2018届中考数学复习专题25等腰三角形、等边三角形试题(A卷,含解析)
2018届中考数学复习 专题25 等腰三角形、等边三角形试题(B卷,含解析)
等腰三角形、等边三角形一、选择题 1. .(广东省广州市,13,3分)如图,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E ,F 分别落在边AB ,BC 上,则△EBF 的周长为 cm .【答案】13【逐步提示】利用平移的性质可以求得EF 与FC 的长,进而可得BF 的长;再根据等腰三角形的判定可得BE=EF ,这样求得了△EBF 的三边长,其和即为△EBF 的周长.【详细解答】解:根据平移的性质,将线段DC 沿着CB 的方向平移7cm 得到线段EF ,则EF =DC =4cm ,FC =7cm ,∠EFB =∠C .∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF =4cm .又BF =BC -FC =12-7=5cm ,∴△EBF 的周长=4+4+5=13(cm ).故答案为13.【解后反思】图形平移后,对应线段平行(或在同一条直线上)且相等,这样往往存在平行四边形与全等三角形或等腰三角形,给我解决问题提供了重要途径. 【关键词】平移的性质;等腰三角形的判定2. ( 河北省,16,2分)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D【逐步提示】先找出符合要求的特殊点,如点M 与点O 重合,点N 与点O 重合等,不难发现以上特殊情形都满足OM+ON=2,再研究一般情形下△PMN 是否为等边三角形,问题得解. 【详细解答】解:如图,在OA 上截取OC=OP=2,∵∠AOP =60°,∴△OCP 是等边三角形,∴CP=OP ,∠OCP=∠CPO=60°.在线段OC 任取一点M ,在OB 上截取ON ,使ON+OM=2,连接MN ,PM ,PN.∵MC+OM =2,∴CM=ON.在△MCP 和△NOP 中,∵CM=ON,∠MCP =∠NOP =60°,CP=OP ,∴△MCP ≌△NOP (SAS ),∴PM=PN ,∠MPC=∠NPO ,∴∠MPC+∠MPO=∠NPO+∠MPO ,即∠CPO =∠MPN,∴∠MPN =60°,∴△PMN 是等边三角形.故满足条件的△PMN 有无数个,答案为选项D.A B CE D F【解后反思】如图所示,本题是含有60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有助于我们解决此题.【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题3.(湖南省怀化市,8,4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm【答案】C.【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确其腰长或底边长,因此需要分腰为4cm长或腰为8cm长两种情况讨论等腰三角形的周长即可.【详细解答】解:若4cm的边长为腰,8cm的边长为底,4+4=8,由三角形三边的关系知,该等腰三角形不存在;若8cm的边长为腰,4cm的边长为底,则等腰三角形的周长为20cm,故选择C.【解后反思】此题考查等腰三角形的定义和三角形三边的关系,解此题的关键是能根据题意,考虑到需要分类讨论等腰三角形的周长.此题的易错点是审题不认真,忽略分类讨论.【关键词】等腰三角形的定义;三角形三边的关系4.(湖南湘西,14,4分)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是A.13cm B .14cm C. 13 cm或14cm D.以上都不对【答案】C【逐步提示】本题考查了三角形的三边关系及等腰三角形的性质,解题的关键是应用三角形三边关系定理讨论.分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详细解答】解:①当等腰三角形的腰为4,底为5时,等腰三角形的周长为2×4+5=13;②当等腰三角形的腰为5,底为4时,等腰三角形的周长为2×5+4=14,∴这个等腰三角形的周长是13 cm或14cm,故选择C . 【解后反思】在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的结果若能够组成三角形后,才能继续进行有关的计算.【关键词】三角形三边的关系;等腰三角形的性质5.(山东滨州6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE 的度数为()A.50° B.51° C.51.5° D.52.5°【答案】D.【逐步提示】先根据AC=CD,∠A=50°,计算出∠ADC的度数,再由CD=BD,可知∠B=∠BCD,从而求出∠B的度数,BD=BE,∠BDE=∠BED,求出∠BDE的度数,最后根据∠ADC +∠CDE +∠BDE =180°,计算出∠CDE的度数.【详细解答】解:∵AC=CD,∴∠ADC=∠A=50°,又∵CD=BD,∴∠B=∠BCD,∠ADC=∠B+∠BCD,∴∠B=25°,∵BD=BE,∠BDE=∠BED=77.5°,∠ADC +∠CDE +∠BDE =180°,∴∠CDE=52.5°.【解后反思】根据“等腰三角形两底角相等”得到角的度数,再根据三角形的一个外角等于和它不相邻的2个内角的度数之和.【关键词】等腰三角形三角形的外角和定理6.(江苏省扬州市,8,3分)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A.6 B.3 C.2.5 D.2(第8题)DABC【答案】C【逐步提示】本题考查了操作活动中的估算和大小比较,解题的关键是合理构造等腰直角三角形,使得剩余部分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.【详细解答】解:如图所示,剩余三角形的面积为24—1442创—132322创—1332创=2.5,故选择C.【解后反思】本题属于数学实验的简单类的问题,在构造等腰直角三角形时,学生可能会构造出如图所示的方法,剩余三角形的面积为24—1442创—132322创—122222创,错选答案B.【关键词】三角形;等腰三角形与直角三角形;等腰三角形的性质;勾股定理;四边形;特殊的平行四边形;矩形的性质;面积最小化;化归思想二、填空题1.(甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=_____________cm.ABC第17题图【答案】6【逐步提示】本题考查轴对称变换的性质,解题的关键是画出折叠之前的矩形纸片,画出折叠之前的矩形纸片之后,一目了然,通过角度之间代换得到△ABC是等腰三角形,得解.【详细解答】解:由折叠得∠1=∠2,再由矩形纸片对边平行得到∠1=∠3,从而得到∠2=∠3,所以△ABC是等腰三角形且AB=AC=6cm,故答案为6.321ABC【解后反思】折叠也就是翻折或轴对称,它连同平移、旋转一样是全等变换,即不改变图形的形状和大小,所以看到折叠就要想到全等,进一步得到对应角相等、对应边相等为进一步解题提供条件.【关键词】折叠;矩形的性质;等腰三角形的判定;2.(河北省,19,4分)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=_____°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=_______°.【答案】76 6 【逐步提示】本题属于规律探究题,对于(1)先在Rt△A1A2O中根据三角形内角和定理求出∠2的度数,由此得到∠1和∠AA1A2的度数,再在△AA1A2中根据三角形内角和定理求出∠A的度数;(2)由(1)可知当光线垂直于OA时光线会沿原路返回,画出符合题意的图形,分别求出有公共顶点的光线夹角的度数,从而找出夹角变化的规律,问题可解.【详细解答】解:(1)∵A1A2⊥AO,∴∠A1A2A=∠A1A2O=90°.在Rt△A1A2O中,∠O=7°,∴∠2=90°-7°=83°,∴∠1=83°,∴∠AA1A2=180°-2×83°=14°.在Rt△AA1A2中,∴∠A=90°-14°=76°.(2)如图,当A n-1A n ⊥OA时,易求得∠A n A n-1A n-2=14°=1×14°,∠A n-1A n-2A n-3=28°=2×14°,∠A n-2A n-3A n-4=42°=3×14°,……,由此可知当∠A1AC=12×14°=168°时,∠A1AO=12×(180°-168°)=6°,且此时∠A1AO最小.【解后反思】对于规律探究题,解决问题的一般思路是从特殊情形中发现一般规律,进而应用一般规律求解. 【关键词】规律探究题3.(湖北省黄冈市,12,3分)如图,⊙O是ΔABC的外接圆,∠AOB=700,AB=AC,则∠ABC= 。
中考数学复习专题24全等三角形试题(A卷,含解析)
全等三角形一、选择题 1. (新疆建设兵团,4,5分)如图,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【答案】D【逐步提示】本题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形常见判定方法.注意到题目中给出一组角相等,一组边相等,分别结合四个选项,找到不符号常见判定方法的那个选项.【详细解答】解:选项A 可采用“ASA ”来判定三角形全等,选项B 可采用“SAS ”来判定三角形全等,选项C 可采用“AAS ”来判定三角形全等,选项D 为两边和其中一边的对角不能判定三角形全等,故选择D . 【解后反思】此类问题容易出错的地方是由SSA 就判定三角形全等,从而错选D 选项.三角形全等的判定方法有:SAS ,ASA ,AAS ,SSS ,HL (直角三角形). 【关键词】 三角形全等的判定;(浙江金华,6,3分)如图,已知=ABC BAD ∠∠,添加下列条件还不能判定△ABC ≌△BAD 的是( )A. AC=BDB.∠CAB =∠DBAC.∠C =∠DD.BC=AD 【答案】A【逐步提示】将题目中的条件表示到图形中,再结合图形条件判断已有哪些条件,然后根据三角形全等的判定方法确定正确的选项.【解析】题目中已给出一角相等,图形中有一条公共边,即已有一边及一角对应相等,再需要一边或一角相等即可,A 选项与两已知条件构成SSA 不能确定两个三角形全等;B 选项与两已知条件构成ASA 能确定两个三角形全等;C 选项与两已知条件构成AAS 能确定两个三角形全等;D 选项与两已知条件构成SAS 能确定两个三角形全等,故选择A.【解后反思】对于添加条件从而判断两个全等三角形全等类问题的解题策略:首先理解题目中已存在的条件(包括已知条件及图形条件),再根据三角形全等的五种判定方法[(1)三边对应相等的两个三角形全等SSS ;(2)两边和它们的夹角对应相等的两个三角形全等SAS ;(3)两角和它们的夹边对应相等的两个三角形全等ASA ;(4)两个角和其中一角的对边对应相等的两个三角形全等AAS ;(5)斜边和一条直角边对应相等的两个直角三角形全等HL]进行综合评判,从而确定需要添加的条件. 【关键词】三角形全等的识别 2.3. ( 四川省广安市,8,3分)下列说法: ①三角形的三条高一定都在三角形内;AB(第6题图)DC②有一个角是直角的四边形是矩形;③有一组邻边相等的平行四边形是菱形;④两边及一角对应相等的两个三角形全等;⑤一组对边平行,另一组对边相等的四边形是平行四边形.其中正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】A【逐步提示】本题考查了三角形的中线、高线、角平分线的概念,矩形的判定,菱形的判定,全等三角形的判定,平行四边形的判定等,解题的关键是掌握这些概念、定理等.因为直角三角形与钝角三角形的三条高不都在三角形内,故①错;至少有三个角是直角的四边形是才是矩形,故②错;③是菱形的定义,正确;满足④的条件时有可能形成“边边角”的情况,故错误;等腰梯形满足“一组对边平行,另一组对边相等”,但它不是平行四边形,故⑤错误.【详细解答】解:只有③正确,故选择A.【解后反思】要理解三角形“三线”的概念,掌握三角形、平行四边形、矩形、菱形的判定方法,这是正确解题的基础.能画图举反例,以排除不符合条件情形,也是解这类题的基本功,要多思考,勤积累.类似的问题还有:判断下列说法是否正确:(1)一组对边相等且一组对角相等的四边形是平行四边形.解:错误.如图1,作△ABC,使AB=AC,在BC上取一点D(D点不与B、C重合且BD≠CD),连接AD.再以A为顶点,AD为一边,作∠EAD,使∠EAD=∠ADC,且AE=DC,连接DE.由上述画图方法,可知△ADC≌△DAE(SAS).所以DE=AC=AB,∠AED=∠C=∠B.即四边形ABCD有一组对边相等(DE=AB)、一组对角相等(∠AED=∠B),但却不是平行四边形(另一组对边AE 和BD不平行也不相等).(2)一组对边相等,且一条对角线平分另一条对角线的四边形是平行四边形.解:错误.如图2,画两条相交直线,交点为O,在其中一条直线上截取OA=OC,分别过A、C两点向另一条直线作垂线,垂足分别为E、F.在线段OF上取一点D(D点不与O、F重合),连接CD.再在线段OE的延长线上取一点B,使EB=FD,连接AB.由上述画图方法,易知△COF≌△AOE(AAS),则CF=AE,由“SAS”可判定△CFD≌△AEB,则CD=AB.连接AD、BC,则四边形ABCD满足条件,却不是平行四边形.(3)一组对角相等,且连接这一组对角的顶点的对角线被另一条对角线平分的四边形是平行四边形.解:错误.如图,画一个“筝形”ABCD,其中AB=AD,BC=DC且AO≠OC,则该“筝形”满足条件,但它不是平行四边形.【关键词】 中线、高线、角平分线;矩形的判定;菱形的判定;全等三角形的判定;平行四边形的判定二、填空题1. ( 山东省枣庄市,17,4分)如图,在△ABC 中,∠C =90°,AC =BC 2ABC 绕点A 顺时针方向旋转60°到△A ´B ´C ´的位置,连接C ´B ,则C ´B = .31【逐步提示】本题考查了旋转、全等三角形、解直角三角形,解题的关键是通过旋转的性质及角度得出△ABB ´为等边三角形.连接BB ´,延长BC ´交AB ´于点H ,根据旋转的性质,对应点到旋转中心的距离相等,可知△ABB ´为等边三角形,然后再证明△ABC ´≌△B ´BC ´,再利用等腰三角形三线合一,证明BH ⊥AB ´,然后分别求HC ´与BH 即可求C ´B .