高二理科数学第二学期期终考试卷

合集下载

高二理科数学下册期中检测试卷及答案

高二理科数学下册期中检测试卷及答案

~第二学期期中考试高二数学试题(理科)注意事项:1. 本试卷共4页,包含填空题(第1~14题,共14题)、解答题(第16~20题,共6题)二部分。

本次考试时间为120分钟,满分160分。

考试结束后,只需将答题纸交回。

2. 答题前,请您务必将自己的姓名、考试证号、班级等信息用书写黑色字迹的0.5毫米签字笔填写在答题纸上。

3. 作答时必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。

参考公式:线性回归方程系数公式:,)())((211^∑∑==---=ni i ni i ix x y y x xb x b y a ^^-=.样本相关系数公式:,)()())((21211∑∑∑===----=ni i ni ini i iy y x xy y x xr卡方统计量:))()()(()(22d b c a d c b a bc ad n ++++-=χ一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直 接填写在答题纸指定位置. 1.化简=+-ii11 ▲ . 2.=-3545C A .3.已知,11ni im-=-其中n m ,是实数,i 是虚数单位,则=+ni m . 4.在回归分析中,对于y x ,随机取到的n 对数据),,2,1)(,(n i y x i i =样本相关系数r 具有下列哪些性质:①;1≤r ②r 越接近于1,y x ,的线性相关程度越弱;③r 越接近于1,y x ,的线性相关程度越强;④r 越接近于0,y x ,的线性相关程度越强,请写出所有正确性质的序号: .5.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 .①若2χ的观测值满足2χ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100人吸烟的人中必有99患有肺病;②从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③其从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误.6.某地区的年财政收入x 与年支出y 满足线性回归模型ε++=bx a y (单位:亿元),其中.5.0,2,8.0≤==εa b 如果今年该地区财政收入10亿元,则年支出预计不会超过 .7.把4封不同的信投入3个不同的信箱,不同的投法种数共有 种.8.类比平面几何中的勾股定理:若直角三角形ABC 中的两边AC AB ,互相垂直,则三角形边长之间满足关系:.222BC AC AB =+若三棱锥BCD A -的三个侧面ABC 、ACD 、ADB 两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .9.已知推理:“因为△ABC 三边长依次为3,4,5,所以△ABC 是直角三角形”.若将其恢复成完整的三段论,则大前提是 . 10.观察下列等式:,),4321(16941,321941),21(41,11 +++-=-+-++=+-+-=-=由此推测第n 个等式为 .(不必化简结果) 11.已知,12121=-==z z z z 则21z z +等于 .12.在复平面内,O是原点,,,表示的复数分别为,51,23,2i i i +++-那么表示的复数为 .13.设正数数列}{n a 的前n 项和为n S ,且),1(21nn n a a S +=推测出n a 的表达式为 . 14.将正奇数排列如右表所示,其中第i 行第j 个数表示为),,(**N j N i a ij ∈∈例如.932=a 若,2009=ij a 则=+j i .二、解答题:本大题共6小题,共90分.在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题14分)已知复数,)32()1(2i m m m m z -++-=当实数m 取什么值时,复数z 是: (1) 零;(2)纯虚数; (3).52i z +=16.(本小题14分)先解答(1),再通过结构类比解答(2) (1) 求证:;tan 1tan 1)4tan(xxx -+=+π(2) 设R x ∈且,)(1)(1)1(x f x f x f -+=+试问:)(x f 是周期函数吗?证明你的结论.17.(本小题14分)设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入5个盒子内.(1) 只有一个盒子空着,共有多少种投放方法?(2) 没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?18.(本小题16分)设,1,*>∈n N n 用数学归纳法证明:.131211n n>++++19.(本小题16分)某电脑公司有6名产品推销员,其中5名推销员的工作年限与年推销金额数据如下表:(1) 求年推销金额y 与工作年限x 之间的相关系数(精确到小数点后两位); (2) 求年推销金额y 关于工作年限x 的线性回归方程;(3) 若第6名推销员的工作年限为11年,试估计他的年推销金额. (参考数据:;02.104.1≈由检验水平0.01及,32=-n 查表得.59.001.0=r )20.(本小题16分0设Q P ,是复平面上的点集,{}{}.,2,05)(3P z iz Q z z i z z z P ∈===+-+⋅=ωω(1)Q P ,分别表示什么曲线?(2)设,,21Q z P z ∈∈求21z z -的最大值与最小值.2019-2019学年度第二学期期中考试高二数学答题纸一.填空题:(本题共14小题,每题5分,共70分)1. 2. 3. 4.5. 6. 7. 8.9. 10. 11. 12.13. 14.二.解答题:(本题共6题,共90分,请写出必要的解答或证明过程)15题:(本题14分)16题:(本题14分)17题.(本题14分)…18题:(本题16分)…19题:(本题16分)20题:(本题16分)高二理科数学参考答案一、填空题1. i -;2. 110;3. i +2;4. ①③;5. ③;6. 10.5亿元;7. 81; 8. 2222ACD ABC ABD BCD S S S S ∆∆∆∆++=;9. 一条边的平方等于其它两条边平方和的三角形是直角三角形; 10. )321()1()1(4321121222n n n n ++++-=⋅-++-+--- ;11.12. i 44-;13. 1--=n n a n ;14. 60二、解答题15. 解:(1)由⎩⎨⎧=-+=-0320)1(2m m m m 可得m=1; …………4分(2)由⎩⎨⎧≠-+=-0320)1(2m m m m 可得m=0; …………8分(3)由⎩⎨⎧=-+=-5322)1(2m m m m 可得m=2; …………12分综上:当m=1时,复数z 是0;当m=1时,复数z 是纯虚数;当m=2,复数z 是i 52+. …………14分 16. 解:(Ⅰ)xx x x x tan 1tan 14tantan 14tantan )4tan(-+=-+=+πππ; …………4分 (Ⅱ))(x f 是以4为其一个周期的周期函数. …………6分∵)(1)(1)(11)(1)(11)1(1)1(1)1)1(()2(x f x f x f x f x f x f x f x f x f -=-+--++=+-++=++=+, …………10分 ∴)()2(1)2)2(()4(x f x f x f x f =+-=++=+, …………12分所以)(x f 是周期函数,其中一个周期为4. …………14分 17. 解:(1)只有一个盒子空着,则有且只有一个盒子中投放两个球,另外3只盒子中各投放一个球,先将球分成2,1,1,1的四组,共有25C 种分法, …………4分再投放到五个盒子的其中四个盒子中,共有45A 种放法,所以满足条件的投放方法共有4525A C =1200(种); …………8分(2)五个球投放到五个盒子中,每个盒子中只有一个球,共有55A 种投放方法,而球的编号与盒子编号全相同的情况只有一种,所以球的编号与盒子编号不全相同的投放方法共有155-A =119(种). …………14分18. 证明:记)(n f =+++31211…n1+(*N n ∈,n >1), …………2分(1)当n =2时,211)2(+=f >2,不等式成立; …………6分(2)假设n =k (*N k ∈,k ≥2)时,不等式成立, …………8分 即)(k f =+++31211…k1+>k ,则当n =k +1时,有)1(+k f =)(k f +11+k >k +11+k =11)1(+++k k k>11++k k =1+k …………12分∴当n =k +1时,不等式也成立. …………14分 综合(1),(2)知,原不等式对任意的*N n ∈(n >1)都成立. …………16分 19. 解:(Ⅰ)由∑=--ni i iy y x x1))((=10,∑=-n i i x x 12)(=20,21)(∑=-ni i y y =5.2,可得98.02.52010≈⨯=r , …………4分∴年推销金额y 与工作年限x 之间的相关系数约为0.98. …………6分 (Ⅱ) 由(Ⅰ)知,98.0=r >01.0959.0r =,∴可以认为年推销金额y 与工作年限x 之间具有较强的线性相关关系. …………8分设所求的线性回归方程为a bx y+=ˆ,则4.0,5.0==a b . …………10分 ∴年推销金额y 关于工作年限x 的线性回归方程为4.05.0ˆ+=x y. …………12分 (Ⅲ) 由(Ⅱ) 可知,当11x =时, 4.05.0ˆ+=x y= 0.5×11+ 0.4 = 5.9万元, ∴可以估计第6名推销员的年推销金额为5.9万元. …………16分 20. 解:(1)设yi x z +=(R y x ∈,), …………2分 则集合=P {),(y x ︱05622=+-+y y x }={),(y x ︱4)3(22=-+y x },故P 表示以(0,3)为圆心,2为半径的圆; …………6分第11页 共11页 设yi x +=ω(R y x ∈,),P i y x z ∈+=00(R y x ∈00,)且iz 2=ω,…………8分 则⎩⎨⎧=-=0022x y y x …………10分 将⎪⎪⎩⎪⎪⎨⎧-==x y y x 212100代入4)3(22=-+y x 得16)6(22=++y x ,故Q 表示以(-6,0)为圆心,4为半径的圆; …………12分(2)21z z -表示分别在圆Q P ,上的两个动点间的距离,又圆心距53=PQ >2+4, 故21z z -最大值为6+35,最小值为35-6. …………16分。

高二第二学期期中考试数学试题(理科),DOC

高二第二学期期中考试数学试题(理科),DOC

高二第二学期期中考试数学试题(理科)一、选择题(每小题5分,共60分)1、复数1ii -的共轭复数的虚部为()A .1B .1-C .12D .12-2、若2133adx a a =-+⎰,则实数a =()A .2B .2-3、化简(为()4、函数),a b 内的A .1个B 56A .157A .0B 8、4 A .129A .2-10A.6011、已知函数()f x 是定义在R 上的奇函数,且当(],0x ∈-∞时,()2x f x e ex a -=-+,则函数()f x 在1x =处的切线的方程是()12、函数()f x 满足()00f =,其导函数()f x '的图象如右图 所示,则()f x 的图象与x 轴所围成的封闭图形的面积是()A.1B.43C.2D.83二、填空题(每小题5分,共20分)13、若()102100121021x a a x a x a x -=++++,则3a =.14、若()2120x i x i m ++++=有实数根,i 是虚数单位,则实数m 的值为. 15、若函数()()3261f x x ax a x =++++有极值,则实数a 的取值范围是 16、函数()()f x x R ∈满足()11,f =且()f x 在R 上的导函数()12f x '>,则不等式()12x f x +<的解集是.三、解答题(共计70分)17、(10n2倍.(1)求(218、(12(1)求(2)若19、(12((20、(12(1)求(2(321、(1222、(12分)已知a R ∈,函数()ln 1.af x x x =+-(1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (2)求()f x 在区间(]0,e 上的最小值.高二第二学期期中考试数学试题(理科)答案一、选择题(每小题5分,共60分)CBCACADBADBB二、填空题(每小题5分,共20分)13、1680-;14、2-;15、36a a <->或16、(),1-∞ 三、解答题(共6个小题,总计70分) 17、(1)83n =分;01288888822565C C C C ++++==分.(2)848k k k --18、312分.19、6分;(212分. 20、(2)312x x =-令f '故(f 所以(33 ⎪⎝⎭3 ⎪⎝⎭故()f x 在223x x =-=或处取得最大值,又23f ⎛⎫-= ⎪⎝⎭2227c +,()22f c =+,所以()f x 的最大值为2c +.因为()2f x c <在[]1,2-上恒成立,所以22,c c >+所以12c c <->或12分.21、(1)若两名老师傅都不选派,则有44545C C =种;…3分(2)若两名老师傅只选派1人,则有13414325425460C C C C C C +=种;…7分 (3)若两名老师傅都选派,则有224242233254254254120C C C C C C A C C ++=种. 故共有5+60+120=185种选派方法.……………………………12分22、(1)当1a =时,()()1ln 1,0,,f x x x x=+-∈+∞所以()()22111,0,.x f x x x x x -'=-+=∈+∞又f (2令f 若a 7若],a e 时,若a e 时,函(]0,e 上分。

