2019届中考数学小题精做练习题1
2019年中考数学真题试题(含解析) 人教新版
2019年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
精品解析:陕西省2019年中考数学试题(解析版)
2019年陕西中考数学一、选择题(共10小题,每小题3分,共30分)1.计算:()0-3=()A. 1B. 0C. 3D.1 3 -【答案】A【解析】【分析】直接根据0指数幂的含义进行解答即可.【详解】()0-3=1,故选A.【点睛】本题考查了0指数幂,熟练掌握“任何非0数的0次幂都等于1”是解题的关键.2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A. B. C. D.【答案】D【解析】【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.3.如图,OC 是∠AOB 的角平分线,l //OB,若∠1=52°,则∠2的度数为( )A. 52°B. 54°C. 64°D. 69°【答案】C 【解析】 【分析】先根据两直线平行,同旁内角互补求出∠AOB=128°,再根据角平分线的定义得到∠BOC=64°,继而根据平行线的性质即可求得答案. 【详解】∵l//OB , ∴∠1+∠AOB=180°, ∴∠AOB=128°, ∵OC 平分∠AOB , ∴∠BOC=64°, 又∵l//OB , ∴∠2=∠BOC=64°, 故选C.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解本题的关键.4.若正比例函数2y x =-的图象经过点O (a -1,4),则a 的值为( ) A. -1 B. 0C. 1D. 2【答案】A 【解析】 【分析】把点(a-1,4)直接代入正比例函数y=-2x 中求解即可.【详解】∵函数2y x =-过O(a-1,4), ∴2(1)4a --=, ∴1a =-, 故选A.【点睛】本题考查了正比例函数图象上点的坐标特征,熟知正比例函数图象上的点的坐标一定满足正比例函数的解析式是解题的关键.5.下列计算正确的是( ) A. 222236a a a ⋅= B. ()224236a b a b -=C. ()222a b a b -=- D. 2222a a a -+=【答案】D 【解析】 【分析】根据单项式乘法法则、积的乘方法则、完全平方公式,合并同类项法则逐一进行计算即可. 【详解】A. 422236a a a ⋅=,故A 选项错误; B. ()224239a b a b -=,故B 选项错误;C. ()2222a b a ab b -=-+,故C 选项错误; D. 2222a a a -+=,正确, 故选D.【点睛】本题考查了单项式乘法、积的乘方、完全平方公式、合并同类项等运算,熟练掌握各运算的运算法则是解题的关键.6.如图,在△ABC 中,∠B=30°,∠C=45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E 。
2019 年中考数学真题试题(含解析)(新版)新目标版
2019年中考数学真题试题一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃ D.﹣11℃2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣23.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x24.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+66.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.68.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9.(3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.201310.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是12.(3分)下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.(3分)计算﹣的结果是.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.三、解答题(共8题,共72分)17.(8分)解方程组:18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF 相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.2.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.3.【解答】解:3x2﹣x2=2x2,故选:B.4.【解答】解:这组数据的众数和中位数分别42,38.故选:B.5.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.6.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.7.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.8.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.9.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.10.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:原式=+﹣=故答案为:12.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.13.【解答】解:原式=+=故答案为:14.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.15.【解答】解:t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.16.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.三、解答题(共8题,共72分)17.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.18.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.19.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.21.【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.22.【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+ b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.24.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).。
2019年中考数学试卷及答案解析
2019年中考数学试卷及答案解析一、选择题(每小题3分,共30分)1. 已知集合A={1,2,3,4},B={2,3,4,5},则A∩B={( )}A. 1B. 2C. 3D. 4答案:B. 22. 已知等比数列{an}的前三项分别为a1=2,a2=4,a3=8,则a6=()A. 32B. 64C. 128D. 256答案:D. 2563. 已知正方形ABCD的边长为4,则正方形ABCD的面积为()A. 8B. 16C. 32D. 64答案:B. 164. 已知函数f(x)=2x-1,则f(-2)=()A. -3B. -1C. 1D. 3答案:A. -3二、填空题(每小题3分,共30分)5. 已知等差数列{an}的前三项分别为a1=2,a2=5,a3=8,则公差d= __________答案:36. 已知函数f(x)=2x+3,则f(-1)= __________答案:17. 已知正方形ABCD的边长为3,则正方形ABCD的周长为__________答案:128. 已知集合A={1,2,3,4},B={2,3,4,5},则A∪B= __________答案:{1,2,3,4,5}三、解答题(共40分)9. (本小题满分12分)已知等比数列{an}的前三项分别为a1=2,a2=4,a3=8,求该数列的通项公式。
解:由等比数列的定义可知,若a1≠0,且a2/a1=a3/a2=q,则数列{an}为等比数列,其通项公式为an=a1qn-1,由题意可得a1=2,q=a2/a1=4/2=2,故等比数列{an}的通项公式为an=2×2n-1=2n。
10. (本小题满分12分)已知函数f(x)=2x+3,求f(-2)的值。
解:由函数f(x)=2x+3可得,当x=-2时,f(-2)=2(-2)+3=-4+3=-1。
故f(-2)=-1。
11. (本小题满分16分)已知正方形ABCD的边长为4,求正方形ABCD的面积和周长。
2019备战中考数学基础必练(人教版)-第一章有理数(含解析)
2019备战中考数学基础必练(人教版)-第一章有理数(含解析)一、单选题1.实数a,b在数轴上的位置如图所示,则下列结论正确的是()A. a+b>0B. a-b>0C. a•b>0D. >02.有理数a、b在数轴上的位置如图所示,则a+b的值( )A. 大于0B. 小于0C. 等于0D. 大于3.下列说法中,正确的是( )A.上升与下降是具有相反意义的量B.前进30 m是具有相反意义的量C.向东走10 m与向西走20 m是具有相反意义的量D.身高1.7 m和体重63 kg是具有相反意义的量4.既是分数,又是正数的是()A. +5B.C. 0D.5.a、b在数轴上的位置如图所示,则下列式子正确的是()A. a+b>0B. a+b>a﹣bC. |a|>|b|D. ab<06.在﹣2,﹣2 ,0,2四个数中,最小的数是()A. ﹣2B. ﹣2C. 0D. 27.的倒数是()A. B. C. 2 D. ﹣28.有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A. a+b>0B. a﹣b<0C. |b|>|a|D. ab<09.在﹣6,0,2.5,|﹣3|这四个数中,最大的数是()A. ﹣6B. 0C. 2.5D. |﹣3|二、填空题10.-的相反数是________ ,-的倒数是________ ,+(﹣5)的绝对值是________11.某天最低气温是﹣5℃,最高气温比最低气温高18℃,则这天的最高气温是________℃.12.绝对值等于4的所有整数是________ .13.第29届(北京)奥运会有21880名火炬手,火炬接力行程约13.72万千米.将是奥运史上传递路线最长的.13.72万千米用科学记数法可表示为米________.14.﹣4的绝对值是________,﹣的相反数是________,﹣3 的倒数是________.15.四个互不相等的整数a、b、c、d,使(a﹣3)(b﹣3)(c﹣3)(d﹣3)=25,则a+b+c+d=________.16.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C、若点C表示的数为1,则点A表示的数为________17.若x,y为实数,且|x+2|+(y﹣2)2=0,则()2016的值为________.18.绝对值小于2.5的所有非负整数的积为________.三、计算题19.计算:[(﹣+1 ﹣]÷(﹣)×|﹣110﹣(﹣3)2|20.计算:9×(﹣)+ +|﹣3|四、解答题21.画出数轴,把下列各数:﹣5、3、0、﹣在数轴上表示出来,并用“<”号从小到大连接.22.某车间接受了加工两根轴的任务,车间工人看了看图纸,轴长2.60m,他用很短的时间完成了任务,可是把轴交给主任验收时,主任很不高兴,说不合格,只能报废!原来工人加工完的轴一根长2.56m,另一根长2.62m,请你利用所学的知识解释:为什么两根轴不合格呢?五、综合题23.阅读材料,对于任何数,我们规定符号的意义是: =ad﹣bc,例如: =1×4﹣2×3=﹣2.(1)按照这个规定,请你计算的值.(2)按照这个规定,当=5时,求x的值.答案解析部分一、单选题1.【答案】A【考点】数轴,有理数的加法,有理数的减法,有理数的乘法,有理数的除法【解析】【分析】由题意可知-1<a<0,b>1,故a、b异号,且|a|<|b|.根据有理数加减法得a+b的值应取b的符号“+”,故a+b>0;由b>1得-b<0,而a<0,所以a-b=a+(-b)<0;根据有理数的乘除法法则可知a•b<0,<0.【解答】依题意得:-1<a<0,b>1∴a、b异号,且|a|<|b|.∴a+b>0;a-b=-|a+b|<0;a•b<0;<0.故选:A.【点评】本题考查了数轴和有理数的四则运算.2.【答案】A【考点】数轴【解析】【分析】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【解答】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【点评】此题综合考查了数轴、绝对值的有关内容及有理数的加法法则.用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.3.【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:A.上升和下降表示意义相反,但没有数量,故错误,A不符合题意;B.相反意义的量包含两个量,故错误,B不符合题意;C.满足相反意义量的两个条件,故正确,C符合题意;D.身高和体重是两个量,不具有相反意义,故错误,D不符合题意;故答案为:C.【分析】相反意义的量包含两个要素:①两者意义相反;②两者都是(表示一定的数量),而且是(属性相同的)量;由此一一分析即可得出答案.4.【答案】D【考点】正数和负数【解析】【分析】根据分数和正数的定义依次分析各项即可判断。
【中考快递】2019届中考数学复习检测:专题一-开放探索问题(Word版,含答案)
