最新华东师大版八年级数学上册精品试卷期中检测试卷

合集下载

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:华东师大版第11章数的开方~第13章全等三角形。

5.难度系数:0.68。

第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。

2024-2025学年华东师大版八年级上册数学期中考试模拟试卷(无答案)

2024-2025学年华东师大版八年级上册数学期中考试模拟试卷(无答案)

华东师大版2024—2025学年八年级上学期数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列各数中,是无理数的是( )A.B.C.D.2、下列运算正确的是( )A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x8 3、下列x的值能使二次根式有意义的是( )A.﹣2B.﹣1C.0D.14、下列命题中,真命题是( )A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.同旁内角互补5、若x2+(a﹣1)x+25是一个完全平方式,则a值为( )A.﹣9B.﹣9或11C.9或﹣11D.116、如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是( )A.2B.3C.4D.57、如图,已知∠BAD=∠CAD,下列条件中不一定能使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD8、如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为( )A.30°B.20°C.25°D.15°9、如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示﹣1的点重合,将圆沿数轴滚动1周,点A 到达点A ′的位置,则点A ′表示的数是( )A .π﹣1B .﹣π﹣1C .﹣π﹣1或π﹣1D .﹣π﹣1或π+110、已知非零实数a ,b 满足|2a ﹣4|+|b +2|++4=2a ,则a +b 等于( )A .﹣1B .0C .1D .2二、填空题(每小题3分,满分18分)11、比较大小:2 4.12、16的算术平方根是 .13、若一等腰三角形的两边长分别为3cm 、7cm ,则该三角形的周长为  .14、若2x +5y ﹣3=0,则4x •32y 的值为 .15、如图,等腰三角形ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则△BDM 的周长最短为 cm16、若(x 2﹣mx +6)(3x ﹣2)的展开式中不含x 的二次项,则m 的值是 .第6题图第7题图第8题图第9题图第15题图华东师大版2024—2025学年八年级上学期数学期中考试模拟试(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023++﹣.18、先化简再求值:[(x﹣2y)2﹣(x+y)(x﹣y)]÷y,其中x=1,y=2.19、实数a、b在数轴上的对应点如图所示,化简.20、已知一个正数的两个不相等的平方根是a+6与2a﹣9.(1)求a的值及这个正数;(2)求关于x的方程ax2﹣16=0的解.21、如图1,已知△ABC中,点D在AB边上,DE∥BC交边AC于点E,且DE 平分∠ADC.(1)求证:DB=DC;(2)如图2:在BC边上取点F,使∠DFC=60°,若BC=7,BF=2,求DF 的长.22、如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.23、乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1: ;方法2: .(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系. ;(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.24、如图1,在△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=90°,连接BD、AE、AD、BE,BD分别交AC、AE于点H、O.(1)求证:△BCD≌△ACE;(2)试确定线段BD和AE的数量关系和位置关系;(3)过点D作DM⊥AC于点M,过点E作EN⊥BC,交BC的延长线于点N ,如图2,将△ACD的面积记为S1,△BCE的面积记为S2,试判断S1和S2的大小,并说明理由.25、如图,已知A(a,b),AB⊥y轴于B,且满足+(b﹣2)2=0,(1)求A点坐标;(2)分别以AB,AO为边作等边三角形△ABC和△AOD,如图1试判定线段AC和DC的数量关系和位置关系.(3)如图2过A作AE⊥x轴于E,F,G分别为线段OE,AE上的两个动点,满足∠FBG=45°,试探究的值是否发生变化?如果不变,请说明理由并求其值;如果变化,请说明理由.。

