(六月1987)或任何相当机构法规或合同条款。
使用,重复或disclo的软件肯定是受安捷伦科技nologies!ˉ标准商业许可条款和非DOD部门和美国政府机构没有获得更大而不是限制权利定义在FAR 52.227-19中(C)(1-2)(6月1987年)。
安捷伦示波器使用方法
4、进行单次采集
键可查看单步事件,而不会被以后的波形数据覆盖显示。 使用 Single 键可查看单步事件,而不会被以后的波形数据覆盖显示。 当您需要最大采样率和最大存储器深度以平移和缩放和最大存储器深度以平移和缩放时, 当您需要最大采样率和最大存储器深度以平移和缩放和最大存储器深度以平移和缩放时,可使 单次” 用“单次”。 1 将触发模式设置为“正常”,这将防止示波器立即自动触发。 将触发模式设置为“正常” 这将防止示波器立即自动触发。 2 如果要触发示波器通道事件,可将 Trigger Level 旋钮转至波形将通过的触发阈值。 如果要触发示波器通道事件, 旋钮转至波形将通过的触发阈值。 3 要开始单次采集,请按 Single 键。 要开始单次采集, 键时,此键将点亮为黄色,且示波器启动采集系统,搜索触发条件。 按 Single 键时,此键将点亮为黄色,且示波器启动采集系统,搜索触发条件。满足触发条件 即显示捕获的波形, 键变暗, 键点亮为红色。 时,即显示捕获的波形, Single 键变暗,而 Run/Stop 键点亮为红色。 将清除显示屏中的内容,接通触发电路, 键点亮为黄色, 当按 Single 时,将清除显示屏中的内容,接通触发电路,Single键点亮为黄色,示波器在显 键点亮为黄色 示波形之前会一直等待触发条件的发生。 示波形之前会一直等待触发条件的发生。 当示波器触发时,将显示单次采集且示波器停止( 键呈红色亮起)。 当示波器触发时,将显示单次采集且示波器停止(Run/Stop 键呈红色亮起)。 4 要采集另一个波形,请再次按 Single。 要采集另一个波形, 。
6、手动设置探头衰减系数 手动设置探头衰减系数
如果示波器无法自动识别所连接的探头,可以按以下方式设置衰减系数: 如果示波器无法自动识别所连接的探头,可以按以下方式设置衰减系数: 1 按通道键。 按通道键。 2 按 Probe 软键 3 转动 Entry 旋钮 以设置所连接的探头的衰减系数。 以设置所连接的探头的衰减系数。 之间设置衰减系数。 可以用 1-2-5 顺序在 0.1:1 至 1000:1 之间设置衰减系数。必须设置合适的探头衰减系数才能 进行正确测量。 进行正确测量。
安捷伦 3000T X 系列示波器说明书
InfiniiVision 3000T X 系列示波器
技术资料
02 | Keysight | InfiniiVision 3000T X 系列示波器-技术资料
简洁的触控操作、揭示偶发异常轻松解决问题
InfiniiVision 3000A X 系列示波器将重新定义示波器。它能查看最详细的信号细节,比任 何其他示波器提供更多更出色的功能,更有效地保护您的投资。它同时也是惠普、安捷 伦以及是德科技的示波器系列中最成功的一款。如今,3000T X 系列将延续传统,再创 新高。 3000T X 系列在 3000A 系列的创新性能的基础上,新增了电容式触摸屏、触摸式用户界 面以及独一无二的区域触摸触发技术。所有这些增强特性结合业界领先的毫不妥协的波 形捕获率 100 万个波形/秒,可确保您能够查看完整的信号细节,并能发现任何潜在的 问题。新的分析功能将会帮助您快速解决最棘手的问题。 3000T X 系列重新定义了通用示波器的使用体验,为您提供所需要的全部性能和功能, 以使您能够更迅速地进行测量分析。
94%
1,114,000
94%
1,100,000
94%
1,113,000
94%
1,113,000
94%
Tektronix MDO3000 系列 波形捕获率 281,000 132 2,200 2,200 1,800 2,200 2,200
概率 50% 0.03% 0.55% 0.55% 0.45% 0.55% 0.55%
什么是波形波形捕获率 ?
当示波器采集、处理数据并在屏幕上绘制数据图形时,不可避免存在 "死区时间",也就 是示波器完全遗漏信号的时间。总之,波形更新率越快,死区时间越短。死区时间越 短,示波器越有可能捕获到异常和偶发的事件。因此,选择具有极快波形更新率的示波 器至关重要。图 7 和 8 展示了示波器在两种波形捕获率下的区别。
安捷伦6000示波器中文手册
I/O、使仪
器和 10 MHz参考时钟同步、保修状态、数字信号检测、技术参数和特性等。
目录
1开始
检查包装内容
11
调节手柄
14
打开示波器电源
15
通风要求
15
连接示波器探头
17
检验基本示波器操作
使用文件资源管理器
201
8参考
升级到 MSO 或添加存储器深度
204
软件和固件升级
204
设置 I/O 端口
204
使用网络接口
205
使用 10 MHz 参考时钟
206
给示波器提供采样时钟
207
使两个或多个仪器的时基同步
208
检查保修和扩展服务状态
170
6显示数据
平移和缩放
174
设置波形扩展参考点
175
消除混叠
175
使用 XGA 视频输出
175
显示模式
176
无限余辉
176
网格亮度
176
矢量(连接点)
177
改变亮度以查看信号细节
178
采集模式
179
正常模式
179
峰值检测模式
1141A InfiniiMax 200 MHz 差分探头(接
1142A 电源)
1144A 800 MHz 有源探头(接
1142A 电源)
1145A 750 MHz 2 通道有源探头(接
1142A 电源)
普源rogal示波器中文手册
特有的内置函数/任意波形发生器模块
■ 业界第一个嵌入到数字存储示波器的函数/任意波形发生器模块 ■ 采用先进的DDS技术,得到精确、稳定、低失真的输出信号 ■ 200MSa/S采样率,12bits垂直分辨率 ■ 10MHz / 20MHz / 40MHz正弦波/方波信号最高频率 ■ 10MHz的脉冲信号最高频率 ■ 内置最高频率为1MHz的三角波、抽样函数、梯形波等30种常用波形 ■ 内置AM、FM、PWM、FSK、PSK和偏置调制等丰富的调制功能 ■ 1u~10MHz/1u~20MHz/1u~40MHz的扫频,可以正向扫描、
图9 X-Y模式测量李沙育图形 图10 视频触发测量全电视信号
更多功能
数字滤波器 仪器提供多种数字滤波器选择,包括低通、高通、带通和带阻滤 波器。您可以对采集信号按要求进行滤波处理以获得希望的结果。 可以利用数字滤波器来模拟硬件滤波的效果;利用数字滤波器滤 除混叠的噪声或误差信号以清楚地观察感兴趣的信号等。 可任意设定所需数字滤波器的3dB上限或下限截止频率。
卓越的信号观察能力
观察信号更清晰 TDO3000A/B系列使用明亮、清晰的分辨率为320 × 234点阵的5.6英 寸彩色TFT LCD显示器,您几乎可以从任何角度快速地观察信号。与 需要一直打开菜单的传统示波器不同,TDO3000A/B的整个5.6英寸 显示屏可以根据需要用于波形显示。 单键MENU ON/OFF可在更大的显示区域看到更多信号信 息,选择关闭菜单时可增加接近25%的显示面积。
距屏幕中心±8格
×1,×10,×100,×1000
1MΩ||18pF
两个通道刻度和耦合设置相同的时候±150ps
400V(DC+AC峰值,@1MΩ)
安捷伦示波器使用说明
4.单次采集:
1.将触发模式设置为“正常”,这将防止示波器立即自动触发。 2.如果使用模拟示波器通道捕获事件,将 Trigger Level(触发电平)旋钮转至波形将通过 的触发阈值。 3.要开始单次采集,请按下 Single(单次)键。当按下 Single(单次)时,将清除显示屏 中的内容,接通触发电路,Single(单次)键呈黄色亮起,示波器在显示波形之前会一直等待触 发条件的发生。当示波器触发时,将显示单次采集且示波器停止(Run/Stop(运行/停止)键呈 红色亮起)。使用 Single(单次)键可查看单步事件,而不会被以后的波形数据覆盖显示。
Run(运行)。
9.电源和USB
1.电源开关 按一次打开电源;再按一次关闭电源。 2. USB 端口将 USB 海量存储设备从示波器移除之前,无需采取特殊的预防措施(无需“弹出” 它)。只需在文件操作完成时从示波器中拔出 USB 海量存储设备即可。
10.载入和保存
载入设置:File > Load > Setup文件格式 载入波形:File > Load > Waveform 载入想要的波形 保存设置:File > Save > Setup文件格式为.set 保存波形:File > Save > Waveform 文件格式为.h5,这种
4.5 垂直控制部分(Vertical):
左旋钮:旋转调节波形振幅,按下可以进行微调。 右旋钮:调节波形的上下移动。
关于Auto、Arm’d和Trig’d Auto 表示示波器自动触发 Arm’d表示示波器的触发电流已经准备好,正在等待一个触发条件。 Trig’d表示trigger delay,表示延迟触发。触发方式是自动或者普通的时候,触发显示Trig’d ,
安捷伦示波器使用说明
西安XX科技股份有限公司
5.水平和垂直控制:
水平右旋钮按下,延迟将设为零,配合缩放(Zoom)键, 可以快速访问两种不同的屏幕缩放模式,进行平移和缩放。 使用垂直右旋钮更改显示屏上通道的垂直位置。每个通道 对应一个 Vertical Position(垂直位置)控制。
西安XX科技股份有限公司
6.自动或正常触发
西安XX科技股份有限公司
右旋钮:旋转调节波形的水平移动,按下可以进行微调。 Auto Scale键:自动设置 (Autoscale) 在优化存储器的同时 ,可快速显示任何模拟或数字的活动信号,并且自动以最佳的 比例、最佳的分辨率显示波形。按Auto Scale键时,示波器将快 速确定哪个通道有活动,并将打开这些通道,对其进行定标以 显示输入信号。 Touch键:关闭/开启触屏功能。 Zoom键:快速响应和最佳分辨率的特性,对于比较复杂的 波形,按下可以进行局部放大,查看细节波形。 Clear Display键:清屏功能,当载入新波形时,新波形会 与屏幕上的原波形重叠,按下可以清楚原波形,只剩下载入的 新波形。 Default Setup键:按下可以恢复系统默认设置。
西安XX科技股份有限公司
4.5 垂直控制部分(Vertical):
左旋钮:旋转调节波形振幅,按下可以进行微调。 右旋钮:调节波形的上下移动。 关于Auto、Arm‟d和Trig‟d Auto 表示示波器自动触发 Arm‟d表示示波器的触发电流已经准备好,正在等待一个触 发条件。 Trig‟d表示trigger delay,表示延迟触发。触发方式是自动或 者普通的时候,触发显示Trig‟d ,触发方式是单次,则不显示。