【详细解答】解:连接BB ´,延长BC ´交AB ´于点H ,∵∠C =90°,AC =BC 2,∴AB 22AC BC +2,由题意可知:AB ´=AB =2,且∠BAB ´=60°,∴△ABB ´为等边三角形,∴BB ´=AB ,∠ABB ´=60°,又∵BC ´=BC ´,B´C ´=AC ´,∴△ABC ´≌△B ´B C ´,∴∠ABC ´=∠B ´ BC ´=30°,∴BH ⊥AB ´,且AH =12AB ´=1,∴BH 22AB AH -3AC ´B ´=90°,AH =B ´H ,∴C ´H =12AB ´=1,∴ C ´B =BH -C ´H 31 ,故答案为31 .【解后反思】本题考查了旋转的知识,解这类题通常抓住变换前后的全等图形中对应边、对应角相等.当旋转角为60°时,可以得到等边三角形;当旋转角为45°时,可以得到等腰直角三角形. 【关键词】三角形全等的识别 ;全等三角形的性质;等腰三角形的性质;勾股定理;C ´ABHCB ´ABCB ´C ´2. ( 四川省成都市,12,4分)如图,△ABC ≌△A ´B ´C ´,其中∠A =36°,∠C ´=24°,∠B = .【答案】120°.【逐步提示】本题考查了三角形全等的性质及三角形内角和定理,解题的关键是掌握有关的性质.先根据全等三角形对应角相等求出∠C ,再利用三角形内角和定理可求出∠B .【详细解答】解:∵△ABC ≌△A ´B ´C ´,∴∠C =∠C ´=24°,∴ ∠B =180°―∠A ―∠C =180°―36°―24°=120° ,故答案为 120° .【解后反思】全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等. 【关键词】三角形的内角和;全等三角形的性质三、解答题1. ( 山东省枣庄市,24,10分)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,EP =FP =6,EF =3,∠BAD =60°,AB >63⑴求∠EPF 的大小;⑵若AP =10,求AE +AF ;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.【逐步提示】本题考查了菱形的性质、等腰三角形三线合一性及全等三角形等知识,解题的关键是熟练掌握图形的性质和判定,善于转化.⑴过点P 作PG ⊥EF 于G .根据等腰三角形三线合一性,得∠EPF =2∠FPG ,再解Rt △PFG ,利用特殊角三角函数值求∠FPG 的大小,即可得∠EPF ;⑵作PM ⊥AB 于M ,PN ⊥AD 于N .根据菱形的对角线平分对角的性质,可证明△PME ≌ △PNF ,得ME =NF ,再利用三角函数求出AM =AN ,通过线段和差得到AE +AF 与AM 、AN 的关系,即可求值;⑶当E 、F 分别与A 、B 重合时,AP 取最小值,当EF ⊥AC 时,AP 取最大值. 【详细解答】解:⑴如图,过点P 作PG ⊥EF 于G . ∵PE =PF =6,PG ⊥EF ,∴FG =EG =12 EF =33FPG =∠EPG =12∠EPF . 在Rt △FPG 中,sin ∠FPG =FG PF333.∴∠FPG =60°,∴∠EPF =2∠FPG =120°.AC BCA ´B ´ABDCFPE⑵作PM ⊥AB 于M ,PN ⊥AD 于N .∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC ,AM =AN ,PM =PN . 在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF , ∴Rt △PME ≌Rt △PNF .∴ME =NF . 又AP =10,∠PAM =12∠DAB =30°, ∴AM =AN =AP ·cos30°=10×3=53. ∴AE +AF =(AM +ME )+(AN -NF )=AM +AN =103.⑶如图,当△EFP 的三个顶E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在P 1,P 2之间运动,易知P 1O =P 2O =3,AO =9,∴AP 的最大值为12,AP 的最小值为6.【解后反思】运动型问题一般是图形在运动中产生函数关系问题或探究几何图形的变化规律问题,这类问题可细分为点动型、线动型、形动型.解答这类问题时,要求对几何元素的运动过程有一个完整、清晰的认识,不管点动、线动还是形动,要善于借助动态思维的观点来分析,不被“动”所迷惑,从特殊情形入手,变中求不变,动中求静,抓住静的瞬间,以静制动,把动态的问题转化为静态的问题来解决,从而找到“动”与“静”的联系,揭示问题的本质,发现运动中的各个变量之间互相依存的函数关系,从而找到解决问题的突破口,也就找到了解决这类问题的途径.【关键词】全等三角形的性质 ;三角形全等的识别;等腰三角形的性质;特殊角三角函数值的运用;动点题型2. (重庆A ,19,7分)如图,点A ,B ,C ,D 在同一条直线上,CE //DF ,EC =BD ,AC =FD . 求证:AE =FB .【逐步提示】由CE //DF ,可知∠ACE =∠D . 利用“SAS ”可以判定△ACE ≌△FDB ,即可判定AE =FB . 【详细解答】证明:∵CE //DF ,∴∠ACE =∠D . 在△ACE 和△FDB 中,OABDCFP 1EP 2M ABDCFPE N G∵EC=BD,∠ACE=∠D,AC=FD,∴△ACE≌△FDB(SAS).∴AE=FB.【解后反思】利用三角形全等是证明两条线段或两个角相等的重要方法. 证明两个三角形全等必须有一组对应边相等的条件,判定两个三角形全等的方法主要有“SAS”、“ASA”、“AAS”和“SSS”,对于直角三角形,还有“HL”,结合全等三角形的判定方法,可寻找所需要的条件. 当题目中出现平行线时,可根据平行线的性质得到相等的角,还要注意公共线段、公共角、重合线段、重合角在得到相等线段和相等角的作用.【关键词】全等三角形的识别;全等三角形的性质(重庆B,19,7分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【逐步提示】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC≌△CED,然后根据全等三角形对应角相等即可证明∠B=∠E.【详细解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,,,AB CEBAC ECDAC CD=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CED(SAS),∴∠B=∠E.【解后反思】利用三角形全等是证明两个角或两条线段相等的重要方法. 证明两个三角形全等必须有一组对应边相等的条件,判定两个三角形全等的方法主要有“SAS”、“ASA”、“AAS”和“SSS”,对于直角三角形,还有“HL”,结合全等三角形的判定方法,可寻找所需要的条件. 当题目中出现平行线时,可根据平行线的性质得到相等的角,还要注意公共线段、公共角、重合线段、重合角在得到相等线段和相等角的作用.【关键词】全等三角形的识别;全等三角形的性质3.(重庆B,25,12分)已知△ABC是等腰直角三角形,∠BAC=90°,CD=12BC,DE⊥CE,DE=CE,连接AE,点M 是AE的中点.(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证MN⊥AE;(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索MNAC 的值并直接写出结果.EMCBA图1D图2NMEDCBAENMCBA图3D【逐步提示】(1)先证明△ACE是直角三角形,根据CM=12AE,求出AE即可解决问题.(2)如图,延长EN至点F,使NF=EN,连接BF,连接AF.先证明△NBF≌△NDE,可得BF=DE=CE,∠FBN=∠NDE.根据题意可得∠ACE=∠ACB+∠DCE-∠DCB=90°-∠DCB,只要证出∠ABF=90°-∠DCB.即可证明∠ACE=∠ABF,又AB=AC,利用“SAS”可证出△ABF≌△ACE,进而可得∠FAB=∠EAC,所以有∠FAE=∠FAB+∠BAE=∠EAC+∠BAE=∠BAC=90°,又MN是△EAF的中位线.根据三角形的中位线的性质可得MN∥AF,从而∠NME=∠FAE=90°,可证MN⊥AF.(3)如图5,连接DM并延长到点G,使MG=MD,连接AG、BG,延长AG、EC交于点F.可得△AMG≌△EMD,∴AG=DE=EC,∠GAM=∠DEM,∴AG∥DE,∴∠F=∠DEC=90°,∵∠FAC+∠ACF=90°,∠BCD+∠ACF=90°,∴∠FAC=∠BCD=30°∴∠BAG=∠ACE=120°,在△ABG和△CAE中,,,,AB ACBAG ACEAG EC=⎧⎪∠=∠⎨⎪=⎩∴△ABG≌△CAE,∴BG=AE,∵BN=ND,DM=MG,∴MN是△DBG的中位线,∴BG=AE=2MN,设BC=2a,则CD=a,DE=EC=22a,AC=2a,CF=22a,AF=62a,EF=2a,∴AE=22142AF EF+=a,∴MN=144a,∴147442aMNAC a==.【详细解答】(1)解:∵△ABC是等腰直角三角形,∠BAC=90°,AB=4,∴AC=AB=4,BC=42,∠ACB=∠ABC=45°.∵CD=12BC,∴CD=22∵DE⊥CE,DE=CE,∴△CDE是等腰直角三角形,∴∠DCE=∠CDE=45°,∴CE=CD·sin45°=2.∵∠ACE=∠DCE+∠ACB=45°+45°=90°,∴在Rt△ACE中,AE2225AC CE+=∵点M是AE中点,∴CM=12AE5(2)证明:如图4,延长EN至点F,使NF=EN,连接BF,连接AF.∵点N是BD的中点,∴BN=DN.∵∠BNF=∠DNE,∴△NBF≌△NDE.∴BF=DE,∠FBN=∠NDE,∵DE=CE,∴BF=CE.∵∠ACE=∠ACB+∠DCE-∠DCB,∴∠ACE=45°+45°-∠DCB=90°-∠DCB.在△BCD中,∵∠DBC+∠BDC+∠DCB=180°,∠BDC=∠NDE+∠CDE,又∵∠CDE=45°,∴∠DBC+∠NDE=135°-∠DCB.∵∠ABF=∠DBC+∠FBN-∠ABC,∠FBN=∠NDE,∴∠ABF=∠DBC+∠NDE-∠ABC=135°-∠DCB-45°=90°-∠DCB.∴∠ABF=∠ACE.∵AB=AC,∴△ABF≌△ACE.∴∠FAB=∠EAC∵∠BAC=∠BAE+∠EAC=90°,∴∠FAB+∠BAE=90°,即∠FAE=90°.∵点M是AE中点,NF=NE,∴MN是△EAF的中位线.∴MN∥AF.∴∠NME=∠FAE=90°.∴MN⊥AF.(3)解:7 MNAC.【解后反思】本题综合考查全等三角形的判定和性质、勾股定理、三角形的中位线等知识,解题的关键是添加辅助线,构造全等三角形.在几何问题的求解或证明中,全等三角形起着很重要的作用,应该充分利用已知条件和图形找出图中的全等三角形,根据全等三角形对应边、对应角分别相等的性质可实现等边、等角的代换,而当要证明的两线段之间或两角之间没有直接联系时,往往需要通过等量代换适当转换来求解..【关键词】三角形全等的识别;全等三角形的性质;勾股定理;三角形中位线定理4.5.(四川泸州,18,6分)如图,C是线段AB的中点,CD=BE, CD∥BE.求证:∠D=∠E.【逐步提示】要证明两个不同三角形中的两个角相等,可以证明这两个角所在的两个三角形全等,从而选择合适的判定方法证明两个三角形全等.【详细解答】证明:∵C 是线段AB 的中点,∴AC=CB ,∵CD ∥BE ,∴∠ACD=∠CBE ,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE, ∴∠D=∠E.【解后反思】证明两个三角形全等,一般情况下是已知两个条件去找第三个全等条件,有以下几种情况:(1)已知两边.⎧⎨⎩找第三边;找两边的夹角;(2)已知两角⎧⎨⎩找其中任意一角的对边找两角的夹边;(3)已知一边及其邻角⎧⎨⎩找任意一角找夹该已知角的边;(4)已知一边及其对角,找余下的任一角. 【关键词】三角形全等的判定方法5. ( 四川南充,19,8分)已知ΔABN 和ΔACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2. (1)求证:BD =CE ; (2)求证:∠M =∠N .21O ED MAN【逐步提示】本题考查了全等三角形的判定与性质;解题的关键是证明三角形全等.(1)由SAS 证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS 证明△ACM≌△ABN,得出对应角相等即可. 【详细解答】解:(1)证明:在△ABD 和△ACE 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD≌△ACE(SAS ), ∴BD=CE;(2)证明:∵∠1=∠2, ∴∠1+∠DAE=∠2+∠DAE, 即∠BAN=∠CAM,由(1)得:△ABD≌△ACE, ∴∠B=∠C,在△ACM 和△ABN 中,C BAC ABCAM BAN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM≌△ABN(ASA),∴∠M=∠N.已知条件寻找的条件选择的判定方法两角夹边或一角对边ASA或AAS一角及其对边任一角AAS一角及其邻边角的另一边或边的另一邻角或边的对角SA S或ASA或AAS 两边夹角或另一边或直角SAS或SSS或HL 【关键词】全等三角形的性质;三角形全等的识别6(四川省宜宾市,18,6分)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD【逐步提示】已知∠CAB=∠DBA,可得AO=BO,因而可证明△BOC≌△AOD,结论成立. 【详细解答】证明:∠CAB=∠DBA,所以AO=BO在△BOC和△AOD 中∠CBD=∠DAC(已知)OB=OA(已证)∠CBD=∠DAC(已证)△BOC≌△AOD(ASA)所以BC=AD【解后反思】除了上面的证明方法外,也可以证明△BAC≌△ABD(ASA)【关键词】全等三角形的性质与判定;等腰三角形的性质与判定。
中考数学 专题18 等腰三角形与直角三角形(解析版)
3 1 3
3 3
,∴S△OBC
1 2
BC•ON
3
.