一、选择题(每小题5分,共15分)1.(2018·莆田中考)等腰三角形的两条边长分别为3,6,那么它的周长为( )(A)15 (B)12(C)12或15 (D)不能确定2.如图,直线y=x+2与双曲线m 3y x -=在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )3.(2017·宁波中考)如图,用邻边长分别为a ,b(a ﹤b)的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 满足的关系式是( )(A)b =(B)b =(C)b =(D)b =二、填空题(每小题5分,共10分)4.已知x 2+x-1=0,则代数式2x 3+4x 2+3的值为________________________.5.(2018·潜江中考)已知ABCD 的周长为28,自顶点A 作AE ⊥CD 于点E ,AF ⊥CB 于点F.若AE=3,AF=4,则CE-CF=_______________.三、解答题(共25分)6.(12分)(2017·黄冈中考)新星小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为4 米,为安全起见,规定车头距斑马线后端的水平距离不得低于2 米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE =15° 和∠FAD=30° .司机距车头的水平距离为0.8 米,试问该旅游车停车是否符合上述安全标准(E,D,C,B 四点在平行于斑马线的同一直线上)?(tan152sin15cos151.7321.414)︒=︒=︒=≈≈参考数据:【探究创新】 7.(13分)(2017·河北中考)如图1和图2,在△ABC 中,AB=13,BC=14,cos ∠ABC=513. 探究如图1,AH ⊥BC 于点H,则AH=________,AC=________,△ABC 的面积S △ABC =__________.拓展 如图2,点D 在AC 上(可与点A,C 重合),分别过点A,C 作直线BD 的垂线,垂足为E,F,设BD=x,AE=m,CF=n.(当点D 与点A 重合时,我们认为S △ABD=0)(1)用含x,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D,指出这样的x 的取值范围.发现请你确定一条直线,使得A,B,C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.参考答案1.【解析】选A.由题意可知:当6是腰时,三角形的周长是15;当3是腰时,3+3=6,不能组成三角形.2.【解析】选B.由题意可得m-3<0,故m<3;由直线y=x+2与双曲线m 3y x -=在第二象限有两个交点,可得m3x2x-+=,即x2+2x-(m-3)=0,即Δ=4+4(m-3)>0,所以m>2.综上,可得2<m<3,故选B.3.【解析】选D.如图,设小圆半径为r,由题意得112r2(a)22π=⋅π,解得1 r a.4 =在Rt△O1O2H中,O1O2=13r a a24+=,O1H=12b,211O H a r a.24=-=又O1O22=O1H2+O2H2,所以222311(a)(b)(a)424=+,解得b=故选D.4.【解析】把x2+x看成一个整体,得x2+x=1,所以2x3+4x2+3=2x3+2x2+2x2+3= 2x(x2+x)+2x2+3=2x+2x2+3=2(x2+x)+3=2+3=5.参考答案5.【解析】(1)当E,F分别在线段CD和CB上时,如图所示:设BC=x,DC=y,则根据题意可得:x y14 4x3y+=⎧⎨=⎩,,解得x6y8=⎧⎨=⎩,,即BC=6,DC=8,根据勾股定理可知DE BF==所以CE-CF=(862---=(2)当E,F分别在CD,CB的延长线上时,如图所示:同理可得答案226.【解析】由题意得:∠FAE=15°,∠FAD=30°,∴∠EAD=15°.∵FA∥BE, ∴∠AED=15°,即AD=DE=4米. 在Rt△ADB中,∠ADB=∠FAD=30°,∴BD=AD·cos30°4==3.464米,DC=BD-BC=3.464-0.8=2.664米>2米, ∴该车停车符合上述安全标准.7.【解析】探究 12 15 84拓展 (1)由三角形面积公式,得ABD CBD11S mx,S nx.22==(2)由(1)得CBDABD2S2Sm,n,x x==∴m+n=CBDABD2S2S168.x x x+=由于AC 边上的高为ABC2S28456, 15155⨯==∴x的取值范围是565≤x≤14.∵(m+n)随x的增大而减小,∴当x=565时,(m+n)的最大值为15;当x=14时,(m+n)的最小值为12.(3)x的取值范围是x=565或13<x≤14.发现 AC所在的直线,最小值为56 5.【高手支招】解压轴题时遇到困难的原因及应对策略原因:在解压轴题时遇到的困难可能来自多方面,如基础知识和基本技能欠缺、解题经验缺失或训练程度不够、自信心不足等,具体表现可能是“不知从何处下手,不知向何方前进”. 应对策略:在求解中考数学压轴题时,要重视一些数学思想方法的灵活应用.数学思想方法是解好压轴题的重要工具,也是保证压轴题能求解的“对而全、全而美”的重要前提.针对近年全国各地中考数学压轴题的特点,在学习中要狠抓基础知识的落实,因为基础知识是“不变量”,而所谓的考试“热点”只是与题目的形式有关.有效地解答中考压轴题的关键是要以不变应万变.加大综合题的训练力度,加强解题方法的训练,加强数学思想方法的渗透,注重“基本模式”的积累与变化。
2019年中考数学测试卷(含答案)
南通市2019年中考数学试卷第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在0,2,1,2--这四个数中,最小的数为( ) A .0 B .2 C .1- D .2-2.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学计数法表示为( )A .51.810⨯B .41.810⨯C .60.1810⨯D .41810⨯ 3. 下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236aa =4. 如图是由4的大小相同的正方形组合而成的几何体,其左视图是( )5. 平面直角坐标系中,点(1,2)P -关于x 轴的对称的点的坐标为( ) A .(1,2) B .(1,2)-- C .(1,2)- D .(2,1)-6. 如图,圆锥的底面半径为2,母线长为6,则侧面积为( ) A .4π B .6π C .12π D .16π7. 一组数据:1,2,2,3,若添加一个数据2,在发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差8. 一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量()y L 与事件(min)x 之间的关系如图所示,则每分钟的出水量是( ) A .5L B .3.75L C .2.5L D .1.25L 9. 已知AOB ∠,作图步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交,OA OB 于点,P Q ;步骤2:过点M 作PQ 的垂线交»PQ于点C ; 步骤3:画射线OC .则下列判断:①»»PCCQ =;②//MC OA ;③OP PQ =;④OC 平分AOB ∠,其中正确的个数为( )A .1B .2C .3D .410. 如图,矩形ABCD 中,10,5AB BC ==,点,,,E F G H 分别在矩形ABCD 各边上,且,AE CG BF DH ==,则四边形EFGH 周长的最小值为( ) A .55 B .105 C .103 D .153第Ⅱ卷(共90分)二、填空题(每题8分,满分24分,将答案填在答题纸上)11.2x -在实数范围内有意义,则x 的取值范围为 . 12.如图,DE 是ABC ∆的中位线,若8BC =,则DE = .13.四边形ABCD 内接于圆,若110A ∠=o ,则C ∠= 度.14.若关于x 的方程260x x c -+=有两个相等的实数根,则c 的值为 . 15.如图,AOB ∆将绕点O 按逆时针方向旋转045后得到COD ∆,若015AOB ∠=, 则AOD ∠= 度.16.甲乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙作40个所用的时间相等,则乙每小时所做零件的个数为 .17.已知x m =时,多项式222x x n ++的值为1-,则x m =-时,该多项式的值为 .18.如图,四边形OABC 是平行四边形,点C 在x 轴上,反比例函数(0)ky x x=>的图象经过点(5,12)A ,且与边BC 交于点D ,若AB BD =,则点D 的坐标为 .三、解答题 (本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19. (1)计算2014(2)9()2---+-;(2)解不等式组321213x xxx-≥⎧⎪+⎨>-⎪⎩20. 先化简,再求值:524(2)23mmm m-+-⋅--,其中12m=-.21.某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后所得数据绘制成如下不完整的统计图表:请根据图表中提供的信息回答下列问题:(1)a=;b=;(2)将频率分布直方图补充完整;(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不小于50min?22. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除除颜色外无其他差别,随机摸出1个球不放回,再随机1个球,求两次均摸到红球的概率.21.热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为045,看这栋楼底部C的俯角β为060,热气球与楼的水平为100m,求这栋楼的高度(结果保留根号).24.如图,Rt ABC ∆中,090,3C BC ∠==,点O 在AB 上,2OB =,以OB 为半径的O e 与AC 相切于点D ,交BC 于点E ,求弦BE 的长.25.某学习小组在研究函数的图象与性质时,已知表、描点并画出了图象的一部分.x L 4- 3.5- 3- 2- 1- 0 12 3 3.5 4Ly L 83- 748- 32 83116116-83- 32- 748 83L (1)请补全函数图象; (2)方程31226x x -=-实数根的个数为 (3)观察图象,写出该函数的两条性质.26.如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交,,AD BE BC 于点,,P O Q , 连接,BP EQ .(1)求证:四边形BPEQ 是菱形;(2)若6,AB F =为AB 的中点,9OF OB +=,求PQ 的长.27.我们知道,三角形的内心是三条角平分线的焦点,过三角形内心的一条直线与两边相交,两焦点之间的线段把这个三角形分成两个图形,若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”. (1)等边三角形“内似线”的条数为(2)如图,ABC ∆中,AB AC =,点D 在AC 上,且BD BC AD ==,求证:BD 是ABC ∆的“内似线”;(3)在Rt ABC ∆中,090,4,3,,C AC BC E F ∠===分别在边,AC BC 上,且EF 是ABC ∆的“内似线”,求EF 的长.28.已知直线y kx b =+与抛物线2(0)y ax a =>相交于,A B 两点(点A 在点B 的左侧),与y 轴正半轴相交于点C ,过点A 作AD x ⊥轴,垂足为D .(1)若060,//AOB AB x ∠=轴,2AB =,求a 的值;(2)若090AOB ∠=,点A 的横坐标为4,4AC BC -=,求点B 的坐标; (3)延长,AD BO 相交于点E ,求证:DE CO = .。
2019届九年级数学 中考模拟试卷含解析
2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。
北京市2019年中考数学试题(解析版)
北京市2019年中考数学试题(解析版)2019年北京市⾼级中等学校招⽣考试数学试卷⼀、选择题(本题共30分,每⼩题3分)第1-10题均有四个选项,符合题意的选项只.有.⼀个。
1. 如图所⽰,⽤量⾓器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:⽤量⾓器度量⾓。
解析:由⽣活知识可知这个⾓⼩于90度,排除C、D,⼜OB边在50与60之间,所以,度数应为55°。
2. 神⾈⼗号飞船是我国“神⾈”系列飞船之⼀,每⼩时飞⾏约28 000公⾥。
将28 000⽤科学计数法表⽰应为(A)(B) 28(C)(D)答案:C考点:本题考查科学记数法。
解析:科学记数的表⽰形式为10na?形式,其中1||10≤<,n为整数,28000=。
故选C。
a3. 实数a,b在数轴上的对应点的位置如图所⽰,则正确的结论是(A)a(B)(C)(D)答案:D考点:数轴,由数轴⽐较数的⼤⼩。
解析:由数轴可知,-3<a<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,。
4. 内⾓和为540的多边形是答案:c考点:多边形的内⾓和。
n-??,当n=5时,内⾓和为540°,所以,选C。
解析:多边形的内⾓和为(2)1805. 右图是某个⼏何体的三视图,该⼏何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原⼏何体。
解析:该三视图的俯视为三⾓形,正视图和侧视图都是矩形,所以,这个⼏何体是三棱柱。
6. 如果,那么代数2()b aaa a b--g的值是(A) 2 (B)-2 (C)(D)答案:A考点:分式的运算,平⽅差公式。
解析:2()b aaa a b--g=22a b aa a b--g=()()a b a b aa a b-+-+=2。
7. 甲⾻⽂是我国的⼀种古代⽂字,是汉字的早期形式,下列甲⾻⽂中,不是轴对称的是答案:D考点:轴对称图形的辨别。
浙江省2019届中考数学复习微专题训练(打包10套,Word版,含答案)