西安XX科技股份有限公司
4.3 触发控制部分(Trigger):
Agilent InfiniiVision 3000 X Series Oscilloscope U
AgilentInfiniiVision 3000X 系列示波器使用者指南s1聲明© Agilent Technologies, Inc. 2005-2012本手冊受美國與國際著作權法之規範,未經 Agilent Technologies, Inc. 事先協議或書面同意,不得使用任何形式或方法 (包含電子形式儲存、擷取或轉譯為外國語言) 複製本手冊任何部份。
手冊零件編號75019-97054版本第五 版, 2012 年 3 月馬來西亞印製Agilent Technologies, Inc.1900 Garden of the Gods Road Colorado Springs, CO 80907 USA 保固本文件所含內容係以「原狀」提供,未來版本若有變更,恕不另行通知。
此外,在相關法律所允許之最大範圍內,Agilent 不承擔任何瑕疵責任擔保與條件,不論其為明示或暗示者,其中包括 (但不限於) 適售性、適合某特定用途以及不侵害他人權益之暗示擔保責任。
對於因提供、使用或運用本文件或其中所含的任何內容,以及所衍生之任何損害或所失利益或錯誤,Agilent 皆不負擔責任。
若Agilent 與使用者就本文件所含材料保固條款簽訂其他書面協議,其中出現與上述條款相牴觸之部分,以個別合約條款為準。
技術授權此文件中所述的硬體及/或軟體係依授權提供,且僅可以依據此類授權之條款予以使用或複製。
限制權利聲明美國政府限制權利。
授予聯邦政府之軟體及技術資料僅包含為一般使用者提供的自訂權利。
Agilent 依照 FAR12.211(「技術資料」) 及 12.212 (「電腦軟體」)、國防部 DFARS 252.227-7015 (「技術資料 - 商業條款」) 以及 DFARS227.7202-3 (「商業電腦軟體」或「電腦軟體說明文件」中的權利) 提供此軟體與技術資料之自訂商業授權:安全聲明「注意」標示代表發生危險狀況。
Agilent安捷伦功率器件分析仪-操作指导说明
Scale:选择曲线显示格式
Anode:二极管正极接电流源(依据
规格书测试条件合理选择,大于 1A
VF 测试-方法二
则需要选择 HC 通道) VfStart:开始电压
3.2 3.2 参数设置
VfStop:结束电压 VfStep:每个测试点电压间隔值
均有“Force”和“Sence”双孔,实 际内部相当于短路,即通过双线并 绕以降低测试误差; 应用 HC 模块时,下方 low 双孔默认 接地即可; 可看成将 HP/HC/HV 作为电源正极, GNDU1 作为电源负极
Agilent 安捷伦功率器件分析仪-操作指导说明
测试台说明: 2.2
2.2 接线模块
2.3 数据读取
▷ 点击“ ”启动测试;
完成测试后点击自动刻度; List Display 下拉数据,可以查看每个
Vr 下的反向漏电流 Ir,一般 Ir=250μA 时对应的最小 Vr 作为击穿电压
Agilent 安捷伦功率器件分析仪-操作指导说明
VF 测试 3.1
3.1 连线
按测试电路原理图,正确连接各接线柱。
IfSpec@Vf:自动读取所设正向电流
下对应的正向压降
Agilent 安捷伦功率器件分析仪-操作指导说明
▷ 点击“ ”启动测试;
完成测试后点击自动刻度;
VF 测试-方法一 List Display 下拉数据,可以查看每个
3.3
If 下的正向压降 Vf
3.3 数据读取
Agilent 安捷伦功率器件分析仪-操作指导说明
依 次 从 Application Test 选 择 PowerDiode,再选择 Ir-Vr 测试模块:
VR/IR 测试 2.2
Agilent 使用说明
安捷伦电子测量仪器使用及维护建议版本. 03.08Agilent Technologies Co. SSU-----------Be Professional , Be Expert-------目录静电的危害及防护 (3)微波接头的使用及养护常识 (12)电子测量仪器及其系统的环境要求 (16)仪器硬件故障的最终确认 (21)附录一:部分种类仪器的用户检验步骤及注意事项 (23)附录二:Agilent仪器常见故障现象及可能原因分析 (27)附录三:参考资料 (29)静电的危害及防护引言.我们在确定自己的研究课题或找到解决方案时,下一步往往就是准备好完成课题或解决方案所需的软硬件手段.而测量仪器是人们必备的硬件设施.在得到仪器后,如何高效地使用仪器,或如何避免仪器的人为损坏,能够更长时间地为我们服务,就自然而然地成为我们必须关心的环节了.静电的危害那么哪些因素可以影响或威胁到仪器的正常使用呢?了解电子测量仪器或微电子的工程师所想到的第一个词,我想必定是”静电放电”(ESD).的确,静电是我们再熟悉不过的一种现象了,除了偶而轻微电击或讨厌的静电吸附外,对我们大多数人来讲,静电似乎并不是什么了不起的问题.过去,许多从事电子工业的人也并不认为静电放电是使电子元件乃至整个电子设备损坏的一个主要原因.许多人不相信静电放电的严重性,甚至怀疑是否真正存在.这也难怪,因为要判断或检查ESD(静电放电简称-Electrostatic Dischar ge)所引起的失效比较困难,有些元件受ESD损伤后往往在经过一段时间后才失效,使人们难于追踪并确定为ESD引起的损坏.而且许多电子元件可以被远低于人能感觉的静电放电所损伤或损坏.无源器件也和有源器件一样对ESD敏感,损坏程度从性能下降直至短路那样的严重损坏.目前,许多人对自己身上常常带可观的静电以至常常受静电放电电击的现象习以为常了.可是,您知道吗?当你的手触摸及门把手或水龙头的瞬间突然感受到受电击甚至听到”啪”的一声响之时,你身上的静电已高达4000至5000伏以上了.而且.在受电击之前,你并没有任何感觉.实际上,人的身体上,衣服上经常带有几百伏到几千伏的静电.只要构成通路,积累的静电就会放电.由于在极短的时间内释放出大量的能量,常常导致电路元件损坏,因为这种放电通常大大超过许多电路元件所能承受的限度.据测试,人能感觉到”麻”时,静电电压已高达3500伏以上.高于4500伏时放电能发出响声.5000伏以上放电时可以见到火花.人感觉不到3500伏以下的静电. 现代许多高速超大规模集成电路碰到仅几十伏或更低的静电就会遭到损坏。
Agilent产品用户手册说明书
About this ManualWe’ve added this manual to the Agilent website in an effort to help you support your product. This manual is the best copy we could find; it may be incomplete or contain dated information. If we find a more recent copy in the future, we will add it to the Agilent website.Support for Your ProductAgilent no longer sells or supports this product. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available. You will find any other available product information on the Agilent Test & Measurement website, .HP References in this ManualThis manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. In other documentation, to reduce potential confusion, the only change to product numbers and names has been in the company name prefix: where a product number/name was HP XXXX the current name/number is now Agilent XXXX. For example, model numberHP8648A is now model number Agilent 8648A.s1。
Agilent DSOX3000 FE演示指南.pdf
Agilent DSOX3000 FE演示指南基本介绍和设置目的和说明这个演示指南主要为分销工程师设计,目标是能独立的为客户做10-20分钟演示,把DSOX3000的一些独特的特点、优势和好处介绍给客户。
需要的设备DSOX3000示波器,两根无源探头N28XXA/B.任务一:示波器基本介绍介绍3000X的一些基本概况.包括:1.5合1设备,即是一台综合示波器,逻辑分析仪,协议分析仪,任意波形发生器,电压表和频率计为一体的综合性设备.根据客户应用情况,针对5合1中的子设备功能做重点介绍。
要点:示波器主要型号,带宽,主要采样率指标,带宽可升级,波形捕获率,强大的触发功能等;MSO的基本指标,采样率,存储深度;协议分析仪支持的串行总线种类,硬件协议触发和解码;任意波形发生器,支持的信号类型和最高频率;电压表和频率计的基本指标。
2.对产品的简洁外形做一简单介绍.3. 针对每个子设备功能能熟练的做自动演示。
任务二:100万次/秒的波形捕获率,信号捕获和触发介绍简介中低端示波器日常主要应用为通用信号调试和观察,因此如何演示3000X的调试和捕获功能无疑是非常重要的.此任务演示主要和TEK DPO3000/4000演示对应,需要展示出3000X在调试能力方面全面超越DPO3000/4000的特点.首先请按自动演示介绍DSOX3000 100万次/秒波形捕获率及与其它竞争对手产品指标差异及对比效果。
其次,采用内部信号做模拟实测演示。
设置步骤:1.连接通道1到Demo1端子和地,通道2到Demo2端子和地。
2.按下Default Setup.按下Help,然后按下培训信号软键,旋转多功能旋钮选择带偶发毛刺的时钟信号,按下右下角输出按钮。
可以看到如下波形:3.调节垂直和水平档位及触发到500mV/Div,20ns/Div,边沿触发在1V/Div,得到如下波形:这时可以看到偶发毛刺信号在闪烁,并强调DSOX3000 业界领先的100万次/秒的波形捕获率可以最快看到这一偶发信号。
入门指南1AgilentInfi...