3
∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.
OBE OCF 30
在△EOB 和△FOC 中,∵ OB OC EOB FOC
,∴△EOB≌△FOC(ASA),∴S 阴影=S△OBC
【例 2】(2019 四川省宜宾市,第 7 题,3 分)如图,∠EOF 的顶点 O 是边长为 2 的等边△ABC 的重心,
∠EOF 的两边与△ABC 的边交于 E,F,∠EOF=120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是 ( )
3
23
3
3
A. B. C. D.
中考数学复习资料
(2)在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半; (3)在直角三角形中,斜边上的中线等于斜边的一半. 基本方法归纳:(1)两个内角互余的三角形是直角三角形. (2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形. 注意问题归纳:注意区分直角三角形的性质与直角三角形的判定,在直角三角形中,如果一 个锐角等于 30°,那么它所对的直角边等于斜边的一半,它的逆命题不能直接使用.
【详解】连接 OB、OC,过点 O 作 ON⊥BC,垂足为 N.
∵△ABC 为等边三角形,∴∠ABC=∠ACB=60°.
∵点 O 为△ABC 的内心,∴∠OBC=∠OBA 1 ∠ABC,∠OCB 1 ∠ACB,∴∠OBA=∠OBC=∠OCB=30
2
2
°,∴OB=OC.∠BOC=120°.
∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN
各地2018年中考数学试卷等腰三角形(word,含解析)
等腰三角形一、选择题1.(2018•ft东枣庄•3 分)如图是由 8 个全等的矩形组成的大正方形,线段 AB 的端点都在小矩形的顶点上,如果点 P 是某个小矩形的顶点,连接 PA、PB,那么使△ABP 为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点 P 的个数是 3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点 P 是解题的关键. 2 (2018•ft东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD 于点E,交CB 于点F.若AC=3,AB=5,则CE 的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠C FA=90°,∠FAD+∠AE D=90°,根据角平分线和对顶角相等得出∠CE F=∠CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE 的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠C EF=∠CF E.3.(2018•ft东淄博•4 分)如图,P 为等边三角形 ABC 内的一点,且 P 到三个顶点 A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B 逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到 PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长 BP,作AF⊥BP 于点 FAP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得 AF 和 PF 的长,则在直角△ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B 逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF AP=,PF=AP=.∴在直角△ABF)2+()2=25+12 .则△ABC •AB2=•(25+12 .故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4.(2018•江苏扬州•3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD 与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③【分析】(1)由等腰Rt△ABC 和等腰Rt△ADE 三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2 转化为A C2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3 分)如图,已知BD 是△A BC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3,则CE 的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠A BD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形 ABC 中,BC>AB>AC,甲、乙两人想找一点 P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A 为圆心,AC 长为半径画弧交AB 于P 点,则P 即为所求;(乙)作过 B 点且与AB 垂直的直线l,作过C 点且与 AC 垂直的直线,交l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得 AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3 分)如图,等腰Rt△ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ⊥OP交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点 C 时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接 OC,作PE⊥AB 于 E,MH⊥AB 于 H,QF⊥AB 于 F,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到AP=CQ,QF=BQ,所以BC=1,然后证明MH 为梯形PEFQ 的中位线得到,即可判定点M 到AB 的距离为,从而得到点 M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点 M 所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB= ,∠A=∠B=45°,∵O为AB 的中点,∴OC⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ 的中点,∴MH为梯形PEFQ 的中位线,∴MH=(PE+QF)=,即点M到AB ,而 CO=1,∴点M 的运动路线为△ABC的中位线,∴当点P 从点A 运动到点C 时,点M AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018•河北•3分)已知:如图 4,点P在线段AB外,且PA =PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC ⊥AB于点C且AC =BCC.取AB中点C,连接PCD.过点P作PC ⊥AB,垂足为C9.(2018 四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作C H⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠C AB=45°,即∠A CD+∠DCB=∠A CD+∠A CE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA=,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE=+1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH== ,∴= AD·CH=×× = ,∴=(4-2 )×=3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接 BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由 SAS 得△DCB≌△ECA,根据全等三角形的性质知 DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.二.填空题1.(2018 四川省泸州市 3 分)如图,等腰△A BC 的底边 BC=20,面积为 120,点 F 在边BC上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为 18 .【分析】如图作A H⊥BC 于H,连接AD.由EG 垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF 周长的最小值为 13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018•广西桂林•3 分)如图,在Δ ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD 平分∠ABC交AC 于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO 为等边三角形,根据等边三角形的性质结合 OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6× × ×1=2 ., ,故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3 分)如图,在边长为 4 中,,分别为的中点 于点,为的中点,连接,则的长为.【答案】【解析】分析:连接 DE ,根据题意可得 Δ DEG 是直角三角形,然后根据勾股定理即可求解 DG 的长. 详解:连接 DE ,∵D、E 分别是 AB 、BC 的中点, ∴DE∥AC,DE=AC∵Δ ABC 是等边三角形,且 BC=4 ∴∠DEB=60°,DE=2 ∵EF⊥AC,∠C=60°,EC=2 ∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF 的中点,∴EG=.在RtΔ DEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3 分)如图.在△A BC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 的长是.【分析】延长 BC 至 M,使 CM=CA,连接 AM,作CN⊥AM 于 N,根据题意得到 ME=EB,根据三角形中位线定理得到AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出 AN,计算即可.【解答】解:延长BC 至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=A C•s in∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2 分) 右图所示的网格是正方形网格,∠BAC∠DAE .(填“ >”,“ =”或“ <”) 【答案】>【解析】如下图所示,△AFG 是等腰直角三角形,∴ ∠FAG = ∠BAC = 45︒,∴ ∠BAC >∠DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3 分)如图,在直角 中,,,,、分别为边 、上的两个动点,若要使 是等腰三角形且是直角三角形,则.16.【答案】 或G EBD FCAEBDCA【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ 是直角三角形时,有两种情况:∠B PQ=90 度,∠BQP=90 度。
【精品】2018版中考数学:4.2-三角形(含答案)
7.(2018·四川南充,13,3 分)如图,点 D 在△ABC 边 上,CE 平分∠ACD,∠A =80 °,∠B=40°,则 是________度.
解析
∵∠ACD=∠B+∠A ,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.
∵CE 平分∠ACD,∴∠ACE=60°. 答案 60 示的方式放置, 尺的一条直角边
6.(2018·四川巴中,13,3 分)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-2)2=0, 则第三边 c 的取值范围是________. 解析 答案 由题意得,a2-9=0,b-2=0,解得 a=3,b=2.∵3-2=1,3+2=5,∴1<c<5. 1<c<5 BC 的 延 长 线 ∠ACE 的大小
1 1 ∴S△CGE=S△AGE= S△ACF,S△BGF=S△BGD= S△BCF. 3 3 1 1 ∵S△ACF=S△BCF= S△ABC= ×12=6, 2 2 1 1 1 1 ∴S△CGE= S△ACF= ×6=2,S△BGF= S△BCF= ×6=2, 3 3 3 3 ∴S 阴影=S△CGE+S△BGF=4.6+4=13. 答案 A
二、填空题 5.(2018·广东东莞,16,4 分)如图,△ABC 三边的中 CF 的公共点为 G,若 S△ABC=12,则图中阴影部分 ________. 解析 ∵△ABC 的三条中线 AD, BE, CF 交于点 G, 线 AD , BE , 的 面 积 是
∵1+2<4,∴1,2,4 不可能是一个三角形的三边;∵4+5=9,∴4,5,9 不可能
是一个三角形的三边;∵4+6>8,∴4,6,8 能构成一个三角形的三边;∵5+5<11,∴5, 5,11 不可能构成一个三角形的三边. 答案 C
2018年中考数学真题分类汇编(第一期)专题22等腰三角形试题(含解析)
等腰三角形一、选择题1.(2018•山东枣庄•3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.2 (2018•山东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.3. (2018•山东淄博•4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C 的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.则△ABC的面积是•AB2=•(25+12)=.故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4. (2018•江苏扬州•3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①② D.②③【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P 为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M 所经过的路线长为()A.B.C.1 D.2【分析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,利用等腰直角三角形的性质得AC=BC=,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OC B=45°,再证明Rt△AOP ≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到PE=AP=CQ,QF=BQ,所以PE+QF=BC=1,然后证明MH为梯形PEFQ的中位线得到MH=,即可判定点M到AB的距离为,从而得到点M的运动路线为△ABC的中位线,最后利用三角形中位线性质得到点M所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ ,QF=BQ , ∴PE+QF=(CQ+BQ )=BC=×=1, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=(PE+QF )=,即点M 到AB 的距离为,而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=AB=1.故选:C .【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8. (2018•河北•3分)已知:如图4,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C 且AC BC =C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9. (2018四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作CH⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,即∠ACD+∠DCB=∠ACD+∠ACE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA= ,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE= +1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH= = ,∴= AD·CH= × × = ,∴=(4-2 )× =3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由SAS得△DCB≌△ECA,根据全等三角形的性质知DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积. 二.填空题1.(2018四川省泸州市3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC 上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为18 .【分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF周长的最小值为13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2. (2018•广西桂林•3分)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3. (2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4. (2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S= 2.(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO为等边三角形,根据等边三角形的性质结合OM 的长度可求出AB的长度,再利用三角形的面积公式即可求出S的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6×××1=2.故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3分)如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,EDCBA故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2分) 右图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”) 【答案】>【解析】如下图所示,G FABCD EAFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠.另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3分)如图,在直角中,,,,、分别为边、上的两个动点,若要使是等腰三角形且是直角三角形,则________.16.【答案】或【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ是直角三角形时,有两种情况:∠BPQ=90度,∠BQP=90度。