微专题一 数形结合与实数的运算姓名:________ 班级:________ 用时:______分钟1.两个实数互为相反数,在数轴上的对应点分别是点A 、点B ,则下列说法正确的是( ) A .原点在点A 的左边 B .原点在线段AB 的中点处 C .原点在点B 的右边D .原点可以在点A 或点B 上2.(2018·浙江绍兴模拟)计算-(2)2+(2+π)0+(-12)-2的结果是( )A .1B .2C.114D .33.定义一种新运算☆,其规则为a☆b=1a +1b ,根据这个规则,计算2☆3的值是( )A.56B.15C .5D .64.如图,数轴上的A ,B ,C ,D 四点中,与表示数-3的点最接近的是( )A .点AB .点BC .点CD .点D5.若实数a 满足|a -12|=32,则a 对应于图中数轴上的点可以是A ,B ,C 三点中的点______.6.计算:8-|2-22|+2tan 45°=______.7.(2019·创新题)按所给程序计算:输入x =3,则输出的答案是________.输入x →立方→-x →÷2→答案8.观察下列各式: 11×2=1-12=12; 11×2+12×3=1-12+12-13=23; 11×2+12×3+13×4=1-12+12-13+13-14=34; …按以上规律,写出第n 个式子的计算结果(n 为正整数)____.(写出最简计算结果即可) 9.设S 1=1+112+122,S 2=1+122+132,S 3=1+132+142,…,S n =1+1n 2+1(n +1)2.设S =S 1+S 2+…+S n ,则S =____(用含n 的代数式表示,其中n 为正整数). 10.设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6.则a 1+a 2+a 3+…+a 2 017+a 2 018+a 2 019=______________.11.(2019·创新题)有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是8,第2次输出的结果是4…则第2 018次输出的结果是______.12.(2019·改编题)计算:2-2+(327-146)÷6-3sin 45°.13.计算:(13)-1-|-2+3tan 45°|+(2-2 018)0-(2-3)(2+3).14.如图,点A ,B 在数轴上分别表示有理数a ,b ,且A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b|.回答下列问题:(1)在数轴上表示2和5的两点之间的距离是________,在数轴上表示1和-3的两点之间的距离是________;(2)在数轴上表示x 和-5的两点之间的距离是________;(3)若x 表示一个有理数,则|x -1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.15.我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i ”,使其满足i 2=-1(即方程x 2=-1有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i2=-1,i 3=i 2·i =(-1)·i =-i ,i 4=(i 2)2=(-1)2=1,从而对于任意正整数n ,我们可以得到i4n +1=i 4n ·i =(i 4)n ·i =i ,同理可得i4n +2=-1,i4n +3=-i ,i 4n =1.求i +i 2+i3+i 4+…+i 2 018+i 2 019的值.参考答案1.D 2.D 3.A 4.B5.B 6.4 7.12 8.nn+19.n2+2nn+110.6 666 11.412.解:原式=4+3276-14-3×22=4+922-14-322=154+3 2.13.解:原式=3-(2-3)+1-(2-3)=3-2+3+1-(-1)=3+ 3.14.解:(1)3 4(2)|x+5|(3)根据绝对值的定义知|x-1|+|x+3|可表示点x到表示1与-3的两点的距离之和.根据几何意义分析可知当x在-3与1之间时,|x-1|+|x+3|有最小值4.15.解:由题意得,i1=i,i2=-1,i3=-i,i4=1,i5=i4·i=i,i6=i5·i=-1,故可发现4个一循环,一个循环内的和为0.∵2 019÷4=504 (3)∴i+i2+i3+i4+…+i2 018+i2 019=504×0+(i-1-i)=-1.微专题二 代数式的化简与求值姓名:________ 班级:________ 用时:______分钟1.下列运算正确的是( ) A .x -2x =-x B .2x -y =-xy C .x 2+x 2=x 4D .(x -1)2=x 2-12.(2018·浙江丽水模拟)已知1a -1b =13,则2aba -b 的值是( )A.16B .-16C .6D .-63.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为( )A .7B .-7C .2a -15D .无法确定4.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A .9B .±3C .3D .55.已知2a -3b =7,则8+6b -4a =________. 6.已知a<0,化简:4-(a +1a)2-4+(a -1a)2=________.7.若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =____,b =______;计算:m =11×3+13×5+15×7+…+119×21=____.8.(2019·改编题)若m 2=n +2,n 2=m +2(m≠n),则m 3-2mn +n 3的值为________. 9. 先化简,再求值:(x +2)(x -2) +x(1-x),其中x =-1.10.化简:(a +1a -1-a a +1)÷3a +1a 2+a11.已知A =x 2+2x +1x -1-xx -1.(1)化简A.(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.12.先化简,再求值:m 2-4m +4m -1÷(3m -1-m -1),其中m =2-2.13.为鼓励学生努力学习,某校拿出了b 元资金作为奖学金,其中一部分作为奖学金发给了n 个学生.奖金分配方案如下:首先将n 个学生按学习成绩、思想道德评价(假设n 个学生的综合评分均不相同)从高到低,由1到n 排序,第1位学生得奖金bn 元,然后再将余额除以n 发给第2位学生,按此方法将奖金逐一发给了n 个学生.(1)假设第k 个学生得到的奖金为a k 元(1≤k≤n),试用k ,n 和b 表示a k .(2)比较a k 和a k +1的大小(k =1,2,…,n -1),并解释此结果就奖学金设置原则的合理性.参考答案1.A 2.D 3.A 4.C 5.-6 6.-2 7.1021 8.-29.解:原式=x 2-4+x -x 2=x -4. 当x =-1时,原式=-1-4=-5. 10.解:原式=[(a +1)2(a -1)(a +1)-a (a -1)(a -1)(a +1)]·a 2+a 3a +1 =a 2+2a +1-a 2+a (a -1)(a +1)·a (a +1)3a +1=3a +1(a -1)(a +1)·a (a +1)3a +1=aa -1. 11.解:(1)A =x 2+2x +1x 2-1-xx -1=(x +1)2(x +1)(x -1)-xx -1 =x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x≥1; 解x -3<0,得x<3,∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x<3. ∵x 为整数,∴x=1,2. 当x =1时,分式无意义. 当x =2时,A =12-1=1. 12.解:原式=(m -2)2m -1÷3-m 2+1m -1=(m -2)2m -1÷(2+m )(2-m )m -1=(m -2)2m -1×m -1(2+m )(2-m )=2-m 2+m .当m =2-2时,原式=2-2+22+2-2=4-22=22-1.13.解:(1)a k =b n (1-1n )k -1.(2)∵a k =b n (1-1n )k -1,a k +1=b n (1-1n )k,∴a k +1=(1-1n)a k <a k ,说明排名越靠前获得的奖学金越多.微专题三 列方程(组)解应用题姓名:________ 班级:________ 用时:______分钟1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( ) A .100元 B .90元C .810元D .819元2.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( ) A .不盈不亏 B .盈利20元 C .亏损10元D .亏损30元3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .54.夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A.⎩⎪⎨⎪⎧x +y =5 300200x +150y =30B.⎩⎪⎨⎪⎧x +y =5 300150x +200y =30 C.⎩⎪⎨⎪⎧x +y =30200x +150y =5 300 D.⎩⎪⎨⎪⎧x +y =30150x +200y =5 300 5.滴滴快车是一种便捷的出行工具,计价规则如表:费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟 B .13分钟 C .15分钟D .19分钟6.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为__________________________.7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为________尺,竿子长为________尺.8.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.9.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.10.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a >0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a 的值.参考答案1.A 2.C 3.D 4.C 5.D 6.2x +56=589-x 7.20 15 8.解:设城中有x 户人家. 依题意得x +x3=100,解得x =75.答:城中有75户人家.9.解:设订购了A 型粽子x 千克,B 型粽子y 千克,根据题意得⎩⎪⎨⎪⎧y =2x -20,28x +24y =2 560,解得⎩⎪⎨⎪⎧x =40,y =60.答:订购了A 型粽子40千克,B 型粽子60千克.10.解:(1)设道路硬化的里程数是x 千米,则道路拓宽的里程数是(50-x)千米. 根据题意得x≥4(50-x),解得x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米,x 千米,2x +x =45,x =15,2x =30,设每千米的道路硬化和道路拓宽的经费分别为y 万元,2y 万元, 30y +15×2y=780,y =13, 2y =26,由题意得13(1+a%)·40(1+5a%)+26(1+5a%)·10(1+8a%)=780(1+10a%), 设a%=m ,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m), 10m 2-m =0,m 1=0.1,m 2=0(舍去), ∴a=10.微专题四 反比例函数、二次函数图象与性质的综合应用姓名:________ 班级:________ 用时:______分钟1.如图,若二次函数y =ax 2+bx +c(a≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A ,点B(-1,0),则 ①二次函数的最大值为a +b +c ; ②a-b +c <0; ③b 2-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( ) A .1B .2C .3D .42.如图,点D 为矩形OABC 的AB 边的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC边于点E.若△BDE 的面积为1,则k =______.3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m )与飞行时间x(单位:s )之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.参照学习函数的过程与方法,探究函数y =x -2x 的图象与性质.因为y =x -2x =1-2x ,即y =-2x +1,所以我们对比函数y =-2x 来探究.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y =x -2x 相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连结起来; (2)观察图象并分析表格,回答下列问题:①当x <0时,y 随x 的增大而________;(填“增大”或“减小”) ②y=x -2x 的图象是由y =-2x 的图象向______平移______个单位而得到;③图象关于点______________中心对称.(填点的坐标)(3)设A(x 1,y 1),B(x 2,y 2)是函数y =x -2x 的图象上的两点,且x 1+x 2=0,试求y 1+y 2+3的值.5.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其他费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?6.如图,四边形ABCD 的四个顶点分别在反比例函数y =m x 与y =nx (x >0,0<m <n)的图象上,对角线BD∥y 轴,且BD⊥AC 于点P.已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式;②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由;(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.参考答案1.B 2.43.