最新华东师大版八年级上学期数学期中试卷及参考答案

最新华东师大版八年级上学期数学期中试卷及参考答案

最新华东师大版八年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、下列运算中,结果正确的是()A.a3•a4=a12B.(a2)3=a5C.a6÷a2=a4D.a3+a2=a52、在3.14,,0,π,,0.1010010001…(相邻两个1之间依次多一个0)中无理数的个数是()A.5个B.4个C.3个D.2个3、一个正数b的平方根为a+1和2a﹣7,则9a+b的立方根是()A.2B.3C.9D.±34、下列命题中,真命题的是()A.面积相等的两个三角形全等B.全等三角形的对应边相等C.两个全等的三角形一定成轴对称D.所有等腰三角形都只有一条对称轴5、估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间6、下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)7、如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EFC.AC=DF D.∠ACB=∠F8、若=2﹣x成立,则x的取值范围是()A.x≤2B.x≥2C.0≤x≤2D.任意实数9、如图,点P是∠AOB的角平分线上一点,过点P作PC⊥OA于点C,且PC=3,则点P到OB的距离为()A.3B.4C.5D.610、如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB 于M ,交AC 于N ,若BM +CN =9,则线段MN 的长( )A .大于9B .等于9C .小于9D .不能确定11、若n 满足关系式(n ﹣2020)2+(2021﹣n )2=3,则代数式(n ﹣2020)(2021﹣n )=( )A .﹣1B .0C .D .112、两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB ,AC 、BD 交于点O .詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO =CO =AC ;③△ABD ≌△CBD ;④四边形ABCD 的面积=AC •BD .其中正确的结论有( )二、填空题(每小题3分,满分18分)13、计算:(﹣0.25)2023×42022= .14、因式分解:ax 2﹣a = .15、,那么a ﹣b ﹣c 的值为 .16、等腰三角形两边长为3和6,则此等腰三角形的周长是 .17、若2m =8,2n =32,则22m +n ﹣3= .18、如图,DF 垂直平分AB ,EG 垂直平分AC ,点D 、E 在BC 边上,且点D 在点B 和点E 之间.若∠BAC =110°,则∠DAE = .第9题 第10题 第12题三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计72分,解答题要有必要的文字说明)19、计算:|﹣2|+(π﹣3.14)0﹣+(﹣2)2.20、先化简,再求值:[(x﹣3y)2﹣(x﹣y)(x+y)]÷2y,其中x=2,y=1.21、已知5a+4的立方根是﹣1,3a+b﹣1的算术平方根是3,c是的整数部分.(1)求a、b、c的值;(2)求3a+b+2c的平方根.22、如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.23、先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.24、如图,△ABC是等边三角形,点D、E分别在AB、BC的延长线上,且BD=CE,连接DC并延长交AE于点F,DG⊥BC,交CB的延长线于点G.(1)求证:△CBD≌△ACE;(2)求∠AFD的度数;(3)当△CFE为等腰三角形时,求.25、对于任意四个有理数m ,n ,p ,q ,我们规定:F (m ,n )=m 2+n 2,H (p ,q )=﹣pq .例如:F (1,2)=12+22=5,H (3,4)=﹣3×4=﹣12.(1)若F (x ,y )+H (kx ,y )是一个完全平方式,求常数k 的值;(2)若x +2y =5,且F (2x +3y ,2x ﹣3y )+H (7,x 2+2y 2)=13,求xy 与(x ﹣2y )2的值;(3)在(2)问的条件下,将梯形ABCD 及梯形ABFE 按照如图方式放置,其中点E 在边BD 延长线上,点F 在BC 上,且BF <FC ,∠BAD =90°,连接AE .若BC =x ,AB =nx ,AD =y ,EF =4ny ,当S 梯形ABCD ﹣S △ABE =2时,求n 的值.26、如图,在平面直角坐标系中,OA =OB ,点D 是AB 边的中点,且AB =2,点C 是射线OB 上的动点,连接CD ,以CD 为边作等腰直角△CDE ,且∠DCE =90°,连接BE .(1)BD 的值为 ;∠OAB 的度数为 ;(2)如图1,若点C 在线段OB 上,过点C 作CF ∥OA 交AB 于点F ,求证:∠CBE =45°;(3)如图2,当点C 在OB 的延长线上时,①判断∠CBE 的值是否发生改变,请说明理由;②若EB 平分∠DEC ,BE 与CD 交于点P ,求PE 的值.。

华东师大版八年级数学上册期中考试卷及参考答案

华东师大版八年级数学上册期中考试卷及参考答案

华东师大版八年级数学上册期中考试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2-的相反数是( )A .2-B .2C .12D .12- 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .1 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.函数32y x x =-+x 的取值范围是__________.3.若m+1m =3,则m 2+21m=________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度. 三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、D6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、23x -<≤3、74、10.5、1(21,2)n n -- 6、40°三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x+2;当1x =-时,原式=1.3、(1)102b -≤≤;(2)2 4、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