AgilentInfiniiVision 2000X 系列示波器用户指南s1声明© Agilent Technologies, Inc. 2005-2012根据美国和国际版权法,未经 Agilent Technologies, Inc. 事先同意和书面允许,不得以任何形式或通过任何方式(包括电子存储和检索或翻译为其他国家或地区的语言)复制本手册中的任何内容。
手册部件号75015-97025版本第三 版, 2012 年 3 月Malaysia 印刷Agilent Technologies, Inc.1900 Garden of the Gods Road Colorado Springs, CO 80907 USA 担保本文档中包含的材料“按现状”提供,在将来版本中如有更改,恕不另行通知。
此外,在适用法律允许的最大范围内,Agilent 不对本手册及其包含的任何信息提供任何明示或暗示的保证,包括但不仅限于对适销性和用于特定用途时的适用性的暗示担保。
对于因提供、使用或运用本文档或其包含的任何信息所导致的错误或者意外或必然损害,Agilent 概不负责。
如果Agilent 和用户之间已达成的单独书面协议包含涉及本文档内容的担保条款,但担保条款与这些条款有冲突,则应以单独协议中的担保条款为准。
技术许可对于本文档中描述的硬件和/或软件,仅在得到许可的情况下才会提供,并且只能根据许可进行使用或复制。
限制性权限声明美国政府限制性权限。
授予联绑政府的软件和技术数据权限仅包括通常会提供给最终用户的那些权限。
Agilent针对软件和技术数据提供这种惯例性的商业许可时遵循 FAR 12.211(技术数据)和 12.212(计算机软件)以及国防部的 DFARS 252.227-7015(技术数据 - 商品)和 DFARS 227.7202-3(商业计算机软件或计算机软件文档权限)。
安全声明小心标记表示危险。
Agilent 操作指导书
Agilent8960操作指导书1.目的规范测试员能熟练掌握仪器的使用操作步骤。
2.适用范围适用于公司各类产品的射频传导和天线耦合测试工作。
3.相关文件无4.所需设备、工具、材料Agilent-设备型号:8960-E5515C。
5.过程5.1.准备工作:1.检查电源是否正常通电。
2.是否能正常开机。
3.每天试验前根据《实验室仪器点检表》进行操作点检确认。
5.2.操作步骤:一、对于GSM/GPRS制式的手机,常需要测量的参数有:✓发射功率✓功率时间模板✓相位误差&频率误差✓开关谱&调制谱✓参考灵敏度电平1.打开电源开关,仪器面板如下图所示(见图一);2.线损设置:按SYSTEM CONFIG,弹出如下界面。
按RF IN/OUT Amptd Offset 。
按F5, RF IN/OUT Amptd Offset Setup。
输入要设置的频率及对应的线损,对于与处于Off状态的项目,我们按On键即可开启。
(详细步骤见8960原理及使用方法介绍)。
3.建立连接:按SYSTEM CONFIG,打开如下界面。
按 Format Switch,选择要切换的制式,在这里我们选择GSM/GPRS。
在Operating Mode里选择 Active Cell (GSM),按Original Call,当屏幕下方显示Connected的时候,表示连接已成功。
在屏幕右侧TrafficBand中选择需要的频段,在Traffic Channel中选择需要的信道。
在手机与8960已连接的情况下,按Measurement selection,选择 Transmit Power,进入测试界面。
按确定可以看到测试结果(详细过程见8960原理及使用方法介绍)。
4. 发射功率:在手机与8960已连接的情况下,按Measurement selection,选择Transmit Power,进入测试界面。
按确定可以看到测试结果(详细过程见8960原理及使用方法介绍)。
Agilent 1000 系列便携式示波器 说明书
Agilent 1000系列便携式示波器技术资料物超所值的示波器2物超所值的示波器新型Agilent 1000系列示波器具有大型示波器的性能和特性, 而且便于携带、价格实惠。
我们通过为您提供更佳的信号观察能力、更多功能和更高效率,为经济型示波器树立新标杆。
1000系列重量不到3.2 kg,体积小, 便于随身携带。
1000系列的所有型号都具有2 GSa/s 的最高采样率和20 kpts 的最大存储器深度。
2通道型号DSO1002A 60 MHz DSO1012A 100 MHz DSO1022A200 MHz4通道型号DSO1004A 60 MHz DSO1014A 100 MHz DSO1024A200 MHz无论您是在研发领域中设计产品,在教育行业中从事下一代教学,还是在制造业或服务业中进行测试,新型1000系列示波器都可帮您充满信心地完成工作。
图3. 标配的模板测试是制造和服务测试选择1000系列解决方案的重要原因之一。
图1. 1000系列示波器具有一些通常只有在更高档示波器上才有的特性, 因此是研发应用中不错的选择。
图2. 经济的价格使1000系列成为教学实验室进行测试测量基本教育的理想工具。
研发教育制造如欲了解更多信息, 请访问: /find/DSO1000A3捕获更长时间的信号, 并保持高分辨率1000系列的所有型号都可标配每通道最高达20 kpts 的采样内存,使用非常方便。
示波器即使采用较慢的时基设置,也能保持高分辨率采样,让您能够观察信号细节。
观察信号更清晰每种型号的1000系列示波器都配有明亮、清晰的彩色LCD 显示屏(300 cd/m 2)。
您几乎可以从任何角度快速观察信号。
与需要一直打开菜单的传统示波器不同,1000系列示波器的整个5.7英寸显示屏都可以根据需要用于波形显示。
更佳的信号观察能力图6. 使用真实缩放 (True Zoom) 模式, 您可以同时观察波形的全貌以及波形的细节, 您可以在查看一段较长时间记录的同时在缩放窗口中观察信号的细节。
安捷伦示波器使用方法
安捷伦⽰波器使⽤⽅法Jitter Analysis Techniques Using an Agilent Infiniium OscilloscopeProduct NoteIntroductionWith higher-speed clocking and data transmission schemes in the computer and communications industries, timing margins are becoming increasingly tight.Sophisticated techniques are required to ensure that timing margins are being met and to find the source of problems if they are not.This product note discussesvarious techniques for measuring jitter and points out theiradvantages and disadvantages. It describes how to set up an Agilent Infiniium oscilloscope to make effective jitter measure-ments and the accuracy of these measurements. Some of themeasurement techniques are only available on Agilent 54845A/B and 54846A/B oscilloscopes with version A.04.00 or later software.These measurement techniques are indicated as such in the text.Jitter FundamentalsJitter is defined as the deviation of a transition from its ideal time.Jitter can be measured relative to an ideal time or to another transition. Several factors can affect jitter. Since jitter sources are independent of each other,a system will rarely encounter a worst-case jitter scenario. Only when each independent jitter source is at its worst and is aligned with the other sources will this occur. As a result, jitter is statistical in nature. Predicting the worst-case jitter in a system can take time.Jitter can be broken down into two categories:Random jitter is uncorrelated jitter caused by thermal or other physical, randomprocesses. The shape of the jitter distribution is Gaussian.For example, a well-behaved phase lock loop (PLL) wanders randomly around its nominal clock frequency.?Deterministic or systematic jitter can be caused by inter-symbol interference,crosstalk, sub-harmonicdistortion and other spurious events such as power-supply switching. It is important to understand the nature of the jitter to help diagnose its cause and, if possible, correct it. Deterministic jitter is more easily reduced or eliminated once the source has been identified.Jitter Measurement TechniquesThis product note will discuss four methods that can be used to characterize jitter in a system:Infinite persistenceHistogramsMeasurement statisticsMeasurement functionsInfinite PersistenceAgilent’s Infiniium oscilloscopes present several different views of jitter. One way to measure jitter is to trigger on one waveform edge and look at another edge while infinite persistence is turned on. To use this technique, set up the scope to trigger on a rising or falling edge and set the horizontal scale to examine the next rising or falling edge. In the Display dialog box, set persistence to infinite.This technique measurespeak-to-peak jitter and does not provide information about jitter distribution. Infinite persistence is easy to set up and will acquire data quickly, giving you the best chance to see worst-case jitter. However, since the tails of the jitter distribution theoretically go on forever, it will take a long time to measure the worst-case, peak-to-peak jitter.It is important to understandtheerror sources of this measurement. This technique is subject to oscilloscope trigger jitter–the largest contributor to timingerror in an oscilloscope. Trigger jitter results from the failure to place the waveform correctly relative to when a trigger event occurs. Since the infinite persistence technique overlaps multiple waveform acquisitions onto the scope display, and each acquisition is subject to trigger jitter, the accuracy of this technique can be limited. If your jitter margins are being met using this technique, then more advanced measurement techniques are not necessary. This product note will discuss Infiniium’s timebase and trigger specifications in detail in alater section.HistogramsThis technique not only shows worst-case jitter, but also gives a perspective on jitter distribution. Histograms do not acquire infor-mation as quickly as infinite persistence since each acquisition must be counted in the histogram measurement.To set up a histogram, trigger on an edge and set the horizontalscale and position so that you canview the next rising or fallingedge. In the Histogram dialog box,turn on a horizontal histogramand set both Y window markersto the same voltage. For example,if a clock threshold is at 800 mV,set both Y markers to this voltage.Set the X markers to the left andright of the edge (figure 1). Figure 1. Histogram of edge showing bi-modal distribution23It is often possible to determine if the jitter is random or deter-ministic by the shape of the histogram. Random jitter will have a Gaussian distribution.Infiniium displays the percentage of points within mean +/- 1, 2,and 3 standard deviations to help in determining how Gaussian the distribution is. For a Gaussian distribution these values should be 68%, 95%, and 99.7%, respec-tively. Non-Gaussian distributions usually indicate that the jitter has deterministic components.This technique has the same limitation on accuracy as the infinite persistence technique.Multiple acquisitions contribute to the histogram and they all contain the oscilloscope trigger jitter mentioned above. Measurement StatisticsThe next method involvescomputing statistics on waveform measurement results. For example,the