2018年全国中考数学真题分类 等腰三角形与等边三角形解析版(精品文档)
2018年全国中考数学真题分类 等腰三角形与等边三角形(二)一、选择题1. (2018山西省,8题,3分) 如图,在Rt △ABC 中,∠ACB=90°,∠A=60°, AC=6,将△ABC 绕点C 按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB 边上,则点B'与点B 之间的距离为( ) A .12B .6C .6√2D .6√3【答案】D【解析】解:连接B'B∵ 将△ABC 绕点C 按逆时针方向旋转得到△A'B'C,∴ CA=CA ’又∵ ∠A=60°∴ △AA'C 为等边三角形∴ ∠ACA ’ =60°,即旋转角为60° ∴ ∠BCB ’ =∠ACA ’ =60° ∴ △BB'C 为等边三角形 ∴ BB ’=BC又∵ 在Rt △ABC 中,∠ACB=90°,∠A=60°, AC=6, ∴ BB ’=BC=6√3【知识点】锐角三角函数、旋转、等边三角形2. (2018内蒙古包头,8,3分)如图3,在△ABC 中,AB =AC , △ADE 的顶点D 、E 分别在BC 、AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =145°,则∠EDC 的度数为( ) A.17.5° B.12.5° C.12° D.10°【答案】D【思路分析】由∠C+∠BAC=145°得知∠B=35°;由AB=AC得知∠B=∠C=35°;由等腰直角三角形的性质可得∠AED=45°,又∵∠AED=∠EDC+∠C,∴∠EDC=45°-35°=10°.【知识点】等腰三角形的性质;等腰直角三角形的性质;三角形内角和;三角形外角的性质3. (2018云南省昆明市,11,4分)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A. 90° B. 95° C. 100° D.120°【答案】B.【解析】由量角器的摆放可知,∠BOA=70°,∠COA=130°,又∵OC=OA,∴∠A=∠C=1 2(180°-130°)=25°,∵∠BOA=70°,∠COA=130°,∴∠COD=∠COA-∠BOA=130°-70°=60°,∴∠CDO=180°-∠COD-∠C=180°-60°-25°=95°,故选B.【知识点】三角形的外角;等腰三角形的性质二、填空题1. (2018广西省桂林市,16,3分)如图,在△ABC中,∠ A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.【答案】3.【解题过程】∵∠ A =36°,AB =AC ,∴∠ABC =∠C =72°,又∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =36°,∴∠BDC =∠C =72°,∴△BCD 是等腰三角形,又∵∠BDC =∠A +∠ABD,∴∠A =∠ABD =36°,∴∴△ABD 是等腰三角形,故有3个等腰三角形. 【知识点】等腰三角形的性质和判定;三角形的内角和定理2. (2018黑龙江绥化,18,3分)已知等腰三角形的一个外角为130°,则它的顶角的度数为 . 【答案】50°或80°.【解析】解:当等腰三角形顶角的外角为130°时,顶角为180°-130°=50°; 当等腰三角形底角的外角为130°时,顶角为180°-2(180°-130°)=80°. 故答案为50°或80°. 【知识点】等腰三角形的性质3. (2018湖南娄底,16,3)如图,ABC 中,ABAC ,ADBC 于D 点,DEAB 于点E ,BF AC 于点F ,3cm DE ,则BFcm .【答案】6【解析】过点D 作AC DH ⊥,对ABC ∆用等面积法,得到DF=DE+DH ,再三线合一得到AD 是角平分线,进一步得到DE=DH ,故答案为6AAB【知识点】等腰三角形三线合一、等面积法4. (2018吉林长春,12,3分)如图,在ΔABC 中,AB=AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD .若∠A =32°,则∠CDB 的大小为 度.(第12题)【答案】37【解析】∵AB=AC ,∠A =32° ∴∠ACB =(180°-32°)÷2=74° 由尺规作图知,CB=CD ∴∠CBD=∠CDB 又∵∠CBD+∠CDB=∠ACB∴∠CDB =21∠ACB=37°【知识点】等腰三角形,三角形内角和,尺规作图,外角5. (2018吉林省,14, 2分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k=12,则该等腰三角形的顶角为 度. 【答案】36【解析】根据等腰三角形的性质得出∠B=∠C ,根据三角形内角和定理和已知得出5∠A=180°,求出即可.设顶角为α,则其底角为1-2α︒(180),由k=12,可得1-2α︒(180)=2α,解出α=36°。
人教版八年级下册数学专题复习及练习(含解析):等腰三角形
专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60°的等腰三角形是等边三角形。
知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。
中考数学复习专题25:尺规作图(含中考真题解析)
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考【2015年题组】1.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.第1 页共32 页考点:作图—复杂作图.考点:作图—复杂作图.2.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(下列结论错误的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 【答案】D.【解析】【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线..直角三角形斜边上的中线. 3.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为(的度数,结果为( )A.80°B.90°C.100°D.105°【答案】B.【解析】【解析】试题分析:如图,试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.考点:1.等腰三角形的性质;2.作图—基本作图.基本作图.4.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.的长是( )若BD=6,AF=4,CD=3,则BE的长是(A.2 B.4 C.6 D.8 【答案】D.基本作图.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.5.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆分别作出了下列四个图形.其中作法错误的是( )规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(A.B.C.D.【答案】A.考点:作图—基本作图.考点:作图—基本作图.6.数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是(是直角的依据是( )A .勾股定理.勾股定理B .直径所对的圆心角是直角.直径所对的圆心角是直角C .勾股定理的逆定理.勾股定理的逆定理D .90°的圆周角所对的弦是直径的圆周角所对的弦是直径 【答案】B . 【解析】【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理.角定理.7.如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)证明,∴只需连接一对角线就行)【答案】作图见试题解析.【答案】作图见试题解析.考点:作图—应用与设计作图.考点:作图—应用与设计作图.8.)阅读下面材料:在数学课上,老师提出如下问题:)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是 .请回答:小芸的作图依据是【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线..作图题.考点:1.作图—基本作图;2.作图题.9.已知⊙O为△ABC的外接圆,圆心O在AB上.上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC 的平分线AD 交BC 于E ,⊙O 半径为5,AC=4,连接OD 交BC 于F .①求证:OD ⊥BC ; ②求EF 的长.的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②3217.【解析】【解析】 试题分析:(1)按照作角平分线的方法作出即可;)按照作角平分线的方法作出即可;(2)①由AD 是∠BAC 的平分线,得到CD BD =,再由垂径定理推论可得到结论;,再由垂径定理推论可得到结论;②由勾股定理求得CF 的长,然后根据平行线分线段成比例定理求得34EFFD CEAC==,即可求得37EF CF =,继而求得EF 的长.的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周.压轴题.角定理;5.作图—复杂作图;6.压轴题.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【答案】答案见试题解析.【解析】【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如图所示:试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题..压轴题.11.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD ,已知OA=5,若扇形OAD (∠AOD <180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于的侧面,则这个圆锥底面圆的半径等于 .【答案】(1)作图见试题解析;(2)158.【解析】【解析】 试题分析:(1)作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;即为所求; (2)由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论.,根据圆的周长的公式即可求得结论. 试题解析:(1)如图所示,八边形ABCDEFGH 即为所求;即为所求;(2)∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180p ´=154p ,设这个圆锥底面圆的半径为R ,∴2πR=154p,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.复杂作图.12.手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.【答案】答案见试题解析.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;得到的最小等腰直角三角形面积即可;(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:试题解析:根据分析,可得:..操作型.考点:1.作图—应用与设计作图;2.操作型.13.如图,一条公路的转弯处是一段圆弧(AB).(要求保留作图痕迹,不写作法)(1)用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)所在圆的半径.(2)若AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】(1)作图见试题解析;(2)50m.试题解析:(1)如图1,点O为所求;为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为AB的中点,∴OC⊥AB,∴AD=BD=12AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵222OA OD BD=+,∴222(20)40r r=-+,解得r=50,即AB所在圆的半径是50m.考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题..作图题.14.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.的度数.【答案】(1)证明见试题解析;(2)40°.°.考点:1.作图—基本作图;2.等腰三角形的判定与性质..等腰三角形的判定与性质.15.如图,射线P A切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OP A(用尺规在原图中作,保留痕迹,不写作法),并证明PC是⊙O的切线;的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求AB的长.的长.【答案】(1)作图见试题解析,证明见试题解析;(2)839p.【解析】【解析】试题分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;的切线;(2)先证明△P AB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.,用弧长公式计算即可.试题解析:(1)作图如右图,作图如右图,连接连接OA,过O作OB⊥PC,∵P A切⊙O于点A,∴OA⊥P A,又∵∠OPC=∠OP A ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;的切线;(2)∵P A 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△P AB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°tan60°==4OA ,∴OA=433,∴431203180AB l p ´´==839p .考点:1.切线的判定与性质;2.弧长的计算;3.作图—基本作图.基本作图.16.如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.的面积之比.【答案】(1)作图见试题解析;(2)12.试题解析:(1)如图所示;)如图所示;考点:1.作图—复杂作图;2.圆周角定理..圆周角定理.17.)图①,图②,图③都是4×4×44的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:图:为一边画一个等腰三角形;(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;为一边画一个正方形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.)作图见试题解析.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)作图见试题解析.【解析】【解析】的等腰三角形即可; 试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;的正方形;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.个:试题解析:(1)如图①,符合条件的C点有5个:;的面积最大.(3)如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.考点:作图—应用与设计作图.18.)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均,每个小正方形的顶点叫做格点.为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)答案见试题解析;(2)答案见试题解析.)答案见试题解析.所示;试题解析:(1)如图1所示;(2)如图2、3所示;所示;考点:作图—应用与设计作图.