华东师大版八年级上册数学期中学情评估测试卷(含答案)

华东师大版八年级上册数学期中学情评估测试卷(含答案)

华东师大版八年级上册数学期中学情评估测试卷时间:120分钟满分:150分一、选择题(每小题4分,共40分)1.下列各数中,①-0.212 112 111 211 11;②π2;③227;④8;⑤39;⑥3.14.无理数共有( )A.2个B.3个C.4个D.5个2.如图,数轴上表示实数7的点可能是( )A.点PB.点QC.点RD.点S3.若a-1<13<a,且a为整数,则a的值是( )A.4B.3C.2D.14.{a}表示小于a的最大整数,[b]表示不小于b的最小整数.若整数x、y满足4 {x}-[y]=9,3{x}+[y]=5,则3x+2y的平方根为( )A.±5B.±1C.±2D.±75.如图,将大正方形通过剪、割、拼后分解成新的图形,利用等面积法可证明某些乘法公式.在给出的4幅拼法中,其中能够验证平方差公式(a+b)(a-b)=a2-b 2的有( )A.①②B.①③C.①②③D.①②④6.我们知道下面的结论:若a m =a n (a >0且a ≠1),则m =n .设2m =3,2n =6,2p =12,下列关于m 、n 、p 三者之间的关系正确的是( )A.n 2-mp =1B.m +n =2pC.m +p =2nD.p +n =2m7.若a 2+b 2=2a -8b -17,则(12b )2a 的值为( )A.14B.-14C.4D.-48.如图,在△ABC 中,AB =AC ,中线AD 与角平分线CE 相交于点F .已知∠ACB =40°,则∠AFC 的度数为( )A.100°B.110°C.120°D.130°9.如图,在四边形ABCD 中,AB ∥DC ,E 为BC 的中点,连结DE 、AE ,AE ⊥D E ,延长DE 交AB 的延长线于点F .若AB =5,CD =3,则AD 的长为( )A.2B.5C.8D.11 10.如图,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于点F ,交AB 于点G ,连结CP .下列结论:①∠ACB =2∠APB ;②S △P AC ∶S △P AB =AC ∶AB ;③BP 垂直平分CE ;④∠PCF =∠CPF .其中,正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.实数8的立方根是________;49的平方根是_________;|-179|的算术平方根是______________.12.已知13的整数部分为a ,小数部分为b ,则代数式a 2-a -b 的值为______________.13.若x 2+2(a +4)x +36是完全平方式,则a =______________.。

华东师大版八年级数学上册期中测试卷及答案【完美版】

华东师大版八年级数学上册期中测试卷及答案【完美版】

华东师大版八年级数学上册期中测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10 5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.下列图形中,是轴对称图形的是()A .B .C .D .8.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为( )A .40海里B .60海里C .70海里D .80海里二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.21a +8a =__________.3.分解因式:3x-x=__________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=________.6.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x--=(2)1421 x x=-+2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.若方程组3133x y mx y m+=+⎧⎨+=-⎩的解满足x为非负数,y为负数.(1)请写出x y+=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 满足4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、C7、B8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、13、x (x+1)(x -1)4、145、26、15.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、3.3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1) 65°;(2) 25°.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。

华东师大版八年级数学上册期中测试卷【附答案】

华东师大版八年级数学上册期中测试卷【附答案】

华东师大版八年级数学上册期中测试卷【附答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m-n的值是()A.2 B.0 C.-1 D.14.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2 5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若二次根式x1-有意义,则x的取值范围是▲.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、B6、A7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、x 1≥.3、204、20°.5、46、4三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22x -,12-.3、(1)102b -≤≤;(2)2 4、(1)略;(2)45°;(3)略.5、略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

华东师大版八年级数学上册期中试卷【及参考答案】

华东师大版八年级数学上册期中试卷【及参考答案】

华东师大版八年级数学上册期中试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为( )A .1B .2C 3D .23 3 9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.若m+1m=3,则m2+21m=________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、D5、A6、D7、C8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、13、74、8.5、49 136、8三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、1a b-+,-13、(1)-3x+2<-3y+2,理由见解析;(2)a<34、E(4,8) D(0,5)5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

华东师大版八年级数学上册期中测试卷(完美版)