scope can measure the period of a waveform on successive acquisitions. Simply drag the period measurement icon to the waveform that is to be measured.The statistics will indicate the mean, standard deviation, and min and max of the period measurements. You can let the scope run for a while to determine the amount of clock jitter present. This measurement is not subject to trigger jitter because it is a delta-time or relative measure-ment. Even if the waveform is not placed correctly relative to the trigger, the edges are measuredaccurately relative to each other.Figure 2. Setting up a jitter measurementThis measurement is subject to the timebase stability of the instrument, which is typically very good. This is a valid measurement technique but is slow to gather statistical information. Since the scope acquires a waveform, makes a measurement, and then acquires a waveform at a later time, most clock periods are not measured.With this technique, it is impossible to see how the period jitter varies over short periods of time. For example, if you have spread-spectrum clocking, this measurement will lump the slowest and fastest periods together.The Agilent 54845A/B and54846A/B Infiniium oscilloscopes can compute statistics on every instance of a measurement in asingle acquisition. To enable this capability, select the Jitter tab,then check “Measure all edges” in the Measurement Definitions dia-log box (figure 2).For example, instead of only measuring the first period on every acquisition or trigger event,every period can be measured and statistics gathered. This greatly increases the speed at which statistics are gathered and reduces the overall time to make jitter measurements. Statistics are accumulated across allmeasurements in the acquisition and across acquisitions.Pressing “Clear Display” will reset the measurement statistics.This feature is useful if you are probing the clock at different locations and want to reset the measurements.It is important to set up the scope correctly to make effective jitter measurements. Set the vertical scale of the channel being measured to offer the largest waveform that will fit on screen vertically. This will make the most effective use of the scope’s A/D converter.The scope should be set toreal-time acquisition mode inthe Acquisition dialog box. Since equivalent-time sampling can combine samples from different acquisitions, the scope’s trigger jitter would adversely affect jitter measurements. The averaging function should be turned off since, again, this combines multiple acquisition data.You may want to set the scopeto its maximum memory depth. This will make the scope less responsive to operate, but the scope can make many measure-ments on a single acquisition. Since jitter measurements are statistical, many measurements are desirable. Taking many acquisitions of small records will give a more random selection but will take longer than fewer large acquisitions. Having extremely deep memory is not necessary to getting good jitter measurements. Normally, measurements aremade at 10%, 50%, and 90% of thewaveform amplitude. This isconvenient for quickly makingmeasurements; however, whenmaking measurements acrossacquisitions and combiningtheir statistics this is not thebest solution.In the Measurement Definitiondialog box, Thresholds tab, themeasurement thresholds shouldbe set to absolute voltages. Forexample, if you are makingcycle-cycle jitter or periodmeasurements, set the middlevoltage threshold to your clockthreshold. Set the upper andlower voltage thresholds toroughly +/- 10% of the signalamplitude in voltage. This willestablish a band around thethreshold that the edge must gothrough to be measured and willeliminate false edge detection.In addition to the period jitter measurement, the cycle-cycle jitter measurement uses the same technique. The cycle-cycle jitter measurement, available on Agilent 54845A/B and 54846A/B oscilloscopes, is the differenceof two consecutive period measurements.Pi – P(i-1), 2 ≤i ≤nWhereP is a period measurement and n is the number of periods inthe waveform.Cycle-cycle jitter is a measure of the short-term stability of a clock. It may be acceptable for the clock frequency to change slowly over time but not vary from cycle to cycle. For this measurement, every period in the acquisition is measured regardless of how the “Measure all edges” selection is set. In this case, the statistics represent all of the cycle-cycle jitter measurements in one acquisition, or all acquisitionsif the scope is running.If absolute clock stability is required, then a period measurement should be made. If your system can track with small changes in the clock frequency, then cycle-cycle jitter should be measured.Again, if your timing marginsare being met with thistechnique, more advancedtechniques are not necessary. Itis only fairly recently that tightertiming margins have causedengineers to need other jittermeasurement techniques.45Measurement FunctionAgilent 54845A/B and 54846A/B Infiniium oscilloscopes can plot measurement results correlated to the signal being measured. For example, if every period is meas-ured, as in the case above, the measurement function will plot period measurement results on the vertical axis, time-correlated to the waveform that the period measurement is measuring (figure 3).In this example, the secondperiod is slightly longer than the first. The third period is shorter than the second. Also notice that the lengths of the measurement function lines correspond to the period and their placement corresponds to channel 1 because we are measuring period on channel 1.Using this technique, the shape of the jitter is apparent. For example, with spread-spectrum clocking you can see the modulation frequency as the period gets progressively slower and faster. This allows you to see sinusoidal shapes or other patterns in the measurement function plot (figure 4). It is also possible to correlate poor jitter results with the source waveform that caused them. This can aid not only in your design but can also ensure that the scope is measuring appropriate voltage levels when gatheringjitter statistics.Figure 3. Measurement function on a few cyclesFigure 4. Measurement function on many cyclesTo turn on the measurement function, first turn on the desired measurement to track. Measurements that can be tracked with the measurement function are rise time, fall time, period, frequency, cycle-cycle jitter, + width, - width and duty cycle. The measurement function is enabled in the Waveform Math dialog box (figure 5). Select a function that is a different color than the channel you are measuring to make it easier to see. Set the function operator to “measurement.” Select the measurement you wish to track and turn on the measurement function. The math function now plots the measurement results on the vertical axis, time-correlated to the channel being measured. Only one measurement function can be enabled at a time; however, the function can beset to track any of the currently active measurements listed above.Set up the acquisition by selectingthe maximum memory depth inthe Acquisition dialog box. Turnoff averaging and Sin(X)/Xinterpolation in the Acquisitiondialog box. Set the sample rateso that you are getting at leastseveral sample points on theedges that you are measuring.Measurements are made on thedata that is windowed by thescreen. To see something slowerthat may be coupling into yourclock, for example, you will needto compress the channel data onthe screen.Now that the memory depth andsample rate are fixed, you canadjust the horizontal scale sothat all of the acquired data ison screen. In order to make fulluse of the A/D converter andseparate the waveforms on thedisplay, you may want to split thegrid into two parts. If you havea very dense waveform