解:(1)当y =15时,15=-5x 2+20x , 解得x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是1 s 或3 s. (2)当y =0时,0=-5x 2+20x , 解得x 1=0,x 2=4 ∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s. (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时,y =20,答:在飞行过程中,小球飞行高度在第2 s 时最大,最大高度是20 m. 4.解:(1)画出函数图象如图所示.(2)①增大 ②上 1 ③(0,1) (3)∵x 1+x 2=0,∴x 1=-x 2.∴A(x 1,y 1),B(x 2,y 2)关于(0,1)对称, ∴y 1+y 2=2, ∴y 1+y 2+3=5.5.解:(1)设直线AB 的表达式为y =kx +b ,代入A(4,4),B(6,2)得⎩⎪⎨⎪⎧4k +b =4,6k +b =2,解得⎩⎪⎨⎪⎧k =-1,b =8,∴直线AB 的表达式为y =-x +8.同理代入B(6,2),C(8,1)可得直线BC 的表达式为y =-12x +5.∵工资及其他费用为0.4×5+1=3(万元),∴当4≤x≤6时,w 1=(x -4)(-x +8)-3=-x 2+12x -35, 当6<x≤8时,w 2=(x -4)(-12x +5)-3=-12x 2+7x -23.(2)当4≤x≤6时,w 1=-x 2+12x -35=-(x -6)2+1, ∴当x =6时,w 1取最大值是1. 当6<x≤8时,w 2=-12x 2+7x -23=-12(x -7)2+32,当x =7时,w 2取最大值是32.∴1032=203=623, 即最快在第7个月可还清10万元的无息贷款. 6.解:(1)①∵m=4,∴反比例函数为y =4x .当x =4时,y =1,∴B(4,1). 当y =2时,2=4x ,∴x=2,∴A(2,2).设直线AB 的表达式为y =kx +b ,∴⎩⎪⎨⎪⎧2k +b =2,4k +b =1,∴⎩⎪⎨⎪⎧k =-12,b =3,∴直线AB 的表达式为y =-12x +3.②四边形ABCD 是菱形.理由如下:如图,由①知,B(4,1).∵BD∥y 轴,∴D(4,5).∵点P 是线段BD 的中点,∴P(4,3). 当y =3时,由y =4x 得x =43,由y =20x 得x =203,∴PA=4-43=83,PC =203-4=83,∴PA=PC.∵PB=PD ,∴四边形ABCD 为平行四边形. ∵BD⊥AC,∴四边形ABCD 是菱形. (2)四边形ABCD 能是正方形.理由如下:当四边形ABCD 是正方形时, PA =PB =PC =PD =t(t≠0). 当x =4时,y =m x =m4,∴B(4,m4),∴A(4-t ,m 4+t),∴(4-t)(m4+t)=m ,∴t=4-m 4,∴点D 的纵坐标为m 4+2t =m 4+2(4-m 4)=8-m4,∴D(4,8-m 4),∴4(8-m4)=n ,∴m+n =32.微专题五 以特殊三角形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,E 为AB 边的中点,以BE 为边作等边△BDE,连结AD ,CD. (1)求证:△ADE≌△CDB;(2)若BC =3,在AC 边上找一点H ,使得BH +EH 最小,并求出这个最小值.2.如图,在等边△ABC 中,点D ,E ,F 分别同时从点A ,B ,C 出发,以相同的速度在AB ,BC ,CA 上运动,连结DE ,EF ,DF. (1)证明:△DEF 是等边三角形;(2)在运动过程中,当△CEF 是直角三角形时,试求S △DEFS △ABC的值.3.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB 的度数;(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.4.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长.5.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t 的值;若不存在,请说明理由.6.问题:(1)如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连结EC,则线段BC,DC,EC之间满足的等量关系式为________;探索:(2)如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:(3)如图3,在四边形ABCD中,∠ABC=∠ACB=∠A DC=45°.若BD=9,CD=3,求AD的长.参考答案1.(1)证明:在Rt△ABC 中,∠BAC=30°,E 为AB 边的中点, ∴BC=EA ,∠ABC=60°. ∵△DEB 为等边三角形,∴DB=DE ,∠DEB=∠DBE=60°, ∴∠DEA=120°,∠DBC=120°, ∴∠DEA=∠DBC, ∴△ADE≌△CDB.(2)解:如图,作点E 关于直线AC 对称点E′,连结BE′交AC 于点H ,连结EH ,AE′, 则点H 即为符合条件的点.由作图可知,EH =HE′,AE′=AE ,∠E′AC=∠BAC=30°, ∴∠EAE′=60°,∴△EAE′为等边三角形, ∴EE′=EA =12AB ,∴∠AE′B=90°.在Rt△ABC 中,∠BAC=30°,BC =3, ∴AB=23,AE′=AE =3,∴BE′=AB 2-AE′2=(23)2-(3)2=3, ∴BH+EH 的最小值为3.2.(1)证明:∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°,AB =BC =CA. ∵AD=BE =CF ,∴BD=CE =AF. 在△ADF,△BED 和△CFE 中, ∵⎩⎪⎨⎪⎧AD =BE =CF ,∠A=∠B=∠C,AF =BD =CE ,∴△ADF≌△BED≌△CFE, ∴FD=DE =EF , ∴△DEF 是等边三角形.(2)解:∵△ABC 和△DEF 是等边三角形,∴△DEF∽△ABC.当DE⊥BC 时(EF⊥BC 时,同理),∠BDE=30°, ∴BE=12BD ,即BE =13BC ,CE =23BC.∵EF=EC·sin 60°=23BC·32=33BC ,∴S △DEF S △ABC =(EF BC )2=(33)2=13. 3.(1)证明:∵∠A=40°,∠B=60°, ∴∠ACB=80°,∴△ABC 不是等腰三角形. ∵CD 平分∠ACB,∴∠ACD=∠BCD=12∠ACB=40°,∴∠ACD=∠A=40°, ∴△ACD 为等腰三角形.∵∠DCB=∠A=40°,∠CBD=∠ABC, ∴△BCD∽△BAC,∴CD 是△ABC 的完美分割线. (2)解:①当AD =CD 时,如图,则∠ACD=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=96°. ②当AD =AC 时,如图,则∠ACD=∠ADC=180°-48°2=66°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=114°. ③当AC =CD 时,如图,则∠ADC =∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°. ∵∠ADC=∠BCD=48°与∠ADC>∠BCD 矛盾, ∴AC=CD 不成立.综上所述,∠ACB=96°或114°. (3)解:由已知得AD =AC =2. ∵△BCD∽△BAC,∴BC BA =BD BC =CDAC .设BD =x(x>0), 则(2)2=x(x +2), 解得x =3-1(负值舍去), ∴CD AC =BD BC =3-12, ∴CD=3-12×2=6- 2. 4.(1)证明:∵△ABC 和△ADE 是等腰直角三角形,∠BAC=∠DAE=90°, ∴AB=AC ,AD =AE ,∠DAB=∠EAC, ∴△ADB≌△AEC,∴BD=CE.(2)解:如图,①当点E 在AB 上时,BE =AB -AE =1.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=15,∴PB=255. ②如图,当点E 在BA 延长线上时,BE =3.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=35,∴PB=655. 综上所述,PB 的长为255或655.5.(1)证明:在Rt△ABC 中,AB =6,AC =8, ∴BC=10,sin∠B=AC BC =810=45,sin∠C=35.如图,过点Q 作QE⊥AB 于点E ,作QD⊥AC 于点D.在Rt△BQE 中,BQ =5t , ∴sin∠B=QE BQ =45,∴QE=4t.在Rt△CDQ 中,CQ =BC -BQ =10-5t , ∴QD=CQ·sin∠C=35(10-5t)=3(2-t),QE =BQ·sin∠B=5t·45=4t.由运动知AP =3t ,CR =4t ,∴BP=AB -AP =6-3t =3(2-t),AR =AC -CR =8-4t =4(2-t), ∴S △APR =12AP·AR=12×3t×4(2-t)=6t(2-t),S △BPQ =12BP·QE=12×3(2-t)×4t=6t(2-t),S △CQR =12CR·QD=12×4t×3(2-t)=6t(2-t),∴S △APR =S △BPQ =S △CQR ,∴△APR,△BPQ,△CQR 的面积相等.(2)解:由(1)知,S △APR =S △BPQ =S △CQR =6t(2-t). ∵AB=6,AC =8,∴S △PQR =S △ABC -(S △APR +S △B PQ +S △CQR ) =12×6×8-3×6t(2-t)=24-18(2t -t 2) =18(t -1)2+6.∵0≤t≤2,∴当t =1时,S △PQR 最小=6.(3)解:存在.由(1)知QE =4t ,QD =3(2-t),AP =3t ,CR =4t ,AR =4(2-t), ∴BP=AB -AP =6-3t =3(2-t), AR =AC -CR =8-4t =4(2-t). ∵∠A=90°,∴四边形AEQD 是矩形, ∴AE=DQ =3(2-t),AD =QE =4t , ∴DR=|AD -AR|=|4t -4(2-t)| =|4(2t -2)|,PE =|AP -AE|=|3t -3(2-t)| =|3(2t -2)|.∵∠DQE=90°,∠PQR=90°, ∴∠DQR=∠EQP, ∴tan∠DQR=tan∠EQP. 在Rt△DQR 中,tan∠DQR=DR DQ =4|2t -2|3(2-t ),在Rt△EQP 中,tan∠EQP=PE QE =3|2t -2|4t ,∴4|2t -2|3(2-t )=3|2t -2|4t , ∴t=1825或1.6.解:(1) BC =DC +EC (2)BD 2+CD 2=2AD 2,理由如下: 如图,连结CE.∵∠BAC=∠BAD+∠DAC=90°,∠DAE=∠CAE+∠DAC=90°, ∴∠BAD=∠CAE. 在△BAD 与△CAE 中, ∵⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE , ∴△BAD≌△CAE, ∴BD=CE ,∠ACE=∠B, ∴∠DCE=90°,∴CE 2+CD 2=ED 2. 在Rt△ADE 中,AD 2+AE 2=ED 2,AD =AE , ∴BD 2+CD 2=ED 2,ED =2AD , ∴BD 2+CD 2=2AD 2.(3)如图,作AE⊥AD,使AE =AD ,连结CE ,DE.∵∠BAC+∠CAD=∠DAE+∠CAD, 即∠BAD=∠CAE. 在△BAD 与△CAE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE ,∴△BAD≌△CAE(SAS),∴BD=CE =9. ∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE=CE 2-CD 2=6 2. ∵∠DAE=90°,∴AD =AE =22DE =6.微专题六以特殊四边形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.2.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连结CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.3.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连结MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.4.如图,点E,F分别是矩形ABCD的边AD,AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.5.问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是________;(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连结CC′,取CC′的中点F,连结AF并延长至点G,使FG=AF,连结CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论;实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连结CC′,试求tan∠C′CH的值.参考答案1.证明:(1)如图,延长AO 到E. ∵OA=OB ,∴∠ABO=∠BAO. 又∠BOE=∠ABO+∠BAO, ∴∠BOE=2∠BAO. 同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO), 即∠BOD=2∠BAD.又∠C=2∠BAD,∴∠BOD=∠C.(2)如图,连结OC.∵OB=OD ,CB =CD ,OC =OC , ∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO. ∵∠BOD=∠BOC+∠DOC, ∠BCD=∠BCO+∠DCO,∴∠BOC=12∠BOD,∠BCO=12∠BCD.又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC. 