考点:作图—应用与设计作图. 19.)如图,已知Rt △ACB 中,∠C =90°,∠BAC =45°. (1)(4分)用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD (不写作法,保留作图痕迹); (2)(4分)求∠BDC 的度数;的度数; (3)(4分)定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ÐÐ=cot ,根据定义,利用图形求cot22.5°的值.的值.【答案】(1)答案见试题解析;(2)22.5°;(3)21+.试题解析:(1)如图,)如图,(2)∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°45°=22.5°=22.5°,即∠BDC 的度数为22.5°;(3)设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx+=21+,即cot22.5°cot22.5°==21+. 考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题..综合题.20.)如图,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求DE 的长.的长.【答案】(1)作图见试题解析;(2)32p .试题解析:(1)如图,)如图,⊙C 为所求;为所求;(2)∵⊙C 切AB 于D ,∴CD ⊥AB ,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°30°=60°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt △BCD 中,∵cos ∠BCD=CD BC ,∴CD=3cos30°CD=3cos30°==332,∴DE 的长=33602180p ×=32p. 考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题..作图题.21.如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.的一个外角. 实验与操作:实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法) (1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE ,CF . 猜想并判断四边形AECF 的形状并加以证明.的形状并加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析,四边形AECF 的形状为菱形.的形状为菱形. 【解析】【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定..菱形的判定.22.在边长为1的小正方形组成的方格纸中,的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点(横竖格(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.为常数. (1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;、菱形;(2)利用(1)中的格点多边形确定m ,n 的值.的值.【答案】(1)答案见试题解析;(2)112m n =ìïí=ïî.(2)∵格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,则38165416m n m n +-=ìí+-=î,解得:112m n =ìïí=ïî. 考点:作图—应用与设计作图.考点:作图—应用与设计作图.23.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.的整数个单位长度. (1)用记号(a ,b ,c )(a≤b≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).【答案】(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4);(2)答案见试题解析.)答案见试题解析. 【解析】【解析】 试题分析:(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .则△ABC 即为满足条件的三角形.即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系..三角形三边关系.24.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形..各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算如何计算它的面积?奥地利数学家皮克(G•Pick ,1859~1942年)证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-´+=S .(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)(注:图甲、图乙在答题纸上)【答案】. 【解析】【解析】 试题分析:(1)根据皮克公式画图计算即可;)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.,画出满足题意的图形即可. 试题解析:(1)方法不唯一,如图①或图②所示:)方法不唯一,如图①或图②所示:(2)方法不唯一,如图③或图④所示:)方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.考点:作图—应用与设计作图. 25.【问题提出】【问题提出】用n 根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?,能搭成多少种不同的等腰三角形? 【问题探究】【问题探究】不妨假设能搭成m 种不同的等腰三角形,为探究m 与n 之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.手,通过试验、观察、类比、最后归纳、猜测得出结论. 【探究一】【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 此时,显然能搭成一种等腰三角形.此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.根木棒这一种情况,不能搭成三角形. 所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形. 所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1. 综上所述,可得:表①综上所述,可得:表①n 3 4 5 6 m 1 0 1 1 【探究二】【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?根相同的木棒搭一个三角形,能搭成多少种不同的三角形? (仿照上述探究方法,写出解答过程,并将结果填在表②中)(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? (只需把结果填在表②中)(只需把结果填在表②中) 表②表②n 7 8 9 10 m 你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n是正整数,把结果填在表③中)分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③表③n 4k﹣1 4k 4k+1 4k+2 m 【问题应用】:(写能搭成多少种不同的等腰三角形?(写用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形(木棒无剩余)(只填结果)出解答过程),其中面积最大的等腰三角形每腰用了,其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?试题解析:(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形三角形根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根木棒,则能搭成一种等腰三角形分成3根木棒、3根木棒和4根木棒,则能搭成一种等腰三角形根木棒,则能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2016÷2016÷4=5044=504,504﹣1=503,当三角形是等边三角形时,面积最大,2016÷2016÷3=6723=672,∴用2016根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题..压轴题.【2014年题组】年题组】1.)用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .SSSC .ASAD .AAS 【答案】B .考点:作图—基本作图;全等三角形的判定与性质.考点:作图—基本作图;全等三角形的判定与性质.2.模)如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:下:甲:①作OD 的垂直平分线,交⊙O 于B ,C 两点.两点. ②连接AB ,AC .△ABC 即为所求作的三角形.即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.两点.即为所求作的三角形.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断( )对于甲、乙两人的作法,可判断(A.甲、乙均正确.甲、乙均错误.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误.甲错误,乙正确.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】【解析】试题分析:根据甲的思路,作出图形如下:试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,故选A 考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.度角的直角三角形.3.)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是,并直接写出旋转角度是 .【答案】90°.°.【解析】【解析】试题分析:如图所示:旋转角度是90°.°.考点:作图-旋转变换.旋转变换.4.)如图,在△ABC中,按以下步骤作图:中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为的度数为 【答案】105°.°.考点:作图—基本作图;线段垂直平分线的性质.考点:作图—基本作图;线段垂直平分线的性质.5.)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,。
2018年 中考数学总复习 等腰三角形 专题综合训练题 含答案和解析
2019年中考数学总复习等腰三角形专题综合训练题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80° B.75° C.65° D.45°3. 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM =PN,若MN=2,则OM=( )A.3 B.4 C.5 D.64. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.25. 如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.106. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.7. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.8. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B 的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.9. 如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.解析:第(2)题分别以点C,M,N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.10. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)11. 在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,求点F到直线BC的距离.12. 如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)点M是直线l上的动点,且△MAC为等腰三角形,求出所有符合条件的点M的坐标.13. 如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是∠ABC 的平分线,CE ⊥BD ,垂足是E ,BA 和CE 的延长线交于点F.(1) 在图中找出与△ABD 全等的三角形,并证明你的结论; (2) 证明:BD =2EC. 参考答案: 1. C2. D 【解析】∠BCA =12(180°-∠A )=75°,∠BCD =∠BCA -∠DCA =∠BCA-∠A =75°-30°=45°. 3. C【解析】作PQ ⊥MN 于Q ,由PM =PN 知PQ 垂直平分MN ∴MQ =1.∠AOB =60°,OP =12,∴OQ =12OP =6,OM =OQ -MQ =6-1=5.4. C【解析】 如图,以BC 为边作等腰直角三角形△EBC ,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG ⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF ,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分的面积最小,最小值为4×6-12×4×4-12×3×6-12×3×3=2.5,故选C.5. C 【解析】∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD =CD ,∴BD =AB 2-AD 2=4,∴BC =2BD =8,故选C .6. 20° 【解析】过点A 作AD ∥l 1,根据平行线的性质可得∠BAD =∠β.AD ∥l 2,从而得到∠DAC =∠α=40°.再根据等边△ABC 可得到∠BAC =60°,∴∠β=∠BAD =∠BAC -∠DAC =60°-40°=20°.7. 12° 【解析】设∠A =x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A =∠AP 2P 1=∠AP 13P 14=x ,∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∴∠P 3P 2P 4=∠P 12P 13P 11=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x ,∴∠AP 7P 8=7x ,∠AP 8P 7=7x .在△AP 7P 8中,∠A +∠AP 7P 8+∠AP 8P 7=180°,即x +7x +7x =180°,解得x =12°.8. 解:(1)画图正确,角度标注正确,如图① (2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图②,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC=90°,如图③,此时y =90°+12(90°-x)=135°-12x.若∠ABD=90°,如图④,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图⑤,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图⑥,此时x =45°,45°<y <90°9. 解:(1)把点A(4,0),B(1,3)代入抛物线y =ax 2+bx 中,得⎩⎪⎨⎪⎧0=16a +4b ,3=a +b ,解得⎩⎪⎨⎪⎧a =-1,b =4,∴抛物线表达式为:y =-x 2+4x (2)点C 的坐标为(3,3),点B 的坐标为(1,3),以点C ,M ,N 为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M 为直角顶点且M 在x 轴上方时,如图2,CM =MN ,∠CMN =90°,则△CBM≌△MHN,∴BC =MH =2,BM =HN =3-2=1,∴M(1,2),N(2,0),由勾股定理得MC =22+12=5,∴S △CMN =12×5×5=52;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt △NEM 和Rt △MDC ,得Rt △NEM ≌Rt △MDC ,∴MD =ME =2,EM =CD =5,由勾股定理得CM =22+52=29,∴S △CMN =12×29×29=292;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN =MN ,∠MNC =90°,作辅助线,同理得CN =32+52=34,∴S △CMN =12×34×34=17;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得CN =32+12=10,∴S △CMN =12×10×10=5;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形.综上所述,△CMN 的面积为52或292或17或510. 解:满足条件的所有等腰三角形如下图所示:解析:利用等腰三角形的性质,分别以长度为3的边为等腰三角形的底边和腰长进行分类.11. 解:①如图a ,延长AC ,作FD⊥BC 于点D ,FE ⊥AC 于点E ,易得四边形CDFE 是正方形,则CD =DF =FE =EC.∵在等腰直角△ABC 中,AC =BC =1,AB =AF ,∴AB =AC 2+BC 2=12+12=2,∴AF = 2.在Rt △AEF 中,(1+EC)2+EF 2=AF 2,即 (1+DF)2+DF 2=(2)2,解得DF =3-12;②如图b ,延长BC ,作FD⊥BC 于点D ,延长CA ,作FE⊥CA 于点E ,易得四边形CDFE 是正方形,则CD =DF =FE =EC.在Rt △AEF 中,(EC -1)2+EF 2=AF 2,即(FD-1)2+FD 2=(2)2,解得FD =3+12.综上可知,点F 到BC 的距离为3+12或3-1212. 解:(1)将A(-1,0),B(3,0),C(0,-3)代入抛物线y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3,故抛物线的解析式为y =x 2-2x -3 (2)如图,抛物线的对称轴为x =-b2a =1,设M(1,m),已知A(-1,0),C(0,-3),则MA 2=m 2+4,MC 2=(3+m)2+1=m 2+6m +10,AC 2=10.①若MA =MC ,则MA 2=MC 2,得m 2+4=m 2+6m +10,解得m =-1;②若MA =AC ,则MA 2=AC 2,得m 2+4=10,得m =±6;③若MC =AC ,则MC 2=AC 2,得m 2+6m +10=10,得m 1=0,m 2=-6,当m =-6时,M ,A ,C 三点共线,不构成三角形,不合题意,故舍去.综上可知,符合条件的M 点的坐标为 (1,6)(1,-6)(1,-1)(1,0)13. 解:(1)△ABD≌△ACF,证明:∵AB =AC ,∠BAC =90°,∴∠FAC =∠BAC =90°,∵BD ⊥CE ,∠BAC =90°,∠ADB =∠EDC,∴∠ABD =∠ACF,∴△ABD ≌△ACF(ASA)(2)∵△ABD≌△ACF,∴BD =CF ,∵BD ⊥CE ,∴∠BEF =∠BEC,∵BD 是∠ABC 的平分线,∴∠FBE =∠CBE,∵BE =BE ,∴△FBE ≌△CBE(ASA),∴CF =2CE ,∴BD =2CE。