that isbeing measured, it will be nearlyimpossible to see the measurementfunction on top of it. Turn on thesplit grid in the Display dialog box. Figure 5. Setting up a measurement function6Sources of Measurement ErrorIn this section we will examine some of the principal sources of jitter measurement error. For best accuracy, the scope should be making measurements at the same temperature as when the scope was last calibrated. If the temperature has varied by more than 5 degrees, the softwareself-calibration should be performed again. The Calibration dialog box shows the change from the calibration temperature. Trigger JitterThe most common source of error across multiple acquisitions is trigger jitter. This is the error associated with placing the first point and all subsequent points of the waveform relative towhen the trigger occurs.For Infiniium models 54830B, 54831B, and 54832B, trigger jitter is 8 ps RMS. For the 54845A/B and 54846A/B, trigger jitter is8ps RMS. Figure 6 shows a 54845B measuring its trigger jitter using its own aux out signal. If the jitter is Gaussian, youcan convert RMS jitter topeak-to-peak jitter by multiplyingthe RMS jitter by 6. Trigger jitteris only relevant if you aremeasuring absolute times asopposed to relative times. Forexample, the histogram techniquedescribed above has this errorsource, but a period measurementdoes not since it is a delta-time orrelative measurement.Figure 6. Histogram of trigger jitterThis source of error can also bepresent in period measurementsif the scope is in equivalent time.In equivalent time, the scope maycombine data points from multipleacquisitions. The scope alsocombines points from multipleacquisitions in real-time averagingmode. If it is possible, jittermeasurements should be maderelative to other edges inreal-time, non-averaged mode.78Sources of Measurement Error (continued)Timebase StabilityInfiniium uses a highly stable crystal oscillator as a source for the sample clock. Errors resulting from instability of the timebase are the least significant. Timebase stability is not a specified quantity but is typically 5 ps RMS for the 54845 and 54846. For the 54830,54831, and 54832, it is typically 2ps RMS. These measurements were made at the sametemperature as the calibration.Vertical NoiseErrors in the vertical portion of the signal path including the A/D converter and preamplifier also contribute to the scope’s jitter.Any misplacement of thewaveform vertically will translate through the slew rate of the signal into time error (figure 7). If the slew rate of the signal atthe point of measurement issteep, then the vertical error will translate into a small time jitter.If the slew rate is slow, however,this can be the most significantsource of error.Figure 7. How vertical errors contribute to time errorsAliasing and InterpolationFrom the previous section, it is clear that the signal should have a high slew rate to alleviate vertical errors. However, this can lead to signal aliasing. If the signal is not sampled sufficiently, significant time errors will be present up to the sample interval. When the scope makes measurements, it interpolates the samples above and below the measurement threshold to get the time of the level crossing. If the interpolation filter is enabled, up to 16interpolated points may be placed between two adjacent acquisition samples. Beyond this, linearinterpolation is used to determine the threshold crossing times.However, samples will only be added if the record length is less than 16K samples.A Case StudyTo illustrate how to use the jitter analysis capability of an Agilent Infiniium oscilloscope, let’s examine a typical problem. You suspect that your power supply or another slower speed clock is coupling into the main clock on the board that you are designing. In order to understand how to eliminate the problem, you would like to know the frequency and wave shape of the signal that is coupling into your clock. Traditionally, you would use an FFT magnitude spectrum and look at the side bands from the fundamental. For example, in figure 8 we have acquired a long record of a number of clock pulses and computed the FFT magnitude with a waveform math function. After we zoom in on the fundamental frequency of the clock, you can see side bands.If we take the difference in frequency from the fundamental to the nearest side band, we can determine the frequency of the coupling signal. In this example, it is measured at 198 kHz. We can also notice the odd harmonics and guess that the coupling signal would not be a sine wave. The resolution of the FFT will not give us a great deal of accuracy in determining the frequency, and we can not really see the shape of the coupling signal.To solve this problem using thejitter analysis capability, we needto think about the problem in adifferent way. If a slower signalwere modulating a higherfrequency signal, then we wouldexpect the period of the higherfrequency signal to get slightlylonger, then slightly shorter, etc.,according to the slower signal(figure 8). The measurementfunction method described earlierin this product note could beused to plot how the periodchanges across the waveform.To set up the scope, acquirethe channel data with a longacquisition record in real-timeacquisition mode. Put all of thewaveform on screen by settingthe sample rate to manual andadjusting the time per division.This will allow you to see how theperiod varies across the entireacquisition. In the MeasurementDefinitions dialog box, Jitter tab,set the control to Measure AllEdges (figure 2). Now, turn ona period measurement. In theMath dialog box, turn on theMeasurement function and setto the period measurement. Figure 8. FFT of clock910A Case Study (continued)You can now see how the period measurement varies across the signal (figure 9). Adjust the time per division until you can see several periods of the slower speed signal in the measurement function. To measure the frequency, use the markers or simply drag the frequencymeasurement to the measurement function. Using this technique, we measure 197 kHz and we can see that the signal is a square wave.This confirms that another signal on the board is coupling into the clock. Armed with this knowledge,we are better equipped to find a solution.SummaryThis product note presents several methods for measuring jitter with Agilent’s Infiniium oscilloscopes. The following quick reference will help you choose the best method for a number of circumstances. Infinite PersistenceShows absolute time or edge jitter Works best when the jitter to be measured is greater than the scope’s jitter Sets up easily ?Acquires data quickly ?Measures only worst-case,peak-to-peak jitterFigure 9. Measurement function showing coupling signalHistogramsShows absolute time or edge jitter Works best when the jitter to be measured is greater than the scope’s jitter Shows a distribution of the jitterHelps determine if the jitter is random or deterministic Measures worst-case, peak-to-peak jitter Measures RMS jitterMeasurement StatisticsShows worst-case, peak-to-peak delta time or measurement jitter Sets up easily Measurement FunctionsShows how measurements vary as a function of timeShows the shape and frequency of a jitter source Helps determine if the jitter is random or deterministic/doc/e26170104431b90d6c85c778.htmlAgilent Technologies’ Test and Measurement Support, Services, and AssistanceAgilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."Our PromiseOur Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical rec-ommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.Your AdvantageYour Advantage means that Agilent offers a wide range of additional expert test and meas-urement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for cal-ibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and sys-tems, and obtain dependable measurement accuracy for the life of those products./doc/e26170104431b90d6c85c778.html /find/emailupdatesGet the latest information on the productsand applications you select.By internet, phone, or fax, get assistance with all your test & measurement needsOnline assistance:/doc/e26170104431b90d6c85c778.html /find/assistPhone or FaxUnited States:(tel) 800 452 4844Canada:(tel) 877 894 4414(fax) 905 282 6495China:(tel) 800 810 0189(fax) 800 820 2816Europe:(tel) (31 20) 547 2323(fax) (31 20) 547 2390Japan:(tel) (81) 426 56 7832(fax) (81) 426 56 7840Korea:(tel) (82 2) 2004 5004(fax) (82 2) 2004 5115Latin America:(tel) (305) 269 7500(fax) (305) 269 7599Taiwan:(tel) 0800 047 866(fax) 0800 286 331Other Asia Pacific Countries:(tel) (65) 6375 8100(fax) (65) 6836 0252Email: tm_asia@/doc/e26170104431b90d6c85c778.htmlProduct specifications and descriptions in this document subject to change without notice. Agilent Technologies, Inc. 2002 Printed in USA October 15, 20025988-6109EN。