华东师大版八年级数学上册期中测试卷(完美版)

华东师大版八年级数学上册期中测试卷(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.因式分解:a3﹣2a2b+ab2=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、B6、D7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、13、a (a ﹣b )2.4、()()2a b a b ++.56、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3x3、(1)102b -≤≤;(2)2 4、(1)y =x +5;(2)272;(3)x >-3.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

华东师大版八年级数学上册期中考试卷【带答案】

华东师大版八年级数学上册期中考试卷【带答案】

华东师大版八年级数学上册期中考试卷【带答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2-的相反数是( )A .2-B .2C .12D .12- 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .1 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C. D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.21273=___________.3x2-x的取值范围是________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、B5、B6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-23、x 2≥4、2≤a+2b ≤5.5、36、6三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、x+2;当1x =-时,原式=1.3、8k ≥-且0k ≠.4、(1)y =x +5;(2)272;(3)x >-3.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

华东师大版八年级数学上册期中考试题(参考答案)

华东师大版八年级数学上册期中考试题(参考答案)

华东师大版八年级数学上册期中考试题(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++的值.4.已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、D5、B6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、82、22()1y x =-+3、如果两个角互为对顶角,那么这两个角相等4、10.5、36、6三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、22x -,12-.3、0.4、略.5、24°.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

华东师大版八年级数学上册期中测试卷及答案【真题】

华东师大版八年级数学上册期中测试卷及答案【真题】

华东师大版八年级数学上册期中测试卷及答案【真题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.12-的相反数是( ) A .2- B .2 C .12- D .122.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.216.3x2-x的取值范围是________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、C5、A6、B7、B8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、43、x2≥4、20°.5、49 136、4三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、1a b-+,-13、(1)-3x+2<-3y+2,理由见解析;(2)a<34、略5、略.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。

华东师大版八年级数学上册期中考试及答案【必考题】

华东师大版八年级数学上册期中考试及答案【必考题】

华东师大版八年级数学上册期中考试及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为( )A .1B .2C 3D .23 39.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________. 2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________. 3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、B6、A7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、1或5.3、a (a ﹣b )2.4、(-4,2)或(-4,3)5、96、40°三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、x 2-,32-. 3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、(1)略;(2)4.5、(1)略;(2)8.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

华东师大版初中八年级数学上册期中素养综合测试第11章至第13章课件

华东师大版初中八年级数学上册期中素养综合测试第11章至第13章课件
解析 由作图可知,DE垂直平分线段AC,∴DA=DC,AE=EC, ∴AC=2AE=4 cm, ∵AB+BC+AC=15 cm,∴AB+BC=11 cm, ∴△ABD的周长=AB+BD+DA=AB+BD+DC=AB+BC=11 cm.
18.(双内角平分线模型)如图,在△ABC中,ED∥BC,∠ABC和 ∠ACB的平分线分别交ED于点G、F,若FG=4,ED=8,则EB+ DC= 12 . 解析 ∵ED∥BC, ∴∠EGB=∠GBC,∠DFC=∠FCB, ∵BG平分∠ABC,CF平分∠ACB, ∴∠ABG=∠CBG,∠ACF=∠FCB, ∴∠EBG=∠EGB,∠DFC=∠ACF, ∴EB=EG,DF=DC, ∵FG=4,ED=8,∴EB+DC=EG+DF=ED+FG=12.
3.(2024甘肃张掖甘州育才中学期末)下列说法中,是真命题 的是 ( D ) A.射线PA和射线AP是同一条射线 B.两直线平行,同旁内角相等 C.一个角的补角一定大于这个角 D.两点确定一条直线
解析 射线PA和射线AP端点不同,不是同一条射线,故错误, 是假命题,A选项不符合题意;两直线平行,同旁内角互补,故 原命题错误,是假命题,B选项不符合题意;钝角的补角小于这 个角,故原命题错误,是假命题,C选项不符合题意;两点确定 一条直线,正确,是真命题,D选项符合题意.故选D.
解析 ∵正方形ABCD的面积为5,∴AB= 5,∵AB=AE=AF, ∴AB=AE=AF= 5,∵点A表示的数是1,且点E在点A的右侧, 点F在点A的左侧,∴点E表示的数为1+ 5,点F表示的数为1-
5,∴点F和点E所表示的数的差是1- -5(1+ )=5-2 . 5