中考数学复习《等腰、等边及直角三角形》经典题型(含答案)
中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。
2)、“角平分线+垂线”构造等腰三角形。
3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。
2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。
中考数学复习专题25等腰三角形、等边三角形试题(A卷,含解析)(2021年整理)
2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析)的全部内容。
等腰三角形、等边三角形一、选择题1.(山东临沂,12,3分)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形。
其中正确的个数是()(A)0 (B)1 (C)2 (D)3【答案】D【逐步提示】本题考查等边三角形的判定与性质,菱形的判定与性质,先由等边三角形的性质得出∠ACB=∠DCE=60°,AC=CD,从而得出△ACD是等边三角形,得出①正确;再判断四边形ABCD是菱形,得出②正确;然后根据①结论得出四边形ACED是菱形,得出③正确.【详细解答】解:∵△ABC、△EDC是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC,故①正确;由①可得AD=BC=AB=CD,∴四边形ABCD是菱形,∴BD⊥AC,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.【解后反思】解答本题需掌握以下知识:(1)等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°;(2)等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;(3)菱形的判定:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的四边形是菱形;③四条边都相等的四边形是菱形;(4)菱形的性质:①菱形是四条边都相等;②菱形的对角线互相垂直且平分;③菱形的每一条对角线平分一组对角.【关键词】 等边三角形的判定;等边三角形的性质;菱形的判定;菱形的性质2。
(完整word版)2018年中考数学试题汇编------三角形
2018年中考数学汇编—--—-—三角形1。
(2018•长沙)下列长度的三条线段,能组成三角形的是( B )A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm2。
(2018•福建)下列各组数中,能作为一个三角形三边边长的是( C )A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,53.(2018•贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是( B )A.线段DE B.线段BE C.线段EF D.线段FG4.(2018•常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是(C ) A.1 B.2 C.8 D.115.(2018•河北)下列图形具有稳定性的是( A )6。
(2018•柳州)如图,图中直角三角形共有( C )A.1个 B.2个 C.3个 D.4个7。
(2018•毕节市)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( C )A.4 B.6 C.8 D.108。
(2018•昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为( B )A.90° B.95° C.100° D.120°9. (2018•眉山)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( C )A.45° B.60° C.75° D.85°10。
(2018•宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是( B )A.24° B.59° C.60° D.69°11。
2018年全国中考数学试卷解析分类汇编经典专题22 等腰三角形
等腰三角形一.选择题1,(2015威海,第9题4分)【答案】:B【解析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.【备考指导】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.2..(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答: 解:∵△ABC 为等边三角形,∴∠A =∠B =∠C =60°,AB =BC =A C .∵筝形ADOK ≌筝形BEPF ≌筝形AGQH ,∴AD =BE =BF =CG =CH =AK .∵折叠后是一个三棱柱,∴DO =PE =PF =QG =QH =OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形.∴∠ADO =∠AKO =90°.连结AO ,在Rt △AOD 和Rt △AOK 中,, ∴Rt △AOD ≌Rt △AOK (HL ).∴∠OAD =∠OAK =30°.设OD =x ,则AO =2x ,由勾股定理就可以求出AD =x , ∴DE =6﹣2x ,∴纸盒侧面积=3x (6﹣2x )=﹣6x 2+18x , =﹣6(x ﹣)2+,∴当x =时,纸盒侧面积最大为. 故选C .点评: 本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.3.(2015•江苏苏州,第7题3分)如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45° C .55° D .60°【难度】★【考点分析】考察等腰三角形三线合一,往年选择填空也常考察三角形基础题目,难度很 DC B A(第7题)。
2018年中考数学真题分类汇编第二期专题22等腰三角形试题含解析
等腰三角形一.选择题1.(2018•江苏宿迁•3分)如图,菱形ABCD的对角线AC.BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是()A. B. 2 C. D. 4【答案】A【分析】根据菱形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO=2,AC=2AO=4,根据三角形面积公式得S△ACD=OD·AC=4,根据中位线定理得O E∥AD,根据相似三角形的面积比等于相似比继而可求出△OCE的面积.【详解】∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,∵∠BAD=60°,∴△ABD是等边三角形,又∵O是菱形对角线AC.BD的交点,∴AC⊥BD,在Rt△AOD中,∴AO=,∴AC=2AO=4,∴S△ACD=OD·AC= ×2×4=4,又∵O、E分别是中点,∴OE∥AD,∴△COE∽△CAD,∴,∴,∴S△COE=S△CAD=×4=,故选A.【点睛】本题考查了相似三角形的判定与性质,等边三角形的判定与性质,勾股定理,菱形的性质,结合图形熟练应用相关性质是解题的关键.2.2018•内蒙古包头市•3分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC 上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12° D.10°【分析】由AB=AC知∠B=∠C,据此得2∠C+∠BAC=180°,结合∠C+∠BAC=145°可知∠C=35°,根据∠DAE=90°、AD=AE知∠AED=45°,利用∠EDC=∠AED﹣∠C可得答案.【解答】解:∵AB=AC,∴∠B=∠C,∴∠B+∠C+∠BAC=2∠C+∠BAC=180°,又∵∠C+∠BAC=145°,∴∠C=35°,∵∠DAE=90°,AD=AE,∴∠AED=45°,∴∠EDC=∠AED﹣∠C=10°,故选:D.【点评】本题主要考查等腰直角三角形,解题的关键是掌握等腰直角三角形和等腰三角形的性质及三角形的内角和定理、外角的性质.3. (2018•达州•3分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2 C.D.3【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.4. (2018•资阳•3分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形 D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A.等边三角形由3条对称轴,故本选项错误;B.平行四边形无对称轴,故本选项错误;C.矩形有2条对称轴,故本选项正确;D.正方形有4条对称轴,故本选项错误;故选:C.【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.5.(2018•湖州•3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A. 20°B. 35°C. 40°D. 70°【答案】B【解析】分析:先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.详解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6. (2018•贵州安顺•3分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A. B. C. D. 或【答案】A【解析】试题分析:∵,∴,即,,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.7. (2018•广西玉林•3分)等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数 C.反比例函数D.二次函数【分析】根据一次函数的定义,可得答案.【解答】解:设等腰三角形的底角为y,顶角为x,由题意,得y=﹣x+90°,故选:B.8. (2018·黑龙江哈尔滨·3分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.9. (2018·黑龙江龙东地区·3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是3.6或4.32或4.8 .【分析】在Rt△ABC中,通过解直角三角形可得出AC=5.S△ABC=6,找出所有可能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=6.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP=S△ABC=×6=4.32;④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.11.(2018•福建A卷•4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD 上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.12. (2018•福建B卷•4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD 上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.13. (2018•达州•3分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2 C.D.3【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14. (2018•资阳•3分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形 D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A.等边三角形由3条对称轴,故本选项错误;B.平行四边形无对称轴,故本选项错误;C.矩形有2条对称轴,故本选项正确;D.正方形有4条对称轴,故本选项错误;故选:C.【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.二.填空题1.(2018•江苏徐州•3分)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC,∴BD=CD=a,∴AD==a,面积则是:a•a=a2.【点评】此题主要考查了正三角形的高和面积的求法,比较简单.2.(2018•江苏无锡•2分)如图,点A.B.C都在⊙O上,OC⊥OB,点A在劣弧上,且OA=AB,则∠ABC= 15°.【分析】根据等边三角形的判定和性质,再利用圆周角定理解答即可.【解答】解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB=90°,∴∠COA=90°﹣60°=30°,∴∠ABC=15°,故答案为:15°【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.(2018•江苏无锡•2分)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b 的取值范围是2≤a+2b≤5.【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,∠EPH=30°,可得EH的长,计算a+2b=2OH,确认OH最大和最小值的位置,可得结论.【解答】解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.4.(2018•江苏淮安•3分)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.【点评】本题考查了三角形内角和定理和等腰三角形的性质,熟记等腰三角形的性质是解题的关键.5. (2018•乌鲁木齐•4分)如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为.【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴BF=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.【解答】解:∵∠C=90°,BC=2,AC=2,∴tanB===,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F ∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cosB=,∴BF=cos30°=,∴EF=﹣(4﹣x)=x﹣,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣),解得x=3,此时AE为3;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.综上所述,AE的长为3或.故答案为3或.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系和勾股定理.6. (2018•临安•3分)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 36 度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).7. (2018•广西桂林•3分)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3【解析】分析:由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.8.(2018·黑龙江哈尔滨·7分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.9.