Agilent U1230系列手持数字多功能仪器数据手册说明书
Agilent U1230 SeriesHandheld Digital Multimeter (DMM)Data SheetWhether it is dark, noisy or evendangerous, the U1230 Series handheld digital multimeter keeps you equipped with features that anticipate worst-case scenarios. The ergonomic shaped handheld allows you to single-handedly illuminate the test area with a built-in flashlight while selecting measurement functions using the rotary dial. Vsense performs non-contact voltage detection while continuity detection is made easy with the audible beeper alert and flashing backlight display. With the U1230 Series, you work better in the conditions you are in.• Built-in LED flashlight to illuminate test area • Flashing backlight as additional visual alert during continuity tests in noisy environments • Vsense to perform non-contact voltage detection • Data logging capability (stores up to 10 readings)• IR-to-USB connectivity to transfer data to PC for recordErgonomically shaped with a built-in flashlightBuilt for handheld users working in a poorly lit environment, the U1230 Series allows you to single-handedly illuminate your test area while making measurements with its easily activated built-in flashlight. Its ergonomicshape fits your hand, while the easily accessible rotary dial allows selection of measurement functions.Flashing backlight and beeping alert for continuity detectionThe U1230 Series is built for con-tinuity detection in dark and noisy environments. Its audible beep and flashing backlight display provides increased visual and audio alert to indicate continuity.Non-contact voltage detection with VsenseThe Vsense, a unique feature found in the U1233 Series performs non-contact voltage detection. It delivers more safety while making measurements in dangerous working environments by avoiding any contact with hot or live wires. Upon detection of voltage, it produces a unique combination of beeping alert and blinking LED light to make measure-ments more efficiently – especially in a dark or noisy environment.FeaturesTake a Closer LookLow input impedance to eliminate ghost voltagemeasurement Anti-slip rotary dial for easy measurementfunction selectionFlashing light and audible beep during presence of voltage 1Bar graph indication and frequency measurement pathVsense performs non-contact voltage detection 1Ease viewing with display backlight or built-in flashlightFigure 1. U1230 Series front viewFreezes and stores currentmeasurement value Allows flexibility to changemeasurement rangeFigure 2. The built-in flashlight as illustratedNotes:1. Only applicable for the U1233 SeriesDC specificationsNotes for DC voltage specifications:1. The accuracy of the 600 mV range is specified after the Null function is used to subtract the thermal effect (by shorting the test leads).2. For VZ(low input impedance) measurements, auto-ranging is disabled and the multimeter’s range is set to 600 V in the manual ranging mode.LOWNotes for resistance specifications:1. Overload protection: 600 Vrms for short circuits with < 0.3 A current.2. Maximum open voltage is < +3 V.3. Built-in buzzer beeps when the resistance measured is less than 23 Ω ± 10 Ω. The multimeter can capture intermittent measurements longer than 1 ms.4. The accuracy of the 600 Ω to 6 kΩ range is specified after the Null function is used to subtract the test lead resistance and thermal effect (by shortingthe test leads).5. For the ranges of 6 MΩ and 60 MΩ, the RH is specified for < 60%.Notes for diode specifications:1. Overload protection: 600 Vrms for short circuits with < 0.3 A current.2. Built-in buzzer beeps continuously when the voltage measured is less than 50 mV and beeps once for forward-biased diode or semiconductorjunctions measured between 0.3 V and 0.8 V (0.3 V ≤ reading ≤ 0.8 V).3. Open voltage for diode: < +3 V DC.4. The maximum display for diode measurements is 2100 counts.Notes for DC current specifications:1. Overload protection for 60 μA to 600 μA range: 600 Vrms for short circuits with < 0.3 A current.2. Overload protection for 6 A to 10 A range: 11 A/1000 V; 10 × 38 mm fast-acting fuse.3. Specification for 10 A range: 10 A continuous. Add 0.3% to the specified accuracy when measuring signals > 10 A to 20 A for 30 seconds maximum. Aftermeasuring currents > 10 A, cool down the multimeter for twice the duration of the measured time before proceeding with low current measurements.4. Only applicable for the U1232/U1233 SeriesAC specificationsVoltage600 mV0.1 mV 1.0% + 3 2.0% + 3NA6 V0.001 V 1.0% + 3 2.0% + 3NA60 V0.01 V 1.0% + 3 2.0% + 3NA600 V0.1 V 1.0% + 3 2.0% + 3NA)30.1 V 2.0% + 3 4.0% + 3NA600 (VZLOWCurrent160 μA20.01 μA 1.5% + 3NA< 2.5 V/1 kΩ600 μA20.1 μA 1.5% + 3NA< 2.5 V/1 kΩ6 A30.001 A 1.5% + 3NA< 0.2 V/0.005 Ω10 A3, 40.01 A 1.5% + 3NA< 0.4 V/0.005 ΩNotes for true rms ac voltage specifications:1. Overload protection: 600 Vrms. For millivolt measurements, 600 Vrms for short circuits with < 0.3 A current.2. Input impedance: 10 MΩ (nominal) in parallel with < 100 pF.3. VZinput impedance: 3 kΩ (nominal).LOWNotes for ac current specifications:1. AC current measurement not available for U1231A model.2. Overload protection for 60 μA to 600 μA range: 600 Vrms for short circuits with < 0.3 A current.3. Overload protection for 6 A to 10 A range: 11 A/1000 V; 10 × 38 mm fast-acting fuse.4. Specification for 10 A range: 10 A continuous. Add 0.3% to the specified accuracy when measuring signals > 10 A to 20 A for 30 seconds maximum.After measuring currents > 10 A, cool down the multimeter for twice the duration of the measured time before proceeding with low current measurements.Capacitance specifications1000 nF 1 nF 1.9% + 2 4 times/second10 μF0.01 μF 1.9% + 2 4 times/second100 μF0.1 μF 1.9% + 2 4 times/second1000 μF 1 μF 1.9% + 2 1 time/second10 mF0.01 mF 1.9% + 20.1 time/secondNotes :1. Overload protection: 600 Vrms for short circuits with < 0.3 A current.2. The accuracy of for all ranges is specified based on a film capacitor or better, and after the Null function is used to subtract the test lead resistanceand thermal effect (by shorting the test leads).3. The maximum display is 1200 counts.Temperature specificationsK–40 °C to 1372 °C 0.1 °C 1% + 1 °C –40 °F to 2502 °F0.1 °F1% + 1.8 °FNotes:1. The specification above is specified after 60 minutes of warm up time. If the unit is exposed during storage in high humidity (condensing) environment, 120 minutes of operating time is required instead.2. The accuracy does not include the tolerance of the thermocouple probe.3. Do not allow the temperature sensor to contact a surface that is energized above 30 Vrms or 60 V DC. Such voltages poses a shock hazard.4. Ensure that the ambient temperature is stable within ±1 ºC and that the Null function is used to reduce the test lead’s thermal effect and temperature