高二理科数学第二学期期中考试

高二理科数学第二学期期中考试

高二理科数学第二学期期中考试高二数学(理科)试卷(本卷满分150分,考试时间120分钟)一、选择题 (共8小题,每小题5分,答案唯一,共40分,把标准答案填涂在答题卷上)1.3×4×5×…×8×9= ( )A 39AB 9!-3!C 79AD 79C2.若,,R x y ∈则“yi x +为纯虚数”是 “0=x ”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 不充分也不必要条件3.函数23)(23++=x ax x f ,若(1)4f '-=,则a 的值是( )A 319B 316C 313D 310 4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ∥平面α,直线⊂a 平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为A 推理形式错误B 大前提错误C 小前提错误D 非以上错误5.01x e dx -=⎰ e A 11-- 11B e -+ 11C e + 11D e - 6.复数11i i+-等于( )A 1i -B 1i +C iD i -7.已知()f x 是定义在R 上的增函数,且()0f x <,则函数2()()g x x f x =的单调情况一定是( )A 在(-∞,0)上递增B 在(-∞,0)上递减C 在R 上递增D 在R 上递减8.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰所用珠宝总数为( )A 65B 66C 68D 69二、填空题(共6小题,每小题5分,共30分,把答案填写在答题卷横线内)9.复数Z 满足2||1<<z ,那么复数Z 对应的点的图形的面积是 ;10.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:____________________________________________________;图1 图2图311.函数276y x x =-+的极值点是 ___________;12.函数1y x x=+在区间()0,+∞上的最小值是 _______________; 13.对于下式:6542516066624265166066)1()1()2()1()2()2()12()(a x a x a x a x a C x C x C x C x x f +++++=-++-+-+⋅=-=有如下结论:① 1)0(0==f a ② 32665646362616=+++++C C C C C C ③ 163210=+++++a a a a a 正确的结论为: ;(只填正确选项的序号)14.为了保证信息安全传输,有一种称为秘密密钥密码系统(Private KeyCryptosystem ),其加密、解密原理如下图:现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为 .三、解答题(共6小题,满分80分.要求写出各题的解答过程,并将结果化成最简形式,在答题卷指定的区域内作答,否则不给分)15.(本小题满分14分) 已知抛物线241:x y C = (Ⅰ) 若直线l 与抛物线C 相切于点)1,2(T ,试求直线l 的方程;(Ⅱ)若直线l 过点)1,0(M ,且与x 轴平行,求直线l 与抛物线C 所围成的封闭区域的面积.解密密钥密码 加密密钥密明密密发送 明16.(本题满分14分)在班级活动中,某小组的4 名男生和2 名女生站成一排表演节目:(每个小题要求列式,并计算结果 )(Ⅰ) 两名女生不能相邻,有多少种不同的站法?(Ⅱ) 女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(Ⅲ)4 名男生相邻有多少种不同的排法?(Ⅳ)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)17.(本小题满分14分)统计表明,某种型号的汽车在匀速行驶中每小时耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:880312800013+-=x x y (0<x ≤120).已知甲、乙两地相距100千米。

高二下学期期中考试理科数学试卷含答案(共5套)

高二下学期期中考试理科数学试卷含答案(共5套)

高二下学期理科数学期中考试卷第I 卷(选择题共60分)一、选择题:(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}(){}2|560,|ln 1A x x x B x y x =--≤==-,则AB 等于( )A .[]1,6-B .(]1,6C .[)1,-+∞D .[]2,3 2.复数201811z i i=++在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 已知命题p :存在实数α,β,sin()sin sin αβαβ+=+;命题q :2log 2log 2a a +≥(0a >且1a ≠). 则下列命题为真命题的是( )A .p q ∨B .p q ∧C .()p q ⌝∧D .()p q ⌝∨ 4.已知平面向量,a b 满足3a =, 23b =,且a b +与a 垂直,则a 与b 的夹角为( )A.6π B. 3πC. 23πD. 56π5.设a R ∈,则“1a =”是“直线1l :240ax y +-=与直线2l :()120x a y +++=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.设实数y x ,满足约束条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x ,则y x z -=2的最大值为( )A .3-B .2-C .1D .27.执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框 中,应填入( ) A .?n k < B .?n k > C .?n k ≥ D .?n k ≤8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .121B .49C .92D .39.某城市关系要好的A , B , C , D 四个家庭各有两个小孩共8人,分别乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A 户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有( )A. 48种B. 36种C. 24种D. 18种 10.已知点D C B A ,,,在同一个球的球面上,2==BC AB ,2=AC ,若四面体ABCD 的体积为332,球心O 恰好在棱DA 上,则这个球的表面积为( )A . π16B .π8 C. π4 D .425π11.P 为双曲线()2222:1,0x y C a b a b-=>上一点, 12,F F 分别为C 的左、右焦点, 212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的2.5倍,则C 的离心率为( )A .2或3B .2或3C .2D .212.已知函数()f x 是定义在()0,+∞的可导函数,()'f x 为其导函数,当0x >且1x ≠ 时,()()2'01f x xf x x +>-,若曲线()y f x =在1x =处的切线的斜率为1-,则()1f =( )A. 12-B. 0C. 12D. 1第II 卷(非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.2-=⎰**** .14.5(2)(1)x x +-展开式中含3x 项的系数为 **** .(用数字表示) 15.若sin 2cos 24παα⎛⎫-= ⎪⎝⎭,且,2παπ⎛⎫∈ ⎪⎝⎭,则cos2α= **** . 16.对任一实数序列),,,(321 a a a A =,定义新序列),,,(342312 a a a a a a A ---=∆,它的第n 项为n n a a -+1,假设序列)(A ∆∆的所有项都是1,且02212==a a ,则=2a **** .三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且满足()cos 2cos b C a c B =-. (1)求角B 的大小;(2)若b =,求ABC ∆面积的最大值.18.(本小题满分12分)某工厂为了对新研发的产品进行合理定价,将该产品按实现拟定的价格进行试销,得到一组检测数据),(i i y x (6,,2,1 =i )如下表所示:已知变量,x y 具有线性负相关关系,且3961=∑=i ix,48061=∑=i i y ,现有甲、乙、丙三位同学通过计算求得其回归直线方程为:甲:544+=x y ;乙:1064+-=x y ;丙:1052.4+-=x y ,其中有且仅有一位同学的计算是正确的.(1)试判断谁的计算结果正确?并求出,a b 的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取2个,求至少有一个检测数据为“理想数据”的概率.19.(本小题满分12分)已知数列{}n a 满足13a =, 121n n a a n +=-+,数列{}n b 满足12b =, 1n n n b b a n +=+-. (1)证明:{}n a n -是等比数列; (2)数列{}n c 满足()()111n n n n a nc b b +-=++,求数列{}n c 的前n 项的和n T .20.(本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且//BD 平面AMHN . (1)证明: MN PC ⊥;(2)当H 为PC 的中点, 3PA PC AB ==, PA 与平面ABCD 所成的角为60︒,求二面角P AM N --的余弦值.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>经过点)22,1(P ,且离心率为22. (1)求椭圆C 的方程;(2)设21,F F 分别为椭圆C 的左、右焦点,不经过1F 的直线l 与椭圆C 交于两个不同的点B A ,,如果直线1AF 、l 、1BF 的斜率依次成等差数列,求焦点2F 到直线l 的距离d 的取值范围.22.(本小题满分12分)设函数e R a a x a e x f x,),ln(2)(∈+--=为自然对数的底数.(1)若0>a ,且函数)(x f 在区间),0[+∞内单调递增,求实数a 的取值范围; (2)若320<<a ,判断函数)(x f 的零点个数并证明.高二下学期理科数学期中考试参考答案及评分标准13、2π; 14、10 ; 15、8; 16、100. 11、【解析】由于12PF F ∆为直角三角形,故外心在斜边中线上.由于22b PF a =,所以212b PF a a =+,故外接圆半径为21122b PF a a=+.