又OB =OD ,BC =CD , ∴OB=BC =CD =DO , ∴四边形OBCD 是菱形.2.证明:(1)∵E 是AD 的中点,∴AE=DE. ∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB, ∴△AEF≌△DEB (AAS). (2)如图,连结DF.∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形.∵△AEF≌△DEB,∴BE=FE.∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB.∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.3.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°.∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON. (2)解:如图,过点O作OH⊥AD于点H.∵正方形的边长为4,∴OH=HA=2.∵E为OM的中点,∴HM=4,则OM=22+42=25,∴MN=2OM=210.4.(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC ,∴△AEF≌△DCE. ∴ED=AF.∵AE=DC =AB =2DE ,∴AB=2AF ,∴F 是AB 的中点. (2)解:由(1)得AF =FB ,且AE∥BH, ∴∠FBH=∠FAE=90°,∠AEF=∠FHB, ∴△AEF≌△BHF,∴HB=AE. ∵ED=2,且AE =2ED ,∴AE=4, ∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32, ∴AH=4 2. 5.解:(1)菱形(2)在图1中,∵四边形ABCD 是矩形, ∴AB∥CD,∴∠CAD=∠ACB,∠B=90°, ∴∠BAC+∠ACB=90°.在图3中,由旋转知,∠DAC′=∠DAC, ∴∠ACB=∠DAC′, ∴∠BAC+∠DAC′=90°. ∵点D ,A ,B 在同一条直线上, ∴∠CAC′=90°. 由旋转知,AC =AC′.∵点F 是CC′的中点,∴AG⊥CC′,CF =C′F. ∵AF=FG ,∴四边形ACGC′是平行四边形. ∵AG⊥CC′,∴四边形ACGC′是菱形. ∵∠CAC′=90°, ∴菱形ACGC′是正方形.(3)在Rt△ABC 中,AB =2,AC =4, ∴BC′=AC =4,BD =BC =23, sin ∠ACB=AB AC =12,∴∠ACB=30°.由(2)结合平移知,∠CHC′=90°.在Rt△BCH 中,∠ACB=30°, ∴BH=BC·sin 30°=3, ∴C′H=BC′-BH =4- 3. 在Rt△ABH 中,AH =12AB =1,∴CH=AC -AH =4-1=3, 在Rt△CHC′中,tan ∠C′CH=C′H CH =4-33.微专题七 与圆有关的计算与证明姓名:________ 班级:________ 用时:______分钟1.若将半径为12 cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是( ) A .2 cmB .3 cmC .4 cmD .6 cm2.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD,则AB ︵的长为( )A .πB.32πC .3πD .6π3. 如图,已知⊙O 的半径是2,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分的面积为( )A.23π-2 3 B.23π- 3 C.43π-2 3D.43π- 3 4.一般地,如果在一次试验中,结果落在区域D 中每一个点都是等可能的,并用A 表示“试验结果落在区域D 中的某个小区域M 中”这个事件,那么事件A 发生的概率为P A =MD .如图,现在往等边三角形ABC 内投入一个点,则该点落在△ABC 的内切圆中的概率是______.5.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为________.6.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r 的圆内接正n 边形的周长为L ,圆的直径为d.如图所示,当n =6时,π≈l d =6r 2r =3,那么当n =12时,π≈ld =____________.(结果精确到0.01,参考数据:sin 15°=cos 75°≈0.259)7.如图,⊙O 的半径是2,直线l 与⊙O 相交于A ,B 两点,M ,N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是______.8.如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30 cm ,∠B 1D 1C 1=120°. (1)图2中,弓臂两端B 1,C 1的距离为________cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为______________cm .9.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE⊥AC 分别交AC 、AB 的延长线于点E ,F.(1)求证:EF 是⊙O 的切线;(2)若AC =4,CE =2,求BD ︵的长度.(结果保留π)10.如图,已知AB 是圆O 的直径.弦CD⊥AB,垂足为H.与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连结AF 交CD 于点N.(1)求证:CA =CN ;(2)连结DF ,若cos ∠DFA=45,AN =210,求圆O 的直径的长度.11.如图,在平面直角坐标系xOy 中,直线y =3x -23与x 轴,y 轴分别交于A ,B 两点,P 是直线AB 上一动点,⊙P 的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案1.D 2.B 3.C 4.39π 5.πa 6.3.11 7.4 2 8.(1)30 3 (2)105-10 9.解:(1)证明:如图,连结OD.∵OA=OD ,∴∠OAD=∠ODA. ∵AD 平分∠EAF,∴∠DAE=∠DAO, ∴∠DAE=∠ADO,∴OD∥AE. ∵AE⊥EF,∴OD⊥EF, ∴EF 是⊙O 的切线.(2)如图,作OG⊥AE 于点G ,连结BD ,则AG =CG =12AC =2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG 是矩形,∴OA=OB =OD =CG +CE =2+2=4,∠DOG=90°. ∵∠DAE=∠BAD,∠AED=∠ADB=90°, ∴△ADE∽△ABD, ∴AE AD =AD AB ,即6AD =AD 8, ∴AD 2=48.在Rt△ABD 中,BD =AB 2-AD 2=4. 在Rt△ABD 中,∵AB=2BD , ∴∠BAD=30°, ∴∠BOD=60°,则BD ︵的长度为60·π·4180=4π3.10.(1)证明:如图,连结OF. ∵ME 与圆O 相切于点F ,∴OF⊥ME, 即∠OFN+∠MFN=90°.∵∠OFN=∠OAN,∠OAN+∠ANH=90°, ∴∠MFN=∠ANH.(等量代换) 又∵ME∥AC,∴∠MFN=∠NAC, ∴∠ANH=∠NAC.∴CA=CN.(2)解:如图,连结OC , ∵cos ∠DFA=45,∴cos C=45.在直角△AHC 中,设AC =5a ,HC =4a , 则AH =3a.由(1)知,CA =CN ,∴NH=a.在直角△ANH 中,利用勾股定理得AH 2+NH 2=AN 2, 即(3a)2+a 2=(210)2,解得a =2.如图,连结OC ,在直角△OHC 中,利用勾股定理得OH 2+HC 2=OC 2. 设圆O 的半径为R ,则(R -6)2+82=R 2,解得2R =503,∴圆O 的直径长度为2R =503.11.解:(1)原点O 在⊙P 外.理由:∵直线y =3x -23与x 轴,y 轴分别交于A ,B 两点, ∴点A(2,0),点B(0,-23). 在Rt△OAB 中,tan∠OBA=OA OB =33,∴∠OBA=30°.如图,过点O 作OH⊥AB 于点H.在Rt△OBH 中,OH =OB·sin∠OBA= 3. ∵3>1,∴原点O 在⊙P 外.(2)如图,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB=PC ,∴∠PCB=∠OBA=30°,∴⊙P 被y 轴所截得的劣弧所对的圆心角为180°-30°-30°=120°, ∴弧长为120π×1180=2π3.同理,当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧长为2π3.(3)如图,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,连结DP ,则PD⊥x 轴,∴PD∥y 轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP·tan ∠DPA=1×tan 30°=33,∴OD=OA-AD=2-33,∴此时点D的坐标为(2-33,0).当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为(2+33,0).综上所述,当⊙P与x轴相切时,切点的坐标为(2-33,0)或(2+33,0).微专题八巧用图形变换进行计算与证明姓名:________ 班级:________ 用时:______分钟1.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )2.如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )A. 3 B.2 3 C.3 3 D.4 33.如图,已知⊙O的半径为3,∠AOB+∠COD=150°,则阴影部分的面积为_________.4.如图是一个台阶的纵切面图,∠B=90°,AB=3 m,BC=5 m,现需在台阶从点A到点C 处铺上红地毯,则该地毯的长度为______m.5.将一张矩形纸片折叠成如图所示的图形,若AB=6 cm,则AC=______cm.6.如图①,四边形CFDE是正方形,且点E,D,F分别在三角形ABC的三边上,观察图①和图②,请回答下列问题:(1)请简述由图①变成图②的形成过程:______________________________________________________.(2)若AD=3,DB=4,则△ADE和△BDF的面积之和为______.7.如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是______形,点P,E,F分别为线段AB,AD,DB的任意点,则PE+PF的最小值是_________.8.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2 019次后,点P的坐标为______________________.9.如图,在正方形ABCD中,点M,N分别是AD,CD边上的动点(含端点),且∠MBN=45°.求证:AM+CN=MN.10.问题背景:如图1,点A,B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连结AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图2,已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为________.(2)知识拓展:如图3,在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.。
江苏省扬州市2019年中考数学真题试题(含解析)
扬州市2019学初中毕业、升学统一考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.下列图案中,是中心对称图形的是( D )A. B. C. D.【考点】:中心对称图形【解析】:中心对称图形绕某一点旋转180°与图形能够完全重合【答案】:D.2.下列个数中,小于-2的数是(A)【考点】:数的比较大小,无理数【解析】:根据二次根式的定义确定四个选项与-2的大小关系,可得【答案】:A.【解析】:分式的分母整体提取负号,则每一个都要变号【答案】:故选B.4.一组数据3、2、4、5、2,则这组数据的众数是( A)A.2B.3C.3.2D.4【考点】:统计,数据的集中趋势与离散程度【解析】:众数是出现次数最多的数据【答案】:故选:A5.如图所示物体的左视图是( B)【考点】:三视图【解析】:三视图的左视图从物体的左边看【答案】:选B.6.若点P 在一次函数4+-=x y 的图像上,则点P 一定不在( C ).A.第一象限B. 第二象限C. 第三象限D. 第四象限【考点】:一次函数的图像【解析】:坐标系中,一次函数4+-=x y 经过第一、二、四象限,所以不经过第三象限【答案】:C7.已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( D )A.4个B. 5个C. 6个D. 7个【考点】:正整数,三角形三边关系【解析】:方法一:∵n 是正整数∴n=1时,三边为3,9,3构不成三角形,不符合n=2时,三边为4,10,6构不成三角形,不符合n=3时,三边为5,11,9可以构成三角形,符合n=4时,三边为6,12,12可以构成三角形,符合n=5时,三边为7,13,15可以构成三角形,符合n=6时,三边为8,14,18可以构成三角形,符合n=7时,三边为9,15,21可以构成三角形,符合n=8时,三边为10,16,24可以构成三角形,符合n=9时,三边为11,17,27可以构成三角形,符合n=10时,三边为12,18,30不可以构成三角形,不符合∴总共7个方法二:当n+8最大时424238238832<<<>><>n n n n n n n n n n n ⇒⎩⎨⎧⇒⎪⎩⎪⎨⎧++-++++∴n=3当3n 最大时10483283382<<>n n n n n n n n n ≤⇒⎪⎩⎪⎨⎧+≥+--+++∴n=4,5,6,7,8,9综上:n 总共有7个【答案】:选:D.8.