offset. Before using Null function, set the multimeter to measure temperature without ambient compensation (°C) and keep the thermocouple probe as close as possible to the multimeter (avoid contact with any surface that has a different temperature from the ambient temperature).5. When measuring temperature with respect to any temperature calibrator, try to set both the calibrator and multimeter with an external reference (without internal ambient compensation). If both the calibrator and multimeter are set with internal reference (with internal ambient compensation), some deviations may show between the readings of the calibrator and multimeter, This difference is caused from the calibrator and multimeters’s ambient compensation. The deviation can be reduced by keeping the multimeter close to the output terminal of calibrator.6. The temperature calculation is specified according to the safety standards of EN/IEC-60548-1and NIST175.7. The approximate ambient temperature (cold-junction compensation) is shown on the display when you have an open thermocouple. The open thermocouple message may be due to broken (open) probe or because no probe is installed into the input jacks of the multimeter.Frequency specifications99.99 Hz 0.01 Hz 0.1% + 2 5 Hz999.9 Hz 0.1 Hz 0.1% + 29.999 kHz 1 Hz 0.1% + 299.99 kHz10 Hz0.1% + 2Notes:1. Overload protection: 600 V; input signal is < 20,000,000 V × Hz (product of voltage and frequency).Frequency sensitivity specifications600 mV in Scale mode50 mV50 mV50 mV 600 mV120 mV120 mV120 mV 6 V0.6 V0.6 V0.6 V 60 V 5.0 V 5.0 V 5.0 V 600 V50 V50 V50 VNotes:1. Maximum input for specified accuracy, refer to “AC specifications” on page 106 of the User Guide.60 μA30 μA30 μA600 μA30 μA30 μA6 A0.5 A0.5 A10 A0.5 A0.5 ANotes:1. Maximum input for specified accuracy, refer to “AC specifications” on page 106 of the User Guide.Scale transfer (mV)DC 600 mV0.1 mV0.5% + 22AC 600 mV0.1 mV 1.0 % + 3 @ 45 Hz to 500 Hz2.0 % + 3 @ 500 Hz to 1 kHzNotes:1. Overload protection: 600 Vrms for short circuits with < 0.3 A current.2. The accuracy of the DC 600 mV range is specified after the Null function is used to subtract the thermal effect (by shorting the test leads).3. Input impedance: 10 MΩ (typical).Display update rate (approximate)AC V (V or mV)55DC V (V or mV)55)11AC V/DC V (VZLOWScale transfer (mV)55Ω55Diode55 Capacitance 4 (< 100 μF) 4 (< 100 μF) DC A (μA, mA, or A)NA5AC A (μA, mA, or A)NA5 Frequency 1 (> 10 Hz) 1 (> 10 Hz)Power supplyBattery type • 4 × 1.5 V AAA Alkaline battery (ANSI/NEDA 24A or IEC LR03), or • 4 × 1.5 V AAA Zinc Chloride battery (ANSI/NEDA 24D or IEC R03)Battery life• 500 hours typical (based on new Alkaline batteries) with backlight and flashlight disabled Low battery indication• Low battery indicator will flash when the battery voltage drops below approximately 4.4 VPower consumption 450 mVA maximum (with backlight and flashlight enabled)Fuse 10 × 38 mm 11 A/1000 V fast-acting fuseDisplayLiquid crystal display (LCD) (with maximum reading of 6600 counts)Operating environment• Operating temperature from –10 °C to 55 °C, 0% to 80% RH• Full accuracy up to 80% RH for temperatures up to 30 °C, decreasing linearly to 50% RH at 55 °C • Altitude up to 2000 meters •Pollution degree IIStorage compliance –40 °C to 60 °C, 0% to 80% RH without batteriesSafety compliance EN/IEC 61010-1:2001, ANSI/UL 61010-1:2004, and CAN/CSA-C22.2 No. 61010-1-04Measurement category CAT III 600 VElectromagnetic compatibility (EMC)Commercial limits compliance with EN61326-1Temperature coefficient 0.1 × (specified accuracy) / °C (from –10 °C to 18 °C, or 28 °C to 55 °C)Common Mode Rejection Ratio (CMRR)> 100 dB at DC, 50/60 Hz (1 kΩ unbalanced)Normal Model Rejection Ration (NMRR)> 60 dB at 50/60 Hz Dimensions (H x W x D)169 mm × 86 mm × 52 mmWeight U1232A and U1233A: 371 grams (with batteries and holster)U1231A: 365 grams (with batteries and holster)Warranty • Three years for product 1• Three months for product’s accessories Calibration cycleOne yearNotes:1. Please take note that for the product, the warranty does not cover: • Damage from contamination• Normal wear and tear of mechanical components • Manuals, fuses, and batteriesSpecification assumptions• Accuracy is given as ±(% of reading + counts of least significant digit) at 23 °C ± 5 °C, with relative humidity less than 80% RH.• AC V and AC A specifications are AC coupled, true RMS and are valid from 5% of range to 100% of range.• The crest factor may be up to 3.0 at full- scale (4000 counts)• For non- sinusoidal waveforms, add (2% reading + 2% full scale) typical.• After VZ LOW (low input impedance) voltage measurements, wait at least 20 minutes for thermal impact to cool before proceeding with any other measurement.Ordering InformationStandard U1231A, U1232A and U1233A include:• Quick Start Guide• Certificate of Calibration (CoC)• U1167A 4 mm Tips probes test leads• 4 x 1.5 V batteriesU1174A Soft carrying caseU1168A Standard test lead kitU1173A IR-to-USB cableU1171A Magnetic hanging kit/find/dmmAgilent Email Updates/find/emailupdates Get the latest information on the products and applications you select.LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.Agilent Channel Partnersw w w /find/channelpartners Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience. AdvancedTCA ® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA ® for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.Agilent Advantage Services is com-mitted to your success throughout your equipment’s lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you com-petitive, we continually invest in tools and processes that speed up calibra-tion and repair, reduce your cost of ownership, and move us ahead of your development curve./quality/find/advantageservicesFor more information on AgilentTechnologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:/find/contactus Americas Canada (877) 894 4414 Brazil (11) 4197 3500Mexico 01800 5064 800 United States (800) 829 4444Asia Pacific Australia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 180****8100Taiwan 0800 047 866Other AP Countries (65) 375 8100 Europe & Middle East Belgium 32 (0) 2 404 93 40 Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700**0.125 €/minuteGermany 49 (0) 7031 464 6333 Ireland 1890 924 204Israel 972-3-9288-504/544Italy39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden0200-88 22 55United Kingdom 44 (0) 118 9276201For other unlisted Countries:/find/contactusRevised: October 14, 2010Product specifications and descriptions in this document subject to change without notice.© Agilent Technologies, Inc. 2011Printed in USA, May 6, 20115990-7550ENAgilent U1177AIR-to-Bluetooth Adapter Data SheetLow battery indication: Red LED flashingBluetooth ® disconnected: Green LED flashingBluetooth ® connected: Green solid LEDBluetooth ® power off: LED offON/OFF/Setup slide switchFigure 2. The U1177A as illustratedTake a closer lookAgilent Mobile Meter is a free Android application software that allows an Android device to connect, control and perform up to 3 multimeter measure-ments. Without the need to be physically present at various points, users can now extend their reach to two or three places. This solution allows you to make measurements from a safe distance, eliminates the need to walk back-and-forth between measure target and control points, and monitors multiple measure-ments simultaneously. Achieve higher work productivity when you use the U1177A with your Agilent handheld digital multimeters.Perform up to three multimeter measurements at the same timewith Agilent Mobile Meter Figure 4. Up to three multimeters measurements with the Agilent Mobile Meter Figure 5. Make measurements with the Agilent Mobile Meter via an Android smart phoneData logging is an important function for industrial users to capture data streams or plotting trending graphs. These data and graphs are used for analysis to identify intermittent behavior or detect drifts. Agilent Mobile Logger is the free Android application software that logs data and provides trending graphs from Agilent handheld digital multimeters. Agilent Mobile Logger offers an array of extended functions such as sending e-mail or Short Message Service (SMS) automatically, and pan and zoom function via the Android device’s touch screen. Alternatively, data logging and monitoring activities can also be performed at the comfort of one’s Personal Computer (PC) via a downloadable Agilent GUI data logger software.Perform data logging with multimeters – wirelessly!Notes: 1. Agilent Mobile Meter and Agilent Mobile Logger can be downloaded from /find/hh-Android or from Android Market (https:///)2. Agilent GUI Data Logger Software can be /find/hh-logger Figure 3. Data logging with AgilentMobile Logger software.