2024-2025学年华东师大版数学八年级上册期中学情评估

2024-2025学年华东师大版数学八年级上册期中学情评估

第一学期期中学情评估一、选择题1.4的平方根是( )A. ±2B. 2C. ﹣2D. 162. 下列运算结果正确的是( )A. ()326328x y x y -=-B. 623a a a ÷=C. ()32639a a -=D. 235x x x +=3.在3317π,2022这五个数中无理数的个数为( )A. 2B. 3C. 4D. 54.估计11-2的值在( )A .3和4之间B .2和3之间C .1和2之间D .0和1之间10.已知实数m ,n 满足m 2+n 2=2+mn ,则(2m -3n )2+(m +2n )(m -2n )的最大值为( )A .24 B.443 C.163 D .-4二、填空题(每题3分,共15分)1.-√3的相反数是 .2.命题“两个锐角的和是直角”是 命题(填“真”或“假”).3计算:(2a 3b )2÷ab = .4已知5+小数部分为m ,11﹣为小数部分为n ,则m +n = .5.若一个整数能表示成a 2+b 2(a ,b 是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.已知M 是一个“完美数”,且M =x 2+4xy +5y 2-12y +k (x ,y 是两个任意整数,k 是常数),则k 的值为________.三、解答题 1.(1)计算:333163270.1251464--++-. (2)计算:()()22328212-+---+-. 2.解方程:(1)()22180x --=; (2)()32110x ++=,3.分解因式:(1)42282a a b -. (2)322242x x y xy ++.4.分解因式:(1)a 3b -ab; (2)(x +y )2-(2x +2y -1).5.先化简,再求值:(2+a )(2-a )+a (a -5b )+3a 5b 3÷(-a 2b )2,其中ab =-1 009.6.阅读下列材料:因为4<5<9,即2<5<3,所以5的整数部分为2,小数部分为5-2.请仿照上述方法,解答下列问题:(1)7的整数部分是________;(2)7的小数部分为m ,11的整数部分为n ,求m +n -7的值.7.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m 、宽为n 的小长方形.(1)观察图形可以发现,代数式2m 2+5mn +2n 2可以因式分解为______________.(2)若每块小长方形的面积为20,四块正方形的面积和为162.①试求图中所有裁剪线(虚线)长度之和;②求(m -n )2的值.8.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发,当点P 到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)AB与DE有什么关系?请说明理由.(2)线段AP的长为(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,t的值为.9.矩形ABCD的边长AB=18cm,点E在BC上,把△ABE沿AE折叠,使点B落在CD边的点F处,∠BAE=30°.(1)如图1,求DF的长度;(2)如图2,点N从点F出发沿FD以每秒1cm的速度向点D运动,同时点P从点A出发沿AF以每秒2cm的速度向点F运动,运动时间为t秒(0<t<9),过点P作PM⊥AD,于点M.①请证明在N、P运动的过程中,四边形FNMP是平行四边形;②连接NP,当t为何值时,△MNP为直角三角形?3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中测试题一.选择题(共8小题,满分24分,每小题3分)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对2.下面的计算不正确的是()A.5a3﹣a3=4a3B.2m•3n=6m+n C.2m•2n=2m+n D.﹣a2•(﹣a3)=a53.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥ACC.∠E=∠ABC D.AB∥DE5.等腰三角形一边长等于5,一边长等于10,它的周长是()A.20 B.25 C.20或25 D.156.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A.a+b>0 B.ab=0 C.﹣<0 D. +>07.下列各式中,不能用平方差公式因式分解的是()A.﹣a2﹣4b2B.﹣1+25a2C.﹣9a2D.﹣a4+18.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个二.填空题(共7小题,满分21分,每小题3分)9.若=2﹣x,则x的取值范围是.10.把命题“等角的补角相等”改写成“如果…那么…”的形式是.11.比较大小:.(填“>”、“<”或“=”)12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.计算:已知:a+b=3,ab=1,则a2+b2= .14.