设内切圆半径为r ,根据三角形的面积公式,有2221122222b b b c c a r a a a ⎛⎫⋅⋅=+++⋅ ⎪⎝⎭,解得2b r ac =+,故两圆半径比为22:2.52b b a a a c ⎛⎫+= ⎪+⎝⎭,化简得()()()1230e e e +--=,解得2e =或3e =.12、【解析】曲线()y f x =在1x =处的切线的斜率为1-,所以()'11f =- ,当0x >且1x ≠时,()()2'01f x xf x x +>-,可得1x >时, ()()2'0,f x xf x +>01x <<时, ()()2'0f x xf x +<,令()()()2,0,,g x x f x x =∈+∞ ()()()()()2'2'2'g x xf x x f x x f x xf x ⎡⎤∴=+=+⎣⎦,可得1x >时,()'0,g x >01x <<时,()'0g x <,可得函数()g x 在1x =处取得极值, ()()()'121'10,g f f ∴=+=, ()()111'122f f ∴=-⨯=,故选C.17、【解析】 (1)由()cos 2cos b C a c B =-,得()sin cos 2sin sin cos B C A C B ⋅=-⋅sin()2sin cos sin B C A B A ∴+=⋅=,又sin 0A ≠, 1cos 2B ∴=, 又0B π<<, 3B π∴=. (2)由余弦定理得2222cos b a c ac B =+-,∴2212a c ac =+-,∵222a c ac +≥,∴12ac ≤,当且仅当a c ==∴11sin 12222ABC S ac B ∆=≤⨯⨯=即ABC ∆面积的最大值为.……………………10分18、解:(1)∵变量y x ,具有线性负相关关系, ∴甲是错误的. 又∵3961=∑=i ix,48061=∑=i i y ,∴80,5.6==y x ,满足方程1064+-=x y ,故乙是正确的.由3961=∑=i ix,48061=∑=i i y ,得8=a ,90=b . ……………………6分(2)由计算得不是“理想数据”有3个,即(5,84),(7,80),(9,68),从6个检测数据中随机抽取2个,共有2615C =种不同的情形,其中这两个检测数据都不是“理想数据”有233C =中情形,故至少有一个检测数据为“理想数据”的概率为:341155P =-=.……………………12分19、【解析】(1)121n n a a n +=-+()()112n n a n a n +∴-+=-,又因为112a -=,所以{}n a n -是首项为2,公比为2的等比数列. …………………4分 (2)由(1)得()11122n n n a n a --=-⋅=,又1n n n b b a n +=+-12n n n b b +∴-=()()()()121112*********n n n n n n n n b b b b b b b b n -----∴=-+-+-+=++++=≥12b =满足上式. 2nn b ∴=()()()()1112111121212121n n n n n n n n n a n c b b +++-===-++++++12231111111111212121212121321n n n n T ++⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭………12分20、【解析】(1)证明:连结AC 交BD 于点O ,连结PO .因为ABCD 为菱形,所以BD AC ⊥,且O 为AC 、BD 的中点,因为PD PB =,所以PO BD ⊥,因为AC PO O =且AC PO ⊂、平面PAC ,所以BD ⊥平面PAC ,因为PC ⊂平面PAC ,所以BD PC ⊥.因为//BD 平面AMHN , BD ⊂平面PBD ,且平面AMHN平面PBD MN =,所以//BD MN ,所以MN PC ⊥. ………………4分 (2)由(1)知BD AC ⊥且PO BD ⊥, 因为PA PC =,且O 为AC 的中点, 所以PO AC ⊥,所以PO ⊥平面ABCD , 所以PA 与平面ABCD 所成的角为PAO ∠, 所以,所以13,22AO PA PO PA ==, 因为3PA AB =,所以36BO PA =. 如图,分别以OA , OB , OP 为,,x y z 轴,建立所示空间直角坐标系, 设6PA =,则()()()()0,0,0,3,0,0,0,3,0,3,0,0O A B C -,()0,3,0,D -()3330,0,33,,0,22P H ⎛⎫- ⎪ ⎪⎝⎭ 所以()9330,23,0,,0,,22DB AH ⎛⎫==- ⎪ ⎪⎝⎭ ()()3,3,0,3,0,33AB AP =-=-.记平面AMHN 的法向量为()1111,,n x y z =,则11111230933022n DB y n AH x z ⎧⋅==⎪⎨⋅=-+=⎪⎩, 令11x =,则110,3y z ==,所以()11,0,3n =,记平面PAB 的法向量为()2222,,n x y z =,则2222223303330n AB x y n AP x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令23x =,则223,1y z ==,所以()23,3,1n =,记二面角P AM N --的大小为θ,θ为锐角 则1212122339cos cos ,13213n n n n n n θ⋅====⋅⋅ 所以二面角P AM N --的余弦值为3913.……………………12分21、解析:(1)由题意,知22111,22a b c a⎧+=⎪⎪⎨⎪=⎪⎩考虑到222a b c =+,解得222,1.a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程为2212x y +=. ……………………3分 (2)设直线l 的方程为y kx m =+,代入椭圆方程2212x y +=, 整理得222(12)42(1)0k x kmx m +++-=.由222(4)8(12)(1)0km k m ∆=-+->,得2221k m >-. ①设11(,)A x y ,22(,)B x y ,则122412kmx x k+=-+,21222(1)12m x x k -=+. 因为(1,0)F -,所以1111AF y k x =+,1221AF y k x =+. 因为1212211y yk x x =+++,且11y kx m =+,22y kx m =+, 所以12()(2)0m k x x -++=.因为直线AB :y kx m =+不过焦点(1,0)F -,所以0m k -≠, 所以1220x x ++=,从而242014km k -+=+,即12m k k=+. ② 由①②得2212()12k k k>+-,化简得||2k > ③ 焦点2(1,0)F 到直线l :y kx m =+的距离211|2|2k d ++===.令t =||2k >t ∈.于是23132()2t d t t t+==+.考虑到函数13()()2f t t t=+在上单调递减,则(1)f d f <<2d <<.所以d的取值范围为2). ……………………12分22、解:(1)∵函数()x f 在区间[)∞+,0内单调递增, ∴01)('≥+-=ax e x f x在区间[)∞+,0内恒成立. 即x ea x-≥-在区间[)∞+,0内恒成立. 记()x ex g x-=-,则01)('<--=-x e x g 恒成立,∴()x g 在区间[)∞+,0内单调递减, ∴()()10=≤g x g ,∴1≥a ,即实数a 的取值范围为[)∞+,1.…………………4分 (2)∵320<<a ,ax e x f x+-=1)(', 记)(')(x f x h =,则()01)('2>++=a x e x h x, 知)('x f 在区间()+∞-,a 内单调递增. 又∵011)0('<-=a f ,1'(1)01f e a=->+, ∴)('x f 在区间()+∞-,a 内存在唯一的零点0x , 即01)('000=+-=ax ex f x , 于是ax ex +=01,()a x x +-=00ln . 当0x x a <<-时,)(,0)('x f x f <单调递减; 当0x x >时,)(,0)('x f x f >单调递增.∴()())ln(200min 0a x a ex f x f x +--==a a ax a x x a a x 3231210000-≥-+++=+-+=,当且仅当10=+a x 时,取等号. 由320<<a ,得032>-a , ∴()()00min >=x f x f ,即函数()x f 没有零点. …………12分高二(下)理科数学期中考试试卷一、单选题(共12题;共60分)1.()()121-1x +=⎰A. 212+π B. 214+πC. 12+πD. 21+π2.如图,在矩形ABCD 中,2AB =,1AD =,以A 为顶点且过点C 的抛物线的一部分在矩形内.若在矩形ABCD 内随机地投一点,则此点落在阴影部分内的概率为()A.12 B. 23 C. 35D. 34 3.设复数z 满足()11z i i +=-,则z =() A. 2i -- B. 1i -- C. 2i -+ D. 1i -+4.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为[42ππ,),则点P横坐标的取值范围为()A. 12⎛⎤-∞ ⎥⎝⎦, B. []10-,C. []01, D. 12⎡⎫-+∞⎪⎢⎣⎭, 5.已知函数,在区间(0,1)内任取两个实数,,且,若不等式恒成立,则实数的取值范围是A. (15,B. [15,C. (,6) D. (,66.若,则下列不等式恒成立的是 ( )A.B.C. D.7.函数f(x)=x 3+ax 2+bx +a 2在x=1处的极值为10,则数对(a,b )为( )A. (-3,3)B. (-11,4)C. (4,-11)D.(-3,3)或(4,-11) 8.已知对于任意恒成立,则实数a 的最大值为( )A. 0B. 1C.D.9.函数f(x)= 的大致图象是()A. B.C. D.10.已知函数,其导函数的图象如图,则函数的极小值为()A. cB. a+b+cC. 8a+4b+cD. 3a+2b11.设函数的导函数为,且,,则下列不等式成立的是()A. B.C. D.12.若函数在内无极值,则实数的取值范围是()A. B. C. D.二、填空题(共4题;共20分)13.若,则= ________14.球的直径为,当其内接正四棱柱的体积最大时的高为________.15.已知函数在上为减函数,则实数的取值范围是________.16.若函数在上有最小值,则实数的取值范围为________.三、解答题(共6题;共70分)17.已知.(满分10分) (1)若时,求曲线在点处的切线方程;(2)若,求函数的单调区间.18.已知函数,.(满分10分)(1)若,判断函数是否存在极值,若存在,求出极值;若不存在,说明理由;(2)设函数,若至少存在一个,使得成立,求实数的取值范围.19.已知三棱锥A BCD -如图所示,其中90BAD BDC ∠=∠=︒,ADB DBC ∠=∠,面ABD 垂直面CBD.(满分14分)(1)证明:AB DC ⊥;(2)若E 为线段BC 的中点,且1AD =,tan 6CAD ∠=,求二面角B AD E --的余弦值.20.已知椭圆C1的方程为+ =1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.(满分12分)(1)求双曲线C2的方程;(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2 ,求直线l的方程.21.已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.(满分12分)22.已知函数f(x)=(a﹣)x2+lnx(a为实数).(满分12分)(1)当a=0时,求函数f(x)在区间[ ,e]上的最大值和最小值;(2)若对任意的x∈(1,+∞),g(x)=f(x)﹣2ax<0恒成立,求实数a的取值范围.19、(满分14分)20. (满分12分)21、(满分12分)答案解析部分1,B 2,B 3,A 4,D 5,B 6,C 7,C8.【答案】C【解析】【解答】依题意得令,则,当时,,当时,,所以函数先增后减,最小值为,所以.故答案为:C.9.【答案】C【解析】【解答】解:∵f(x)= ,当x=0时,f(0)=﹣3,故排除AB当x= 时,f()=0,故排除D,故选:C10.【答案】C【解析】【解答】由导函数的图象可知,在处取得极小值,.f(2)=8a+4b+c故答案为:C。