若反比例函数xy 2-=的图像上有两个不同的点关于y 轴对称点都在一次函数y =-x +m 的图像上,则m 的取值范围是( C )A.22>mB.22-<m ①C.22-22<或>m mD.2222-<<m【考点】:函数图像,方程,数形结合【解析】: ∵反比例函数xy 2-=上两个不同的点关于y 轴对称的点 在一次函数y =-x +m 图像上 ∴是反比例函数x y 2=与一次函数y =-x +m 有两个不同的交点 联立两个函数解方程02222=+-⇒+-=⇒⎪⎩⎪⎨⎧+-==mx x m x x m x y x y ∵有两个不同的交点∴022=+-mx x 有两个不等的根△=m 2-8>0 根据二次函数图像得出不等式解集 所以22-22<或>m m【答案】:C.二、填空题(本大题共10小题,每小题3分,共30分)9.2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全场约1790000米,数据1790000用科学记数法表示为 1.79×106 .【考点】:科学计数法【答案】:1.79×106【考点】:因式分解,【解析】:先提取公因式,在使用平方差公式因式分解【答案】: ab (3-x )(3+x )11.扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 0.92 .(精确到0.01)【考点】:频率与频数【解析】:频率接近于一个数,精确到0.01【答案】:0.9212.一元二次方程()22-=-x x x 的根式__x 1=1 x 2=2___.【考点】:解方程【解析】:()22-=-x x x解:()()021=--x x x 1=1 x 2=2【答案】:x 1=1 x 2=2.13.计算:()()20192018252-5+2+ .【考点】:根式的计算,积的乘方【解析】:()()[]()2525252-52018+=++【答案】:25+.14.将一个矩形 纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD= 128°.【考点】:矩形的性质,折叠问题,等腰三角形,平行线,平角【解析】:解:延长DC 到F∵矩形纸条折叠∴∠ACB=∠∠BCF∵AB∥CD∴∠ABC=∠BCF=26°∴∠ACF=52°∵∠ACF+∠ACD=180°∴∠ACD=128°【答案】:128°15.如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
19年数学试题中考及答案
19年数学试题中考及答案2019年的数学试题中考及答案如下:题目1:(20分)已知函数f(x)=2x+3,求f(-4)的值。
解答1:将x代入函数f(x)=2x+3中,得到f(-4)=2(-4)+3= -8+3= -5。
因此,f(-4)的值为-5。
题目2:(30分)一辆汽车以每小时60公里的速度行驶,行驶4小时后,汽车的总里程是多少?解答2:该汽车以每小时60公里的速度行驶,行驶4小时共计60 * 4 = 240公里。
因此,汽车的总里程为240公里。
题目3:(40分)已知三角形ABC中,∠A= 30°,∠C= 90°,AC= 8√3 cm,求BC的长度。
解答3:根据三角形ABC中的定理,我们可以使用正弦定理来求解BC的长度。
根据正弦定理,我们有 sinA/AB = sinC/BC。
已知∠A= 30°,∠C= 90°,AC= 8√3 cm,代入可得 sin30°/AB =sin90°/BC。
sin30° = 1/2,sin90° = 1,代入可得 1/2/AB = 1/BC。
根据等式关系,我们可以得到 AB = BC/2。
由于AC=8√3 cm,可得 AB = AC - BC = 8√3 - BC。
将此结果代入前面的等式,我们可以得到8√3 - BC = BC/2。
将BC移到一边并展开,我们可以得到BC+BC/2= 8√3。
根据等式关系,我们可以得到BC = 16√3/3。
因此,BC的长度为16√3/3。
题目4:(50分)已知一个正方体的表面积为96平方厘米,求该正方体的体积。
解答4:设正方体的边长为a。
根据正方体的表面积公式,我们有 6a^2 = 96。
将96移到一边并展开,我们可以得到 a^2 = 16。
取平方根,我们可以得到 a = 4。
由于正方体的体积公式为V = a^3,代入边长 a=4,我们可以得到 V = 4^3 = 64平方厘米。
【怀化专版】2019届中考数学总复习试题:专题1_阴影部分图形的有关计算_含答案
第三编 综合专题闯关篇,中考重难点突破)求阴影部分图形面积【例1】(2015怀化一模)如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB =2,则图中阴影部分的面积为________.【解析】要求不规则图形的面积,可转化成规则图形面积的和差关系求解.如解图,连接OA ,OB ,OC ,则旋转角为∠AOC=90°,且∠OCD=∠OAD,又∵∠BAD =60°,四边形ABCD 是菱形,∴∠CBA =120°,∠BCD =60°,∵∠CBA +∠BCO+∠COA+∠OAB=360°,∴∠OCD =∠OAD=15°,∴∠BAO =∠BCO=75°,∴∠AOB =45°,由题意知△ABD 是等边三角形,作BD 边上的高AE ,∵AB =2,∴AE =3,OE =AE =3,∴OD =3-1,∴S △AOD =12×(3-1)×3=32-32.根据旋转的特征可知S 阴影部分=8S △AOD=8×(32-32)=12-4 3.【学生解答】12-4 3【点拨】求阴影部分面积往往都是不规则图形,所以把不规则的图形的面积问题转化为规则图形的面积是解决这类问题的主要思路,以下介绍几种常用的方法:1.和差法:不改变图形的位置,用规则图形面积的和或差表示,经过计算即得所求图形面积;2.移动法:通过平移、旋转、割补、等体积变换等将图形的位置进行移动求解;3.代数法:借助于列方程(组),通过解方程求解.本题则是通过作辅助线把不规则图形转化为规则图形,利用和差关系算出部分阴影面积,进而计算出全部阴影图形的面积.1.(2016怀化二模)如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N ,若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( D )A .23a 2B .14a 2C .59a 2D .49a 2(第1题图)(第2题图)2.(2015泰安中考)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为( A ) A .(π2-1)cm 2 B .(π2+1)cm 2C .1 cm 2D .π2cm 23.(2016常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是__3π__.(第3题图)(第4题图)4.(2016毕节中考)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为__π2-1__.5.(2015绵阳中考)如图,⊙O 的半径为1 cm ,正六边形ABCDEF 内接于⊙O,则图中阴影部分面积为__π6__cm 2.(结果保留π)(第5题图)(第6题图)6.(2015广东中考)如图,△ABC 三边的中线AD ,BE ,CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是__4__.7.(2016连云港中考)如图,⊙P 的半径为5,A ,B 是圆上任意两点,且AB =6,以AB 为边作正方形ABCD(点D ,P 在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为__9π__.(第7题图)(第8题图)8.如图所示,正六边形ABCDEF 内接于⊙O,若⊙O 的半径为4,则阴影部分的面积等于__163π__.9.(2016鹤城模拟)如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,分别以AB ,AC ,BC 为边在AB 的同侧作正方形ABEF ,ACPQ ,BDMC ,四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于__18__.(第9题图)(第10题图)10.如图,在菱形ABCD 中,AB =1,∠DAB =60°,把菱形ABCD 绕点A 顺时针旋转30°得菱形AB′C′D′,其中点C 的运动路径为CC ︵′,则图中阴影部分的面积为42.求阴影部分图形的周长【例2】(2016原创)如图,将等腰直角△ABC 沿斜边BC 方向平移得到△A 1B 1C 1,若AB =3,△ABC 与△A 1B 1C 1重叠部分的面积为2,则重叠部分图形的周长为________. 【解析】∵△ABC 为等腰直角三角形,AB =3,∴S △ABC =3×3×12=92,又∵△A BC 与△HB 1C 相似,∴S △ABC ∶S 阴影=(AB B 1H)2,∴B 1H =2,在△HB 1C 中,B 1C =2B 1H =22,∴△B 1HC 周长为2+2+22=4+2 2. 【学生解答】4+2 2【点拨】此类问题涉及到的阴影部分图形一般为不规则的图形,解决的方法有以下三种:1.在规则图形中找与所求图形存在数量关系的边,利用勾股定理或锐角三角函数求得线段长度,有时会涉及到弧长;2.将所求图形进行平移、拼接,转化为规则图形的和差关系求解;3.构造直角三角形,利用直角三角形边角关系求解.此题阴影部分为规则的三角形,且已知直角三角形的边与阴影部分的面积,首先应考虑运用相似三角形相似比及勾股定理,求出阴影部分图形的边长,进而计算出周长.11.(2016沅陵模拟)如图,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点E ,F 分别在AB ,CD 上,将矩形ABCD 沿EF 折叠,使点A ,D 分别落在矩形ABCD 外部的点A 1,D 1处,则整个阴影部分图形的周长为( B )A .72 cmB .36 cmC .18 cmD .30 cm(第11题图)(第12题图)12.(2017怀化中考预测)如图,矩形花坛ABCD的周长为36 m,AD=2AB,在图中阴影部分种植郁金香,则种植郁金香部分的周长约为( B)A.18.84 m B.30.84 mC.42.84 m D.48 m13.(2016溆浦模拟)把四张大小相同的长方形卡片(如图①)按图②、图③两种方式放在一个底面为长方形(长比宽多 6 cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C2,图③中阴影部分的周长为C3,则( B)A.C2=C3B.C2比C3大12 cmC.C2比C3小6 cm D.C2比C3大3 cm14.如图所示,两个面积都为6的正六边形并排摆放,它们的一条边相互重合,那么图中阴影部分的面积为( B)A.2 B.3 C.4 D.6,(第14题图)) ,(第15题图)) 15.如图,在△ABC中,AB=AC,AD是∠BAC的平分线,若BC=16,AB=10,则图中阴影部分的面积是( B)A.12 B.24 C.36 D.4816.如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为__8__.17.(2016洪江模拟)如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得到新正方形A′B′C′D′,则新正方形与原正方形重叠部分四边形A′NCM的周长是__.(第17题图)(第18题图)18.(2016芷江模拟)如图,两个全等的正六边形ABCDEF,PQRSTU,其中点P位于正六边形ABCDEF的中心,如果它们的边长均为1,PU,PQ与FE,CD的交点为M,N,且PM=0.6,则阴影部分的周长是__3.2__.19.(2016原创)如图,菱形花坛ABCD的周长为36 cm,∠B=60°,其中由两个正六边形拼接而成的图形部分种花,其余“四个角”是绿草地,则种花部分的图形的周长(不计拼接重合的边)为__33__cm.(第19题图)(第20题图)20.如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为.21.(2016黄石中考)如图所示,正方形ABCD对角线AC所在的直线上有一点O,OA=AC=2,将正方形绕点O顺时针旋转60°,在旋转过程中,正方形扫过的面积是__2π+2__.,(第21题图)) ,(第22题图))22.(2016白银模拟)如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__12__.。
(3套)2019年中考数学试题(解析版)
2019年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣22.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣53.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=25.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.49.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)二、填空题(每小题3分,共15分。
2019年陕西省中考数学试题(word版 含解析)
2019年陕西中考数学一、选择题(共10小题,每小题3分,共30分)1. 计算:()=03- A.1 B.0 C. 3 D.31-2. 如图,是由两个正方体组成的几何体,则该几何体的俯视图为3. 如图,OC 是∠AOB 的角平分线,l //OB,若∠1=52°,则∠2的度数为A.52°B.54°C.64°D.69°4. 若正比例函数x y 2-=的图象经过点O (a -1,4),则a 的值为A. -1B.0C.1D.25. 下列计算正确的是A. 222632a a a =⋅B.()242263b a ba =- C.()222b a b a -=- D.2222a a a =+-6. 如图,在△ABC 中,∠B=30°,∠C=45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E 。