计算:()2017×(﹣4)1009= .侧作等边△ABD和等边△BCE,连接AE和CD,交点为M,AE交BD于点P,CD交BE于点Q,连接PQ、BM,有4个结论:①△ABE≌△DBC,②△DQB≌△ABP,③∠EAC=30°,④∠AMC=120°,请将所有正确结论的序号填在横线上.三.解答题(共8小题,满分75分)16.(8分)分解因式:(1)5mx2﹣10mxy+5my2(2)4(a﹣b)2﹣(a+b)2.17.(10分)计算:(1)2x2y•(﹣3xy)÷(xy)2(2)﹣+(3)(x+3)(x+4)﹣(x﹣1)2.18.(7分)观察以下等式:第1个等式: ++×=1,第2个等式: ++×=1,第3个等式: ++×=1,第4个等式: ++×=1,第5个等式: ++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.19.(9分)若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如: =1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算: = ;(2)代数式为完全平方式,则k= ;(3)解方程: =6x2+7.20.(10分)如图,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′.(1)当∠DAE=45°时,求证:DE=D′E;(2)在(1)得条件下,猜想:BD2、DE2、CE2有怎样的数量关系?请写出,并说明理由.21.(10分)分解因式:(a2+2a)2﹣7(a2+2a)﹣8.22.(10分)观察下列一组等式:(a+1)(a2﹣a+1)=a3+1(a+2)(a2﹣2a+4)=a3+8(a+3)(a2﹣3a+9)=a3+27(1)以上这些等式中,你有何发现?利用你的发现填空.①(x﹣3)(x2+3x+9)= ;②(2x+1)()=8x3+1;③()(x2+xy+y2)=x3﹣y3.(2)计算:(a2﹣b2)(a2+ab+b2)(a2﹣ab+b2).23.(11分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.请你在图2中用三种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)参考答案:一.选择题1.【分析】由于正数的平方根有两个,且互为相反数,所以在此题中有a两种情况,要考虑全面.【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.【分析】根据合并同类项的法则,同底数幂相乘,底数不变,指数相加的性质,对各选项分析判断后利用排除法求解.【解答】解:A、5a3﹣a3=(5﹣1)a3=4a3,正确;B、2m与3n与底数不相同,不能进行运算,故本选项错误;C、2m•2n=2m+n,正确;D、﹣a2•(﹣a3)=a2+3=a5,正确.故选:B.3.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.4.【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC ≌△DEF了.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.5.【分析】此题先要分类讨论,已知等腰三角形的一边等于5,另一边等于10,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【解答】解:当5为腰,10为底时,∵5+5=10,∴不能构成三角形;当腰为10时,∵5+10>10,∴能构成三角形,∴等腰三角形的周长为:10+10+5=25.故选:B.6.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<0<a,∴ab<0,故选项B错误;C、∵b<0<a,∴﹣>0,故选项C错误;D、∵b<﹣1<0<a<1,∴ +>0,故选项D正确.故选:D.7.【分析】利用平方差公式的结构特征判断即可.【解答】解:不能用平方差公式分解的是﹣a2﹣4b2.故选:A.8.【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据点到直线的距离的定义对④进行判断.【解答】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④从直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以④假命题;真命题的个数为0,故选:A.二.填空题9.【分析】根据已知得出x﹣2≤0,求出不等式的解集即可.【解答】解:∵ =2﹣x,∴x﹣2≤0,x≤2则x的取值范围是x≤2故答案为:x≤2.10.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.11.【分析】通分后做差,借助于平方差公式即可求出9﹣4>0,进而即可得出>.【解答】解:∵ =,∴﹣=.∵(9﹣4)×(9+4)=81﹣80=1>0,9+4>0,∴9﹣4>0,∴﹣>0,即>.12.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:714.