高二第二学期期中考试理科数学试卷含答案

高二第二学期期中考试理科数学试卷含答案

高二(下)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集是实数集R ,2{|2730}A x x x =-+≤,2{|0}B x x a =+<,若()R C A B B =,则实数a 的取值范围是( )A .1(,)4-+∞ B .1(,]4-∞- C .1[,)4-+∞ D .1(,)4-∞- 2.设复数122iz i-=-(其中i 为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知a ,b 都是实数,则“4a b +≥”是“224a b +≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分不必要条件 D . 既不充分也不必要条件 4.设1sin cos 2x x +=-(其中(0,)x π∈),则cos 2x 的值为( )A B .5.已知l 、m 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A .若l m ,l α,则m α B .若αβ⊥,l α,则l β⊥ C.若l β⊥,αβ⊥,则l α D .若l m ⊥,l α⊥,且m β⊥,则αβ⊥6.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .36128π+B .128π C.36 D .3664π+7.某程序框图如图所示,若输入的100N =,该程序运行后输出的结果为( )A .50B .1012 C.51 D .10328.某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为( ) A .8 B .16 C.24 D .609.定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,(2)3f -=-,数列{}n a ,满足11a =-,且2n n S a n =+(其中n S 为{}n a 的前n 项和),则56()()f a f a +=( ) A .-2 B .3 C.-3 D .210.如图为函数()f x =01x <<)的图象,其在点(,())M t f t 处的切线为l ,l 与y 轴和直线1y =分别交于点P 、Q ,点(0,1)N ,若PQN ∆的面积为b 时的点M 恰好有两个,则b 的取值范围为( )A .110,427⎡⎤⎢⎥⎣⎦B .110(,]227 C.110(,]227 D .18(,)427 11.设点P 是椭圆22221x y a b+=(0a b >>)上一点,1F ,2F 分别是椭圆的左、右焦点,l 为12PF F ∆的内心,若11122IPF IPF IF F S S S ∆∆∆+=,则该椭圆的离心率是( )A .12 B.2C.2 D .14 12.在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的取值范围为( ) A.,1)5 B.5C.(5 D.[5第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分 13.设4(1)x -的展开式中2x 的系数为A ,则A = .14.设a ,b 为两非零向量,且满足||||2a b +=,222a b a b ⋅=⋅,则两向量a ,b 的夹角的最小值为 .15.已知正数x ,y 满足1910x y x y+++=,则x y +的最大值为 . 16.设点(,)M x y 的坐标满足不等式组001x y x y ≥⎧⎪≤⎨⎪-≤⎩,点(,)m n 在点(,)M x y 所在的平面区域内,若点(,)N m n m n +-所在的平面区域的面积为S ,则S 的值为 .三、解答题 :共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在ABC ∆中,角A 、B 、C 的所对边的长分别为a 、b 、c,且a =3b =,sin 2sin C A =. (I )求c 的值; (II )求sin(2)3A π-的值.18. 设函数()kx f x x e =⋅(0k ≠)(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的单调区间.19. 已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (I )求n a 及n S ; (II )令211n n b a =-(*n N ∈),求数列{}n b 的前n 项和n T .20. 如图(1)在等腰ABC ∆中,D ,E ,F 分别是AB ,AC 和BC 边的中点,120ACB ∠=︒,现将ABC ∆沿CD 翻折成直二面角A DC B --.(如图(2))(I )试判断直线AB 与平面DEF 的位置关系,并说明理由; (II )求二面角E DF C --的余弦值;(III )在线段BC 是否存在一点P ,但AP DE ⊥?证明你的结论.21. 已知焦点在x 轴上的椭圆C 过点(0,1),且离心率为2,Q 为椭圆C 的左顶点. (I )求椭圆C 的标准方程;(II )已知过点5(,0)6-的直线l 与椭圆C 交于A ,B 两点. (i )若直线l 垂直于x 轴,求AQB ∠的大小;(ii )若直线l 与x 轴不垂直,是否存在直线l 使得QAB ∆为等腰三角形?如果存在,求出直线l 的方程;如果不存在,请说明理由.22. 已知函数2()ln()f x x ax =(0a >)(1)若2'()f x x ≤对任意的0x >恒成立,求实数a 的取值范围; (2)当1a =时,设函数()()f x g x x =,若1x ,21(,1)x e∈,121x x +<,求证41212()x x x x <+.试卷答案一、选择题1-5:CDAAD 6-10:AACBD 11、12:AA 二、填空题 13.6 14.3π15.8 16.1 三、解答题17.解:(I )∵a =sin 2sin C A =,∴根据正弦定理sin sin c a C A =得:sin 2sin Cc a a A===(II )∵a =3b =,c =∴由余弦定理得:222cos 2c b a A bc +-==, 又A 为三角形的内角,∴sin 5A ==, ∴4sin 22sin cos 5A A A ==,223cos 2cos sin 5A A A =-=,则4sin(2)sin 2coscos 2sin33310A A A πππ--=-=. 18.解:(1)'()(1)kx kx kxf x e kxe kx e =+=+(x R ∈),且'(0)1f =,∴切线斜率为1, 又(0)0f =,∴曲线()y f x =在点(0,(0))f 处的切线方程为0x y -=.(2)'()(1)kxf x kx e =+(x k ∈),令'()0f x =,得1x k=-, ○1若0k >,当1(,)x k ∈-∞-时,'()0f x <,()f x 单调递减;当1(,)x k ∈-+∞时,'()0f x >, ()f x 单调递增.○2若0k <,当1(,)x k ∈-∞-时,'()0f x >,()f x 单调递增;当1(,)x k∈-+∞时,'()0f x <, ()f x 单调递减.综上所述,0k >时,()f x 的单调递减区间为1(,)k -∞-,单调递增区间为1(,)k-+∞; 0k <时,()f x 的单调递增区间为1(,)k -∞-,单调递减区间为1(,)k-+∞19.解:(I )设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所有有112721026a d a d +=⎧⎨+=⎩,解得13a =,2d =,所有32(1)21n a n n =+-=+;2(1)3222n n n S n n n -=+⨯=+. (II )由(I )知21n a n =+,所以221111111()1(21)14(1)41n n b a n n n n n ===⋅=--+-++, 所以数列{}n b 的前n 项和11111111(1)(1)42231414(1)n n T n n n n =-+-++-=-=+++, 即数列{}n b 的前n 项和4(1)n nT n =+.20.解:(I )如图1在ABC ∆中,由E ,F 分别是AC ,AB 中点,得EF AB ,又AB ⊄平面DEF ,EF ⊂平面EDF ,∴AB 平面DEF .(II )∵AD CD ⊥,BD CD ⊥,∴ADB ∠是二面角A CD B --的平面角,∴AD BD ⊥, ∴AD ⊥平面BCD , 取CD 的点M ,使EMAD ,∴EM ⊥平面BCD ,过M 作MN DF⊥于点N ,连接EN ,则EN DF ⊥, ∴MNE ∠是二面角E DF C --的平面角.设CD a =,则2AC BC a ==,AD DB ==, 在DFC ∆中,设底边DF 上的高为h 由Rt EMN ∆中,122EM AD ==,124MN h ==,∴tan 2MNE ∠= 从而cos 5MNE ∠=(III )在线段BC 上不存在点P ,使AP DE ⊥,证明如下:在图2中,作AG DE ⊥,交DE 于G 交CD 于Q 由已知得120AED ∠=︒,于是点G 在DE 的延长线上,从而Q 在DC 的延长线上,过Q 作PQ CD ⊥交BC 于P , ∴PA ⊥平面ACD ,∴PQ DE ⊥,∴DE ⊥平面APQ ,∴AP DE ⊥. 但P 在BC 的延长线上.图1图221.解:(I )设椭圆C 的标准方程为22221x y a b+=(0a b >>),且222a b c =+.由题意,椭圆C 过点(0,1)1b =,c a =. 所以24a =.所以,椭圆C 的标准方程为2214x y +=. (II )由(I )得(2,0)Q -.设11(,)A x y ,22(,)B x y .(i )当直线l 垂直于x 轴时,直线l 的方程为65x =-. 由226514x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,解得6545x y ⎧=-⎪⎪⎨⎪=±⎪⎩即64(,)55A -,64(,)55B --(不妨设点A 在x 轴上方). 则直线AQ 的斜率1,直线BQ 的斜率1-.因为直线AQ 的斜率与直线BQ 的斜率的乘积为1-,所以AQ BQ ⊥,所以2AQB π∠=.(ii )当直线l 与x 轴不垂直时,由题意可设直线AB 的方程为6()5y k x =+(0k ≠)由226()514y k x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:2222(25100)2401441000k x k x k +++-=. 因为点6(,0)5-在椭圆C 的内部,显然0∆>.212221222402510014410025100k x x k k x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩因为11(2,)QA x y =+,22(2,)QB x y =+,116()5y k x =+,226()5y k x =+, 所以22212121212636(2)(2)(1)(2)()4525QA QB x x y y k x x k x x k ⋅=+++=++++++ 2222222144100624036(1)(2)()402510052510025k k k k k k k -=+⨯++-++=++ ∴QA QB ⊥.所以QAB ∆为直角三角形.假设存在直线l 使得QAB ∆为等腰三角形,则||||QA QB =. 取AB 的中点M ,连接QM ,则QM AB ⊥. 记点6(,0)5-为N .另一方面,点M 的横坐标2224520M k x k =-+,所以点M 的纵坐标26520M ky k=-+. 所以22222222101666660132(,)(,)0520520520520(520)k k k k QM QN k k k k k ++⋅=⋅=≠+++++所以QM 与NM 不垂直,矛盾.所以当直线l 与x 轴不垂直时,不存在直线l 使得QAB ∆为等腰三角形.22.解:(1)'()2ln()f x x ax x =+ 2'()2ln()f x x ax x x =+≤,及2ln()1ax x +≤在0x >上恒成立 设()2ln()1u x ax x =+-,2'()10u x x=-=,2x =,2x >时,单调减,2x <单调增,所以2x =时,()u x 有最大值(2)u(2)0u ≤,2ln 212a +≤,所以02a <≤(2)当1a =时,()()ln f x g x x x x ==,'()1ln 0g x x =+=,1x e=, 所以在1(,)e +∞上()g x 是增函数,1(0,)e 上是减函数因为11211x x x e<<+<,所以121212111()()ln()()ln g x x x x x x g x x x +=++>=即121121ln ln()x x x x x x +<+ 同理122122ln ln()x x x x x x +<+ 所以1212121212122121ln ln ()ln()(2)ln()x x x x x xx x x x x x x x x x +++<++=+++ 又因为122124x x x x ++≥,当且仅当“12x x =”时,取等号11 又1x ,21(,1)x e ∈,121x x +<,12ln()0x x +< 所以12121221(2)ln()4ln()x x x x x x x x +++≤+ 所以1212ln ln 4ln()x x x x +<+ 所以:41212()x x x x <+。

高二理科数学第二学期期中考试.doc

高二理科数学第二学期期中考试.doc

高二理科数学第二学期期中考试高二数学(理科)试卷(本卷满分150分,考试时间120分钟)命题人:潘家东2008-04-26一、选择题 (共8小题,每小题5分,答案唯一,共40分,把标准答案填涂在答题卷上)1.3×4×5×…×8×9= ( )A 39AB 9!-3!C 79AD 79C2.若,,R x y ∈则“yi x +为纯虚数”是 “0=x ”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 不充分也不必要条件 3.函数23)(23++=x ax x f ,若(1)4f '-=,则a 的值是( )A319 B 316 C 313 D 310 4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ∥平面α,直线⊂a 平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为A 推理形式错误B 大前提错误C 小前提错误D 非以上错误5.01x e dx -=⎰e A11-- 11B e -+ 11C e + 11D e -6.复数11ii+-等于( ) A 1i - B 1i + C i D i -7.已知()f x 是定义在R 上的增函数,且()0f x <,则函数2()()g x x f x =的单调情况一定是( )A 在(-∞,0)上递增B 在(-∞,0)上递减C 在R 上递增D 在R 上递减8.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形,第四件首饰是由28颗珠宝构成如图3所示的正六边形,第五件首饰是由45颗珠宝构成如图4所示的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰所用珠宝总数为( )A 65B 66C 68D 69二、填空题(共6小题,每小题5分,共30分,把答案填写在答题卷横线内)9.复数Z 满足2||1<<z ,那么复数Z 对应的点的图形的面积是 ; 10.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:____________________________________________________; 11.函数276y x x =-+的极值点是 ___________; 12.函数1y x x=+在区间()0,+∞上的最小值是 _______________; 13.对于下式:6542516066624265166066)1()1()2()1()2()2()12()(a x a x a x a x a C x C x C x C x x f +++++=-++-+-+⋅=-=有如下结论:① 1)0(0==f a ② 32665646362616=+++++C C C C C C③ 163210=+++++a a a a a 正确的结论为: ;(只填正确选项的序号) 14.为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem ), 其加密、解密原理如下图:现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为 .图1图2图3解密密钥密码加密密钥密码明文密文密文发送明文三、解答题(共6小题,满分80分.要求写出各题的解答过程,并将结果化成最简形式,在答题卷指定的区域内作答,否则不给分)15.(本小题满分14分) 已知抛物线241:x y C =(Ⅰ) 若直线l 与抛物线C 相切于点)1,2(T ,试求直线l 的方程;(Ⅱ)若直线l 过点)1,0(M ,且与x 轴平行,求直线l 与抛物线C 所围成的封闭区域的面积.16.(本题满分14分)在班级活动中,某小组的4 名男生和2 名女生站成一排表演节目:(每个小题要求列式,并计算结果 )(Ⅰ) 两名女生不能相邻,有多少种不同的站法?(Ⅱ) 女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法? (Ⅲ)4 名男生相邻有多少种不同的排法?(Ⅳ)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等) 17.(本小题满分14分)统计表明,某种型号的汽车在匀速行驶中每小时耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:880312800013+-=x x y (0<x ≤120).已知甲、乙两地相距100千米。

高二理科数学第二学期期中考试2.doc

高二理科数学第二学期期中考试2.doc

高二数学第二学期期中考试高二数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共150分,考试时间120分钟. 注意事项:1、所有题目用钢笔或圆珠笔直接答在答题卷中,只能在各题目答题区域内作答,超出黑色矩形边框限定区域的答案无效。