• Antenna Power: 1 mW or less• Number of Channels: 79Specifications• Modulation: GFSK / PSKOperating environment Operating temperature from –20 to 55 °CStorage environment Storage temperature from –40 to 70 °CRelative humidity (R.H.)Relative humidity up to 95% at 40 °C (non-condensing)Power consumption Maximum 130 mVA for two 1.5 V AAA batteriesBattery life30 hours typical (based on continuous data transfer)Battery type Alkaline 24 A (ANSI/NEDA) and LR03 (IEC), or Zinc Chloride 24 D (ANSI/NEDA)and R03 (IEC)Dimension (W x H x L)39.0 × 71.0 × 37.0 mmWeight60 g with batteriesWarranty Three monthsBluetooth"Bluetooth" Version 2.1 + EDR compliant, SPP profile, Class 2 device(with 10 metres connection range)Safety The U1177A complies with the requirements of the following safety and regulationstandards:• FCC Part15C (Certification) (15.209, 15.247) FCC ID: ZKMAGILENT-U1177A• FCC Part15B (DoC) (15.109)• RSS–210 Issue 8:2010 IC: 6310A–U1177A• ICES–003 Issue 4:2004• EN 300 328 V1.7.1:2008• EN 301 489–1V1.8.1:2008/–17 V2.11:2009• EN 55022:2006+A1:2007/EN55024:1998+A1:2001+A2:2003• EN 50371:2002• EN 60950–1:2006/A11:2009/A1:2010• Complies with IDA Standards (DB 102425)• India Equipment Type Approval (ETA) Certificate No: 1424/2011/WRLO• COFETEL Certificate No: RCPAGU111-1066, registered under Agilent TechnologiesMexico S de RL de CV"This telecommunication equipment conforms NTC technical requirement"Standard shipped items:• Two 1.5 V AAA batteries• Operating instructionsFor more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:/find/contactus Americas Canada (877) 894 4414 Brazil (11) 4197 3600Mexico 01800 5064 800 United States (800) 829 4444 Asia Pacific Australia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 180****8100Taiwan 0800 047 866Other AP Countries (65) 375 8100Europe & Middle East Belgium 32 (0) 2 404 93 40 Denmark 45 45 80 12 15Finland 358 (0) 10 855 2100France 0825 010 700* *0.125 €/minuteGermany 49 (0) 7031 464 6333 Ireland 1890 924 204I srael 972-3-9288-504/544Italy 39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden 0200-88 22 55United Kingdom 44 (0) 118 927 6201For other unlisted countries: /find/contactus Revised: January 6, 2012Product specifications and descriptions in this document subject to change without notice.© Agilent Technologies, Inc. 2012Published in USA, February 2, 20125990-9531EN /find/U1177A Agilent Advantage Services is committed to your success throughout your equip-ment’s lifetime. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equipment and services more effectively. By sharing our measurement and service expertise, we help you create the products that change our /quality /find/advantageservices Agilent Email Updates /find/emailupdates Get the latest information on the products and applications you select. LAN eXtensions for Instruments putsthe power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.Agilent Channel Partnersw w w /find/channelpartners Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner AdvancedTCA ® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium. PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用户指南
s1
声明
© Agilent Technologies, Inc. 2007-2009, 2011-2012
根据美国和国际版权法,未经 Agilent Technologies, Inc. 事先同意和书面 允许,不得以任何形式或通过任何方式 (包括电子存储和检索或翻译为其他国 家或地区的语言)复制本手册中的任何 内容。
s1
9
1 前提条件
带宽要求
示波器和探头的带宽要求取决于开关设备的转换速度 (上升 / 下降时间)。 具有高斯响应的示波器 (通常对于 1 GHz 及以下带宽的示波器),示波器的上 升时间通常与示波器的带宽相关,公式如下: 上升时间 = 0.35/ 带宽 要测量误差为 ±5% 的输入信号的上升时间,示波器的上升时间必须是输入信号 上升时间的 1/3。因此,所需的示波器带宽为: BW = [ 0.35 / ( 输入信号上升时间 / 3) ] 例如,如果开关设备的上升时间为 10 ns,所需的示波器带宽将为 105 MHz。
声测量和电源抑制比测量)。 • Agilent N2870A 无源探头 1:1,35 MHz 带宽,最大输入 55 V (用于电源噪
声测量和电源抑制比测量)。
有关电压探头带宽要求,请参见 “ 带宽要求 " (第 10 页)。
所需的探头电压范围取决于要测量的输入信号。AC-DC 开关模式电源需要高电压 范围的探头,因为开关信号和输入线信号会高达 700 Vpp。对于 DC-DC 开关模 式电源,较小的探头电压范围就足够了,因为信号幅度要小得多。
电源抑制比 (PSRR)
46
转换速度
49
4 自动电源测量
功率因数
51
有效功率
52
视在功率
52
无功功率
52
波峰因数
53
相位角
53
输出波纹
53
输入功率
53
输出功率
54
效率
54
峰值电流
54
瞬变
54
开启时间
55
关闭时间
55
6
DSOX3PWR 电源测量应用 用户指南
索引
功率损耗
55
功率损耗 / 周期
55
能量损耗
10
DSOX3PWR 电源测量应用 用户指南
前提条件 1
软件版本要求
表 1 所需的示波器软件版本 示波器系列 InfiniiVision 3000 X 系列
所需的软件版本 2.00 或更高版本
探头要求
• “ 电压探头 " (第 11 页) • “ 电流探头 " (第 12 页) • “ 对电压和电流探头进行抗时滞设置 " (第 12 页)
技术许可
对于本文档中描述的硬件和/或软件, 仅在得到许可的情况下才会提供,并且 只能根据许可进行使用或复制。
限制性权限声明
美国政府限制性权限。 授予联绑政府 的软件和技术数据权限仅包括通常会提 供给最终用户的那些权限。 Agilent 针对软件和技术数据提供这种惯例性的 商业许可时遵循 FAR 12.211 (技术数 据)和 12.212 (计算机软件)以及国 防部的 DFARS 252.227-7015 (技术数 据 - 商品)和 DFARS 227.7202-3 (商 业计算机软件或计算机软件文档权 限)。
表 2 U1880A 抗时滞装置环境特性
温度 湿度 海拔高度 室内使用
工作时:–10 °C 到 +55 °C 非工作时:-20 ℃ 到 +60 ℃
工作时:24 小时内在 40 ℃ 时为 95% RH 非工作时:24 小时内在 65 ℃ 时为 90% RH
工作时:最高 4,570 米 (15,000 英尺) 非工作时:最高 15,244 米 (50,000 英尺)
安全声明
小心
小心标记表示危险。 它要求在 执行操作步骤时必须加以注 意,如果不正确执行操作或不 遵循操作步骤,则可能会导致 产品损坏或重要数据丢失。 请 在出现小心标记时停止操作, 直到已完全理解并满足了指示 条件时再继续。
警告
“ 警告 ” 标志表示有危险。 它要求在执行操作步骤时必须 加以注意,如果不正确执行操 作或不遵循操作步骤,则可能 会导致人身伤亡。 如果没有完 全理解 “ 警告 ” 标志所指示 的条件并满足这些条件,则不 要继续操作。
3:0 ಞ
䗉࠰
'& 䗉࠰
䈹᮪ ૂ
图1
开关模式电源 (SMPS) 块示意图和测量类型
使用电源测量应用,您可以: • 测量开关设备的开关损耗和导通损耗 (以帮助提高效率)。 • 分析 dI/dt 和 dV/dt 转换速率 (以进行可靠操作)。 • 自动设置示波器以进行波纹测量 (以省去繁琐的手动示波器设置)。 • 根据 IEC 61000-3-2 标准执行预先合规性测试 (以缩短合规性测试时间)。 • 通过整体谐波失真、有效功率、视在功率、功率因数和波峰因数测试来分析
手册部件号
02.20.0000 版
版本
2012 年 7 月 16 日
Available in electronic format only
Agilent Technologies, Inc. 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA
2
DSOX3PWR 电源测量应用 用户指南
电源测量应用 — 概览
使用 InfiniiVision 3000 X 系列示波器的 DSOX3PWR 电源测量和分析可以快速 轻松地分析开关电源的效率和可靠性。
䗉ޛ㓵࠼᷆
$& 䗉ޛ
᮪⍷ಞ ඍ
䈹࠼᷆
⭫Ⓠ䇴༽࠼᷆
䗉࠰࠼᷆ ⷢଃᓊ࠼᷆
ᔶ࠼᷆
⭫ⓆՖ䗉 ૂ䳊⿱
56
DSOX3PWR 电源测量应用 用户指南
7
8
DSOX3PWR 电源测量应用 用户指南
DSOX3PWR 电源测量应用 用户指南
1 前提条件
安全 9 示波器要求 9 探头要求 11
安全
警告
本章介绍使用电源测量应用的安全注意事项和所需要求。
将电路连接到危险电压时,应确保所使用的探头和其他组件在其额定值范围 内。请参考探头和其他组件的文档。
有关电流探头带宽要求,请参见 “ 带宽要求 " (第 10 页)。
对电压和电流探头进行抗时滞设置
要确保准确地测量功率损耗,可使用 U1880A 抗时滞装置来调整电流探头和电压 探头信号路径之间的任何时间延迟差异的时滞。
抗时滞探头的过程在第 2 章 , “ 入门 ,” (从第 13 页开始)中进行了说明。
无源探头通常用于测量 DC 输出和瞬变响应。
DSOX3PWR 电源测量应用 用户指南
11
1 前提条件
电流探头
可以使用下列 Agilent AC/DC 电流探头: • 1147A 50 MHz 带宽,15A 峰值。 • N2893A 100 MHz 带宽,30A 峰值。 • N2780A 2 MHz 带宽,500A 峰值。 • N2781A 10 MHz 带宽,150A 峰值。 • N2782A 50 MHz 带宽,30A 峰值。 • N2783A 100 MHz 带宽,30A 峰值。
示波器要求
DSOX3PWR 电源测量应用与 3000 X 系列数字存储示波器 (DSO) 结合使用。 • InfiniiVision 3000 X 系列示波器具有 100 MHz、200 MHz、350 MHz 和
500 MHz 带宽型号,存储器为 2 Mpts 或 4 Mpts。 被测电源的特性决定了示波器带宽和所需存储器。 • “ 带宽要求 " (第 10 页) • “ 存储器要求 " (第 10 页) • “ 软件版本要求 " (第 11 页)
DSOX3PWR 电源测量应用 用户指南
3
DSOX3PWR 附带一个 U1881A 基于 PC 的电源分析软件包的许可证 (无附加费 用),该软件包可提供附加的离线电源测量和报告生成功能。
此指南包含以下内容: • 第 1 章 , “ 前提条件 ,” (从第 9 页开始) • 第 2 章 , “ 入门 ,” (从第 13 页开始) • 第 3 章 , “ 执行电源分析 ,” (从第 21 页开始) • 第 4 章 , “ 自动电源测量 ,” (从第 51 页开始)
4
DSOX3PWR 电源测量应用 用户指南
目录
电源测量应用 — 概览
3
1 前提条件
安全
9
示波器要求
9
带宽要求
10
存储器要求
10
软件版本要求
11
探头要求
11
电压探头
11
电流探头
12
对电压和电流探头进行抗时滞设置
12
2 入门
步骤 1:访问电源测量应用
13
步骤 2:执行通道抗时滞
14
步骤 3:选择电源分析的类型
仅允许在室内使用
12
DSOX3PWR 电源测量应用 用户指南
DSOX3PWR 电源测量应用 用户指南
2 入门
步骤 1:访问电源测量应用 13 步骤 2:执行通道抗时滞 14 步骤 3:选择电源分析的类型 17 步骤 4:进行 DUT 连接并设置信号 17 步骤 5:更改分析设置 (如果可用) 19 步骤 6:应用分析 19 步骤 7:查看分析结果 19
17
步骤 4:进行 DUT 连接并设置信号
17
步骤 5:更改分析设置 (如果可用)
19
步骤 6:果
19
3 执行电源分析
电流谐波
21