(2018•贵州遵义•4分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37 度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.10. (2018湖南省邵阳市)(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC 中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【解答】解:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为:.【点评】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.11. (2018•乌鲁木齐•4分)如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB 于点F.若△AB′F为直角三角形,则AE的长为.【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴B F=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.【解答】解:∵∠C=90°,BC=2,AC=2,∴tanB===,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F ∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cosB=,∴BF=cos30°=,∴EF=﹣(4﹣x)=x﹣,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣),解得x=3,此时AE为3;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.综上所述,AE的长为3或.故答案为3或.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系和勾股定理.三.解答题1.(2018•江苏徐州•7分)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.【分析】(A类)连接AC,由AB=AC.AD=CD知∠BAC=∠BCA.∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.【点评】本题主要考查等腰三角形的判定与性质,解题的关键是掌握等角对等边、等边对等角的性质.2.(2018•江苏徐州•10分)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E 旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为EP:EQ=1:m ,其中m的取值范围是0<m≤2+.(直接写出结论,不必证明)探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.【分析】探究一:(1)连接BE,根据已知条件得到E是AC的中点,根据等腰直角三角形的性质可以证明BE=CE,∠PBE=∠C.根据等角的余角相等可以证明∠BEP=∠CEQ.即可得到全等三角形,从而证明结论;(2)作EM⊥AB,EN⊥BC于M、N,根据两个角对应相等证明△MEP∽△NWQ,发现EP:EQ=EM:EN,再根据等腰直角三角形的性质得到EM:EN=AE:CE;(3)根据(2)中求解的过程,可以直接写出结果;要求m的取值范围,根据交点的位置的限制进行分析.探究二:(1)设EQ=x,结合上述结论,用x表示出三角形的面积,根据x的最值求得面积的最值;(2)首先求得EQ和EB重合时的三角形的面积的值,再进一步分情况讨论.【解答】解:探究一:(1)连接BE,根据E是AC的中点和等腰直角三角形的性质,得BE=CE,∠PBE=∠C又∠BEP=∠CEQ,则△BEP≌△CEQ,得EP=EQ;(2)作EM⊥AB,EN⊥BC于M,N,∴∠EMP=∠ENC,∵∠MEP+∠PEN=∠PEN+∠NEF=90°,∴∠MEP=∠NEF,∴△MEP∽△NEQ,∴EP:EQ=EM:EN=AE:CE=1:2;(3)过E点作EM⊥AB于点M,作EN⊥BC于点N,∵在四边形PEQB中,∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°(四边形的内角和是360°),又∵∠EPB+∠MPE=180°(平角是180°),∴∠MPE=∠EQN(等量代换),∴Rt△MEP∽Rt△NEQ(AA),∴(两个相似三角形的对应边成比例);在Rt△AME∽Rt△ENC∴=1:m=,∴=m=,EP与EQ满足的数量关系式为EP:EQ=1:m,∴0<m≤2+;(当m>2+时,EF与BC不会相交).探究二:若AC=30cm,(1)设EQ=x,则S=x2,所以当x=10时,面积最小,是50cm2;当x=10时,面积最大,是75cm2.(2)当x=EB=5时,S=62.5cm2,故当50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.【点评】熟练运用等腰直角三角形的性质和相似三角形的判定和性质进行求解.3.(2018•江苏苏州•10分)如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【分析】(1)连接AC,根据切线的性质和已知得:AD∥OC,得∠DAC=∠ACO,根据AAS证明△CDA≌△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≌△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.【点评】此题考查了切线的性质、全等三角形的判定与性质、圆周角定理、勾股定理、三角形内角和定理以及等腰三角形和等腰直角三角形的判定与性质等知识.此题难度适中,本题相等的角较多,注意各角之间的关系,注意掌握数形结合思想的应用.4.(2018•江苏苏州•10分)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC 方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.【分析】(1)根据点M、N的坐标,利用待定系数法即可求出图②中线段MN所在直线的函数表达式;(2)分FE=FG、FG=EG及EF=EG三种情况考虑:①考虑FE=FG是否成立,连接EC,通过计算可得出ED=GD,结合CD⊥EG,可得出CE=CG,根据等腰三角形的性质可得出∠CGE=∠CEG、∠FEG>∠CGE,进而可得出FE≠FG;②考虑FG=EG是否成立,由正方形的性质可得出BC∥EG,进而可得出△FBC∽△FEG,根据相似三角形的性质可得出若FG=EG则FC=BC,进而可得出CG、DG的长度,在Rt△CDG中,利用勾股定理即可求出x的值;③考虑EF=EG是否成立,同理可得出若EF=EG则FB=BC,进而可得出BE的长度,在Rt△ABE中,利用勾股定理即可求出x的值.综上即可得出结论.【解答】解:(1)设线段MN所在直线的函数表达式为y=kx+b,将M(30,230)、N(100,300)代入y=kx+b,,解得:,∴线段MN所在直线的函数表达式为y=x+200.(2)分三种情况考虑:①考虑FE=FG是否成立,连接EC,如图所示.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE,∴FE≠FG;②考虑FG=EG是否成立.∵四边形ABCD是正方形,∴BC∥EG,∴△FBC∽△FEG.假设FG=EG成立,则FC=BC成立,∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG﹣FC=2x+200﹣100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解得:x1=﹣100(不合题意,舍去),x2=;③考虑EF=EG是否成立.同理,假设EF=EG成立,则FB=BC成立,∴BE=EF﹣FB=2x+200﹣100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解得:x1=0(不合题意,舍去),x2=﹣(不合题意,舍去).综上所述:当x=时,△EFG是一个等腰三角形.【点评】本题考查了待定系数法求一次函数解析式、等腰三角形的判定与性质、相似三角形的判定与性质、正方形的性质以及勾股定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)分FE=FG、FG=EG及EF=EG三种情况求出x的值.5. (2018•杭州•8分)如图,在△ABC中,AB=AC,AD为BC边上的中线DE⊥AB于点E。
2018中考数学真题分类汇编解析版-13.3.等腰(等边)三角形
一、选择题1..(2018·攀枝花,4,3分)如图2,等腰直角三角形的顶点A ,C 分别在直线a ,b 上,若a ∥b ,∠1=30°,则∠2的度数为( )A .30°B .15°C .10°D .20°4.B ,解析:等腰直角三角形中的锐角∠B =45°.过点B 作BD ∥a (点D 在点B 的右边),则∠ABD =∠1=30°,且BD ∥b .∴∠2=∠DBC =∠ABC -∠ABD =45°-30°=15°.故选B .2.(2018·枣庄市,10,3)如图是由8个全等的小矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接P A ,PB ,那么使△ABP 为等腰直角三角形的点P 的个数是 ( )A . 2个B .3个C .4个D .5个答案:B ,解析:如下图,设每个小矩形的长与宽分别为x 、y ,则有2x =x +2y ,从而x =2y .因为线段AB 是1×2的矩形对角线,所以根据网格作垂线可知,过点B 与AB 垂直且相等的线段有BP 1和BP 2,过点A 与AB 垂直且相等的线段有BP 3,且P 1、P 2,P 3都在顶点上,因此满足题意的点P 共有3个,故选择B .P 2P 3P 1AB3.(2018·扬州市,7,3分) 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是( ) A .BC =EC B .EC =BE C .BC =BE D .AE =EC21E D CBAC ,解析:∵∠B +∠BCD =∠B +∠A =90°,∴∠BCD =∠A ;∵CE 平分∠ACD ,∴∠1=∠2; ∵∠CEB =∠A +∠1,∠BCE =∠BCD +∠2,∴∠CEB =∠BCE ,∴BC =BE .故选C .E D CBA第7题图a b ACB12图26.(2018江苏宿迁,6,3分)若实数m ,n 满足等式042=-+-n m ,且m ,n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是A .12B .10C .8D .6答案:B ,解析:根据042=-+-n m 得m=2,n=4,再根据等腰三角形三边关系定理得:三角形三边长分别为4,4,2,故选B .7. (2018·山东淄博,11,4分)如图,在Rt △ABC 中,CM 平分∠ACB 交AB 与点M ,过点M 作MN ∥BC 交AC 于点N ,且AN 平分∠AMC .若AN =1,则BC 的长为( ) A .4 B .6 C .43 D .8N MA BC答案:B 解析:∵MN ∥BC ,∴∠AMN =∠NMC =∠NCM =∠BCM . 又∠A =90°,∴∠AMN =∠B =30°. ∴∠MN =2AN =2=NC . ∴BC =2AC =6.8. (2018·山东淄博,12,4分)如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .9+2543B .9+2523C .18+253D .18+2523AB CP答案:A 解析:∵三角形ABC 是等边三角形,∴AB =AC ,∠BAC =60°. 如图,将△ABP 绕顶点A 逆时针旋转60°到△ACP ′处.则△ACP ′≌△ABP .∴P A =P ′A =3,PB =P ′C =4,∠BAP =∠CAP ′.∴∠P ′AP =∠P AC +∠CAP ′=∠P AC +∠BAP =∠BAC =60°. ∴△P AP ′是等边三角形. ∴PP ′=P ′A =3.在△PP ′C 中,PP '2+P ′C 2=9+15=25=PC 2.∴△PP ′C 是直角三角形.∴∠PP ′C =90°. 类似地,可分别旋转△ACP ,△BCP .由此可得:△ABC 的面积=3221131[(345)+343)]2222⨯++⨯⨯⨯⨯=25394+.9.(2018·娄底市,10,3分)如图(2),往竖直放置的在A 处由短软管连接的粗细均匀细管组成的“U ”形装置中注入一定量的水,水面高度为6cm ,现将右边细管绕A 处顺时针方向旋转60︒到AB 位置,则AB 中水柱的长度约为( ) A .4cm B .63cm C .8cm D .12cm图(2)C ,解析:如图,构造Rt △ACD ,设AD=xcm ,因为∠ACD=30︒,AC=2AD=2xcm .则x+2x=12,解得x=4,所以AC=2x=810.(2018·黄冈市,4,3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC 、AC 于点D和E ,∠B =60°,∠C =25°,则∠BAD 为( ) A .50° B .70° C .75° D .80°DEABCB ,解析:∵DE 垂直平分AC ,∴AD =CD ,∴∠DAC =∠C =25°,∴∠ADB =∠DAC +∠C =25°+25°=50°,在△ABD 中,∠BAD =180°-∠B -∠BAD =180-60°-50°=70°.故选B .11.(2018·荆门,11,3分)如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22π C .1 D .211.C 解析:设AC ,BC 的中点分别为E ,F ,连接EF ,OC ,MO ,MC .∵点M 是Rt △OPQ 和Rt △CPQ 的斜边PQ 的中点,∴MO =MC .∴点M 在OC 的垂直平分线上.∵点E ,F 在OC 的垂直平分线上,∴点M 在中位线EF 上.可见点M 运动的路径是线段EF ,路线长=12AB =1.故选C .二、填空题 1.(2018·泸州,16,3分)如图5,等腰△ABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,QP M BC O A 图3FEQPMB CO A 第11题图EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则△CDF 周长的最小值为 .GFEDCBA答案:18,解析:∵BC =20,BF =3FC ,∴BF =34×20=15,FC =14×20=5.∵△CDF 周长=CD +DF +FC =CD +DF +5,∴当CD +DF 最小时,△CDF 的周长有最小值.连接AD .∵EG 是AC 的垂直平分线,∴AD =CD ,∴CD +DF =AD +DF .根据“两点之间,线段最短”可知当点A ,D ,F 在同一条直线上时,AD +DF 的最小值为AF .过点A 作AH ⊥BC 于H ,∵BC =20,△ABC 的面积为120,∴AH =2120=1220⨯.∵AB =AC ,∴BH =CH =12BC =10,∴HF =15-10=5.在Rt △AHF 中,根据勾股定理,得AF =225+12=13,即CD +DF 的最小值为13,∴△CDF 周长的最小值为13+5=18.2.(2018·成都,11,4分)等腰三角形的一个底角为50°,则它的顶角的度数为 .80° 解析:三角形是等腰三角形,一个底角为50°,∴另一个底角也为50°,根据三角形内角定理可得它的顶角为180°-50°-50°=80°.3..(2018•无锡市,18,2)如图,已知∠XOY =60°,点A 在边OX 上,OA =2,过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD //OY 交OX 于点D ,作PE //OX 交OY 于点E ,设OD =a ,OE =b ,则a +2b 的取值范围是 . 答案:2(25)a b +≤≤,解析:如图①过P 作PH ⊥OY 交于点H ,∵PE //OX ,∠XOY =60°,∴∠PEH =∠XOY =60°,∠EPH =30°,∴EH =1122EP a =,∴a +2b =12()2()22a b EH EO OH +=+=,∵点P 是△ABC 围成的区域(包括各边)内的任意一点,∴当P 在AC 边上时,H 与C 重合(见图②),此时min 1OH OC ==,min (2)2a b +=;当P 在点B 时(见图③),max 35122OH =+=,max (2)5a b +=,∴2(25)ab +≤≤4.(2018·娄底市,16,3分)如图(6),△ABC 中,AB=AC ,AD ⊥BC 于D 点,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE=3cm ,则BF= cm .FEDCBA图(6)答案6,解析:在△ABC 中,AB=AC ,AD ⊥BC ,所以AD 平分∠BAC ,又DE ⊥AB ,过D 作DG ⊥AC 于G ,则DG=DE=3cm ,再根据等腰三角形三线合一的性质,知D 是BC 边中点,由此可得BF=2DG=6 cmGF EDCBA5.(2018·天津市,17,3分) 如图,在边长为4的等边△ABC 中,D ,E 分别为AB ,BC 的中点,EF ⊥AC 于点F ,G 为EF 的中点,连接DG ,则DG 的长为 .答案,192 解析:如图,连接DE .∵D ,E 分别为AB ,BC 的中点,∴CE =12BC =12×4=2,DE 是△ABC 的中位线,∴DE ∥AC ,DE =12AC =12×4=2,∴∠DEB =∠C =60°.∵EF ⊥AC ,∴∠EFC =90°,∠FEC =180°-90°-60°=30,∴∠DFG =180°﹣∠DEB ﹣∠FEC =180°-60°-30°=90°.在Rt △EFC 中, EF =CE ·tanC =2×3=32.∵G 是EF 的中点,∴EG =32.在Rt △DEG 中,根据勾股定理,得DG =2222319=2=22DE EG ⎛⎫++ ⎪ ⎪⎝⎭.三、解答题 1..