2、答卷前将答题卷上的姓名、考号、班级填写清楚。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、+∈N n 且20<n ,则)21)(20(n n --…)100(n -等于( ) A 、80100n A -B 、nn A --20100C 、81100n A -D 、8120n A -2、α表示一个平面,l 表示一条直线,则α内至少有一条直线与直线l ( )A 、平行B 、相交C 、异面D 、垂直3、设正方体的全面积为224cm ,一个球内切于该正方体,那么这个球的体积是( ) A 、36cm πB 、3332cm πC 、338cm π D 、334cm π4、某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的奥运广告,要求最后播放的必须是奥运广告,且2个奥运广告不能连续播放,则不同的播放方式有( )A 、36种B 、48种C 、 120种D 、20种5、已知球的两个平行截面面积分别为5π和8π,它们位于球心的同一侧,且相距为1,则球半径为( )A 、 4B 、3C 、 2D 、 56、已知北纬450圈上有A 、B 两地,且A 地在东经300线上,B 地在西经600线上,设地球半径为R ,则A 、B 两地的球面距离是( )A 、16R π B 、13R π C 、12R π D 、R π7、若直线l 与平面α所成角为3π,直线a 在平面α内,且与直线l 异面,则直线l 与直线a 所成的角的取值范围是( )A 、20,3π⎡⎤⎢⎥⎣⎦B 、2,33ππ⎡⎫⎪⎢⎣⎭C 、 ,32ππ⎡⎤⎢⎥⎣⎦ D 、2,33ππ⎡⎤⎢⎥⎣⎦ 8、正四面体BCD A -棱长为1,点P 在AB 上移动,点Q 在CD 上移动,则PQ 的最小值为( ) A 、21B 、22 C 、23 D 、43 9、如图,已知矩形ABCD 中,3=AB ,a BC =,若⊥PA 平面AC ,在BC 边上取点E ,使DE PE ⊥,则满足条件的E 点有2个时,a 的取值范围是( )A 、6>aB 、6≥aC 、60<<aD 、60≤<a10、若集合},,{z y x M =,集合}1,0,1{-=N ,f 是从M 到N 的映射,则满足0)()()(=++z f y f x f 的映射有( )A 、6个B 、7个C 、8个D 、9个第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上.11、54n 34,n=nnA A A +=已知则 . 12、在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为13、正四面体V —ABC 的棱长为2a ,E ,F ,G ,H 分别是VA ,VB , BC ,AC 的中点,则四边形EFGH 面积是________________ .14、正六棱锥S-ABCD 的底面边长为6,侧棱长为面角的大小为_________.ACDPEA CDP F E 15、表面积为4π的球O 与平面角为钝角的二面角的两个半平面相切于A 、B 两点,三角形OAB 的面积25S =,则球心到二面角的棱的距离为 _____ . 16、已知m 、n 是不同的直线,α、β是不重合的平面,给出下列命题: (1) 若//,,m n αβαβ⊂⊂,则//m n (2) 若m,n ,m//,n//αββ⊂,则//αβ; (3) 若m ,n ,m//n αβ⊥⊥,则//αβ;(4)m 、n 是一对异面直线且m n ⊥, 若m//,m//,n//,n//αβαβ,则//αβ,其中,真命题的编号是_____ (写出所有正确结论的编号).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17、(本小题满分13分)已知ABCD 是正方形,P A ⊥平面ABCD ,且P A=AB=a ,E 、F 是 侧棱PD 、PC 的中点。

高二理科数学下学期期中考试试题及答案.docx

高二理科数学下学期期中考试试题及答案.docx

高二下学期模块考试 数学试卷(理科)第I 卷(共60分)一、选择题(每小题5分,共60分,将答案填涂到答题卡上)1. 复数z ( r -i 等于\-iA. 1B. -1C. iD. -i2. 观察按下列顺序排列的等式:9x0 + l = l , 9x1 + 2 = 11, 9x2 + 3 = 21, 9x3 + 4 = 31,…, 猜想第n(ne N +)个等式应为A. 9(/? + 1) + 川=10川 + 9B. 9(71-1) + /? = 10/?-9C. 9A 2 + (M -1) = 1O/?-1D. 90 — 1) + (72 — 1) = 10/7 — 103. 函数/'⑴二sin 兀+ cos x 在点(0, /(0))处的切线方程为A. x- y +1 = 0B. x- y-] = 04. 用4种不同的颜色涂入如图四个小矩形中, 相同,则不同的涂色方法种数是A 36B 72 C5. 用反证法证明某命题时,对结论:“自然数0, b, c 小恰有一个偶数”正确的反设为A. a, b, c 都是奇数B . a, b, c 都是偶数C . a, b, c 屮至少有两个偶数D . a, b, c 屮至少有两个偶数或都是奇数6. 两曲线歹二-x 2+2x, y 二2x 2-4兀所围成图形的面积S 等于A. -4B.OC. 2D. 4X7•函数/(%) = —-- (a<b<l),则B. f(a) < f(b)C. f(a) > /(b)D./(a),/@)大小关系不能确定8. 己知函数/(x) = 21n3x + 8x,则 lim /(1一2心)一/(1)的值为AYT ° ArA. -20B. -10C. 10D. 209. 在等差数列{色}中,若色>0,公差d>0,则有為盘 >色6,类比上述性质,在等比数列{仇}C. x+y-1=0D.要求相邻矩形的涂色不得24 D 54中,若仇>0,公比q>l,则的,b、, b“ 2的一个不等关系是C . Z?4 +E >b 5 +22c10.函数/(X ) = X 3+/7X 2+CX + J 图象如图,则函数『=兀2+一应+ —的单调递增区间为A. (-00-2]B. [3,+oo)-yZAo ? !rC. [-2,3]1D ・[三,+°°)/ -2211•已知函数 f(x) = (x-a)(x-b)(x-c), Ji f\d) = f\b) = 1,则 f(c)等于A. 2+2 >b 5 +/?7B • b 4 十% <b 5 +E1 A.——212.设函数 f(x) = -ax1B.—23 1「 + _/zr 2C. —1D. 1 +仅,且/(l) = -p 3a>2c>2h f 则下列结论否巫陨的是 B.-< —< 1 C. D. a >OJBLb<02 b 4 a 2第II 卷(共90分)二、填空题(每小题4分13. ___________________________________________ 若复数(/・3d+2)+(a ・l)i 是纯虚数,则实数a 的值为 __________________ .14. 从0, 1, 2, 3, 4, 5六个数字中每次取3个不同的数字,可以组成 3位偶,共16分,将答案填在答题纸上) 个无重复数字的 4 r15.若函数/(x) = -—在区间(m,2m + l)±是单调递增函数,则实数加的取值范围是JT+116.观察下列等式:(说明:和式'匕+心+為 ---------- 记作工你)<=1n—n 2 /=! n—fT H —乞尸二丄泸+丄沪+巴斤―丄沪rr 6 2 12 12£4丄/+丄涉+丄宀丄/+丄幺 7 2 26 42工产=a k+l n k+2+ a k n k+ a k _{n k ~]+ ci k _2n k ~24 --------- a {n + a Q ,,=]* 11 可以推测,当 k^2 ( ke N )时,a M ------ ---- ,a k = — ,a k _i - _________ , a k _^ -________k + 1 2三、解答题(本大题共6小题,满分74分。

高二理科数学第二学期中期考试试卷

高二理科数学第二学期中期考试试卷

界石铺中学期中测试高二数学(理)一、选择题:本大题共12个小题,每小题5分,共60分.请把答案填写后面的选择题答题卡中,否则不评分.1、分析法证明不等式的推理过程是寻求使不等式成立的()(A)必要条件 (B)充分条件 (C)充要条件 (D)必要条件或充分条件2、由直线1,2x x==,曲线2y x=及x轴所围图形的面积为()A.3 B.7 C.73D.133、有一段“三段论”推理是这样的:对于可导函数()f x,如果()0f x'=,那么x x=是函数()f x的极值点,因为函数3()f x x=在0x=处的导数值(0)0f'=,所以,0x=是函数3()f x x=的极值点.以上推理中()A.大前提错误 B.小前提错误 C.推理形式错误 D.结论正确4、函数xxxf ln)(=,则()(A)在),0(∞上递增;(B)在),0(∞上递减;(C)在)1,0(e上递增;(D)在)1,0(e上递减5、已知函数32()(6)1f x x ax a x=++++有极大值和极小值,则实数a的取值范围是()(A)-1<a<2 (B) -3<a<6 (C)a<-3或a>6 (D) a<-1或a>26、函数2sin(2)y x x=+导数是()A.2cos(2)x x+ B.22sin(2)x x x+ C.2(41)cos(2)x x x++ D.24cos(2)x x+7、设a、b为正数,且a+ b≤4,则下列各式中正确的一个是()(A)111<+ba(B)111≥+ba(C)211<+ba(D)211≥+ba8、函数59323+--=xxxy的极值情况是()(A)在1-=x处取得极大值,但没有最小值(B)在3=x处取得极小值,但没有最大值(C)在1-=x处取得极大值,在3=x处取得极小值(D)既无极大值也无极小值9、'()f x是()f x的导函数,'()f x的图象如右图所示,则()f x的图象只可能是(A)(B)(C)(D)10、函数2()2lnf x x x=-的递增区间是( )A.1(0,)2B.11(,0)(,)22-+∞及 C.1(,)2+∞ D.11(,)(0,)22-∞-及考场:考号:班级:姓名:11、函数sin y x =的图象上一点3(,)32π处的切线的斜率为( ) A .1 B .32 C . 22 D .1212、 若000(2)()lim 1x f x x f x x∆→+∆-=∆,则0()f x '等于( )A .2B .-2C . 12D .12-一、选择题答题卡(共12个小题,每小题5分,共60分)。

高二理科数学第二学期期中考试附答案

高二理科数学第二学期期中考试附答案

xy OAC y x2y x =(1,1)B高二理科数学试题卷一、选择题(以下题目从4项答案中选出一项,每小题5分,共40分) 1. 已知实数c b a ,,满足,0,c b a ac <<<且那么( )22A. B.()0C. D.()0ab ac c b a cb ab ac a c >-<<-> 2. 如图是一个空间几何体的正视图、侧视图、俯视图,如果正视图、侧视图所对应的三角形皆为边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体积为()A.324 B .354 C.334 D .3323. 从如图所示的正方形OABC 区域内任取一个点(,)M x y ,则点M 取自阴影部分的概率为( )A .12B .13C .14D .164. 设函数sin cos y x x x =+的图象上的点00(,)x y 处的切线的斜率为k ,若0()k g x =,则函数0()k g x =的图象大致为()23a a 34a a 45a a 20122013a a6. 函数()ln f x x ax =+有小于1的极值点,则实数a 的取值范围是( )A .()0,1B .(),1-∞-C .()1,0-D .()(),10,-∞-+∞7. 已知函数22()ln f x x a x x=++在(1,4)上是减函数,则实数a 的取值范围是( ) A .a ≤ B .a < C .263-<a D .263-≤a8. 已知集合()(){}M x,y |y f x ==,若对于任意()11x ,y M ∈,存在()22x ,y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合: ①()1M x,y |y x ⎧⎫==⎨⎬⎩⎭;②(){}1M x,y |y sin x ==+; ③(){}2M x,y |y log x ==;④{(,)2}xM x y y e==-.其中是“垂直对点集”的序号是( )A .①② B.②③ C.①④ D.②④二、填空题(每小题5分,共30分)9. )10x dx =⎰ .10. 函数2()2x f x e x =+-在区间()2,1-内零点的个数为 .11. 若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为 .12. 函数()2ln 21y x x =+-的单调递增区间是 .13. 若关于x 的不等式12a x x ≥++-存在实数解,则实数a 的取值范围是 .14. 现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为24a .类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为 .三、解答题(共6题,共80分)15. (本题12分)已知函数()sin()4f x A x πω=+(其中x ∈R ,0A >,0ω>)的最大值为2,最小正周期为8. (1)求函数()f x 的解析式;(2)若函数()f x 图象上的两点,P Q 的横坐标依次为2,4,O 为坐标原点,求cos ∠POQ 的值.16. (本题12分)数列{}n a 的前n 项和为n S ,且()211,1,1,2,2n n a S n a n n n ==--=⋅⋅⋅ (1)写出n S 与1n S -的递推关系式()2n ≥,并求2S ,3S ,4S 的值;(2)猜想n S 关于n 的表达式,并用数学归纳法证明.17. (本题14分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为380π立方米,且r l 2≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为)3(>c c 千元,设该容器的建造费用为y 千元.(1)写出y 关于r 的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r .18. (本题14分)如图,四边形ABCD 与BDEF 均为菱形,。

高二数学 第二学期期中考试数学(理科)试题

高二数学  第二学期期中考试数学(理科)试题

高二数学(理科)试题本试卷分选择题和非选择题两部分,共4页,满分150分。

考试时间120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净,再选涂其他答案;不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁和平整。