若DE=1,则BC 的长为A.2+2B.32+C.2+3D.37. 在平面直角坐标系中,将函数x y 3=的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为A. (2,0)B.(-2,0)C.(6,0)D.(-6,0)8. 如图,在矩形ABCD 中,AB=3,BC=6,若点E ,F 分别在AB,CD 上,且BE=2AE ,DF=2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为A.1B.23 C.2 D.49. 如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是A.20°B.35°C.40°D.55°10. 在同一平面直角坐标系中,若抛物线()42122-+-+=m x m x y 与()n x n m x y ++-=32关于y 轴对称,则符合条件的m ,n 的值为A. m=75,n=718- B.m=5,n= -6 C.m= -1,n=6 D.m=1,n= -2二、填空题(共4小题,每小题3分,共12分)11. 已知实数21-,0.16,3,π,25,34,其中为无理数的是 12. 若正六边形的边长为3,则其较长的一条对角线长为13. 如图,D 是矩形AOBC 的对称中心,A(0,4),B (6,0),若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为14. 如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为三、解答题(共78分)15. (5分)计算:2321-3-127-2--⎪⎭⎫ ⎝⎛+⨯ 16. (5分)化简:a a a a a a a 22482222-+÷⎪⎭⎫ ⎝⎛-++-17. (5分)如图,在△ABC 中,AB=AC ,AD 是BC 边上的高。
福建省2019年中考数学试题(含答案)
2019年福建省中考数学试题及答案一、选择题(每小题4分,共40分)1.计算22+(-1)°的结果是( ). A.5B.4C.3D.22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ). A.72×104B.7.2×105C.7.2×106D. 0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ). A.等边三角形 B.直角三角形 C.平行四边形 D.正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( ).5.已知正多边形的一个外角为36°,则该正多边形的边数为( ). A.12B.10C.8D.66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.下列运算正确的是( ). A.a ·a 3= a 3 B.(2a )3=6a 3C. a 6÷a 3= a 2D.(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ). A. x +2x +4x =34 685 B. x +2x +3x =34 685 C. x +2x +2x =34 685D. x +x +x =34 68521419.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上, 且∠ACB =55°,则∠APB 等于( ). A.55° B.70° C.110°D.125°P(第9题)主视方向10.若二次函数y =|a |x 2+bx+c 的图象经过A(m ,n )、B(0,y 1)、C(3-m ,n )、D(, y 2)、E(2,y 3),则2y 1、y 2、y 3的大小关系是( ). A. y 1< y 2< y 3B. y 1 < y 3< y 2C. y 3< y 2< y 1D. y 2< y 3< y 1二、填空题(每小题4分,共24分)11.因式分解:x 2-9=__( x +3)( x -3)_____.12.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是__-1_____.13.某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有__1200_____人.14.中在平面直角坐标系xOy 中,□OABC 的三个顶点O (0,0)、A (3,0) 、 B (4,2),则其第四个顶点是是__(1,2)_____.15.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合, E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积 是__-1_____.(结果保留)ππ16.如图,菱形ABCD 顶点A 在例函数y =(x >0)的图象上,函数x3y =(k >3,x >0)的图象关于直线AC 对称,且经过点B 、Dxk两点,若AB =2,∠DAB =30°,则k 的值为_6+2______.3三、解答题(共86分)17. (本小题满分8分)解方程组:⎩⎨⎧=+=-425y x y x 解:⎩⎨⎧-==23y x 18. (本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF=CE .解:(略)(第15题)DCE FA B OFED CBA2-4(第12题)先化简,再求值:(x -1)÷(x -),其中x =+1xx 12-2解:原式=, 1+1-x x 2220. (本小题满分8分)如图,已知△ABC 为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC ,S △A'B'C'=4S △ABC ; (尺规作图,保留作图痕迹,不写作法)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF ∽△D'E'F'.(2)证明(略)21. (本小题满分8分)在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度得到△αAED ,点B 、C 的对应点分别是E 、D .(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形.αA'CBA (图1)EDC BA(图2)FEDCBAA'B'CBA某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m 吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m ;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.解:(1)∵处理废水35吨花费370,且=>8,∴m <35, 3530370 768∴30+8m +12(35-m )=370,m =20(2)设一天生产废水x 吨,则当0< x ≤20时,8x +30≤10 x , 15≤x ≤20当x >20时,12(x -20)+160+30≤10x , 20<x ≤25 综上所述,15≤x ≤2023.(本小题满分10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费某公司计划购实1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数89101112频率(台数)1020303010(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?解:(1)0.6(2)购买10次时,某台机器使用期内维修次数89101112该台机器维修费用2400024500250003000035000此时这100台机器维修费用的平均数y 1=(24000×10+24500×20+25000×30+30000×30+35000×10)=273001001购买11次时,某台机器使用期内维修次数89101112该台机器维修费用2600026500270002750032500此时这100台机器维修费用的平均数y 2=(26000×10+26500×20+27000×30+27500×30+32500×10)=275001001所以,选择购买10次维修服务.如图,四边形ABCD 内接于⊙O ,AB=AC ,BD ⊥AC ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF 、CF .(1)求证:∠BAC =2∠DAC ;(2)若AF =10,BC =4,求tan ∠BAD 的值. 5解:(1)∵BD ⊥AC ,CD=CD ,∴∠BAC =2∠CBD =2∠CAD ;(2)∵DF =DC ,∴∠BFC =∠BDC =∠BAC =∠FBC ,2121∴CB=CF ,又BD ⊥AC ,∴AC 是线段BF 的中垂线,AB= AF =10, AC =10.又BC =4,5设AE =x , CE =10-x ,AB 2-AE 2=BC 2-CE 2, 100-x 2=80-(10-x )2, x =6∴AE =6,BE =8,CE =4,("1,2,";"3,4,5";Rt △组合)5∴DE ===3,BE CE AE ⋅846⨯作DH ⊥AB ,垂足为H ,则DH=BD ·sin ∠ABD =11×=, BH= BD ·cos ∠ABD =11×=5353354544∴AH =10-=54456∴tan ∠BAD ===AH DH 63321125.已知抛物y=ax 2+bx+c (b <0)与轴只有一个公共点.(1)若公共点坐标为(2,0),求a 、c 满足的关系式;(2)设A 为抛物线上的一定点,直线l :y=kx+1-k 与抛物线交于点B 、C 两点,直线BD 垂直于直线y =-1,垂足为点D .当k =0时,直线l 与抛物线的一个交点在 y 轴上,且△ABC 为等腰直角三角形.①求点A 的坐标和抛物线的解析式;②证明:对于每个给定的实数 k ,都有A 、D 、C 三点共线.解:(1) y=a (x -2)2, c =4a ;(2) y=kx+1-k = k (x -1)+1过定点(1,1),且当k =0时,直线l 变为y =1平行x 轴,与轴的交点为(0,1)又△ABC 为等腰直角三角形,∴点A 为抛物线的顶点①c =1,顶点A (1,0)抛物线的解析式: y = x 2-2x +1.FEDCBA HFEDCBA②⎩⎨⎧-+=+-=kkx y x x y 1122 x 2-(2+k)x +k =0, x =(2+k ±)2142+k x D =x B =(2+k -), y D =-1; D 2142+k ⎪⎪⎭⎫ ⎝⎛-+-+1,2412k k y C =(2+k 2+k ,2142+k C , A (1,0) ⎪⎪⎭⎫ ⎝⎛++++++2)4(1,24122k k k k k ∴直线AD 的斜率k AD ==,422+--k k 242++k k 直线AC 的斜率k AC =242++k k ∴k AD = k AC , 点A 、C 、D 三点共线.。
(真题)河北省2019年中考数学试卷有答案(Word版)
中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500L 用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+ 5.图2中三视图对应的几何体是( )A. B.C. D.6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.在证明该结论8.已知:如图4,点P在线段AB外,且PA PB时,需添加辅助线,则作法不.正确的是()A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A .2个B .3个 C. 4个 D .5个11.如图6,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30︒B .北偏东80︒C.北偏西30︒ D .北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm + 13.若22222n n n n +++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC V 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数x 是多少? 应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌; (2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围. 24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值. 25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧»AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧»AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧»AB 上一段»AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与»AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值. 26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)ky x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;(2)设5v =.用表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v 乙的范围.参考答案1-10、ABCCC DABDA 11-16、ABADB D 17、 2 18、 0 19、14 21 20、21、22、23、24、25、26、。
2019年九年级数学中考试题.doc