(2018滨州,25,13分)已知,在△ABC 中,∠A =90°,AB =AC ,点D 为BC 的中点. (1)如图①,若点E 、F 分别为AB 、AC 上的点,且DE ⊥DF ,求证:BE =AF ;(2)若点E 、F 分别为AB 、CA 延长线上的点,且DE ⊥DF ,那么BE =AF 吗?请利用图②说明理由.图②图①ADFE ADBCCB第25题图思路分析:(1)利用等腰直角三星的性质,连接AD ,构造△BDE 和△ADF ,通过ASA 证明全等即可得出结论;(2)类比(1),通过连接AD ,仍然可以构造△BDE 和△ADF ,通过ASA 证明全等得出结论. 解答过程:(1)如图①,连接AD ,∵∠BDA =∠EDF =90°∴∠BDE +∠EDA =∠EDA +∠ADF ∴∠BDE =∠ADF 又∵D 为BC 中点,△ABC 是等腰直角三角形∴BD =AD ,∠B =∠DAC =45° ∴△BDE ≌△ADF (ASA )∴BE =AF .答案图①FEADCB答案图②FADBCE第25题答图(2)如图②,连接AD ,∵∠BDA =∠EDF =90°∴∠BDE +∠BDF =∠BDF +∠ADF∴∠BDE =∠ADF 又∵D 为BC 中点,△ABC 是等腰直角三角形∴BD =AD ,∠B =∠DAC =45° ∴∠EBD =∠F AD =180°-45°=135°∴△BDE ≌△ADF (ASA )∴BE =AF 2.(2018·嘉兴市,19,6) 已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E 、F ,且DE =DF . 求证:△ABC 是等边三角形.FEDA BC思路分析:通过证明Rt △ADE ≌Rt △CDF ,得到∠A =∠C ,从而得到AB =BC ,从而AB =AC =BC . 证明:∵AB =AC . ∴∠B =∠C .∵ DE ⊥AB ,DF ⊥BC . ∴∠DEA =∠DFC =Rt ∠. ∵D 为AC 的中点. ∴DA =DC . 又∵DE =DF .∴Rt △ADE ≌Rt △CDF (HL ). ∴∠A =∠C .∴∠A =∠B =∠C . ∴△ABC 是等边三角形.3(2018·绍兴,22,12分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,∠A =110°,求∠B 的度数.(答案:35°)例2 等腰三角形ABC 中,∠A =40°,求∠B 的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题: 变式 等腰三角形ABC 中,∠A =80°,求∠B 的度数. (1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A 的度数不同,得到∠B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设∠A =x °,当∠B 有三个不同的度数时,请你探索x 的取值范围.思路分析:已知等腰三角形的一个角,求另一个角,需要分类讨论.对等腰三角形进行讨论时,最好以 底角或底边为依据进行分类,这样便于做到既不重复,也不遗漏.因此第(1)问分三种情形:“∠A 为顶角,∠B 为顶角,∠C 为顶角”进行计算即可.第(2)问先以∠A 为钝角、直角、锐角进行分类,当∠A 为锐时,再以“∠A 为顶角,∠B 为顶角,∠C 为顶角”进行探索,最后还要注意应注意排除特殊情况——等边三角形的情形.解答过程:解:(1)当∠A 为顶角时,∠B =2180A∠-︒=50°;当∠B 为顶角时,∠B =180°-2∠A =20°;当∠C 为顶角时,∠B =∠A =80°.综上,∠B =20°或50°或80°. (2)①当90≤x <180时,∠A 只能为顶角,故∠B 的度数只有一个;②当0<x <90时,∠A 可能为顶角,也可能为底角.当∠A 为顶角时,∠B =︒-)2180(x;当∠B 为顶 角时,∠B =(180-2x ) °;当∠C 为顶角时,∠B =∠A =x °.当2180x -=180-2x 时,x =60;当2180x-=x时,x =60;当180-2x =x 时,x =60.综上,∠B 有三个不同的度数时, x 的取值范围是0<x <90且x =60.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形、等边三角形一、选择题 1. (山东临沂,12,3分)如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC=AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( ) (A )0 (B )1 (C )2 (D )3【答案】D【逐步提示】本题考查等边三角形的判定与性质,菱形的判定与性质,先由等边三角形的性质得出∠ACB=∠DCE=60°,AC=CD ,从而得出△ACD 是等边三角形,得出①正确;再判断四边形ABCD 是菱形,得出②正确;然后根据①结论得出四边形ACED 是菱形,得出③正确.【详细解答】解:∵△ABC、△EDC 是等边三角形,∴∠ACB=∠DCE=60°,AC=CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD 是等边三角形,∴AD=AC,故①正确;由①可得AD=BC=AB=CD ,∴四边形ABCD 是菱形,∴BD⊥AC,故②正确; 由①可得AD=AC=CE=DE ,故四边形ACED 是菱形,即③正确. 综上可得①②③正确,共3个.故选D .【解后反思】解答本题需掌握以下知识:(1)等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°;(2)等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形; (3)菱形的判定:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的四边形是菱形;③四条边都相等的四边形是菱形;(4)菱形的性质:①菱形是四条边都相等;②菱形的对角线互相垂直且平分;③菱形的每一条对角线平分一组对角.【关键词】 等边三角形的判定;等边三角形的性质;菱形的判定;菱形的性质2.( 山东泰安,18,3分)如图,在△PAB 中,PA =PB ,M 、N 、K 分别是边PA 、PB 、AB 上的点,且AM =BK ,BN=AK ,若∠MKN =44°,则∠P 的度数为( )A .44°B .66°C .88°D .92° 【答案】DBKA第18题图【逐步提示】本题考查了等腰三角形的性质、全等三角形的判定与性质,解题的关键是解题的关键是熟练掌握全等三角形的判定方法.通过题中所给的条件AM =BK ,BN =AK ,以及由PA =PB ,可证∠A =∠B 所以△AKM ≌△BNK ,得到对应角相等,再利用外角等于不相邻的两个内角和,便可求出∠A 与∠MKN 相等,最后由三角形的内角和求出∠P 的度数.【详细解答】解:∵PA =PB ,∴∠A =∠B . 又∵AM =BK ,BN =AK ,∴△AKM ≌△BNK (SAS ),∴∠AMK =∠BKN ,∵∠MKN +∠BKN =∠A +∠AMK ,∴∠A =∠MKN ,∵∠MKN =44°,∴∠A =44°,∴∠P =180°-2∠A =180°-2×44°=92°故答案为D .【解后反思】本题主要考查全等三角形的判定,判断三角形全等的方法有SSS 、SAS 、AAS 、ASA ,解题时可根据题目已有条件,选择便捷可行的判定方法.【关键词】等腰三角形的性质 ;三角形的外角;三角形全等的判定. 3.4. (四川达州,9,3分)如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF 于点F ,D 为AB 的中点,连接D F 并延长交AC 于点E.若AB=10,BC=16,则线段EF 的长为 A.2 B.3 C.4D.5第9题图 【答案】B【逐步提示】本题主要考查了直角三角形的性质、等腰三角形的性质和判定、相似三角形的性质和判定.解题的关键是根据边角关系得到DE ∥BC ,从而得到△ADE ∽△ABC.解题思路是:由直角三角形斜边上的中线等于斜边的一半及D 是AB 的中点,可得DF =DB =5,则∠DBF =∠DFB ,又BF 平分∠ABC ,则∠DFB =∠CBF ,则DE ∥BC ,易得△ADE ∽△ABC ,根据相似三角形对应边成比例求得DE ,则EF 可求.【详细解答】解:∵AF ⊥BF ,D 是AB 的中点,∴DF =DB =5,∴∠DBF =∠DFB ,又∵BF 平分∠ABC ,∴∠CBF =∠DBF ,∴∠DFB =∠CBF ,∴DE ∥BC ,∴∠ADE =∠ABC ,∠AED =∠ACB ,∴△ADE ∽△ABC ,∴AD AB =DE BC ,∴12=DE16,∴DE =8.∴EF =DE -DF =8-5=3.故选择B .【解后反思】1.直角三角形中,斜边上的中线等于斜边的一半.2.在等腰三角形中,注意用“等边对等角”完成边角关系的转化.【关键词】直角三角形斜边上的中线与斜边的关系;等腰三角形的性质和判定;相似三角形的性质和判定 5. ( 四川省绵阳市,7,3分)如图,平行四边形ABCD 的周长是26cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E是BC 中点,△AOD 的周长比△AOB 的周长多3cm ,则AE 的长度为 ···· ( )A .3cmB .4cmC .5mD .8cm【答案】B .【逐步提示】本题考查了平行四边形的性质.由□ABCD 的周长是26cm ,得到□ABCD 两邻边的和,即为AD +AB =13;由△AOD 的周长比△AOB 的周长多3cm ,得到□ABCD 两邻边的差,即AD -AB =3.联立方程组解得BC =8.最后利用“直角三角形斜边上的中线等于斜边的一半”求得AE 长.CDEAO【详细解答】解:因为四边形ABCD 是平行四边形,所以AD =BC .因为□ABCD 的周长是26cm ,所以AD =BC 且AB +BC =13①.因为△AOD 的周长比△AOB 的周长多3cm ,所以AD -AB =3,即BC -AB =3②.①+②,得2BC =16,所以BC =8.因为AC ⊥AB ,所以∠BAC =90°,又因为E 是BC 中点,所以AE =12BC =12×8=4.,故选择B .【解后反思】(1)在直角三角形中出现斜边中点时,一般利用“直角三角形斜边上的中线等于斜边的一半”求斜边上的中线长.(2)平行四边形的性质:对边平行且相等,对角相等,邻角互补,对角线互相平分.6. ( 四川南充,7,3分)如图,在Rt ΔABC ,∠A =30°,BC =1,点D ,E 分别直角边BC ,AC 的中点,则DE 的长为( )DA .1B .2CD .【答案】A【逐步提示】本题考查了三角形中位线定理和直角三角形的性质,解题的关键是能根据30°所对的直角边等于斜边的一半推出斜边的长.由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=12AB . 【详细解答】解:如∵在Rt△ABC 中,∠C=90°,∠A=30°, ∴AB=2BC=2.又∵点D 、E 分别是AC 、BC 的中点, ∴DE 是△ACB 的中位线, ∴DE =12AB=1. 故选择A .【解后反思】遇到条件是中点计算线段的长,常考虑三角形的中位线定理;遇锐角有30°的直角三角形常考虑直角三角形的性质:30度角所对的直角边等于斜边的一半. 【关键词】三角形中位线定理7. ( 四川省宜宾市,5,3分)如图,在△ABC 中,∠C=900,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( ) A.10 B.22C.3D.25【答案】A【逐步提示】要求两点B 、D 的距离,连接BD ,从图上发现BD 是三角形BDE 的一边,且三角形BDE 是直角三角形,DE=BC=3,如能求出BE 长,则BD 可用勾股定理求出,BE=AB-AE ,AB 是直角三角形ABC 的斜边可求,AE=AC=4,所以问题可解.【详细解答】解:连接BD.因为 ∠C=900,AC=4,BC=3,所以AB=5342222=+=+BC AC ,AE=AC=4,所以BE=1,又DE=3,∠DEA=∠C=900,所以BD=109122=+=+BE DE ,故选A.【解后反思】解此类题,要紧扣旋转不改变图形的形状和大小,由此可得出一些线段及角的值,象本题中的AE=AC=4,BC=DE=3,∠DEA=∠C=900,都是解题过程中不可缺少的条件. 【关键词】 旋转;图形旋转的特性;勾股定理;二、填空题 1. (浙江金华,16,4分)由6根钢管首尾顺次铰接而成六边形钢架ABCDEF ,相邻两钢管可以转动.已知各钢管的长度为AB =DE =1米,BC=CD=EF=FA =2米.(铰接点长度忽略不计)(1)转动钢管得到三角形钢架,如图1,则点A ,E 之间的距离是 米.(2)转动钢管得到如图2所示的六边形钢架,有∠A =∠B =∠C =∠D =120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是 米.【答案】(1)83;(2)【逐步提示】(1)连接AE ,根据线段间的比例关系得到AE ∥BD.再由△FAE ∽△FBD ,通过相似三角形的性质求得AE 的长.(2)固定多边形的形状需要通过连接对角线将多边形转化为多个三角形来达到目的,为此需要求得多边形对角线的长度.根据图形特征构造出多个等边三角形,根据图形条件求得相关对角线的长度,通过比较对角线的长度得到三根钢条总长度的最小值.【解析】(1)连接AE ,因为AF :AB=FE :ED=2:1,所以AE ∥BD.所以△FAE ∽△FBD ,所以AF :FB=AE :BD ,即2:3=AE :4,解得AE=83. (2)作直线AF ,ED ,BC ,三直线相交于点H ,N ,M ,因为∠A =∠B =∠C =∠D =120°,AB =DE =1米,BC=CD=EF=FA =2米,所以△FEH ,△CDN 均为边长为2的等边三角形,△ABM 为边长1等边三角形,所以EF ∥BC ,AB ∥DE ,AF ∥CD ,连接AE ,则△AEH 为直角三角形,所以AEAD >AE=2CF ,由平行线分线段成比例可得CF ∥DE ,所以△MCF 为边长3的等边三角形,所以CF=3;连接AC ,作AG ⊥MN 于点G ,由已知条件可得AG=2,GC=52,由勾股定理得同理可得,则所用三根钢条总长度的最小值是(第16题图1) (第16题图2)DCE【解后反思】固定多边形的形状需要将多边形通过连对角线的方式将多边形转化为多个三角形,根据图形的特征利用相关知识求得相关线段的长度. 【关键词】三角形的稳定性;最小值3. ( 四川省绵阳市,14,3分)如图,AC ∥BD ,AB 与CD 相交于点O ,若AO =AC ,∠A =48°,∠D =________.【答案】66°.【逐步提示】本题考查了等腰三角形的性质和平行线的性质.由AO =AC ,∠A =48°得∠C =66°.由AC ∥BD 得∠D =∠C =66°.【详细解答】解:因为AO =AC ,所以∠C =∠AOC =1802A ︒-∠=180482︒-︒=66°.因为AC ∥BD ,所以∠D =∠C =66°,故答案为66°.【解后反思】(1)在等腰三角形中,顶角与底角中知道任一个的度数,就可求出另一个的度数.(2)平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补. 【关键词】等腰三角形的性质;平行线的性质.三、解答题1. (山东菏泽,23,10分)如图,△ACB 和△DCE 均为等腰三角形,点A ,D ,E 在同一直线上,连接BE . (1)如图1,若∠CAB =∠CBA =∠CDE =∠CED =50°, ① 求证:AD =BE ; ② 求∠AEB 的度数.(2)如图2,若∠ACB =∠DCE =120°,CM 为△DCE 中DE 边上的高,BN 为△ABE 中AE 边上的高,试证明:AE =23CM +332BN . CDABO【逐步提示】(1)①等腰三角形△ACB 和△DCE 的底角相等,则它们的顶角相等,故得∠ACD =∠BCE ,于是易证△ACD ≌△BCE ,则有AD =BE ;②由①中△ACD ≌△BCE ,得∠CAD =∠CBE ,于是∠EAB 与∠ABE 之和等于等腰△ACB 的两底角之和,从而易求∠AEB 的度数;(2)显然AE =DE +AD =DE +BE ,则在等腰△DCE 中用高CM 表示DE 的长,在Rt △BEN 中用BN 表示BE 的长,结论即可获证. 【详细解答】解:(1)①证明:∵△ACB 和△DCE 均为等腰三角形,∴AC =BC ,CD =CE .∵∠CAB =∠CBA =∠CDE =∠CED ,∴∠ACB =∠DCE ,∴∠ACD =∠BCE ,∴△ACD ≌△BCE (SAS),∴AD =BE . ②解:由①得△ACD ≌△BCE ,∴∠CAD =∠CBE .在△ABE 中,∠AEB =180°―∠EAB ―∠ABE =180°―∠EAB ―∠ABC -∠CBE =180°―∠EAB ―∠ABC -∠CAD =180°―∠CAB -∠ABC =180°-50°-50°=80°.(2)证明:在等腰△DCE 中,∵CD =CE ,∠DCE =120°,CM ⊥DE ,∴∠DCM =21∠DCE =60°,DM =EM . 在Rt △CDM 中,DM =CM ·tan ∠DCM = CM ·tan60°=3CM ,∴DE =23CM .由(1)中②,得∠AEB =180°―∠CAB -∠ABC =180°―(180°-120°)=120°,∴∠BEN =60°. 在Rt △BEN 中,sin ∠BEN =BE BN ,∴BE =BN ÷sin60°=332BN . 由(1)中①知AD =BE ,∴AD =332BN . ∴AE =DE +AD =23CM +332BN ,即AE =23CM +332BN . 【解后反思】(1)含有特殊角的等腰三角形,往往通过作底边上的高转化为解直角三角形的问题.(2)在解决几何综合题中,相等角与线段的等量转换往往是沟通解证思路的“桥梁”,起着关键作用.【关键词】等腰三角形的性质;全等三角形的判定与性质;三角形内角和定理;解直角三角形;直角三角形的性质 2. (山东威海,24,11) (11分)如图,在△ABC 和△BCD 中,∠BAC=∠BCD=90°,AB=AC ,CB=CD.延长CA 至点E ,使AE=AC ;延长CB 至点F ,使BF=BC.连接AD ,AF ,DF ,EF.延长DB 交EF 于点N. (1)求证:AD=AF ; (2)求证:BD=EF ;(3)试判断四边形ABNE 的形状,并说明理由.ABCDE图1ACDMEN图2【逐步提示】(1)根据条件可得△ABF≌△ACD,则AD=AF;(2)根据条件可得△AEF≌△ABD,则BD=EF;(3)根据条件可得四边形ABNE的形状为矩形,再由AE=AB,可得矩形ABNE为正方形。