第一部分 选择题(共40分)一.选择题:本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设n S 是等差数列}{n a 的前n 项和,已知11,362==a a ,则7S 等于( ) A.13 B.35 C.49 D.632.如果5个数54321,,,,x x x x x 的方差是7,则543213,3,3,3,3x x x x x +++++这5个数的方差是( )A.63B.21C.14D.73.一个空间几何体的正视图、侧视图是两个边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的体积是( )A.1B.21 C.31 D.41 4.已知R a ∈,则“2>a ”是“a a 22>”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.在区间]1,1[-上随机取一个数x ,2cosxπ的值介于21到1的概率为( )A.31B.π2 C.21 D.32 6.如图所示的算法流程图中(注:“1=A ”也可写“1:=A ”或“1←A ”,均表示赋值语句),第3个输出的数是( )7.若方程11922=-+-k y k x 表示椭圆,则k 的取值范围是( )A.)9,5(B.),5(+∞C.)9,5()5,1(D.)9,(-∞8.幂函数αx y =,当α取不同的正数时,在区间]1,0[ 上它们的图像是一族美丽的曲线(如图).设点)0,1(A ,)1,0(B ,连接AB ,线段AB 恰好被其中的两个幂函数βαx y x y ==,的图像三等分,即有NA MN BM ==,那么αβ的值是( )A.31B.21C.2D.1第二部分 非选择题(共110分)二.填空题:本大题共6小题,每小题5分,满分30分。

高二理科数学下学期期中考试试题及答案

高二理科数学下学期期中考试试题及答案

-高二下学期期中考试(数学理)一、选择题(本大题共10小题,每题4分)1.命题“对”的否定是……………… ………………( ) A .对 B .对≥C .D .2.设条件p :;条件q :,那么p 是q 的什么条件……………( ) A .充分非必要条件B .必要非充分条件C .充分且必要条件D .非充分非必要条件3. 双曲线的渐近线方程是……………………………………………( ) A . B . C . D .4. 过抛物线的焦点且斜率为的直线与抛物线交于A 、B 两点,则|AB|的值为………………… …………………………… ………………( ) A .B .C .D .5. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,7,λ),若a 、b 、c 三向量共面,则实数λ等于……………………………………………………………………( ) A. 3 B. 5 C. 7 D. 96.函数 有………………………………………( ) A .极大值,极小值 B .极大值,极小值 C .极大值,无极小值 D .极小值,无极大值7.曲线与直线所围成的平面图形的面积为……………………( )A .B .C .D . 8.如图正方体中,E ,F 分别为AB , 的中点, 则异面直线与EF 所成角的余弦值为( )A .B .C .D .∀3210x x x ∈-+R ,≤∀3210x R x x ∈-+>,∀1,23+-∈x x R x 0∃3210x R x x ∈-+>,∃3210x R x x ∈-+,≤x x =||20x x +≥3322=-y x x y 3±=x y 31±=x y 3±=x y 33±=x y 42=3l x y 42=316387387316x x x y 9323--=)22(<<-x 527-511-527-22y x =+3y x =61312111111D C B A ABCD -1CC C A 133323161D 1C 1 B 1A 1D ACBEF9.已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ|=|PF 2|, 那么动点Q 的轨迹是………………………………………………………………… ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线 10.函数的最大值为………………………………………………………( ) A .B .C .D .二、填空题(本大题共5小题,每题4分)11. 若椭圆的离心率为,则的值为______________.12. 计算定积分=___________.13. 抛物线的准线方程是, 则的值为 .14. 已知,求=____________.15.过原点作曲线的切线,则切点坐标是______________,切线斜率是________.三、解答题(共5小题,40分)16. (本题满分6分)已知,,求证:17.(本题满分8分)设命题:方程表示焦点在轴上的双曲线, 命题:函数在(0,2)内单调递减,如果为真命题,求的取值范围.xxy ln =e 1-e 2e 310122=+my x 32m dx x ⎰+04-22y ax =2=y a )sin(cos )(x x f =)2(/πf xe y =+∈R b a ,1=+b a 2≤+b a p 1722=+-ky k x y q 1)(23+-=kx x x f q p ∧k18.(本题满分8分)如图,四棱锥中,底面ABCD 为平行四边形,侧面底面ABCD ,已知,,,.(Ⅰ)证明:;(Ⅱ)求直线SD 与平面SBC 所成角的正弦值.19. (本题满分8分)已知点A (1,0),定直线:,B 为上的一个动点,过B 作直线,连接AB ,作线段AB 的垂直平分线,交直线于点M. (1)求点M 的轨迹C 的方程;(2)过点N(4,0)作直线与点M 的轨迹C 相交于不同的两点P ,Q ,求证:(为坐标原点).S ABCD -SBC ⊥45ABC ∠=︒2AB =22BC =3==SC SB SA BC ⊥l 1-=x l m l ⊥n m h OQ OP ⊥O SCDABMBA20.(本题满分10分)已知函数在处取得极值,其中为常数. (1)试确定的值;(2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围.诸暨中学08-09学年第二学期期中试卷答案高二数学(理)一、选择题(本大题共10小题,每题4分) 1-5 C A C A D 6-10 C A B A B二、填空题(本大题共5小题,每题4分)11、4或 12、4 13、 14、-1 15、(1,e ) e三、解答题(共5小题,40分) 16、证明:∵,∴要证明,只需证:)(0ln )(44>-+=x c bx x ax x f 1=x c --3c b a ,,b a ,)(x f 0>x 02)(2≥+c x f c 4181-+∈R b a ,1=+b a 2≤+b a 22≤+)(b a即证: 即证: 即证:上式显然成立,所以成立.17、解:命题p 等价于即………………3分得 命题q 等价于即 ∵为真命题. ∴p 与q 都为真命题.所以 …………8分18、解:(1)取BC 中点O ,连接SO 、AO ,∵ ∴S0BC∴∴,∴∴ …………4分(2) ∵侧面底面ABCD ,∴如图建立空间直角坐标系.则设直线SD 与平面SBC 所成角∴ 22≤++ab b a 12≤ab b a 2+≤ab 2≤+b a 070<->k k 且70<<k 023)(2/=-=kx x x f 320k x 或=232≥k3≥k q p ∧⎩⎨⎧≥<<37k 0k 73<≤k SC SB =⊥,中,︒=∠∆45B ABC .2,2==AB BO 2=AO ︒=∠90AOB OA BC ⊥即SOA BC 平面⊥SA BC ⊥SBC ⊥BC SO ⊥ABCD SO 平面⊥Oxyz )0,22,2()1,0,0(-D S )1,22,2(-=DS 的一个法向量为平面ABCD )0,0,1(=n θ112281212sin =++⨯=⋅=DS n DS nθSCDABxyzO∴直线SD 与平面SBC 所成角的正弦值. …………8分 19.解:(1)由已知∴的轨迹为以为焦点,为准线的抛物线. ∴的轨迹方程为. …………3分 (2)当时, 由得 此时,∴ 当不垂直时,设由得 ∴ ∴ …………8分20.解:(1)∴ …………4分 (2)∵∴当时,,当时,所以,在上单调递减,在上单调递增. …………7分 (3) 由题意得对任意恒成立.1122MB MA =M A l M x y 42=轴x h ⊥4:=x h ⎩⎨⎧==xy x 4424±=y )4,4(),4,4(-Q P 1,1-==OQ op k k OQ OP ⊥轴与x h )4(:-=x k y l ⎩⎨⎧=-=xy x k y 4)4(2016)48(2222=++-k x k x k 1621=⋅x x 16222121-=⋅-=x x y y 02121=+=⋅y y x x OB OA OQ OP ⊥3333/)4ln 4(4ln 4)(x b a x a bx ax x ax x f ++=++=04)1(/=+=b a f c c b f --=-=3)1(12,3=-=a b c x x x x f --=443ln 12)(0ln 48)(3/>=x x x f 0>x 1>x 0)(/>x f 1<x 0)(/<x f )(x f ()1,0()+∞,122-)(c x f ≥0>x由(2)知∴解得. (10)()()2min 231c c f x f -≥--==0322≥--c c 231≥-≤c c 或。

高二数学(理)第二学期期中测验试卷

高二数学(理)第二学期期中测验试卷

高二数学(理)第二学期期中测验试卷第Ⅰ卷(选择题;共40分)一、选择题:本大题共有8小题;每小题5分;共40分;在每小题给出的四个选项中;只有一项是符合题目要求的。

(注:答案请填涂在答题卷里) 1、复数i 43+的共轭复数是( )。

(A )i 43+- (B )i 43- (C )i 34+ (D )i 34- 2、复数2i i +在复平面内表示的点在( )。

(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3、“因指数函数x a y =是增函数(大前提);而xy )31(=是指数函数(小前提);所以xy )31(=是增函数(结论)”;上面推理的错误是( )。

(A )大前提错导致结论错 (B )小前提错导致结论错 (C )推理形式错导致结论错 (D )大前提和小前提错都导致结论错 4、若)(12131211)(*∈+++++=N n n n f ;则1=n 时;)(n f 是( )。

(A )1 (B )31 (C )31211++ (D )非以上答案5、函数14)(2+-=x x x f 在[]5,1上的最大值和最小值分别是( )。

(A ))5(f ;)2(f (B ))3(f ;)5(f (C ))1(f ;)3(f (D ))1(f ;)5(f 6、()1021x +的展开式中系数最大的项是( )。

(A )第5项 (B )第6项 (C )第7项 (D )第8项7、不同的五种商品在货架上排成一排;其中a ;b 两种必须排一起;而c ;d 两种不能排在一起;则不同的排法共有( )。

(A )12种 (B )20种 (C )24种 (D )48种 8、设443322104)32(x a x a x a x a a x ++++=-;则3210a a a a +++的值为( )。

(A )1 (B )16 (C )15 (D )-15第Ⅱ卷(非选择题;共110分)二、填空题:本大题共需要做6小题(第13、14、15三小题;学生只需要选做其中两小题;三小题都做的只计算第13、14小题的得分);每小题5分;共30分。