【分析】本题既可以运用负整数指数幂的公式,也可以运用幂的乘方法则即可求出答案.【解答】解:()2017×(﹣4)1009,=2﹣2017×(﹣22×1009),=﹣2﹣2017+2018,=﹣2,故答案为:﹣2.15.【分析】根据题意、全等三角形的判定与性质、等边三角形的性质可以判断各小题是否成立,从而可以解答本题.【解答】解:∵等边△ABD和等边△BCE,∴AB=BD,BE=BC,∠ABE=∠DBC=120°,∠DBQ=60°,∴在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故①正确,∴∠EAB=∠CDB,即∠BAP=∠BDQ,在△DQB和△ABP中,,∴△DQB≌△ABP(ASA),故②正确,题目中没有说明AP平分∠DAB,故无法推出∠EAC=30°,故③错误,∵∠EAB=∠CDB,∠AMC+∠MAC+∠MCA=180°,∴∠MAC+∠MCA=∠CDB+∠DCB=∠DBA=60°,故答案为:①②④.三.解答题16.【分析】(1)首先提公因式5m,再利用完全平方公式进行分解即可;(2)直接利用平方差进行分解即可.【解答】解:(1)原式=5m(x2﹣2xy+y2)=5m(x﹣y)2.(2)原式=[2(a﹣b)]2﹣(a+b)2=[2(a﹣b)+(a+b)][2(a﹣b)﹣(a+b)]=(3a﹣b)(a﹣3b).17.【分析】(1)原式利用积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;(2)原式利用平方根、立方根定义计算即可得到结果;(3)原式利用多项式乘多项式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=2x2y•(﹣3xy)÷(x2y2)=﹣6x;(2)原式=5﹣2+2=5;(3)原式=x2+7x+12﹣x2+2x﹣1=9x+11.18.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分子分别是1和n﹣1【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明: =∴等式成立19.【分析】(1)根据新定义运算代入数据计算即可求解;(2)根据新定义运算代入数据计算,再根据完全平方式的定义即可求解;(3)根据新定义运算代入数据得到关于x的方程,解方程即可求解.【解答】解:(1)=[2×(﹣3)×1]÷[(﹣1)4+31]=﹣6÷4=﹣.故答案为:﹣;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为:±3;(3)=6x2+7,(3x﹣2)(3x+2)]﹣[(x+2)(3x﹣2)+32]=6x2+7,解得x=﹣4.20.【分析】(1)利用旋转的性质得AD=AD′,∠DAD′=∠BAC=90°,再计算出∠EAD′=∠DAE=45°,则利用“SAS”可判断△AED≌△AED′,所以DE=D′E;(2)由(1)知△AED≌△AED′得到ED=ED′,∠B=∠ACD′,再根据等腰直角三角形的性质得∠B=∠ACB=45°,则根据旋转的性质得BD=CD′,∠B=∠ACD′=45°,所以∠BCD′=∠ACB+∠ACD′=90°,于是根据勾股定理得CE2+D′C2=D′E2,所以BD2+CE2=DE2.【解答】(1)证明:∵△ABD绕点A旋转,得到△ACD′,∴AD=AD′,∠DAD′=∠BAC=90°,∵∠DAE=45°∴∠EAD′=∠DAD′﹣∠DAE=90°﹣45°=45°,∴∠EAD′=∠DAE,在△AED与△AED′中,∴DE=D′E;(2)解:BD2+CE2=DE2.理由如下:由(1)知△AED≌△AED′得到:ED=ED′,在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵△ABD绕点A旋转,得到△ACD′∴BD=CD′,∠B=∠ACD′=45°,∴∠BCD′=∠ACB+∠ACD′=45°+45°=90°,在Rt△CD′E中,CE2+D′C2=D′E2,∴BD2+CE2=DE2.21.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(a2+2a﹣8)(a2+2a+1)=(a+4)(a﹣2)(a+1)2.22.【分析】(1)根据上述等式归纳总结得到规律,即可得到结果;(2)将第一个因式利用平方差公式分解,结合后,利用得出的规律计算即可得到结果.【解答】解:(1)①(x﹣3)(x2+3x+9)=x3﹣27;②(2x+1)(4x2﹣2x+1)=8x3+1;③(x﹣y)(x2+xy+y2)=x3﹣y3;故答案为:①x3﹣27;②8x3+1;③x3﹣y3;(2)原式=[(a﹣b)(a2+ab+b2)][(a+b)(a2﹣ab+b2)]=(a3﹣b3)(a3+b3)=a6﹣b6.23.【分析】(1)先以底边为腰作顶角为45°的等腰三角形,然后再作腰的垂线得到含顶角为90°的等腰三角形和顶角为135°的等腰三角形;(2)先过腰上的高得到顶角为90°的等腰三角形,再作此高的垂直平分线得到顶角为135°的等腰三角形和顶角为45°的等腰三角形.【解答】解:(1)如图所示:(2)如图所示:LLL。

相关文档
最新文档