2019 年九年级数学中考试题一、选择题(本大题共14 小题;每小题 3 分;共 42 分)1.﹣的相反数是()A.B.﹣C.2017D.﹣ 20172.如图;将直尺与含30°角的三角尺摆放在一起;若∠ 1=20°;则∠ 2 的度数是()A.50°B. 60°C.70°D.80°3.下列计算正确的是()A.﹣( a﹣b) =﹣ a﹣ b B.a2+a2=a4 C.a2 ?a3=a6 D.( ab2)2=a2b44.不等式组中;不等式①和②的解集在数轴上表示正确的是()A.B.C.D.5.如图所示的几何体是由五个小正方体组成的;它的左视图是()A.B.C.D.6.小明和小华玩“石头、剪子、布”的游戏;若随机出手一次;则小华获胜的概率是()A.B.C.D.7.一个多边形的内角和是外角和的 2 倍;则这个多边形是()A.四边形B.五边形C.六边形D.八边形8.甲、乙二人做某种机械零件;已知甲每小时比乙多做 6 个;甲做 90 个所用时间与乙做 60 个所用时间相等;求甲、乙每小时各做零件多少个.如果设乙每小时做x 个;那么所列方程是()A.=B.= C.= D.=9.某公司有 15 名员工;他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A 1 10B 3 8C 7 5D 4 3这 15 名员工每人所创年利润的众数、中位数分别是()A.10;5 B.7;8 C.5;6.5 D.5;510.(3 分)如图; AB 是⊙ O 的直径; BT是⊙ O 的切线;若∠ ATB=45°;AB=2;则阴影部分的面积是()A.2B.﹣π C.1D.+π11.(3 分)将一些相同的“○”按如图所示摆放;观察每个图形中的“○”的个数;若第n 个图形中“○”的个数是 78;则 n 的值是()A.11 B. 12 C.13D.1412.(3 分)在△ ABC中;点 D 是边 BC上的点(与 B; C 两点不重合);过点 D 作 DE∥AC;DF∥ AB;分别交 AB; AC于 E;F 两点;下列说法正确的是()A.若 AD⊥ BC;则四边形 AEDF是矩形B.若 AD 垂直平分 BC;则四边形 AEDF是矩形C.若 BD=CD;则四边形 AEDF是菱形D.若 AD 平分∠ BAC;则四边形 AEDF是菱形13.(3 分)足球运动员将足球沿与地面成一定角度的方向踢出;足球飞行的路线是一条抛物线;不考虑空气阻力;足球距离地面的高度h(单位: m)与足球被踢出后经过的时间 t (单位: s)之间的关系如下表:t01234567⋯h08141820201814⋯下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出 9s 时落地;④足球被踢出 1.5s 时;距离地面的高度是11m;其中正确结论的个数是()A.1B. 2C.3D.414.(3 分)如图;在平面直角坐标系中;反比例函数y=(x>0)的图象与边长是 6 的正方形 OABC的两边 AB;BC分别相交于 M ;N 两点;△ OMN 的面积为 10.若动点 P 在 x 轴上;则 PM+PN 的最小值是()A.6B. 10 C.2D.2二、填空题(本大题共 5 小题;每小题 3 分;共 15 分)15.(3 分)分解因式: m3﹣9m= .16.(3 分)已知 AB∥CD; AD 与 BC相交于点 O.若= ; AD=10;则 AO= .17.(3 分)计算:÷(x﹣)=.18.(3 分)在 ?ABCD中;对角线 AC;BD 相交于点 O;若 AB=4;BD=10;sin∠BDC= ;则 ?ABCD的面积是.19.(3 分)在平面直角坐标系中;如果点P 坐标为( m;n);向量可以用点P的坐标表示为=( m;n).已知:=( x1;y1);=(x2; y2);如果x1?x2+y1?y2=0;那么与互相垂直;下列四组向量:①=(2;1); =(﹣ 1;2);②=(cos30°; tan45 °);=( 1; sin60 )°;③=(﹣;﹣2);=(+;);④=(π0;2); =( 2;﹣ 1).其中互相垂直的是(填上所有正确答案的符号).三、解答题(本大题共7 小题;共 63 分)20.(7 分)计算: | 1﹣|+ 2cos45 °﹣ +(﹣1 ).21.(7 分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况;随机抽取了 x 名学生进行调查统计9 要求每名学生选出并且只能选出一个自己最喜爱的节目);并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表节目人数百分比(名)最强大脑 5 10%朗读者15 b%中国诗词大会 a 40%出彩中国人10 20%根据以上提供的信息;解答下列问题:( 1)x= ; a= ; b= ;(2)补全上面的条形统计图;(3)若该校共有学生 1000 名;根据抽样调查结果;估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.(7 分)如图;两座建筑物的水平距离BC=30m;从 A 点测得 D 点的俯角α为 30°;测得 C 点的俯角β为 60°;求这两座建筑物的高度.23.(9 分)如图;∠ BAC的平分线交△ ABC的外接圆于点D;∠ ABC的平分线交 AD 于点E;(1)求证: DE=DB;(2)若∠ BAC=90°;BD=4;求△ ABC外接圆的半径.24.(9 分)某市为节约水资源;制定了新的居民用水收费标准;按照新标准;用户每月缴纳的水费 y(元)与每月用水量x( m3)之间的关系如图所示.(1)求 y 关于 x 的函数解析式;(2)若某用户二、三月份共用水 40cm3(二月份用水量不超过 25cm3);缴纳水费 79.8元;则该用户二、三月份的用水量各是多少m3?25.(11 分)数学课上;张老师出示了问题:如图1;AC;BD 是四边形 ABCD的对角线;若∠ ACB=∠ACD=∠ABD=∠ADB=60°;则线段 BC;CD;AC三者之间有何等量关系?经过思考;小明展示了一种正确的思路:如图 2;延长 CB 到 E;使 BE=CD;连接 AE;证得△ ABE≌△ ADC;从而容易证明△ ACE是等边三角形;故 AC=CE;所以AC=BC+CD.小亮展示了另一种正确的思路:如图 3;将△ ABC绕着点 A 逆时针旋转60°;使 AB 与 AD 重合;从而容易证明△ ACF是等边三角形;故 AC=CF;所以AC=BC+CD.在此基础上;同学们作了进一步的研究:(1)小颖提出:如图 4;如果把“∠ACB=∠ ACD=∠ ABD=∠ADB=60°”改为“∠ ACB=∠ ACD=∠ABD=∠ ADB=45°”;其它条件不变;那么线段 BC;CD;AC三者之间有何等量关系?针对小颖提出的问题;请你写出结论;并给出证明.( 2)小华提出:如图 5;如果把“∠ACB=∠ ACD=∠ ABD=∠ADB=60°”改为“∠ ACB=∠ ACD=∠ABD=∠ ADB=α”;其它条件不变;那么线段 BC;CD;AC三者之间有何等量关系?针对小华提出的问题;请你写出结论;不用证明.26.(13 分)如图;抛物线y=ax2+bx﹣3 经过点 A( 2;﹣ 3);与 x 轴负半轴交于点B;与y 轴交于点 C;且 OC=3OB.( 1)求抛物线的解析式;( 2)点 D 在 y 轴上;且∠ BDO=∠ BAC;求点 D 的坐标;( 3)点 M 在抛物线上;点 N 在抛物线的对称轴上;是否存在以点 A;B;M ;N 为顶点的四边形是平行四边形?若存在;求出所有符合条件的点M 的坐标;若不存在;请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学小题精做系列专题01
中考小题天天练备考成绩步步高!
数学部分说明:根据15年中考试题的数量,一共分为3期,小题精做每期为2套。
由10道选择题和5道填空题组成,时间为30分钟。
一、选择题(本大题共10个小题)
1.(2018攀枝花,第2题,3分)2018年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()
A.1.6万名考生B.2000名考生
C.1.6万名考生的数学成绩D.2000名考生的数学成绩
【答案】D.
【解析】
考点:总体、个体、样本、样本容量.
2.(2018泸州,第6题,3分)菱形具有而平行四边形不具有的性质是()
A.两组对边分别平行B.两组对角分别相等
C.对角线互相平分D.对角线互相垂直
【答案】D.
【解析】
试题分析:A.不正确,两组对边分别平行;
B.不正确,两组对角分别相等,两者均有此性质正确,;
C .不正确,对角线互相平分,两者均具有此性质;
D .菱形的对角线互相垂直但平行四边形却无此性质. 故选D .
考点:1.菱形的性质;2.平行四边形的性质. 3.(2018内江,第5题,3分)函数1
1
y x =-中自变量x 的取值范围是( )
A .2x ≤
B .2x ≤且1x ≠
C .x <2且1x ≠
D .1x ≠ 【答案】B . 【解析】
试题分析:根据二次根式有意义,分式有意义得:20x -≥且10x -≠,解得:2x ≤且1x ≠.故选B . 考点:函数自变量的取值范围.
4.(2018巴中,第6题,3分)某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( )
A .2560(1)315x +=
B .2560(1)315x -=
C .2560(12)315x -=
D .2560(1)315x -= 【答案】B . 【解析】
试题分析:设每次降价的百分率为x ,由题意得:2560(1)315x -=,故选B .
考点:1.由实际问题抽象出一元二次方程;2.增长率问题. 5.(2018德阳,第7题,3分)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是( )
A .200πcm 3
B .500πcm 3
C .1000πcm 3
D .2000πcm 3 【答案】B . 【解析】
试题分析:根据图示,可得商品的外包装盒是底面直径是10cm ,高是20cm 的圆柱,∴这个包装盒的体积是:2(102)20500ππ⨯÷⨯=(cm 3).故选B .
考点:由三视图判断几何体.
6.(2018达州,第8题,3
分)方程21
(2)04
m x -+=有两个实数根,则m 的取值范围( )
A .
52m > B .52
m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠ 【答案】B . 【解析】
试题分析:根据题意得:220301
(4(2)04m m m ⎧
⎪-≠⎪-≥⎨⎪⎪∆=--⨯≥⎩,解得5
2m ≤且
2m ≠.故选B .
考点:1.根的判别式;2.一元二次方程的定义.
7.(2018绵阳,第10题,3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 高度应该设计为()
A.(
122-B.(1)米C.(123-
D.(1)米
【答案】D.
【解析】
考点:解直角三角形的应用.
8.(2018南充,第8题,3分)如图,P A和PB是⊙O的切线,点A
和B的切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()
A.40°B.60°C.70°D.80°
【答案】C.
【解析】
考点:切线的性质.
9.(2018资阳,第8题,3分)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()
A.B.C.
D.
【答案】B.
【解析】
考点:1.动点问题的函数图象;2.分段函数.
10.(2018广安,第10题,3分)如图,抛物线2
a≠)
y ax bx c
=++(0过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a b c
++,则P的取值范围是()
A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3
【答案】B.
【解析】
试题分析:∵抛物线2y ax bx c =++(0a ≠)过点(﹣1,0)和点(0,﹣3),∴0=a ﹣b +c ,﹣3=c ,∴b =a ﹣3,∵当x =1时,2y a x b x c =++=a +b +c ,∴P =a b c ++=a +a ﹣3﹣3=2a ﹣6,∵顶点在第四象限,a >0,∴b =a ﹣3<0,∴a <3,∴0<a <3,∴﹣6<2a ﹣6<0,即﹣6<P <0.故选B .
考点:二次函数图象与系数的关系. 二、填空题(本大题共5个小题)
11.(2018宜宾,第9题,3分)一元一次不等式组20
510
x x +≥⎧⎨->⎩的解集
是 . 【答案】15
x >. 【解析】 试题分析:20 510x x +≥⎧⎨
->⎩①②
,由①得:2x ≥-;由②得:15
x >,则不等式
组的解集为15
x >,故答案为:15
x >. 考点:解一元一次不等式组.
12.(2018凉山州,第25题,5分)已知实数m ,n 满足23650m m +-=,
23650n n +-=,且m n ≠,则
n m
m n
+= . 【答案】225
-. 【解析】
考点:1.根与系数的关系;2.条件求值;3.压轴题.13.(2018内江,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.
【解析】
试题分析:∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处,∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,∴DC=2EF,AB=5,作AH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ADCH为矩形,∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,
在Rt△ABH中,AH EF.
考点:1.翻折变换(折叠问题);2.综合题.
14.(2018自贡,第14题,4分)将一副三角板按图叠放,则△AOB
与△DOC 的面积之比等于 .
【答案】1:3. 【解析】
考点:1.相似三角形的判定与性质;2.压轴题.
15.(2018成都,第23题,4分)已知菱形1111A B C D 的边长为2,111A B C =60°,对角线11AC ,11B D 相交于点O .以点O 为坐标原点,分别以1OA ,1OB 所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以
11B D 为对角线作菱形1212B C D A ∽菱形1111A B C D ,再以22A C 为对角线作菱
形2222A B C D ∽菱形1212B C D A ,再以22B D 为对角线作菱形2323B C D A ∽菱形2222A B C D ,
…,按此规律继续作下去,在x 轴的正半轴上得到点1A ,2A ,3A ,
......,n A ,则点n A 的坐标为________.
【答案】(3n-1,0).
【解析】
考点:1.相似多边形的性质;2.菱形的性质;3.规律型;4.综合题;5.压轴题.。