高二数学下学期期中试卷 理含解析 试题

高二数学下学期期中试卷 理含解析 试题

卜人入州八九几市潮王学校二零二零—二零二壹第二学期期中考试题高二数学〔理科〕一.选择题〔本大题一一共12小题,每一小题给出的四个选项里面,只有一项符合题目要求〕1.函数y=x2cosx的导数为A.y′=2xcosx-x2sinxB.y′=2xcosx+x2sinxC.y′=x2cosx-2xsinxD.y′=xcosx-x2sinx【答案】A【解析】试题分析:.故A正确.考点:导数公式.2.以下表述正确的选项是〔〕①归纳推理是由局部到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤【答案】D【解析】试题分析:归纳推理是由局部到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.故①③⑤是正确的考点:归纳推理;演绎推理的意义3.=()A.5B.4C.3D.2【答案】A【解析】【分析】求出被积函数的原函数,然后根据定积分的定义计算【详解】=〔x2﹣4x〕|=25﹣20=5,应选:A.【点睛】题主要考察了定积分的简单应用,解题的关键是求被积函数的原函数,属于根底题.在复平面上对应的点位于第________象限A.一B.二C.三D.四【答案】C【解析】【分析】将复数化简为的形式,得到,就可以得到答案.【详解】∵复数∴复数在复平面上对应的点位于第三象限应选C.【点睛】复数化简为的形式,是解题关键,的符号决定复数在复平面上对应的点位于的象限.根底题目.①假设,那么;②;③;正确的个数为〔〕A.0B.1C.2D.3【答案】C【解析】【分析】根据初等函数的导数公式,进展判断即可.【详解】因为〔cosx〕′=﹣sinx,所以①错误,因为===﹣,所以②正确,因为f〔x〕=,所以,f′〔x〕=﹣2x﹣3,所以f′〔3〕=﹣,所以③正确.故正确的个数为2个,应选:C.【点睛】此题主要考察了初等函数的导数公式的应用,属于根底题.6.有一段演绎推理是这样的:“直线平行于平面,那么平行于平面内所有直线;直线平面,直线平面,直线∥平面,那么直线∥直线〞的结论显然是错误的,这是因为〔〕A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【答案】A【解析】【分析】此题考察的知识点是演绎推理的根本方法及空间中线面关系,在使用三段论推理证明中,假设平面,直线平面,直线∥平面,那么直线∥直线〞的推理过程,不难得到结论.【详解】在推理过程“直线平行于平面,那么平行于平面内所有直线;直线平面,直线平面,直线∥平面,那么直线∥直线应选A.【点睛】归纳推理和演绎推理睬出现错误的原因是由合情推理的性质决定的,但演绎推理出现错误,有三种可能,一种是大前提错误,第二种是小前提错误,第三种是逻辑构造错误.的图象与直线相切,那么a等于〔〕A. B. C. D.1【答案】B【解析】此题考察导数的几何意义.设切点为那么,消去解得应选B〕A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度【答案】B【解析】分析:.详解:用反证法证明在一个三角形中,至少有一个内角不大于第一步应假设结论不成立,即假设三个内角都大于应选B.点睛:,.9.设函数f〔x〕在定义域内可导,y=f〔x〕的图象如下列图,那么导函数y=f′〔x〕的图象可能是〔〕A. B. C. D.【答案】D【解析】原函数在单调递增,在先单调递增再单调递减,然后再增,故导函数在大于零,在先大于零再小于零,然后大于零,所以选D.点睛:函数在某个区间内可导,假设,那么在该区间为增函数;假设,那么在该区间为减函数.因此函数与导函数的关系可由函数增减性与导函数正负对应关系断定.y=,x=1,x=2,y=0所围成的封闭曲线的面积为〔〕A.ln2B.C.D.1【答案】A【解析】【分析】利用定积分表示面积,然后计算即可.【详解】由曲线y=,x=1,x=2,y=0所围成的封闭图形的面积为:=lnx|=ln2;应选:A.【点睛】用微积分根本定理求定积分,关键是求出被积函数的原函数.此外,假设被积函数是绝对值函数或者分段函数,那么可以利用定积分对积分区间的可加性,将积分区间分解,代入相应的解析式,分别求出积分值相加在上是单调函数,那么实数的取值范围是〔〕A. B.C. D.【答案】B【解析】【分析】由f〔x〕的解析式求出导函数,导函数为开口向下的抛物线,因为函数在R上为单调函数,所以导函数与x 轴没有交点或者只有一个交点,即△小于等于0,列出关于a的不等式,求出不等式的解集即可得到实数a 的取值范围.【详解】由f〔x〕=﹣x3+ax2﹣x﹣1,得到f′〔x〕=﹣3x2+2ax﹣1,因为函数在〔﹣∞,+∞〕上是单调函数,所以f′〔x〕=﹣3x2+2ax﹣1≤0在〔﹣∞,+∞〕恒成立,那么△=,所以实数a的取值范围是:[﹣,].应选:B.【点睛】函数单调性与导函数的符号之间的关系要注意以下结论〔1〕假设在内,那么在上单调递增〔减〕.〔2〕在上单调递增〔减〕〔〕在上恒成立,且在的任意子区间内都不恒等于0.〔不要掉了等号.〕〔3〕假设函数在区间内存在单调递增〔减〕区间,那么在上有解.〔不要加上等号.〕的定义域为开区间,导函数在内的图象如下列图,那么函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】【分析】由图象得:f〔x〕的增区间为〔a,c〕,〔d,0〕,〔0,e〕,减区间为〔c,d〕,〔e,b〕,从而求出函数f〔x〕在开区间〔a,b〕内有1个极小值.【详解】函数f〔x〕的定义域为开区间〔a,b〕,导函数f′〔x〕在〔a,b〕内的图象如下列图,由图象得:当a<x<c,或者d<x<0,或者0<x<e时,f′〔x〕>0,当c<x<d或者e,x<d时,f′〔x〕<0,∴f〔x〕的增区间为〔a,c〕,〔d,0〕,〔0,e〕,减区间为〔c,d〕,〔e,b〕,∴f〔d〕是函数f〔x〕在开区间〔a,b〕内有极小值,∴函数f〔x〕在开区间〔a,b〕内有1个极小值.应选:A.【点睛】此题考察函数的极小值的个数的求法,考察导数性质、函数的单调性、函数的极值等根底知识,考察运算求解才能,考察函数与方程思想,是中档题.二、填空题〔此题一共4小题,每一小题5分,总分值是20分〕13.是虚数单位,那么满足的复数的一共轭复数为_______________【答案】【解析】【分析】把等式两边同时乘以,直接利用复数的除法运算求解,再根据一共轭复数的概念即可得解.【详解】由,得.∴复数的一共轭复数为故答案为.【点睛】此题考察了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的一共轭复数,是根底题.f(x)=e x x2的单调递减区间为______________.【答案】(-2,0)【解析】【分析】由f〔x〕=e x•x2可求得f′〔x〕=e x〔x2+2x〕,由f′〔x〕<0可求其递减区间.【详解】∵f〔x〕=e x•x2,∴f′〔x〕=e x•x2+2x•e x=e x〔x2+2x〕,∴由f′〔x〕<0得:﹣2<x<0;∴f〔x〕=e x•x2的单调递减区间为〔﹣2,0〕.故答案为:〔﹣2,0〕.【点睛】此题考察利用导数研究函数的单调性,求得f′〔x〕=e x〔x2+2x〕是关键,考察分析与运算的才能,属于根底题.15.由直线与圆相切时,圆心与切点的连线与直线垂直,想到平面与球相切时,球心与切点的连线与平面垂直,用的是____推理【答案】类比【解析】【分析】从直线想到平面,从圆想到球,即从平面类比到空间.【详解】从直线类比到平面,从圆类比到球,即从平面类比到空间,用的是类比推理.故答案为类比.【点睛】此题主要考察学生的知识量和对知识的迁移类比的才能.类比推理的一般步骤是:〔1〕找出两类事物之间的相似性或者一致性;〔2猜想〕.但类比推理的结论不一定正确,还需要经过证明.f(x)的导函数y=f'(x)的图象如下列图,其中-3,2,4是f'(x)=0的根,(1)f(4)是f(x)的极小值;(2)f(2)是f(x)极大值;(3)f(-2)是f(x)极大值;(4)f(3)是f(x)极小值;(5)f(-3)是f(x)极大值.【答案】(1)(2)【解析】【分析】由图象可知,函数在﹣2,3处,导数不为0,故不取极值;函数在﹣3,4处,导函数为0,函数有可能取极值,当左正右负,取极大值;当左负右正,取极小值【详解】由图象可知,函数在﹣2,3处,导数不为0,故不取极值,那么〔3〕〔4〕错误;函数在﹣3,4处,导数为0,且先减后增,故函数在﹣3,4处获得极小值,那么〔1〕对,〔5〕错;函数在2处导数为0,且先增后减,故函数在2处获得极大值,那么〔2〕对,故答案为:(1)(2).【点睛】极值点处导函数与x轴相交,要注意验证导数为0处左右的函数的单调性.一个可导函数在某点处有极值的充要条件是这个函数在该点处的导数等于0而且在该点两侧导数异号.三.解答题〔总分值是70分,解容许写出文字说明和演算步骤〕17.复数z=m(m-1)+(m2+2m-3)i当实数m取什么值时,复数z是(1)零;〔2〕纯虚数;〔3〕z=2+5i【答案】⑴m=1⑵m=0⑶m=2【解析】【分析】对于复数,〔1〕当且仅当时,复数;〔2〕当且仅当,时,复数是纯虚数;〔3〕当且仅当,时,复数.【详解】〔1〕当且仅当解得m=1,即m=1时,复数z=0.〔2〕当且仅当解得m=0,即m=0时,复数z=﹣3i为纯虚数.〔3〕当且仅当解得m=2,即m=2时,复数z=2+5i.【点睛】此题考察了复数的根本概念,深入理解好根本概念是解决好此题的关键.18.(-)n的展开式中,第五项与第三项的二项式系数之比为14∶3,求展开式中的常数项.【答案】180【解析】依题意∶=14∶3,即3=14,∴=,∴n=10.设第r+1项为常数项,又T r+1=()10-r(-)r=(-2)r令=0,得r=2.∴T3=(-2)2=180,即常数项为180.19.观察以下各等式(i为虚数单位):(cos1+isin1)(cos2+isin2)=cos3+isin3;(cos3+isin3)(cos5+isin5)=cos8+isin8;(cos4+isin4)(cos7+isin7)=cos11+isin11;(cos6+isin6)(cos6+isin6)=cos12+isin12.记f(x)=cos x+isin x.猜想出一个用f(x)表示的反映一般规律的等式,并证明其正确性;【答案】f(x)f(y)=f(x+y)【解析】【分析】由中的式子,发现假设,那么,进而利用复数的运算法那么和和差角公式,可证得结论.【详解】f(x)f(y)=(cosx+isinx)(cosy+isiny)=(cosxcosy-sinxsiny)+(sinxcosy+cosxsiny)i=cos(x+y)+isin(x+y)=f(x+y).猜想〕.20.a为实数,函数f(x)=(x2+1)(x+a)。

高二下学期期中考试理科数学试卷

高二下学期期中考试理科数学试卷

下学期期中联合考试 高二数学(理)试卷本试卷共 4 页,满分 150 分。

考试用时 120 分钟一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.“1x ≠”是“2320x x -+≠”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -=B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=3.如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则D B C B B A2121++等于( ) A . B .C .AGD .MG4.已知抛物线2y =-43x 的焦点为F ,定点)2,33(-A ,M 是抛物线上的点, 则AM +MF 取最小值时点M 的坐标是( )A .(6,2)B .(-23,2)C .(-3,2)D .(-33,2) 5.下列命题中是真命题的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题 ③“若m>0,则x 2+x -m=0有实根”的逆否命题 ④“若x -12是有理数,则x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④6(0,0)a b >>的左、右焦点分别为12,F F ,以12||F F为直径的C圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .116922=-y x B .14322=-y x C .191622=-y x D .13422=-y x 7.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC>的值是( )A .21 B .22 C .-21 D .0 8. 已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆则p 的值为 ( )A .1B .2C .5D .49.如图,已知过椭圆()222210x y a b a b+=>>的左顶点(),0A a -作直线l 交y 轴于点P ,交椭圆于点Q ,若AOP ∆是等腰三角形,且2PQ QA =,则椭圆的离心率为( )A.552 B .23 C .55D .5110.如图,正方体1111ABCD A B C D -的棱长为2,点P 是平面ABCD 上的动点,点M 在棱AB 上,且13AM =,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为4,则动点P 的轨迹是( )A .圆B .抛物线C .双曲线D .直线二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11. 命题:01,2<+-∈∃x x R x 的否定是_______________________.12. 设中心在原点的双曲线与椭圆2212x y +=有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程是__________________.13.直线l 过抛物线2ay x = (a>0)的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a = .14. 点P 是双曲线22221(0,0)x y a b a b-=>>左支上的一点,其右焦点为(,0)F c ,若M 为线段FP 的中点, 且M 到坐标原点的距离为8c,则双曲线的离心率e 的取值范围是______. 15.过椭圆1366422=+y x 上一点)0,8(-M 作一条直线交椭圆于N 点,则线段MN 中点的轨迹方程是_________________.三、解答题(本大题共6个大题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)设命题p :实数x 满足22430x ax a -+<,其中0a >,命题:q 实数x 满足2260,280.x x x x ⎧--≤⎪⎨+->⎪⎩.(Ⅰ)若1,a =且p q ∧为真,求实数x 的取值范围; (Ⅱ)若p ⌝是⌝q 的充分不必要条件,求实数a 的取值范围.17. (本小题满分12分) 已知双曲线C :122=-y x 及直线l :1-=kx y . (Ⅰ)若直线l 与双曲线C 的右支有两个不同的交点,求实数k 的取值范围;(Ⅱ)若直线l 与双曲线C 相交于A 、B 两点,O 是坐标原点,且AOB ∆的面积为2,求实数k 的值.18. (本小题满分12分) 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点(1)求证:B 1E ⊥AD 1.(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.19.(本小题满分12分) 在平面直角坐标系xOy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.(Ⅰ)求抛物线C 的方程; (Ⅱ)求过焦点F 且与直线OA 垂直的直线方程; (Ⅲ)设过点M (m,0)(m>0)的直线与抛物线C 交于D ,E 两点,ME=2DM,记D 和E 两点间的距离为)(m f ,求)(m f 关于m 的表达式.20. (本小题满分13分) 已知四边形ABCD 是菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,G ,H 分别是CE ,CF 的中点.(1)求证:平面AEF ∥平面BDGH(2)若平面BDGH 与平面ABCD 所成的角为60°,求直线CF 与平面BDGH 所成的角的正弦值.21. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -+=相切,过点P (4,0)且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点.(1)求椭圆C 的方程; (2)求OB OA ⋅的取值范围;(3)若B 点关于x 轴的对称点是E ,证明:直线AE 与x 轴相交于定点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二理科数学第二学期期终考试卷命题人: 蔡旺成 审核人: 曹齐平(考试时间:120分钟 满分100分)第Ⅰ选填部分(共48分)一、选择题(每小题3分共36分,请将正确答案代号填在第Ⅱ卷卷首的答题栏中) 1、已知直线m 、n 和平面α,则//m n 的一个必要不充分的条件是( ) A.//,//m n αα B.,m n αα⊥⊥ C.//,m n αα⊂ D.m 、n 与α成等角 2、甲、乙、丙、丁、戊五人的比赛成绩中只知道丙比乙差,那么不同的排名方式有( ) A. 24种 B. 90种 C. 60种 D. 120种3、已知AB ⊥平面α,B 为垂足,BC 为斜线AC 在平面α内的射影,CD α⊂,60ACD ︒∠=,45BCD ︒∠=,则AC 和平面α所成的角为( )A .90︒B .60︒C .45︒D .30︒4、n的各项系数之和大于8,小于32,则展开式中系数最大的项是( )A.B.C. 4D.45、设a 、b 是两条异面直线,给出下列四个命题:①存在分别经过直线a 和b 的两个互相平行的平面;②存在分别经过直线a 和b 的两个互相垂直的平面;③存在经过直线a 且与b 垂直的平面;④存在与a 、b 都平行且距离相等的平面;其中正确命题个数是( )A.4个B. 3个C. 2个D. 1个6、设有编号为1,2,3,4的四个球和编号为1,2,3,4的四个盒子,现将这四个球投放到四个盒子内,恰有两个盒子不放球的不同放法种数为( ) A. 60 B. 72 C. 84 D. 1207、一个盒子里装有相同大小的红球、白球共30个,其中白球4个,从中任取2个,则概率为1122644230C C C C +的事件是( ) A.没有白球 B.至少有一个白球 C.至少有一个红球 D.至多有一个白球 8、某班举行联欢会,原定的6个节目已排出节目单,演出前又增加了3个节目,若将这3 个节目插入原节目单中,则不同的插法总数为( ) A .504 B .210 C .336D .3789、5张卡片上分别写有A,B,C,D,E 5个字母,从中任取2张卡片,这两张卡片上的字母恰好是按字母顺序相邻的概率为( )A.51 B. 52 C.103 D.107 10、已知}{1,2,3,4,5A B ==,从A 到B 的映射f 满足:①(1)(2)(3)(4)(5)f f f f f ≤≤≤≤;②A 中的元素在f 下不同的象有且只有3个,则适合条件的映射f 的个数是( ) A .6 B .10C .60D .36011、在△ABC 中,90,30,2,C B AC P ∠=∠== 为AB 中点,将△ACP 沿CP 折起,使A 、B间的距离为如右图所示,则P 到平面ABC 的距离为( ).C.1D.2 12、三位数中,如果十位上的数字比百位上的数字和个位上的数字都大,则称这个数为凸数,如472,260等,那么任取一个三位正整数恰好是无重复数字的三位凸数的概率是 ( ). A.1675 B.1775 C.1754 D.1475二、填空题(每小题3分共12分,请将正确答案代号填在第Ⅱ卷卷首的答题横线上) 13、某高中共有学生1200人,其中高一年级有500人,高二年级有400人,高三年级有300人,采用分层抽样方法抽取一个容量为60的样本,那么高一、高二、高三各年级抽取学生个数分别应为_______________________.14、将正方形ABCD 沿对角线AC 折成一个直二面角,则异面直线AB 和CD 所成的角为__________________.15、一个四面体的所有棱长都为,四个顶点在同一个球面上,则此球的体积为___________________.16、如图甲、乙、丙、丁为海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有______________种(用数字作答)甲乙丙丁PACBA高二理科数学答题卷第Ⅰ选填部分(共48分)二、填空题:(12分)13. ___________; 14.___________; 15. ___________; 16. __________.第Ⅱ非选填部分(共52分)三、解答题(共52分,解答应写出文字说明,证明过程或演算步骤.) 17、(6分)从5名男生和6名女生中,选出4人分别担任班长、宣传委员、劳动委员、生活委员组成班委会,若要求男生甲当班长,劳动委员一定要男生当,且班委会中至少有一名女生,则共有多少种不同的选法?密 封线 密封线学校_________________班级____________座号_________姓名_____________☉☉☉☉ ☉n展开式中的前三项系数成等差数列,18、(8分)已知,某植物研19、(8分)已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为3究所分两个小组分别独立开展该种子的发芽实验,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.(1)第一小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求至少有4次成功的概率;(2)第二小组做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中种子发芽就停止实验,否则将继续进行下去,直到种子发芽成功为止,但发芽实验的次数最多不超过4次,求第二个小组所做的种子发芽的实验次数ξ的概率分布列和期望。

20、(8分)已知集合{}9,6,4,2,1,0,1,3,5,8A =-----,在平面直角坐标系内,点(,)x y 中的,x y A ∈,且x y ≠,(1)求点(,)x y 不在x 轴上的概率; (2)求点(,)x y 恰好在第二象限的概率。

21、(10分)如图所示,在三棱锥D ABC -中,2,AB BC CD ===AD =90,ABC ︒∠= 平面ACD ⊥平面ABC(1)求证AB ⊥平面BCD ; (2)求点C 到平面ABD 的距离。

22、(12分)在矩形ABCD 中,4AB =,3BC =,E 为DC 的中点,沿AE 将△ADE 折起,使二面角D AE B --为60︒,如图所示(1)若G 为DC 中点,1AH AB =,求证//GH 平面ADE高二理科数学参考答案及评分标准13. 25,20,15; 14.3π 15. 92π; 16. 16三、解答题(共52分,解答应写出文字说明,证明过程或演算步骤.)17、(6分)班委会中至少有一名女生可分为两类:一名女生进班委有112264C C A 种,两名女生进班委有2164A C 种,--------------------4分 1122126464264C C A A C ∴+=(种) 即共有264选法。

----------------------------6分18、(8分)解: 1111112222222212311(),()(),()()22n nn nnnT C x T C x x T C x x ----==⋅=⋅ 得前三项系数分别是1,112n C ,221()2n C前三项系数成等差数列,∴有221111()222n n C C +=⨯----------------------3分解得8n =或1n =(不合题意舍去)-----------------------------------5分11842218811()()()()22r r rr r r r r T C x x C x ---+==由41r -=得3r =---------------------------------------------------7分∴所求项是3343481()72T C x x -===-------------------------------------------------------8分19、(8分)解:(1)∴这5次实验是独立,∴至少有3次实验成功的概率是44155055121211().()().()3333243P C C =+=--------3分 (2)1(1)3P ξ==,212(2)339P ξ==⨯=,2214(3)33327P ξ==⨯⨯=,2228(4)133327P ξ==⨯⨯⨯=ξ的概率分布如下:分124865123439272727E ξ=⨯+⨯+⨯+⨯=-------------------------------------2分20、(8分)(1)设事件A 表示点(,)x y 不在x 轴上,则事件A 包含的结果数有1199A A 种----------2分1199210999()10910A A P A A ⋅⨯∴===⨯----------------------------------------------------------4分(2)设事件B 表示点(,)x y 恰好在第二象限,则事件B 包含的结果有1154A A 种------------------6分1154210542()1099A A PB A ⋅⨯∴∴===⨯---------------------------------------------------------8分21、(10分)(1)在Rt △ABC 中,求得AC =,2AD CD == ,222AD AC CD ∴=+, DC AC ∴⊥ 又 平面DAC ⊥平面ABC ∴ DC ⊥平面ABC AB DC ∴⊥--------3分又AB BC ⊥,BC DC C ⋂=,∴AB ⊥平面BCD ---------------------4分 (2)解法一:由C ABD D ABC V V --=,设点C 到平面ABD 的距离为h , 则1133ABD ABC h S CD S ⋅=⋅ ,------------------------------6分而ABD S = 2ABC S =解得h =∴点C 到平面ABD分解法二:作CE BD ⊥于E ,⊥平面BCD ,AB CE ⊥,CE ⊥平面ABD ,CE ∴的长为点C 到平面ABD 的距离。

------------------------------------------------------------6分 在Rt △DCB 中,由2DC BC ==得12CE BD ==-------8分 解法三:()2以C 为原点,分别以CA 、CD 所在直线为y 轴,z 轴建立空间直角坐标系C xyz-,则())())(),,0,0,2,,,A BD AB BD ==()0,0,2CD =, ---------------------------------------------------------------------------------------5分 设(),,n x y z = 为平面ABD 的法向量 , 则由0,0n AB n BD ⋅=⋅=得020z =+=⎩ ∴可取(1,x y z n ===∴=. -------------7分∴点C 到平面ABD的距离为2CD n n⋅==∴所求点C 到平面ABD 的距分22、(12分)解:(1)如图(2),取DE 中点M ,连结,M G A M ,又1//2DG GC MG EC =∴ . 又 11,//,42AH AB EC AB =1//2AH EC ∴ ,//MG AH ∴ --------------------2分∴四边形MAHG 为平行四边形,//GH AM ∴,//GH ∴平面ADE -----------------------------------4分 (2)如图(2),分别过点D 作DO ⊥平面ABCE 于O , DM AE ⊥于M ,连结MO ,则AE MO ⊥ ,DMO ∴∠为二面角D ─AE ─B 的平面角,60DMN ∴∠=在Rt △ADE 中,AE =由DM AE AD DE ⋅=⋅得DM == . 在Rt △DMO 中,sin 60DO DM ===分 . DO ⊥ 平面,A B CE D E O ∴∠为所求角.在Rt △DOE 中,1sin 2DO DEO DE ∠===DE ∴与平面AC所成角的大小为分 (3)如图(2),在平面AC 内,作OF EC ⊥于F ,连接DF ,DO ⊥ 平面,,AC DF EC DFO ∴⊥∴∠为二面角D ─EC ─B 的平面角。

相关文档
最新文档